1151
|
Mayadevi M, Praseeda M, Kumar KS, Omkumar RV. Sequence determinants on the NR2A and NR2B subunits of NMDA receptor responsible for specificity of phosphorylation by CaMKII. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1598:40-5. [PMID: 12147342 DOI: 10.1016/s0167-4838(02)00315-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium/calmodulin-dependent protein kinase type II (CaMKII) and NMDA-type glutamate receptor (NMDAR) are neuronal proteins involved in learning and memory. CaMKII binds to the NR2B subunit of NMDAR in more than one mode, a stable association involving a noncatalytic site on CaMKII and an enzyme-substrate mode of interaction by its catalytic site. The latter binding results in phosphorylation of serine-1303 on NR2B. We have investigated this binding by studying the kinetics of phosphorylation of synthetic peptides harboring nested sequences of the phosphorylation site motif. We find that residues 1292-1297 of NR2B enhance the affinity of the catalytic site-mediated binding of CaMKII to the minimal phosphorylation site motif, 1298-1308 of NR2B, as evident from measurements of K(m) values for phosphorylation. However, CaMKII shows decreased affinity towards the closely related NR2A subunit due to an -Ile-Asn- motif present as a natural insertion in the analogous sequence on NR2A.
Collapse
Affiliation(s)
- M Mayadevi
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Thiruvananthapuam, Kerala-695014, India
| | | | | | | |
Collapse
|
1152
|
Tsai SJ, Yu YWY, Lin CH, Chen TJ, Chen SP, Hong CJ. Dopamine D2 receptor and N-methyl-D-aspartate receptor 2B subunit genetic variants and intelligence. Neuropsychobiology 2002; 45:128-30. [PMID: 11979061 DOI: 10.1159/000054951] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dopaminergic and glutamate systems have been implicated in cognitive function. We tested the associations between the dopamine D2 receptor (DRD2) and N-methyl-D-aspartate receptor 2B subunit (GRIN2B) gene variants and intelligence quotient (IQ). Subjects with the DRD2 A1/A1 genotype had a significantly higher mean performance IQ than A2/A2 carriers, while no significant differences in IQ scores were determined for the three GRIN2B genotype groups. These results suggest that genetic variants of the DRD2 gene may play a role in cognitive function. Considering the major role played by the dopaminergic system in general cognitive function, genetic variants of the dopamine receptors and those involved in metabolism and modulation of reuptake should be tested to improve gene-based prediction of general cognitive function.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
1153
|
NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 2002. [PMID: 12077219 DOI: 10.1523/jneurosci.22-12-05239.2002] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) at sensory input synapses to the lateral amygdala (LA) is a candidate mechanism for memory storage during fear conditioning. We evaluated the effect of L-type voltage-gated calcium channel (VGCC) and NMDA receptor (NMDAR) blockade in LA on LTP at thalamic input synapses induced by two different protocols in vitro and on fear memory in vivo. When induced in vitro by pairing weak presynaptic stimulation with strong (spike eliciting) postsynaptic depolarization, LTP was dependent on VGCCs and not on NMDARs, but, when induced by a form of tetanic stimulation that produced prolonged postsynaptic depolarization (but not spikes), LTP was dependent on NMDARs and not on VGCCs. In behavioral studies, bilateral infusions of NMDAR antagonists into the LA impaired both short-term and long-term memory of fear conditioning, whereas VGCC blockade selectively impaired long-term memory formation. Collectively, the results suggest that two pharmacologically distinct forms of LTP can be isolated in the LA in vitro and that a combination of both contribute to the formation of fear memories in vivo at the cellular level.
Collapse
|
1154
|
Gould TJ, McCarthy MM, Keith RA. MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 2002; 13:287-94. [PMID: 12218509 DOI: 10.1097/00008877-200207000-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of pre-training or post-training subcutaneous injections of multiple doses of the non-competitive NMDA-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) on cued and contextual fear conditioning were examined in F344 rats. Pre-training injections of MK-801 (0.3 and 1.0 mg/kg) disrupted contextual fear conditioning but not cued fear conditioning. Post-training injections of MK-801 did not disrupt cued or contextual fear conditioning. In fact, the 0.3 mg/kg dose of MK-801 enhanced cued fear conditioning. Finally, rats were tested for MK-801-induced alterations in sensitivity to pain using the formalin test for nociception. MK-801 did not reduce sensitivity to pain. These results suggest that NMDA receptors are involved in acquisition of contextual fear conditioning but not in memory consolidation of the learned response.
