1151
|
Schiffler BC, Almeida R, Granqvist M, Bengtsson SL. Memory-reliant Post-error Slowing Is Associated with Successful Learning and Fronto-occipital Activity. J Cogn Neurosci 2016; 28:1539-52. [DOI: 10.1162/jocn_a_00987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Negative feedback after an action in a cognitive task can lead to devaluing that action on future trials as well as to more cautious responding when encountering that same choice again. These phenomena have been explored in the past by reinforcement learning theories and cognitive control accounts, respectively. Yet, how cognitive control interacts with value updating to give rise to adequate adaptations under uncertainty is less clear. In this fMRI study, we investigated cognitive control-based behavioral adjustments during a probabilistic reinforcement learning task and studied their influence on performance in a later test phase in which the learned value of items is tested. We provide support for the idea that functionally relevant and memory-reliant behavioral adjustments in the form of post-error slowing during reinforcement learning are associated with test performance. Adjusting response speed after negative feedback was correlated with BOLD activity in right inferior frontal gyrus and bilateral middle occipital cortex during the event of receiving the feedback. Bilateral middle occipital cortex activity overlapped partly with activity reflecting feedback deviance from expectations as measured by unsigned prediction error. These results suggest that cognitive control and feature processing cortical regions interact to implement feedback-congruent adaptations beneficial to learning.
Collapse
|
1152
|
Anderson MC, Bunce JG, Barbas H. Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol Learn Mem 2016; 134 Pt A:145-161. [PMID: 26642918 PMCID: PMC5106245 DOI: 10.1016/j.nlm.2015.11.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
Abstract
A key function of the prefrontal cortex is to support inhibitory control over behavior. It is widely believed that this function extends to stopping cognitive processes as well. Consistent with this, mounting evidence establishes the role of the right lateral prefrontal cortex in a clear case of cognitive control: retrieval suppression. Retrieval suppression refers to the ability to intentionally stop the retrieval process that arises when a reminder to a memory appears. Functional imaging data indicate that retrieval suppression involves top-down modulation of hippocampal activity by the dorsolateral prefrontal cortex, but the anatomical pathways supporting this inhibitory modulation remain unclear. Here we bridge this gap by integrating key findings about retrieval suppression observed through functional imaging with a detailed consideration of relevant anatomical pathways observed in non-human primates. Focusing selectively on the potential role of the anterior cingulate cortex, we develop two hypotheses about the pathways mediating interactions between lateral prefrontal cortex and the medial temporal lobes during suppression, and their cellular targets: the entorhinal gating hypothesis, and thalamo-hippocampal modulation via the nucleus reuniens. We hypothesize that whereas entorhinal gating is well situated to stop retrieval proactively, thalamo-hippocampal modulation may interrupt an ongoing act of retrieval reactively. Isolating the pathways that underlie retrieval suppression holds the potential to advance our understanding of a range of psychiatric disorders characterized by persistent intrusive thoughts. More broadly, an anatomical account of retrieval suppression would provide a key model system for understanding inhibitory control over cognition.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition & Brain Sciences Unit, 15 Chaucer Road, Cambridge, England CB2 7EF, United Kingdom.
| | - Jamie G Bunce
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | - Helen Barbas
- Neural Systems Laboratory, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
1153
|
Contrasting neural effects of aging on proactive and reactive response inhibition. Neurobiol Aging 2016; 46:96-106. [DOI: 10.1016/j.neurobiolaging.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/11/2016] [Accepted: 06/10/2016] [Indexed: 01/18/2023]
|
1154
|
Cunillera T, Brignani D, Cucurell D, Fuentemilla L, Miniussi C. The right inferior frontal cortex in response inhibition: A tDCS–ERP co-registration study. Neuroimage 2016; 140:66-75. [DOI: 10.1016/j.neuroimage.2015.11.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/26/2015] [Accepted: 11/17/2015] [Indexed: 01/17/2023] Open
|
1155
|
Salas CE, Castro O, Yuen KS, Radovic D, d'Avossa G, Turnbull OH. 'Just can't hide it': a behavioral and lesion study on emotional response modulation after right prefrontal damage. Soc Cogn Affect Neurosci 2016; 11:1528-40. [PMID: 27317928 PMCID: PMC5040916 DOI: 10.1093/scan/nsw075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Historically, emotion regulation problems have been reported as a common consequence of right prefrontal cortex (rPFC) damage. It has been proposed that the rPFC, particularly the rIFG, has a key role inhibiting prepotent reflexive actions, thus contributing to emotion regulation and self-regulation. This study is the first to directly explore this hypothesis, by testing whether damage to the rIFG compromises the voluntary modulation of emotional responses, and whether performance on inhibition tasks is associated with emotion regulation. METHOD 10 individuals with unilateral right prefrontal damage and 15 matched healthy controls were compared on a well-known response modulation task. During the task participants had to amplify and suppress their facial emotional expressions, while watching film clips eliciting amusement. Measures of executive control, emotion regulation strategies usage and symptomatology were also collected. RESULTS As a group, individuals with rPFC damage presented a significantly reduced range of response modulation compared with controls. In addition, performance in the suppression task was associated with measures of cognitive inhibition and suppression usage. Interestingly, these effects were driven primarily by a subgroup of individuals with rPFC damage, all of whom also had damage to the right posterior insula, and who presented a marked impairment in suppressing facial emotional expressions.
Collapse
Affiliation(s)
- Christian E Salas
- Laboratorio de Neurociencia Cognitiva y Social (LaNCyS), Facultad de Psicologia, Universidad Diego Portales, Vergara 275, Santiago, Chile School of Psychology, Brigantia Building, Bangor University, Bangor, Wales LL57 2AS, UK Gwynedd
| | - Osvaldo Castro
- Escuela De Terapia Ocupacional, Universidad Autonoma De Chile, Ricardo Morales, San Miguel 3369, Chile, Santiago
| | - Kenneth Sl Yuen
- Neuroimaging Centre, Johannes Gutenberg University Medical Center, Langenbeckstr. 1 Geb. 701, EG, R. 0.035, Mainz 55131, Germany
| | | | - Giovanni d'Avossa
- School of Psychology, Brigantia Building, Bangor University, Bangor, Wales LL57 2AS, UK Gwynedd
| | - Oliver H Turnbull
- School of Psychology, Brigantia Building, Bangor University, Bangor, Wales LL57 2AS, UK Gwynedd
| |
Collapse
|
1156
|
Gay O, Plaze M, Oppenheim C, Gaillard R, Olié JP, Krebs MO, Cachia A. Cognitive control deficit in patients with first-episode schizophrenia is associated with complex deviations of early brain development. J Psychiatry Neurosci 2016; 41:150267. [PMID: 27673502 PMCID: PMC5373705 DOI: 10.1503/jpn.150267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/10/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Several clinical and radiological markers of early neurodevelopmental deviations have been independently associated with cognitive impairment in patients with schizophrenia. The aim of our study was to test the cumulative and/or interactive effects of these early neurodevelopmental factors on cognitive control (CC) deficit, a core feature of schizophrenia. METHODS We recruited patients with first-episode schizophrenia-spectrum disorders, who underwent structural MRI. We evaluated CC efficiency using the Trail Making Test (TMT). Several markers of early brain development were measured: neurological soft signs (NSS), handedness, sulcal pattern of the anterior cingulate cortex (ACC) and ventricle enlargement. RESULTS We included 41 patients with schizophrenia in our analysis, which revealed a main effect of ACC morphology (p = 0.041) as well as interactions between NSS and ACC morphology (p = 0.005), between NSS and handedness (p = 0.044) and between ACC morphology and cerebrospinal fluid (CSF) volume (p = 0.005) on CC measured using the TMT-B score - the TMT-A score. LIMITATIONS No 3- or 4-way interactions were detected between the 4 neurodevelopmental factors. The sample size was clearly adapted to detect main effects and 2-way interactions, but may have limited the statistical power to investigate higher-order interactions. The effects of treatment and illness duration were limited as the study design involved only patients with first-episode psychosis. CONCLUSION To our knowledge, our study provides the first evidence of cumulative and interactive effects of different neurodevelopmental markers on CC efficiency in patients with schizophrenia. Such findings, in line with the neurodevelopmental model of schizophrenia, support the notion that CC impairments in patients with schizophrenia may be the final common pathway of several early neurodevelopmental mechanisms.