Collapse
Affiliation(s)
- T J Gould
- CNS Discovery Department, AstraZeneca Pharmaceuticals, Wilmington, DE 19850-5437, USA.
| | | | | |
Collapse
|
1155
|
|
1156
|
Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T, Zhuo M. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 2002; 5:573-9. [PMID: 12006982 DOI: 10.1038/nn0602-855] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ability to remember potential dangers in an environment is necessary to the survival of animals and humans. The cyclic AMP responsive element binding protein (CREB) is a key transcription factor in synaptic plasticity and memory consolidation. We have found that in CaMKIV(-/-) mice--which are deficient in a component of the calcium calmodulin-dependent protein kinase (CaMK) pathway, a major pathway of CREB activation--fear memory, but not persistent pain, was significantly reduced. CREB activation by fear conditioning and synaptic potentiation in the amygdala and cortical areas was reduced or blocked. We propose that cognitive memory related to a noxious shock can be disassociated from behavioral responses to tissue injury and inflammation.
Collapse
Affiliation(s)
- Feng Wei
- Washington University Pain Center, Departments of Anesthesiology, Anatomy, and Neurobiology and Psychiatry, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
1157
|
Pavlov I, Võikar V, Kaksonen M, Lauri SE, Hienola A, Taira T, Rauvala H. Role of heparin-binding growth-associated molecule (HB-GAM) in hippocampal LTP and spatial learning revealed by studies on overexpressing and knockout mice. Mol Cell Neurosci 2002; 20:330-42. [PMID: 12093164 DOI: 10.1006/mcne.2002.1104] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heparin-binding growth-associated molecule (HB-GAM) is an extracellular matrix-associated protein with neurite outgrowth-promoting activity and which is suggested to be implicated in hippocampal synaptic plasticity. To study the functions of HB-GAM in adult brain we have produced HB-GAM overexpressing mice and compared phenotypic changes in the transgenic mice to those in the HB-GAM null mice. Both mutants were viable and displayed no gross morphological abnormalities. The basal synaptic transmission was normal in the area CA1 of hippocampal slices from the genetically modified mice. However, long-term potentiation (LTP) was attenuated in the mice overexpressing HB-GAM, whereas enhanced LTP was detected in the HB-GAM-deficient mice. Changes in LTP seen in vitro were paralleled by behavioral alterations in vivo. The animals overexpressing HB-GAM displayed faster learning in water maze and decreased anxiety in elevated plus-maze, while the HB-GAM knockouts demonstrated an opposite behavioral phenotype. These results show that HB-GAM suppresses LTP in hippocampus and plays a role in regulation of learning-related behavior.
Collapse
Affiliation(s)
- Ivan Pavlov
- Laboratory of Molecular Neurobiology, Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
1158
|
A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 2002. [PMID: 11978838 DOI: 10.1523/jneurosci.22-09-03628.2002] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aged rats are known to have deficits in spatial learning behavior in the Morris water maze. We have found that aged rats also have deficits in NR2B protein expression and that the protein expression deficit is correlated with their performance in the Morris water maze. To test whether this NR2B deficit was sufficient to account for the behavioral deficit, we used antisense oligonucleotides to specifically knock down NR2B subunit expression in the hippocampus of young rats. NR2B antisense treatment diminished NMDA receptor responses, abolished NMDA-dependent long-term potentiation (LTP), and impaired spatial learning. These data demonstrate the important role of NR2B in LTP and learning and memory and suggest a role for reduced NR2B expression in age-related cognitive decline.