Collapse
Affiliation(s)
- Olivier Gay
- From the INSERM UMR 894, Centre de Psychiatrie & Neurosciences, CNRS GDR 3557, Institut de Psychiatrie, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France (Gay, Plaze, Gaillard, Olié, Krebs); the Service d’Imagerie Morphologique et Fonctionnelle, Centre Hospitalier Sainte-Anne, Paris, France (Oppenheim); the CNRS UMR 8240, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, Paris, France (Cachia); and the Institut Universitaire de France, Paris, France (Cachia)
| | - Marion Plaze
- From the INSERM UMR 894, Centre de Psychiatrie & Neurosciences, CNRS GDR 3557, Institut de Psychiatrie, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France (Gay, Plaze, Gaillard, Olié, Krebs); the Service d’Imagerie Morphologique et Fonctionnelle, Centre Hospitalier Sainte-Anne, Paris, France (Oppenheim); the CNRS UMR 8240, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, Paris, France (Cachia); and the Institut Universitaire de France, Paris, France (Cachia)
| | - Catherine Oppenheim
- From the INSERM UMR 894, Centre de Psychiatrie & Neurosciences, CNRS GDR 3557, Institut de Psychiatrie, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France (Gay, Plaze, Gaillard, Olié, Krebs); the Service d’Imagerie Morphologique et Fonctionnelle, Centre Hospitalier Sainte-Anne, Paris, France (Oppenheim); the CNRS UMR 8240, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, Paris, France (Cachia); and the Institut Universitaire de France, Paris, France (Cachia)
| | - Raphael Gaillard
- From the INSERM UMR 894, Centre de Psychiatrie & Neurosciences, CNRS GDR 3557, Institut de Psychiatrie, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France (Gay, Plaze, Gaillard, Olié, Krebs); the Service d’Imagerie Morphologique et Fonctionnelle, Centre Hospitalier Sainte-Anne, Paris, France (Oppenheim); the CNRS UMR 8240, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, Paris, France (Cachia); and the Institut Universitaire de France, Paris, France (Cachia)
| | - Jean-Pierre Olié
- From the INSERM UMR 894, Centre de Psychiatrie & Neurosciences, CNRS GDR 3557, Institut de Psychiatrie, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Université Paris Descartes, Sorbonne Paris Cité, Paris, France (Gay, Plaze, Oppenheim, Gaillard, Olié, Krebs, Cachia); the Service Hospitalo-Universitaire, Centre Hospitalier Sainte-Anne, Paris, France (Gay, Plaze, Gaillard, Olié, Krebs); the Service d’Imagerie Morphologique et Fonctionnelle, Centre Hospitalier Sainte-Anne, Paris, France (Oppenheim); the CNRS UMR 8240, Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant, Paris, France (Cachia); and the Institut Universitaire de France, Paris, France (Cachia)
| | | | - Arnaud Cachia
- Correspondence to: Prof. A. Cachia, Centre de Psychiatrie et Neurosciences, UMR 894, INSERM – Université, Paris Descartes, Hôpital Sainte-Anne, Paris, France;
| |
Collapse
|
1157
|
He Q, Chen M, Chen C, Xue G, Feng T, Bechara A. Anodal Stimulation of the Left DLPFC Increases IGT Scores and Decreases Delay Discounting Rate in Healthy Males. Front Psychol 2016; 7:1421. [PMID: 27703440 PMCID: PMC5028393 DOI: 10.3389/fpsyg.2016.01421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/05/2016] [Indexed: 11/13/2022] Open
Abstract
Previous correlational imaging studies have implicated the dorsolateral prefrontal cortex (DLPFC) in decision making. Using High-Definition Transcranial Direct Current Stimulation (HD-tDCS), the present study directly investigated the causal role of the DLPFC in performing the Iowa Gambling Task (IGT) and the Inter-Temporal Choice (ITC) task. Three experiments were conducted: Experiment 1 (N = 41) to study the left DLPFC, Experiment 2 (N = 49) to study the right DLPFC, and Experiment 3 (N = 20, a subset of those in Experiment 1) to switch the experimental and control conditions. All participants were healthy male college students. For Experiments 1 and 2, participants were randomly assigned to either the HD-tDCS or the sham stimulation condition. For Experiment 3, participants were assigned to the condition they were not in during Experiment 1. Results showed that HD-tDCS over the left DLPFC increased IGT score, decreased the recency parameter in IGT, and lowered delay discounting rate (k) in the ITC task. We discussed the potential roles of impulse control and time perception in mediating the effect of tDCS stimulation of left DLPFC on decision making. Our results have clinical implications for the treatment of disorders involving poor decision-making, such as addictions.
Collapse
Affiliation(s)
- Qinghua He
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal UniversityChongqing, China
| | - Mei Chen
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California at Irvine, Irvine CA, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Tingyong Feng
- Decision Neuroscience Lab, Faculty of Psychology, Southwest UniversityChongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest UniversityChongqing, China
| | - Antoine Bechara
- Brain and Creativity Institute and Department of Psychology, University of Southern California, Los Angeles CA, USA
| |
Collapse
|
1158
|
Meyer HC, Bucci DJ. Neural and behavioral mechanisms of proactive and reactive inhibition. ACTA ACUST UNITED AC 2016; 23:504-14. [PMID: 27634142 PMCID: PMC5026209 DOI: 10.1101/lm.040501.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023]
Abstract
Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
1159
|
Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, Woolrich MW, Benatar M, Nobre AC, Turner MR. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:237-254. [PMID: 27623516 PMCID: PMC5215611 DOI: 10.1002/hbm.23357] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Giles L Colclough
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
1160
|
Abstract
UNLABELLED The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. SIGNIFICANCE STATEMENT In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance.
Collapse
|
1161
|
Effects of Theta Transcranial Alternating Current Stimulation Over the Frontal Cortex on Reversal Learning. Brain Stimul 2016; 9:705-711. [DOI: 10.1016/j.brs.2016.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/10/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023] Open
|
1162
|
A non-reward attractor theory of depression. Neurosci Biobehav Rev 2016; 68:47-58. [DOI: 10.1016/j.neubiorev.2016.05.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 01/24/2023]
|
1163
|
Cognitive training for substance use disorders: Neuroscientific mechanisms. Neurosci Biobehav Rev 2016; 68:270-281. [DOI: 10.1016/j.neubiorev.2016.05.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
1164
|
Hogeveen J, Grafman J, Aboseria M, David A, Bikson M, Hauner K. Effects of High-Definition and Conventional tDCS on Response Inhibition. Brain Stimul 2016; 9:720-729. [DOI: 10.1016/j.brs.2016.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 11/28/2022] Open
|
1165
|
Sternat T, Katzman MA. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse. Neuropsychiatr Dis Treat 2016; 12:2149-64. [PMID: 27601909 PMCID: PMC5003599 DOI: 10.2147/ndt.s111818] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one's characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic-cortical-striatal-pallidal-thalamic circuits. The activity of various components of the limbic-cortical-striatal-pallidal-thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders.