Collapse
|
1159
|
Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 2002. [PMID: 11978821 DOI: 10.1523/jneurosci.22-09-03445.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain of Alzheimer's disease (AD) patients, neurotoxic amyloid peptides accumulate and are deposited as senile plaques. A major therapeutic strategy aims to decrease production of amyloid peptides by inhibition of gamma-secretase. Presenilins are polytopic transmembrane proteins that are essential for gamma-secretase activity during development and in amyloid production. By loxP/Cre-recombinase-mediated deletion, we generated mice with postnatal, neuron-specific presenilin-1 (PS1) deficiency, denoted PS1(n-/-), that were viable and fertile, with normal brain morphology. In adult PS1(n-/-) mice, levels of endogenous brain amyloid peptides were strongly decreased, concomitant with accumulation of amyloid precursor protein (APP) C-terminal fragments. In the cross of APP[V717I]xPS1 (n-/-) double transgenic mice, the neuronal absence of PS1 effectively prevented amyloid pathology, even in mice that were 18 months old. This contrasted sharply with APP[V717I] single transgenic mice that all develop amyloid pathology at the age of 10-12 months. In APP[V717I]xPS1 (n-/-) mice, long-term potentiation (LTP) was practically rescued at the end of the 2 hr observation period, again contrasting sharply with the strongly impaired LTP in APP[V717I] mice. The findings demonstrate the critical involvement of amyloid peptides in defective LTP in APP transgenic mice. Although these data open perspectives for therapy of AD by gamma-secretase inhibition, the neuronal absence of PS1 failed to rescue the cognitive defect, assessed by the object recognition test, of the parent APP[V717I] transgenic mice. This points to potentially detrimental effects of accumulating APP C99 fragments and demands further study of the consequences of inhibition of gamma-secretase activity. In addition, our data highlight the complex functional relation of APP and PS1 to cognition and neuronal plasticity in adult and aging brain.
Collapse
|
1160
|
Le Grevès M, Steensland P, Le Grevès P, Nyberg F. Growth hormone induces age-dependent alteration in the expression of hippocampal growth hormone receptor and N-methyl-D-aspartate receptor subunits gene transcripts in male rats. Proc Natl Acad Sci U S A 2002; 99:7119-23. [PMID: 12011468 PMCID: PMC124538 DOI: 10.1073/pnas.092135399] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Accepted: 03/08/2002] [Indexed: 11/18/2022] Open
Abstract
Studies were conducted to evaluate the effects of s.c. injected recombinant human growth hormone (GH) on the expression of the gene transcript of N-methyl-D-aspartate receptor subunits type 1 (NR1), type 2A (NR2A), and type 2B (NR2B) in the male rat hippocampus. The GH-induced effects on the expression of hippocampal gene transcripts of GH receptor (GHR) and GH-binding protein were also examined. Male Sprague-Dawley rats, kept in four groups of two different ages, was treated with the hormone or saline during 10 days before decapitation and tissue dissection. Brain tissues collected were analyzed for mRNA content by using the Northern blot technique. The results indicated that in adult young rats (11 weeks of age) the hormone elicited a decrease in the mRNA expression of NR1 but an increase in that of the NR2B subunit. In elderly adult rats (57-67 weeks of age) GH induced an increase in the expression of the hippocampal message for NR1 and NR2A. Meanwhile, the hormone induced a significant up-regulation of the GHR transcript in hippocampus of adult young rats but not in elderly adult rats. It was further found that a significant positive correlation exists between the level of GHR mRNA and the expression of the NR2B subunit transcript in adult young rats. The GH-induced increase in the expression of hippocampal mRNA for the NR2B subunit is compatible with a previously observed memory promoting effect seen for the hormone, because overexpression of this N-methyl-D-aspartate receptor subunit is shown to enhance cognitive capabilities.
Collapse
Affiliation(s)
- Madeleine Le Grevès
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
1161
|
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction is associated with a range of effects on cognition and behavior in whole animal and human studies. NMDA receptor hypofunction within the brain, which can be induced experimentally in vivo using NMDA receptor antagonist drugs, produces adverse effects on memory function. The results suggest that NMDA receptor hypofunction can preferentially affect neural mechanisms regulating the efficiency of encoding and consolidation into longer-term storage. More pronounced NMDA receptor hypofunction can produce a clinical syndrome that includes core features of psychosis, as well as dissociation. Finally, sustained and severe underexcitation of NMDA receptors in the adult brain is associated with a neurotoxic process with well-characterized neuropathological features. Progressive increases in severity of NMDA receptor hypofunction within the brain can produce a range of effects on brain function, involving local and distributed circuitry, which may underlie the observed changes in behavior. As the brain ages, the NMDA receptor system becomes progressively hypofunctional, potentially contributing to further age-related decreases in memory and learning performance. Pharmacological and genomic methods for preventing NMDA receptor hypofunction, or for preventing the upstream or downstream consequences modeled by treatment with NMDA antagonists, may be applicable to the prevention and treatment of memory and behavioral dysfunction in a variety of neuropsychiatric disease conditions.