Collapse
Affiliation(s)
- Tia Sternat
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
| | - Martin A Katzman
- START Clinic for Mood and Anxiety Disorders
- Department of Psychology, Adler Graduate Professional School, Toronto
- Division of Clinical Sciences, The Northern Ontario School of Medicine
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
1166
|
Neef NE, Bütfering C, Anwander A, Friederici AD, Paulus W, Sommer M. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses. Neuroimage 2016; 142:628-644. [PMID: 27542724 DOI: 10.1016/j.neuroimage.2016.08.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 01/03/2023] Open
Abstract
Area 44 is a cytoarchitectonically distinct portion of Broca's region. Parallel and overlapping large-scale networks couple with this region thereby orchestrating heterogeneous language, cognitive, and motor functions. In the context of stuttering, area 44 frequently comes into focus because structural and physiological irregularities affect developmental trajectories, stuttering severity, persistency, and etiology. A remarkable phenomenon accompanying stuttering is the preserved ability to sing. Speaking and singing are connatural behaviours recruiting largely overlapping brain networks including left and right area 44. Analysing which potential subregions of area 44 are malfunctioning in adults who stutter, and what effectively suppresses stuttering during singing, may provide a better understanding of the coordination and reorganization of large-scale brain networks dedicated to speaking and singing in general. We used fMRI to investigate functionally distinct subregions of area 44 during imagery of speaking and imaginary of humming a melody in 15 dextral males who stutter and 17 matched control participants. Our results are fourfold. First, stuttering was specifically linked to a reduced activation of left posterior-dorsal area 44, a subregion that is involved in speech production, including phonological word processing, pitch processing, working memory processes, sequencing, motor planning, pseudoword learning, and action inhibition. Second, functional coupling between left posterior area 44 and left inferior parietal lobule was deficient in stuttering. Third, despite the preserved ability to sing, males who stutter showed bilaterally a reduced activation of area 44 when imagine humming a melody, suggesting that this fluency-enhancing condition seems to bypass posterior-dorsal area 44 to achieve fluency. Fourth, time courses of the posterior subregions in area 44 showed delayed peak activations in the right hemisphere in both groups, possibly signaling the offset response. Because these offset response-related activations in the right hemisphere were comparably large in males who stutter, our data suggest a hyperactive mechanism to stop speech motor responses and thus possibly reflect a pathomechanism, which, until now, has been neglected. Overall, the current results confirmed a recently described co-activation based parcellation supporting the idea of functionally distinct subregions of left area 44.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Christoph Bütfering
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 03104 Leipzig, Germany.
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| |
Collapse
|
1167
|
Leunissen I, Coxon JP, Swinnen SP. A proactive task set influences how response inhibition is implemented in the basal ganglia. Hum Brain Mapp 2016; 37:4706-4717. [PMID: 27489078 DOI: 10.1002/hbm.23338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/25/2016] [Accepted: 07/26/2016] [Indexed: 01/02/2023] Open
Abstract
Increasing a participant's ability to prepare for response inhibition is known to result in longer Go response times and is thought to engage a "top-down fronto-striatal inhibitory task set." This premise is supported by the observation of anterior striatum activation in functional magnetic resonance imaging (fMRI) analyses that focus on uncertain versus certain Go trials. It is assumed that setting up a proactive inhibitory task set also influences how participants subsequently implement stopping. To assess this assumption, we aimed to manipulate the degree of proactive inhibition in a modified stop-signal task to see how this manipulation influences activation when reacting to the Stop cue. Specifically, we tested whether there is differential activity of basal ganglia nuclei, namely the subthalamic nucleus (STN) and anterior striatum, on Stop trials when stop-signal probability was relatively low (20%) or high (40%). Successful stopping was associated with increased STN activity when Stop trials were infrequent and increased caudate head activation when Stop trials were more likely, suggesting a different implementation of reactive response inhibition by the basal ganglia for differing degrees of proactive response control. Hum Brain Mapp 37:4706-4717, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inge Leunissen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
| | - James P Coxon
- Movement Neuroscience Laboratory, University of Auckland, New Zealand.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Leuven, Belgium.,Leuven Research Institute for Neuroscience & Disease (LIND), Leuven, Belgium
| |
Collapse
|
1168
|
Torrisi M, Cacciola A, Marra A, De Luca R, Bramanti P, Calabrò RS. Inappropriate behaviors and hypersexuality in individuals with dementia: An overview of a neglected issue. Geriatr Gerontol Int 2016; 17:865-874. [PMID: 27489168 DOI: 10.1111/ggi.12854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 03/15/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Behavioral and psychological symptoms of dementia are very common in patients affected by dementia, and are associated with high rates of institutionalization. Behavioral and psychological symptoms of dementia consist of aggressive behavior, delusions, hallucinations, depression, apathy, wandering, stereotyped and inappropriate sexual behavior. Interestingly, the latter has been reported to be relatively uncommon, but causing immense distress to patients and their caregivers. The genesis of inappropriate behavior is considered a combination of neurological, psychological and social factors. Although assessment is mainly carried out by clinical observation and interviews with caregivers, the most appropriate management of behavioral and psychological symptoms of dementia, including hypersexuality, is a combination of pharmacological and non-pharmacological interventions, according to specific symptoms, degree of cognitive dysfunction and subtype of dementia. The present narrative review will mainly focus on aggressiveness, disinhibition, aberrant motor, and sexually inappropriate behavior diagnostic work-up and treatment, in an attempt to provide both the patients and their caregivers with useful information to better manage these symptoms and improve their quality of life. Space is particularly dedicated to inappropriate sexual behavior, which is still considered a neglected issue. Geriatr Gerontol Int 2017; 17: 865-874.
Collapse
Affiliation(s)
- Michele Torrisi
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Alberto Cacciola
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angela Marra
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Rosaria De Luca
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Placido Bramanti
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | - Rocco Salvatore Calabrò
- Istituto di Ricovero e Cura a Carattere Scientifico Centro Neurolesi Bonino-Pulejo, Messina, Italy
| |
Collapse
|
1169
|
Anatomical imbalance between cortical networks in autism. Sci Rep 2016; 6:31114. [PMID: 27484308 PMCID: PMC4971490 DOI: 10.1038/srep31114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 02/06/2023] Open
Abstract
Influential psychological models of autism spectrum disorder (ASD) have proposed that this prevalent developmental disorder results from impairment of global (integrative) information processing and overload of local (sensory) information. However, little neuroanatomical evidence consistent with this account has been reported. Here, we examined relative grey matter volumes (rGMVs) between three cortical networks, how they changed with age, and their relationship with core symptomatology. Using public neuroimaging data of high-functioning ASD males and age-/sex-/IQ-matched controls, we first identified age-associated atypical increases in rGMVs of the regions of two sensory systems (auditory and visual networks), and an age-related aberrant decrease in rGMV of a task-control system (fronto-parietal network, FPN) in ASD children. While the enlarged rGMV of the auditory network in ASD adults was associated with the severity of autistic socio-communicational core symptom, that of the visual network was instead correlated with the severity of restricted and repetitive behaviours in ASD. Notably, the atypically decreased rGMV of FPN predicted both of the two core symptoms. These findings suggest that disproportionate undergrowth of a task-control system (FPN) may be a common anatomical basis for the two ASD core symptoms, and relative overgrowth of the two different sensory systems selectively compounds the distinct symptoms.
Collapse
|
1170
|
Verbal Initiation, Suppression, and Strategy Use and the Relationship with Clinical Symptoms in Schizophrenia. J Int Neuropsychol Soc 2016; 22:735-43. [PMID: 27329682 DOI: 10.1017/s1355617716000552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Individuals with schizophrenia have difficulties on measures of executive functioning such as initiation and suppression of responses and strategy development and implementation. The current study thoroughly examines performance on the Hayling Sentence Completion Test (HSCT) in individuals with schizophrenia, introducing novel analyses based on initiation errors and strategy use, and association with lifetime clinical symptoms. METHODS The HSCT was administered to individuals with schizophrenia (N=77) and age- and sex-matched healthy controls (N=45), along with background cognitive tests. The standard HSCT clinical measures (initiation response time, suppression response time, suppression errors), composite initiation and suppression error scores, and strategy-based responses were calculated. Lifetime clinical symptoms [formal thought disorder (FTD), positive, negative] were calculated using the Lifetime Dimensions of Psychosis Scale. RESULTS After controlling for baseline cognitive differences, individuals with schizophrenia were significantly impaired on the suppression response time and suppression error scales. For the novel analyses, individuals with schizophrenia produced a greater number of initiation errors and subtly wrong errors, and produced fewer responses indicative of developing an appropriate strategy. Strategy use was negatively correlated with FTD symptoms in individuals with schizophrenia. CONCLUSIONS The current study provides further evidence for deficits in the initiation and suppression of verbal responses in individuals with schizophrenia. Moreover, an inability to attain a strategy at least partly contributes to increased semantically connected errors when attempting to suppress responses. The association between strategy use and FTD points to the involvement of executive deficits in disorganized speech in schizophrenia. (JINS, 2016, 22, 735-743).
Collapse
|
1171
|
Stock AK, Steenbergen L, Colzato L, Beste C. The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions. Hum Brain Mapp 2016; 37:4511-4522. [PMID: 27477001 DOI: 10.1002/hbm.23325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/24/2022] Open
Abstract
Cognitive control is adaptive in the sense that it inhibits automatic processes to optimize goal-directed behavior, but high levels of control may also have detrimental effects in case they suppress beneficial automatisms. Until now, the system neurophysiological mechanisms and functional neuroanatomy underlying these adverse effects of cognitive control have remained elusive. This question was examined by analyzing the automatic exploitation of a beneficial implicit predictive feature under conditions of high versus low cognitive control demands, combining event-related potentials (ERPs) and source localization. It was found that cognitive control prohibits the beneficial automatic exploitation of additional implicit information when task demands are high. Bottom-up perceptual and attentional selection processes (P1 and N1 ERPs) are not modulated by this, but the automatic exploitation of beneficial predictive information in case of low cognitive control demands was associated with larger response-locked P3 amplitudes and stronger activation of the right inferior frontal gyrus (rIFG, BA47). This suggests that the rIFG plays a key role in the detection of relevant task cues, the exploitation of alternative task sets, and the automatic (bottom-up) implementation and reprogramming of action plans. Moreover, N450 amplitudes were larger under high cognitive control demands, which was associated with activity differences in the right medial frontal gyrus (BA9). This most likely reflects a stronger exploitation of explicit task sets which hinders the exploration of the implicit beneficial information in case of high cognitive control demands. Hum Brain Mapp 37:4511-4522, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Laura Steenbergen
- Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Lorenza Colzato
- Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
1172
|
Ronchi R, Algeri L, Chiapella L, Gallucci M, Spada MS, Vallar G. Left neglect dyslexia: Perseveration and reading error types. Neuropsychologia 2016; 89:453-464. [DOI: 10.1016/j.neuropsychologia.2016.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/15/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
|
1173
|
Guo W, Liu F, Chen J, Wu R, Zhang Z, Yu M, Xue Z, Zhao J. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder. Aust N Z J Psychiatry 2016; 50:763-9. [PMID: 26607302 DOI: 10.1177/0004867415617835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. METHODS Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. RESULTS The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. CONCLUSION The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jindong Chen
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Zhikun Zhang
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Miaoyu Yu
- Mental Health Center, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhimin Xue
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
1174
|
Rae CL, Nombela C, Rodríguez PV, Ye Z, Hughes LE, Jones PS, Ham T, Rittman T, Coyle-Gilchrist I, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Atomoxetine restores the response inhibition network in Parkinson's disease. Brain 2016; 139:2235-48. [PMID: 27343257 PMCID: PMC4958901 DOI: 10.1093/brain/aww138] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Charlotte L Rae
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | - Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Laura E Hughes
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - P Simon Jones
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Ham
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ian Coyle-Gilchrist
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ralf Regenthal
- 3 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| | - Barbara J Sahakian
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 5 Department of Psychiatry, University of Cambridge, CB2 0SZ, Cambridge, UK
| | - Roger A Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Trevor W Robbins
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 6 Department of Experimental Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - James B Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK
| |
Collapse
|
1175
|
Langford ZD, Krebs RM, Talsma D, Woldorff MG, Boehler CN. Strategic down-regulation of attentional resources as a mechanism of proactive response inhibition. Eur J Neurosci 2016; 44:2095-103. [PMID: 27306544 DOI: 10.1111/ejn.13303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/01/2022]
Abstract
Efficiently avoiding inappropriate actions in a changing environment is central to cognitive control. One mechanism contributing to this ability is the deliberate slowing down of responses in contexts where full response cancellation might occasionally be required, referred to as proactive response inhibition. The present electroencephalographic (EEG) study investigated the role of attentional processes in proactive response inhibition in humans. To this end, we compared data from a standard stop-signal task, in which stop signals required response cancellation ('stop-relevant'), to data where possible stop signals were task-irrelevant ('stop-irrelevant'). Behavioral data clearly indicated the presence of proactive slowing in the standard stop-signal task. A novel single-trial analysis was used to directly model the relationship between response time and the EEG data of the go-trials in both contexts within a multilevel linear models framework. We found a relationship between response time and amplitude of the attention-related N1 component in stop-relevant blocks, a characteristic that was fully absent in stop-irrelevant blocks. Specifically, N1 amplitudes were lower the slower the response time, suggesting that attentional resources were being strategically down-regulated to control response speed. Drift diffusion modeling of the behavioral data indicated that multiple parameters differed across the two contexts, likely suggesting the contribution from independent brain mechanisms to proactive slowing. Hence, the attentional mechanism of proactive response control we report here might coexist with known mechanisms that are more directly tied to motoric response inhibition. As such, our study opens up new research avenues also concerning clinical conditions that feature deficits in proactive response inhibition.
Collapse
Affiliation(s)
- Zachary D Langford
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Ruth M Krebs
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Durk Talsma
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - C N Boehler
- Department of Experimental Psychology, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
1176
|
Herrmann MJ, Beier JS, Simons B, Polak T. Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions. Front Hum Neurosci 2016; 10:352. [PMID: 27462211 PMCID: PMC4940364 DOI: 10.3389/fnhum.2016.00352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 01/02/2023] Open
Abstract
Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F(2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t(24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders.
Collapse
Affiliation(s)
- Martin J Herrmann
- Laboratory for Psychophysiology and Functional Imaging, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinics of Würzburg Würzburg, Germany
| | - Jennifer S Beier
- Laboratory for Psychophysiology and Functional Imaging, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinics of Würzburg Würzburg, Germany
| | - Bibiane Simons
- Laboratory for Psychophysiology and Functional Imaging, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinics of Würzburg Würzburg, Germany
| | - Thomas Polak
- Laboratory for Psychophysiology and Functional Imaging, Department of Psychiatry, Psychosomatics and Psychotherapy, University Clinics of Würzburg Würzburg, Germany
| |
Collapse
|
1177
|
On the relationship between response selection and response inhibition: An individual differences approach. Atten Percept Psychophys 2016; 78:2420-2432. [DOI: 10.3758/s13414-016-1158-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
1178
|
Burle B, van den Wildenberg WPM, Spieser L, Ridderinkhof KR. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses. Psychophysiology 2016; 53:1008-19. [PMID: 27005956 PMCID: PMC4949675 DOI: 10.1111/psyp.12647] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 11/21/2015] [Indexed: 01/20/2023]
Abstract
In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed.
Collapse
Affiliation(s)
- Borís Burle
- Aix-Marseille Université, CNRS, LNC UMR 7291, Marseille, France
| | - Wery P M van den Wildenberg
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| | - Laure Spieser
- Aix-Marseille Université, CNRS, LNC UMR 7291, Marseille, France
| | - K Richard Ridderinkhof
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
1179
|
Wang Q, Chen C, Cai Y, Li S, Zhao X, Zheng L, Zhang H, Liu J, Chen C, Xue G. Dissociated neural substrates underlying impulsive choice and impulsive action. Neuroimage 2016; 134:540-549. [DOI: 10.1016/j.neuroimage.2016.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/23/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022] Open
|
1180
|
Abstract
After errors, decision boundaries change, which results in post-error slowing of decisions. Purcell and Kiani (2016) report simultaneously decreased sensitivity to sensory information counteracts post-error increases in accuracy. Early post-error adjustments reflect a general orienting reflex rather than goal-directed adaptation.