Collapse
Affiliation(s)
- J W Newcomer
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA.
| | | |
Collapse
|
1162
|
Sillaber I, Rammes G, Zimmermann S, Mahal B, Zieglgänsberger W, Wurst W, Holsboer F, Spanagel R. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science 2002; 296:931-3. [PMID: 11988580 DOI: 10.1126/science.1069836] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
There is a relation between stress and alcohol drinking. We show that the corticotropin-releasing hormone (CRH) system that mediates endocrine and behavioral responses to stress plays a role in the control of long-term alcohol drinking. In mice lacking a functional CRH1 receptor, stress leads to enhanced and progressively increasing alcohol intake. The effect of repeated stress on alcohol drinking behavior appeared with a delay and persisted throughout life. It was associated with an up-regulation of the N-methyl-d-aspartate receptor subunit NR2B. Alterations in the CRH1 receptor gene and adaptional changes in NR2B subunits may constitute a genetic risk factor for stress-induced alcohol drinking and alcoholism.
Collapse
Affiliation(s)
- Inge Sillaber
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1163
|
Ragnarsson L, Mortensen M, Dodd PR, Lewis RJ. Spermine modulation of the glutamate(NMDA) receptor is differentially responsive to conantokins in normal and Alzheimer's disease human cerebral cortex. J Neurochem 2002; 81:765-79. [PMID: 12065636 DOI: 10.1046/j.1471-4159.2002.00872.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [(3)H]MK-801 binding site were delineated along with the enhancement of [(3)H]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.
Collapse
Affiliation(s)
- Lotten Ragnarsson
- Department of Biochemistry, University of Queensland, Brisbane 4072, Australia
| | | | | | | |
Collapse
|
1164
|
Heinrich JE, Singh TD, Sohrabji F, Nordeen KW, Nordeen EJ. Developmental and hormonal regulation of NR2A mRNA in forebrain regions controlling avian vocal learning. JOURNAL OF NEUROBIOLOGY 2002; 51:149-59. [PMID: 11932956 DOI: 10.1002/neu.10046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Developmental changes in the composition of NMDA receptors can alter receptor physiology as well as intracellular signal transduction cascades, potentially shifting thresholds for neural and behavioral plasticity. During song learning in zebra finches, NMDAR currents become faster, and transcripts for the modulatory NR2B subunit of this receptor decrease in lMAN, a region in which NMDAR activation is critical for vocal learning. Using in situ hybridization, we found that NR2A transcripts change reciprocally, increasing significantly in both lMAN (59%) and in another song region, Area X (38%), between posthatch day (PHD) 20 and 40, but not changing further at PHD60 or 80. In adjacent areas not associated with song learning, NR2A mRNA did not change between PHD20-80. Although early song deprivation (which extends the sensitive period for song learning) delays changes in NR2B gene expression and NMDAR physiology within the lMAN, it did not alter NR2A mRNA levels measured at PHD40, 45, or 60. Early testosterone (T) treatment, which disrupts vocal development and accelerates the maturation of both NR2B levels and NMDAR physiology in lMAN, also significantly increased NR2A transcripts measured at PHD35 in lMAN. In Area X, a similar effect of T approached significance. Together with our previous studies, these results show that in a pathway critical for vocal plasticity, the ratio of NR2A:NR2B mRNA rises abruptly early during the sensitive period for song learning. Furthermore, androgen regulation of NMDAR gene expression may alter thresholds for experience-dependent synaptic change.
Collapse
Affiliation(s)
- J E Heinrich
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | |
Collapse
|
1165
|
Biessels GJ, van der Heide LP, Kamal A, Bleys RLAW, Gispen WH. Ageing and diabetes: implications for brain function. Eur J Pharmacol 2002; 441:1-14. [PMID: 12007915 DOI: 10.1016/s0014-2999(02)01486-3] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus is associated with moderate cognitive deficits and neurophysiological and structural changes in the brain, a condition that may be referred to as diabetic encephalopathy. Diabetes increases the risk of dementia, particularly in the elderly. The emerging view is that the diabetic brain features many symptoms that are best described as "accelerated brain ageing." The clinical characteristics of diabetic encephalopathy are discussed, as well as behavioural (e.g. spatial learning) and neurophysiological (e.g. hippocampal synaptic plasticity) findings in animal models. Animal models can make a substantial contribution to our understanding of the pathogenesis, which shares many features with the mechanisms underlying brain ageing. By unravelling the pathogenesis, targets for pharmacotherapy can be identified. This may allow treatment or prevention of this diabetic complication in the future. We discuss changes in glutamate receptor subtypes, in second-messenger systems and in protein kinases that may account for the alterations in synaptic plasticity. In addition, the possible role of cerebrovascular changes, oxidative stress, nonenzymatic protein glycation, insulin and alterations in neuronal calcium homeostasis are addressed.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Medical Pharmacology of the Rudolf Magnus Institute for Neurosciences, University Medical Centre, Utrecht, Netherlands.