Collapse
Affiliation(s)
- Markus Ullsperger
- Institute of Psychology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 HR Nijmegen, Netherlands.
| | | |
Collapse
|
1181
|
Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation. J Neurosci 2016; 36:2212-26. [PMID: 26888931 DOI: 10.1523/jneurosci.3543-15.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Everyday locomotion and obstacle avoidance requires effective gait adaptation in response to sensory cues. Many studies have shown that efficient motor actions are associated with μ rhythm (8-13 Hz) and β band (13-35 Hz) local field desynchronizations in sensorimotor and parietal cortex, whereas a number of cognitive task studies have reported higher behavioral accuracy to be associated with increases in β band power in prefrontal and sensory cortex. How these two distinct patterns of β band oscillations interplay during gait adaptation, however, has not been established. Here we recorded 108 channel EEG activity from 18 participants (10 males, 22-35 years old) attempting to walk on a treadmill in synchrony with a series of pacing cue tones, and quickly adapting their step rate and length to sudden shifts in pacing cue tempo. Independent component analysis parsed each participant's EEG data into maximally independent component (IC) source processes, which were then grouped across participants into distinct spatial/spectral clusters. Following cue tempo shifts, mean β band power was suppressed for IC sources in central midline and parietal regions, whereas mean β band power increased in IC sources in or near medial prefrontal and dorsolateral prefrontal cortex. In the right dorsolateral prefrontal cortex IC cluster, the β band power increase was stronger during (more effortful) step shortening than during step lengthening. These results thus show that two distinct patterns of β band activity modulation accompany gait adaptations: one likely serving movement initiation and execution; and the other, motor control and inhibition. SIGNIFICANCE STATEMENT Understanding brain dynamics supporting gait adaptation is crucial for understanding motor deficits in walking, such as those associated with aging, stroke, and Parkinson's. Only a few electromagnetic brain imaging studies have examined neural correlates of human upright walking. Here, application of independent component analysis to EEG data recorded during treadmill walking allowed us to uncover two distinct β band oscillatory cortical networks that are active during gait adaptation to shifts in the tempo of an auditory pacing cue: (8-13 Hz) μ rhythm and (13-35 Hz) β band power decreases in central and parietal cortex and (14-20 Hz) β band power increases in frontal brain areas. These results provide a fuller framework for electrophysiological studies of cortical gait control and its disorders.
Collapse
|
1182
|
Patterson TK, Lenartowicz A, Berkman ET, Ji D, Poldrack RA, Knowlton BJ. Putting the brakes on the brakes: negative emotion disrupts cognitive control network functioning and alters subsequent stopping ability. Exp Brain Res 2016; 234:3107-3118. [PMID: 27349996 DOI: 10.1007/s00221-016-4709-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
The ability to inhibit unwanted responses is critical for effective control of behavior, and inhibition failures can have disastrous consequences in real-world situations. Here, we examined how prior exposure to negative emotional stimuli affects the response-stopping network. Participants performed the stop-signal task, which relies on inhibitory control processes, after they viewed blocks of either negatively emotional or neutral images. In Experiment 1, we found that neural activity was reduced following negative image viewing. When participants were required to inhibit responding after neutral image viewing, we observed activation consistent with previous studies using the stop-signal task. However, when participants were required to inhibit responding after negative image viewing, we observed reductions in the activation of ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, medial frontal cortex, and parietal cortex. Furthermore, analysis of neural connectivity during stop-signal task blocks indicated that across participants, emotion-induced changes in behavioral performance were associated with changes in functional connectivity, such that greater behavioral impairment after negative image viewing was associated with greater weakening of connectivity. In Experiment 2, we collected behavioral data from a larger sample of participants and found that stopping performance was impaired after negative image viewing, as seen in longer stop-signal reaction times. The present results demonstrate that negative emotional events can prospectively disrupt the neural network supporting response inhibition.
Collapse
Affiliation(s)
- Tara K Patterson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Agatha Lenartowicz
- Semel Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Danni Ji
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
1183
|
Sánchez-Carmona AJ, Albert J, Hinojosa JA. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption. Neuroimage 2016; 139:279-293. [PMID: 27355436 DOI: 10.1016/j.neuroimage.2016.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
The present study examined the neural and behavioral correlates of selective stopping, a form of inhibition that has scarcely been investigated. The selectivity of the inhibitory process is needed when individuals have to deal with an environment filled with multiple stimuli, some of which require inhibition and some of which do not. The stimulus-selective stop-signal task has been used to explore this issue assuming that all participants interrupt their ongoing responses selectively to stop but not to ignore signals. However, recent behavioral evidence suggests that some individuals do not carry out the task as experimenters expect, since they seemed to interrupt their response non-selectively to both signals. In the present study, we detected and controlled the cognitive strategy adopted by participants (n=57) when they performed a stimulus-selective stop-signal task before comparing brain activation between conditions. In order to determine both the onset and the end of the response cancellation process underlying each strategy and to fully take advantage of the precise temporal resolution of event-related potentials, we used a mass univariate approach. Source localization techniques were also employed to estimate the neural underpinnings of the effects observed at the scalp level. Our results from scalp and source level analysis support the behavioral-based strategy classification. Specific effects were observed depending on the strategy adopted by participants. Thus, when contrasting successful stop versus ignore conditions, increased activation was only evident for subjects who were classified as using a strategy whereby the response interruption process was selective to stop trials. This increased activity was observed during the P3 time window in several left-lateralized brain regions, including middle and inferior frontal gyri, as well as parietal and insular cortices. By contrast, in those participants who used a strategy characterized by stopping non-selectively, no activation differences between successful stop and ignore conditions were observed at the estimated time at which response interruption process occurs. Overall, results from the current study highlight the importance of controlling for the different strategies adopted by participants to perform selective stopping tasks before analyzing brain activation patterns.
Collapse
Affiliation(s)
| | - Jacobo Albert
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain; Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - José A Hinojosa
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain; Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
1184
|
Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev 2016; 68:602-610. [PMID: 27343998 DOI: 10.1016/j.neubiorev.2016.06.030] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
Apart from its function in speech motor control, the supplementary motor area (SMA) has largely been neglected in models of speech and language processing in the brain. The aim of this review paper is to summarize more recent work, suggesting that the SMA has various superordinate control functions during speech communication and language reception, which is particularly relevant in case of increased task demands. The SMA is subdivided into a posterior region serving predominantly motor-related functions (SMA proper) whereas the anterior part (pre-SMA) is involved in higher-order cognitive control mechanisms. In analogy to motor triggering functions of the SMA proper, the pre-SMA seems to manage procedural aspects of cognitive processing. These latter functions, among others, comprise attentional switching, ambiguity resolution, context integration, and coordination between procedural and declarative memory structures. Regarding language processing, this refers, for example, to the use of inner speech mechanisms during language encoding, but also to lexical disambiguation, syntax and prosody integration, and context-tracking.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Susanne Dietrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
1185
|
Abstract
Across many mammalian species there exist genetic and biological systems that facilitate the tendency to be social. Oxytocin is a neuropeptide involved in social-approach behaviors in humans and others mammals. Although there exists a large, mounting body of evidence showing that oxytocin signaling genes are associated with human sociability, very little is currently known regarding the way the structural gene for oxytocin (OXT) confers individual differences in human sociability. In this study, we undertook a comprehensive approach to investigate the association between epigenetic modification of OXT via DNA methylation, and overt measures of social processing, including self-report, behavior, and brain function and structure. Genetic data were collected via saliva samples and analyzed to target and quantify DNA methylation across the promoter region of OXT We observed a consistent pattern of results across sociability measures. People that exhibit lower OXT DNA methylation (presumably linked to higher OXT expression) display more secure attachment styles, improved ability to recognize emotional facial expressions, greater superior temporal sulcus activity during two social-cognitive functional MRI tasks, and larger fusiform gyrus gray matter volume than people that exhibit higher OXT DNA methylation. These findings provide empirical evidence that epigenetic modification of OXT is linked to several overt measures of sociability in humans and serve to advance progress in translational social neuroscience research toward a better understanding of the evolutionary and genetic basis of normal and abnormal human sociability.
Collapse
|
1186
|
Chumachenko SY, Sakai JT, Dalwani MS, Mikulich-Gilbertson SK, Dunn R, Tanabe J, Young S, McWilliams SK, Banich MT, Crowley TJ. Brain cortical thickness in male adolescents with serious substance use and conduct problems. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 41:414-24. [PMID: 26337200 DOI: 10.3109/00952990.2015.1058389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. OBJECTIVES To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. METHODS We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. RESULTS Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. CONCLUSION Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.
Collapse
|
1187
|
Aïte A, Berthoz A, Vidal J, Roëll M, Zaoui M, Houdé O, Borst G. Taking a Third-Person Perspective Requires Inhibitory Control: Evidence From a Developmental Negative Priming Study. Child Dev 2016; 87:1825-1840. [DOI: 10.1111/cdev.12558] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ania Aïte
- LaPsyDÉ, University Paris Descartes and University of Caen Basse-Normandie.,Brain and Creativity Institute, University of Southern California
| | | | - Julie Vidal
- LaPsyDÉ, University Paris Descartes and University of Caen Basse-Normandie
| | - Margot Roëll
- LaPsyDÉ, University Paris Descartes and University of Caen Basse-Normandie
| | | | - Olivier Houdé
- LaPsyDÉ, University Paris Descartes and University of Caen Basse-Normandie.,Institut Universitaire de France
| | - Grégoire Borst
- LaPsyDÉ, University Paris Descartes and University of Caen Basse-Normandie
| |
Collapse
|
1188
|
Demos KE, Hart CN, Sweet LH, Mailloux KA, Trautvetter J, Williams SE, Wing RR, McCaffery JM. Partial sleep deprivation impacts impulsive action but not impulsive decision-making. Physiol Behav 2016; 164:214-9. [PMID: 27267950 DOI: 10.1016/j.physbeh.2016.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Sleep deprivation may lead to increased impulsivity, however, previous literature has focused on examining effects of total sleep deprivation (TSD) rather than the more common condition, partial sleep deprivation (PSD) or 'short sleep'. Moreover, it has been unclear whether PSD impacts impulse-related cognitive processes, and specifically if it differentially affects impulsive action versus impulsive decision-making. We sought to determine if short compared to long sleep (6 vs. 9h/night) impacts impulsive action via behavioral inhibition (Go/No-Go), and/or impulsive decision-making processes of risk taking (Balloon Analogue Risk Task [BART]) and preferences for immediate over delayed rewards (Delay Discounting). In a within-subject design, 34 participants (71% female, mean age=37.0years, SD=10.54) were assigned to four consecutive nights of 6h/night (short sleep) and 9h/night (long sleep) in their own home in random counterbalanced order. Sleep was measured via wrist-worn actigraphs to confirm adherence to the sleep schedules (mean short sleep=5.9h, SD=0.3; mean long sleep=8.6h, SD=0.3, p<0.001). The Go/No-Go, BART, and Delay Discounting tasks were completed following both sleep conditions. Participants had more inhibition errors on the Go/No-Go task after short (mean false alarms=19.79%, SD=14.51) versus long sleep (mean=15.97%, SD=9.51, p=0.039). This effect was strongest in participants reporting longer habitual time in bed (p=0.04). There were no differences in performance following long- versus short-sleep for either delay discounting or the BART (p's>0.4). Overall, these results indicate that four days of PSD diminishes behavioral inhibition abilities, but may not alter impulsive decision-making. These findings contribute to the emerging understanding of how partial sleep deprivation, currently an epidemic, impacts cognitive ability. Future research should continue to explore the connection between PSD and cognitive functions, and ways to minimize the occurrence and negative consequences of short sleep.
Collapse
Affiliation(s)
- K E Demos
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States.
| | - C N Hart
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States; Center for Obesity Research & Education, Department of Public Health, Temple University, United States
| | - L H Sweet
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - K A Mailloux
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States
| | - J Trautvetter
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States
| | - S E Williams
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States
| | - R R Wing
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States
| | - J M McCaffery
- Department of Psychiatry & Human Behavior, The Warren Alpert Medical School of Brown University, Miriam Hospital, Weight Control & Diabetes Research Center, Providence, RI, United States
| |
Collapse
|
1189
|
Abstract
UNLABELLED Of current interest is how variations in early language experience shape patterns of functional connectivity in the human brain. In the present study, we compared simultaneous (two languages from birth) and sequential (second language learned after age 5 years) bilinguals using a seed-based resting-state MRI approach. We focused on the inferior frontal gyrus (IFG) as our ROI, as recent studies have demonstrated both neurofunctional and neurostructural changes related to age of second language acquisition in bilinguals in this cortical area. Stronger functional connectivity was observed for simultaneous bilinguals between the left and right IFG, as well as between the inferior frontal gyrus and brain areas involved in language control, including the dorsolateral prefrontal cortex, inferior parietal lobule, and cerebellum. Functional connectivity between the left IFG and the right IFG and right inferior parietal lobule was also significantly correlated with age of acquisition for sequential bilinguals; the earlier the second language was acquired, the stronger was the functional connectivity. In addition, greater functional connectivity between homologous regions of the inferior frontal gyrus was associated with reduced neural activation in the left IFG during speech production. The increased connectivity at rest and reduced neural activation during task performance suggests enhanced neural efficiency in this important brain area involved in both speech production and domain-general cognitive processing. Together, our findings highlight how the brain's intrinsic functional patterns are influenced by the developmental timeline in which second language acquisition occurs. SIGNIFICANCE STATEMENT Of current interest is how early life experience leaves its footprint on brain structure and function. In this regard, bilingualism provides an optimal way to determine the effects of the timing of language learning because a second language can be learned from birth or later in life. We used resting-state fMRI to look at simultaneous and sequential bilinguals who differed only in age of acquisition, and found stronger connectivity between language and cognitive control regions in bilinguals who learned their two languages simultaneously, a pattern that was associated with more efficient brain activation during speech. Our findings highlight how functional connections in the brain differ depending upon when learning takes place.
Collapse
|
1190
|
Chung KC, Springer I, Kogler L, Turetsky B, Freiherr J, Derntl B. The influence of androstadienone during psychosocial stress is modulated by gender, trait anxiety and subjective stress: An fMRI study. Psychoneuroendocrinology 2016; 68:126-39. [PMID: 26970712 DOI: 10.1016/j.psyneuen.2016.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022]
Abstract
Androstadienone (ANDR), a bodily secreted steroid compound, is a socially relevant chemosignal that modulates subjective and (neuro)physiological responses, predominantly in females. The impact of ANDR on stress responses in males and females has not been explored. Therefore, this fMRI study aimed to examine psychosocial stress reactions induced by mental arithmetic and social evaluation on behavioral and hormonal levels (46 participants: 15 naturally cycling females in their early follicular phase (EF), 15 females on hormonal contraceptives (HC) and 16 males); and on a neural level (40 participants: 13 EF-females, 13 HC-females and 14 males) in an ANDR and placebo treatment repeated-measures design. While no gender differences emerged in subjective ratings and performance during stress, neural activation patterns differed significantly. Besides, ANDR attenuated the post-stress increase of negative mood in all participants. Region of interest analyses showed that irrespective of treatment, males showed stronger activation of the dorsolateral prefrontal cortex (DLPFC) than females. At the whole brain level, gender differences emerged indicating stronger fronto-parietal activation in males compared to HC-females on both treatments. Males showed stronger visual and fusiform activation than EF-females under ANDR. Both female groups did not show stronger activation than males. Further, error ratio in the ANDR-stress condition was positively associated with their post-stress cortisol level and increase in subjective stress in males; and male DLPFC activity in the ANDR-stress condition was negatively associated with trait anxiety. Surprisingly, compared to HC-females, EF-female only showed stronger activation of arousal-related areas under placebo treatment. Taken together, these findings suggest that the male stress reaction under social evaluative threat was stronger than female stress reactions as a function of ANDR. More specifically, this effect on behavioral and neural stress reactions seems to depend on trait anxiety in males only. The study highlights the significance of a chemosignal in enhancing social threat that may facilitate adaptive stress responses.