| | | | | | | | | |
Collapse
|
1166
|
Richter-Levin G, Yaniv D. Is LTP in the hippocampus a useful model for learning-related alterations in gene expression? Rev Neurosci 2002; 12:289-96. [PMID: 11560370 DOI: 10.1515/revneuro.2001.12.3.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is well established that the formation of long-term memory requires de novo protein synthesis. Altered gene expression is therefore critical in the signal transduction cascade activated by the learning experience. Long-term potentiation (LTP) is a mnemonic model in which particular patterns of activation of incoming excitatory fibers (representing the learning experience) may induce long-lasting enhancement of the communication between the involved pre- and post-synapses (representing the memory). Therefore, cellular and molecular mechanisms of LTP have been extensively studied under the assumption that their understanding will contribute to our comprehension of the mechanisms underlying memory formation. In recent years, however, this analogy has been challenged by reports of inconsistency between LTP and memory. Here we assess LTP in the hippocampus as a model system to study spatial memory-related alterations in gene expression. We focus on three molecular families that are likely to play a role in synaptic plasticity: (1) synaptic communication related proteins; (2) signal transduction machinery; and (3) growth factors. Reviewing first the literature on LTP and then behavioral research we found both consistent and inconsistent findings regarding the LTP/memory linkage. The importance of restricting the discussion to both a learning phase and a brain (sub)structure, as well as of incorporating more physiological LTP stimulation protocols, is discussed. We conclude that while LTP is indeed limited as a model of memory, a careful use of it as a model system of synaptic plasticity is fruitful and productive in screening out candidate memory-related genes.
Collapse
|
1167
|
Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 2002; 34:289-300. [PMID: 11970870 DOI: 10.1016/s0896-6273(02)00645-1] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Auditory information critical for fear conditioning, a model of emotional learning, is conveyed to the lateral nucleus of the amygdala via two routes: directly from the medial geniculate nucleus and indirectly from the auditory cortex. Here we show in the cortico-amygdala pathway that learned fear occludes electrically induced long-term potentiation (LTP). Quantal analysis of the expression of LTP in this pathway reveals a significant presynaptic component reflected in an increase in probability of transmitter release. Conditioned fear also is accompanied by the enhancement in transmitter release at this cortico-amygdala synapse. These results indicate that the synaptic projections from the auditory cortex to the lateral amygdala are modified during the acquisition and expression of fear to auditory stimulation, thus further strengthening the proposed link between LTP in the auditory pathways to the amygdala and learned fear.
Collapse
Affiliation(s)
- Evgeny Tsvetkov
- McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | |
Collapse
|
1168
|
Lau WK, Yeung CW, Lui PW, Cheung LH, Poon NT, Yung KKL. Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure. Brain Res 2002; 932:10-24. [PMID: 11911857 DOI: 10.1016/s0006-8993(01)03395-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to heavy metal lead (Pb(2+)) has been reported to cause problems in cognitive functions of the brain, e.g. memory loss and difficulties in mental development. N-Methyl-D-aspartate receptors (NRs) are important molecules that are known to be involved in mediation of learning and memory. In order to investigate the effects of Pb(2+) on the gene expression of NR1 and NR2B subunits in neurons, primary cell cultures of rat cortical and hippocampal neurons were employed. After treatments with different concentrations of Pb(2+) ions in culture medium (0, 5, 10, 25 and 50 microM), the cellular localization of Pb(2+) in neurons was evaluated by laser scan confocal microscopy by using a Pb(2+) ion specific fluorescence probe. In addition, the gene expression of NR1 and NR2B subunits was determined by reverse transcriptase-polymerase chain reaction, immunofluorescence and Western blotting. The results of the present study showed that both cortical and hippocampal neurons accumulated intracellular Pb(2+) in accordance with the concentrations of Pb(2+) ions present in the culture medium. After Pb(2+) treatments, levels of NR1 mRNA, immunoreactivity and protein were found to be unchanged but levels of NR2B mRNA, immunoreactivity and protein were found to be significantly increased in cortical neurons. In contrast, both NR1 and NR2B mRNAs, immunoreactivity and proteins were found to be significantly decreased in hippocampal neurons. The changes in gene expression were found to be dose dependent in accordance with the Pb(2+) concentrations. The present results indicate that Pb(2+) has a differential effect on the expression of NR1 and NR2B subunits in cortical and hippocampal neurons, respectively. It is likely that the toxic effects of Pb(2+) may cause differential damage to different types of memory that are mediated by cortical and hippocampal neurons, respectively.