Collapse
Affiliation(s)
- K C Chung
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - I Springer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - L Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute for Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany
| | - B Turetsky
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - J Freiherr
- Diagnostic and Interventional Neuroradiology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauserstr. 35, 85354 Freising, Germany
| | - B Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute for Neuroscience and Medicine, INM-1, Research Center Jülich, Jülich, Germany; Department of Psychiatry and Psychotherapy, Medical Faculty, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
1191
|
De Pretto M, Sallard E, Spierer L. State dependency of inhibitory control performance: an electrical neuroimaging study. Eur J Neurosci 2016; 44:1826-32. [PMID: 27116703 DOI: 10.1111/ejn.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
Abstract
Behavioral and brain responses to stimuli not only depend on their physical features but also on the individuals' neurocognitive states before stimuli onsets. While the influence of pre-stimulus fluctuations in brain activity on low-level perceptive processes is well established, the state dependency of high-order executive processes remains unclear. Using a classical inhibitory control Go/NoGo task, we examined whether and how fluctuations in the brain activity during the period preceding the stimuli triggering inhibition influenced inhibitory control performance. Seventeen participants completed the Go/NoGo task while 64-channel electroencephalogram was recorded. We compared the event-related potentials preceding the onset of the NoGo stimuli associated with inhibition failures false alarms (FA) vs. successful inhibition correct rejections (CR) with data-driven statistical analyses of global measures of the topography and strength of the scalp electric field. Distributed electrical source estimations were used to localize the origin of the event-related potentials modulations. We observed differences in the global field power of the event-related potentials (FA > CR) without concomitant topographic modulations over the 40 ms period immediately preceding NoGo stimuli. This result indicates that the same brain networks were engaged in the two conditions, but more strongly before FA than CR. Source estimations revealed that this effect followed from a higher activity before FA than CR within bilateral inferior frontal gyri and the right inferior parietal lobule. These findings suggest that uncontrolled quantitative variations in pre-stimulus activity within attentional and control brain networks influence inhibition performance. The present data thereby demonstrate the state dependency of cognitive processes of up to high-order executive levels.
Collapse
Affiliation(s)
- Michael De Pretto
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, PER 09, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Etienne Sallard
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, PER 09, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Department, Faculty of Sciences, University of Fribourg, PER 09, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| |
Collapse
|
1192
|
Hassa T, de Jel E, Tuescher O, Schmidt R, Schoenfeld MA. Functional networks of motor inhibition in conversion disorder patients and feigning subjects. NEUROIMAGE-CLINICAL 2016; 11:719-727. [PMID: 27330971 PMCID: PMC4900693 DOI: 10.1016/j.nicl.2016.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/24/2016] [Accepted: 05/16/2016] [Indexed: 11/24/2022]
Abstract
The neural correlates of motor inhibition leading to paresis in conversion disorder are not well known. The key question is whether they are different of those of normal subjects feigning the symptoms. Thirteen conversion disorder patients with hemiparesis and twelve healthy controls were investigated using functional magnetic resonance tomography under conditions of passive motor stimulation of the paretic/feigned paretic and the non-paretic hand. Healthy controls were also investigated in a non-feigning condition. During passive movement of the affected right hand conversion disorder patients exhibited activations in the bilateral triangular part of the inferior frontal gyri (IFG), with a left side dominance compared to controls in non-feigning condition. Feigning controls revealed for the same condition a weak unilateral activation in the right triangular part of IFG and an activity decrease in frontal midline areas, which couldn't be observed in patients. The results suggest that motor inhibition in conversion disorder patients is mediated by the IFG that was also involved in inhibition processes in normal subjects. The activity pattern in feigning controls resembled that of conversion disorder patients but with a clear difference in the medial prefrontal cortex. Healthy controls showed decreased activity in this region during feigning compared to non-feigning conditions suggesting a reduced sense of self-agency during feigning. Remarkably, no activity differences could be observed in medial prefrontal cortex for patients vs healthy controls in feigning or non-feigning conditions suggesting self-agency related activity in patients to be in between those of non-feigning and feigning healthy subjects.
Collapse
Affiliation(s)
- Thomas Hassa
- Lurija Institute for Rehabilitation and Health Sciences, Allensbach, Germany; Neurological Rehabilitation Center Kliniken Schmieder, Allensbach, Germany.
| | - Esther de Jel
- Department of Psychology, University of Konstanz, Germany
| | - Oliver Tuescher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Roger Schmidt
- Department of Psychology, University of Konstanz, Germany; Department of Psychotherapeutic Neurology, Neurological Rehabilitation Center Kliniken Schmieder, Konstanz and Gailingen, Germany
| | - Mircea Ariel Schoenfeld
- Neurological Rehabilitation Center Kliniken Schmieder, Allensbach, Germany; Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany; Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
1193
|
Friedman NP. Research on Individual Differences in Executive Functions: Implications for the Bilingual Advantage Hypothesis. LINGUISTIC APPROACHES TO BILINGUALISM 2016; 6:535-548. [PMID: 28018494 PMCID: PMC5172591 DOI: 10.1075/lab.15041.fri] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Executive functions (EFs), such as response inhibition, interference control, and set shifting, are general-purpose control mechanisms that enable individuals to regulate their thoughts and behaviors. Because bilingual individuals use EF-like processes during language control, researchers have become interested in the hypothesis that this use might train EFs, resulting in better performance on non-linguistic EF tasks. Although this bilingual advantage hypothesis seems straightforward to test, it involves a number of important decisions in terms of how to assess bilingualism and EFs. In this article, I focus on the complexity of measuring EFs, drawing on individual differences research (conducted with participants not selected for bilingualism). Specifically, I discuss issues related to (1) the measurement of EFs (particularly the effects of task impurity and unreliability) and (2) the multicomponent nature of EFs. Within each of these topics, I elaborate on consequences for research on bilingual advantages and provide some recommendations.
Collapse
|
1194
|
Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2016; 86:186-204. [PMID: 27251123 DOI: 10.1016/j.cortex.2016.04.023] [Citation(s) in RCA: 966] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
Executive functions (EFs) are high-level cognitive processes, often associated with the frontal lobes, that control lower level processes in the service of goal-directed behavior. They include abilities such as response inhibition, interference control, working memory updating, and set shifting. EFs show a general pattern of shared but distinct functions, a pattern described as "unity and diversity". We review studies of EF unity and diversity at the behavioral and genetic levels, focusing on studies of normal individual differences and what they reveal about the functional organization of these cognitive abilities. In particular, we review evidence that across multiple ages and populations, commonly studied EFs (a) are robustly correlated but separable when measured with latent variables; (b) are not the same as general intelligence or g; (c) are highly heritable at the latent level and seemingly also highly polygenic; and (d) activate both common and specific neural areas and can be linked to individual differences in neural activation, volume, and connectivity. We highlight how considering individual differences at the behavioral and neural levels can add considerable insight to the investigation of the functional organization of the brain, and conclude with some key points about individual differences to consider when interpreting neuropsychological patterns of dissociation.
Collapse
|
1195
|
Hwang K, Ghuman AS, Manoach DS, Jones SR, Luna B. Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents. Neuroimage 2016; 136:139-48. [PMID: 27173759 DOI: 10.1016/j.neuroimage.2016.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies suggest that age-related changes in the frontal cortex may underlie developmental improvements in cognitive control. In the present study we used magnetoencephalography (MEG) to identify frontal oscillatory neurodynamics that support age-related improvements in cognitive control during adolescence. We characterized the differences in neural oscillations in adolescents and adults during the preparation to suppress a prepotent saccade (antisaccade trials-AS) compared to preparing to generate a more automatic saccade (prosaccade trials-PS). We found that for adults, AS were associated with increased beta-band (16-38Hz) power in the dorsal lateral prefrontal cortex (DLPFC), enhanced alpha- to low beta-band (10-18Hz) power in the frontal eye field (FEF) that predicted performance, and increased cross-frequency alpha-beta (10-26Hz) amplitude coupling between the DLPFC and the FEF. Developmental comparisons between adults and adolescents revealed similar engagement of DLPFC beta-band power but weaker FEF alpha-band power, and lower cross-frequency coupling between the DLPFC and the FEF in adolescents. These results suggest that lateral prefrontal neural activity associated with cognitive control is adult-like by adolescence; the development of cognitive control from adolescence to adulthood is instead associated with increases in frontal connectivity and strengthening of inhibition signaling for suppressing task-incompatible processes.