Collapse
Affiliation(s)
- W K Lau
- Department of Biology and Institute for Natural Resources and Environmental Management, Hong Kong Baptist University, Hong Kong, Kowloon Tong, PR China
| | | | | | | | | | | |
Collapse
|
1169
|
Tsai SJ, Liu HC, Liu TY, Cheng CY, Hong CJ. Association analysis for the genetic variants of the NMDA receptor subunit 2b and Alzheimer's disease. Dement Geriatr Cogn Disord 2002; 13:91-4. [PMID: 11844890 DOI: 10.1159/000048639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor dysfunction has been implicated in the pathogenesis of Alzheimer's disease (AD). The NMDA receptor is composed of several subunits, of which the receptor 2b subunit (NR2b) is of particular significance for AD. Abundant in the hippocampus of normal subjects, reductions in NR2b have been demonstrated in the hippocampus and entorhinal cortex of AD patients. In this study, we tested the hypothesis that the allelic variant (C2664T) of the NR2b confers susceptibility to AD using a sample population of 132 AD patients and 114 normal controls. The distribution of the NR2b genotypes (p = 0.600) and alleles (p = 0.652) did not differ significantly between AD patients and controls, however, suggesting that it is unlikely that the NR2b C2664T polymorphism plays a substantial role in conferring susceptibility to AD. We propose that other genetic variations of the NMDA subunits, relating either to AD or to the therapeutic response for NMDA partial agonists, may need further investigation.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
1170
|
Abstract
For several decades, it has been known that mental retardation (MR) is associated with abnormalities in dendrites and dendritic spines. The recent cloning of seven genes that cause nonspecific MR when mutated provides important insights in the cellular mechanisms that result in the dendritic abnormalities associated with MR. Three of the encoded proteins, oligophrenin 1, PAK3 and alpha PIX, interact directly with Rho GTPases. Rho GTPases are key signaling proteins that integrate extracellular and intracellular signals to orchestrate coordinated changes in the actin cytoskeleton essential for directed neurite outgrowth and the regulation of synaptic connectivity. Although many details of the cell biology of Rho signaling in the CNS are still unclear, a picture is unfolding showing how mutations that alter Rho signaling result in abnormal neuronal connectivity and deficient cognitive functioning in humans. Conversely, these findings illuminate the cellular mechanisms underlying normal cognitive function.
Collapse
Affiliation(s)
- Ger J A Ramakers
- Neurons and Networks, Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| |
Collapse
|
1171
|
Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 2002. [PMID: 11896173 DOI: 10.1523/jneurosci.22-06-02343.2002] [Citation(s) in RCA: 559] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor antagonists block conditioned fear extinction when injected systemically and also when infused directly into the amygdala. Here we evaluate the ability of D-cycloserine (DCS), a partial agonist at the strychnine-insensitive glycine-recognition site on the NMDA receptor complex, to facilitate conditioned fear extinction after systemic administration or intra-amygdala infusions. Rats received 10 pairings of a 3.7 sec light and a 0.4 mA footshock (fear conditioning). Fear-potentiated startle (increased startle in the presence vs the absence of the light) was subsequently measured before and after 30, 60, or 90 presentations of the light without shock (extinction training). Thirty non-reinforced light presentations produced modest extinction, and 60 or 90 presentations produced nearly complete extinction (experiment 1). DCS injections (3.25, 15, or 30 mg/kg) before 30 non-reinforced light exposures dose-dependently enhanced extinction (experiment 2) but did not influence fear-potentiated startle in rats that did not receive extinction training (experiment 3). These effects were blocked by HA-966, an antagonist at the glycine-recognition site (experiment 4). Neither DCS nor HA-966 altered fear-potentiated startle when injected before testing (experiment 5). The effect of systemic administration was mimicked by intra-amygdala DCS (10 microg/side) infusions (experiment 6). These results indicate that treatments that promote NMDA receptor activity after either systemic or intra-amygdala administration promote the extinction of conditioned fear.
Collapse
|
1172
|
Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci 2002. [PMID: 11880521 DOI: 10.1523/jneurosci.22-05-01914.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chronic exposure to opiates eventually leads to drug addiction, which is believed to involve maladaptive changes in brain function, but the underlying neuronal mechanisms remain primarily unknown. Given the known effects of opiates such as morphine and heroin on hippocampal function, we investigated the potential effect of chronic opiate treatment on long-term potentiation (LTP) at CA1 synapses in rat hippocampus, a leading experimental model for studying synaptic plasticity. Our results revealed that chronic exposure of rats to morphine or heroin, which induced severe drug tolerance and dependence, markedly reduced the capacity of hippocampal CA1 LTP during the period of drug withdrawal (from approximately 190% in control to approximately 120%). More interestingly, the capacity of LTP could be restored to the normal level by re-exposure of the animals to opiates, indicating that the synaptic function was already adapted to opiates. Morris water maze test, which measures behavioral consequences of synaptic plasticity, showed parallel learning deficits after chronic exposure to opiates. Moreover, the opiate-reduced LTP could also be restored by inhibitors of cAMP-dependent protein kinase A (PKA), suggesting that upregulation of cAMP pathway was likely one of the underlying mechanisms of the observed phenomena. These findings demonstrated that chronic opiate treatment can significantly modulate synaptic plasticity in the hippocampus, leading to an opiate dependence of the plasticity.
Collapse
|
1173
|
Kumar A, Zou L, Yuan X, Long Y, Yang K. N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. J Neurosci Res 2002; 67:781-6. [PMID: 11891792 DOI: 10.1002/jnr.10181] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hippocampal N-methyl-D-aspartate (NMDA) receptor subunits, by virtue of their involvement in excitotoxic injury as well as memory association, may play an important role in the pathophysiologic mechanisms of traumatic brain injury (TBI). In this study, temporal changes in NMDA receptor subunit (NR1, NR2A, and NR2B) levels in rat hippocampus after TBI were investigated by Western blot and mRNA expression levels by RT-PCR methods. Sprague-Dawley rats (250-350 g) were employed, and a controlled cortical impact injury device was used to produce the TBI in rodents. At different postinjury time points (2, 6, 12, 24, and 48 hr), the rat hippocampi were dissected out for protein and RNA preparation. Western blot analysis revealed significant decreases of NR1, NR2A, and NR2B subunit proteins at 6 and 12 hr postinjury in rat hippocampus. Complete recovery of NR1, NR2A, and NR2B subunit protein to the levels of sham controls was observed at 24 hr postinjury. However, RT-PCR analysis did not show any significant change in the mRNA levels at 2, 6, and 12 hr postinjury in comparison with sham controls, suggesting nontranscriptional change in the levels of these subunits. Thus, TBI can produce transient degradation of NMDA receptor subunits in the hippocampus, which might contribute to temporary memory impairment after injury.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
1174
|
Mishra OP, Fritz KI, Delivoria-Papadopoulos M. NMDA receptor and neonatal hypoxic brain injury. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:249-53. [PMID: 11754518 DOI: 10.1002/mrdd.1034] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The NMDA-type glutamate receptor is a predominant mediator of excitotoxicity in the immature brain due to overexpression of the receptor in the developing brain. Within the development period however, the extent of NMDA receptor mediated processes including hypoxia-induced excitotoxicity may depend on the ontogeny of the NMDA receptor recognition and modulation sites, and subunits leading to altered function of the ion-channel comples. The function of the receptor may be modified by intracellular mechanisms such as phosphorylation/dephosphorylation, nitration, and generation of free radicals including nitric oxide. The susceptibility of the developing brain to hypoxia depends on several factors: the lipid composition of the brain cell membrane; the rate of membrane lipid peroxidation and the status of anti-oxidant defenses; the development and modulation of the NMDA receptor sites; the intracellular Ca(2+) influx mechanisms; expression of apoptotic and antiapoptotic genes such as Bax and Bcl-2; and the activation of initiator caspases and caspase-3, the "executioner" of cell death. The developmental status of these cellular mechanisms and their response to hypoxia determine the fate of the hypoxic cell in the developing brain in the fetus and the newborn.