Collapse
Affiliation(s)
- Kai Hwang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States.
| | - Avniel S Ghuman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
1196
|
Xu B, Sandrini M, Wang WT, Smith JF, Sarlls JE, Awosika O, Butman JA, Horwitz B, Cohen LG. PreSMA stimulation changes task-free functional connectivity in the fronto-basal-ganglia that correlates with response inhibition efficiency. Hum Brain Mapp 2016; 37:3236-49. [PMID: 27144466 DOI: 10.1002/hbm.23236] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
Previous work using transcranial magnetic stimulation (TMS) demonstrated that the right presupplementary motor area (preSMA), a node in the fronto-basal-ganglia network, is critical for response inhibition. However, TMS influences interconnected regions, raising the possibility of a link between the preSMA activity and the functional connectivity within the network. To understand this relationship, we applied single-pulse TMS to the right preSMA during functional magnetic resonance imaging when the subjects were at rest to examine changes in neural activity and functional connectivity within the network in relation to the efficiency of response inhibition evaluated with a stop-signal task. The results showed that preSMA-TMS increased activation in the right inferior-frontal cortex (rIFC) and basal ganglia and modulated their task-free functional connectivity. Both the TMS-induced changes in the basal-ganglia activation and the functional connectivity between rIFC and left striatum, and of the overall network correlated with the efficiency of response inhibition and with the white-matter microstructure along the preSMA-rIFC pathway. These results suggest that the task-free functional and structural connectivity between the rIFCop and basal ganglia are critical to the efficiency of response inhibition. Hum Brain Mapp 37:3236-3249, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Xu
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, 20814
| | - Marco Sandrini
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, 20814
| | - Wen-Tung Wang
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, 20814
| | - Jason F Smith
- Department of Psychology, University of Maryland College Park, Maryland, 20742-4411
| | - Joelle E Sarlls
- NIH MRI Research Facility, National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Oluwole Awosika
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, Bethesda, Maryland, 20814.,Radiology and Imaging Sciences, National Institutes of Health, Clinical Center, Bethesda, Maryland, 20892
| | - Barry Horwitz
- Section on Brain Imaging and Modeling, National Institutes of Health, National Institute of Deafness and Other Communication Disorders, Bethesda, Maryland, 20892
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
1197
|
Ko LW, Shih YC, Chikara RK, Chuang YT, Chang EC. Neural Mechanisms of Inhibitory Response in a Battlefield Scenario: A Simultaneous fMRI-EEG Study. Front Hum Neurosci 2016; 10:185. [PMID: 27199708 PMCID: PMC4852198 DOI: 10.3389/fnhum.2016.00185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Abstract
The stop-signal paradigm has been widely adopted as a way to parametrically quantify the response inhibition process. To evaluate inhibitory function in realistic environmental settings, the current study compared stop-signal responses in two different scenarios: one uses simple visual symbols as go and stop signals, and the other translates the typical design into a battlefield scenario (BFS) where a sniper-scope view was the background, a terrorist image was the go signal, a hostage image was the stop signal, and the task instructions were to shoot at terrorists only when hostages were not present but to refrain from shooting if hostages appeared. The BFS created a threatening environment and allowed the evaluation of how participants’ inhibitory control manifest in this realistic stop-signal task. In order to investigate the participants’ brain activities with both high spatial and temporal resolution, simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings were acquired. The results demonstrated that both scenarios induced increased activity in the right inferior frontal gyrus (rIFG) and presupplementary motor area (preSMA), which have been linked to response inhibition. Notably, in right temporoparietal junction (rTPJ) we found both higher blood-oxygen-level dependent (BOLD) activation and synchronization of theta-alpha activities (4–12 Hz) in the BFS than in the traditional scenario after the stop signal. The higher activation of rTPJ in the BFS may be related to morality judgments or attentional reorienting. These results provided new insights into the complex brain networks involved in inhibitory control within naturalistic environments.
Collapse
Affiliation(s)
- Li-Wei Ko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung UniversityHsinchu, Taiwan; Brain Research Center, National Chiao-Tung UniversityHsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung UniversityHsinchu, Taiwan
| | - Yi-Cheng Shih
- Institute of Bioinformatics and Systems Biology, National Chiao Tung UniversityHsinchu, Taiwan; Brain Research Center, National Chiao-Tung UniversityHsinchu, Taiwan
| | - Rupesh Kumar Chikara
- Brain Research Center, National Chiao-Tung UniversityHsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung UniversityHsinchu, Taiwan
| | - Ya-Ting Chuang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung UniversityHsinchu, Taiwan; Brain Research Center, National Chiao-Tung UniversityHsinchu, Taiwan
| | - Erik C Chang
- Institute of Cognitive Neuroscience, National Central University Taoyuan, Taiwan
| |
Collapse
|
1198
|
Thompson HE, Henshall L, Jefferies E. The role of the right hemisphere in semantic control: A case-series comparison of right and left hemisphere stroke. Neuropsychologia 2016; 85:44-61. [PMID: 26945505 PMCID: PMC4863527 DOI: 10.1016/j.neuropsychologia.2016.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 11/30/2022]
Abstract
Semantic control processes guide conceptual retrieval so that we are able to focus on non-dominant associations and features when these are required for the task or context, yet the neural basis of semantic control is not fully understood. Neuroimaging studies have emphasised the role of left inferior frontal gyrus (IFG) in controlled retrieval, while neuropsychological investigations of semantic control deficits have almost exclusively focussed on patients with left-sided damage (e.g., patients with semantic aphasia, SA). Nevertheless, activation in fMRI during demanding semantic tasks typically extends to right IFG. To investigate the role of the right hemisphere (RH) in semantic control, we compared nine RH stroke patients with 21 left-hemisphere SA patients, 11 mild SA cases and 12 healthy, aged-matched controls on semantic and executive tasks, plus experimental tasks that manipulated semantic control in paradigms particularly sensitive to RH damage. RH patients had executive deficits to parallel SA patients but they performed well on standard semantic tests. Nevertheless, multimodal semantic control deficits were found in experimental tasks involving facial emotions and the 'summation' of meaning across multiple items. On these tasks, RH patients showed effects similar to those in SA cases - multimodal deficits that were sensitive to distractor strength and cues and miscues, plus increasingly poor performance in cyclical matching tasks which repeatedly probed the same set of concepts. Thus, despite striking differences in single-item comprehension, evidence presented here suggests semantic control is bilateral, and disruption of this component of semantic cognition can be seen following damage to either hemisphere.
Collapse
Affiliation(s)
- Hannah E Thompson
- Department of Psychology and York Neuroimaging Centre, University of York, UK.
| | - Lauren Henshall
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, UK
| |
Collapse
|
1199
|
van der Laan LN, Charbonnier L, Griffioen-Roose S, Kroese FM, van Rijn I, Smeets PA. Supersize my brain: A cross-sectional voxel-based morphometry study on the association between self-reported dietary restraint and regional grey matter volumes. Biol Psychol 2016; 117:108-116. [DOI: 10.1016/j.biopsycho.2016.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
1200
|
Mechin N, Gable PA, Hicks JA. Frontal asymmetry and alcohol cue reactivity: Influence of core personality systems. Psychophysiology 2016; 53:1224-31. [DOI: 10.1111/psyp.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/14/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Nicole Mechin
- Department of Psychology; The University of Alabama. Tuscaloosa; Alabama USA
| | - Philip A. Gable
- Department of Psychology; The University of Alabama. Tuscaloosa; Alabama USA
| | - Joshua A. Hicks
- Department of Psychology; Texas A&M University; College Station Texas USA
| |
Collapse
|