Collapse
Affiliation(s)
- O P Mishra
- Department of Pediatrics, MCP Hahnemann University and St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
1175
|
Baker KB, Kim JJ. Effects of stress and hippocampal NMDA receptor antagonism on recognition memory in rats. Learn Mem 2002; 9:58-65. [PMID: 11992016 PMCID: PMC155932 DOI: 10.1101/lm.46102] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposures to uncontrollable stress have been shown to alter ensuing synaptic plasticity in the hippocampus and interfere with hippocampal-dependent spatial memory in rats. The present study examined whether stress, which impairs hippocampal long-term potentiation (LTP), also affects (nonspatial) hippocampal-dependent object-recognition memory, as tested on the visual paired comparison task (VPC) in rats. After undergoing an inescapable restraint-tailshock stress experience, rats exhibited markedly impaired recognition memory at the 3-h (long) familiarization-to-test phase delay but not at the 5-min (short) delay. In contrast, unstressed control animals showed robust recognition memory (i.e., they exhibited reliable preferences for novel over familiar objects) at both short- and long-delay periods. The impairing effect of stress on long-delay recognition memory was transient because 48 h after undergoing stress experience, animals performed normally at the long delay. Similar to stress, microinfusions of DL-2-amino-5-phosphonovaleric acid (APV), a competitive N-methyl-D-aspartate receptor (NMDAR) antagonist that blocks LTP, into the dorsal hippocampus selectively impaired object-recognition memory at the long-delay period. Together, these results suggest that stress and intrahippocampal administration of APV affect recognition memory by influencing synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Kevin B Baker
- Department of Psychology, Yale University, New Haven, Connecticut 06520-8205, USA
| | | |
Collapse
|
1176
|
Abstract
Glutamate is the fast excitatory transmitter in mammalian brains. It binds to two major classes of glutamate receptors: ionotropic and metabotropic receptors. Ionotropic receptors contain three subtype receptors, including N-methyl-d-aspartate (NMDA) receptors. Activation of NMDA receptors is important for initiating long-lasting changes in synapses. In the forebrain structures that are known to contribute to the formation and storage of information, NMDA receptors have an important role in persistent inflammatory pain by reinforcing glutamate sensory transmission. Mice with enhanced forebrain NMDA receptor function demonstrate selective enhancement of persistent pain and allodynia. Drugs targeting NMDA NR2B subunits in the forebrain could serve as a new class of medicine for controlling persistent pain in humans.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, 660 S. Euclid Ave., St Louis, MO 63110, USA.
| |
Collapse
|
1177
|
Escobar ML, Alcocer I, Bermúdez-Rattoni F. In vivo effects of intracortical administration of NMDA and metabotropic glutamate receptors antagonists on neocortical long-term potentiation and conditioned taste aversion. Behav Brain Res 2002; 129:101-6. [PMID: 11809500 DOI: 10.1016/s0166-4328(01)00329-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been proposed that long-term potentiation (LTP), a form of activity-dependent modification of synaptic efficacy, may be a synaptic mechanism for certain types of learning. Recent studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that tetanic stimulation of the basolateral nucleus of the amygdala (Bla) induce an N-methyl-D-aspartate (NMDA) dependent LTP in the IC of adult rats in vivo. Here we present experimental data showing that intracortical administration of the NMDA receptor competitive antagonists CPP (-3(-2 carboxipiperazin-4-yl)-propyl-1-phosphonic acid, 0.03 microg per hemisphere) and AP-5 (D(-)-2-amino-5-phosphonopentanoic, 2.5 microg per hemisphere) disrupt the acquisition of conditioned taste aversion, as well as IC-LTP induction in vivo. In contrast, administration of the metabotropic glutamate receptor antagonist MCPG ((RS)-alpha-methyl-4-carboxyphenylglycine, 2.5 microg per hemisphere) does not disrupt the acquisition of CTA nor IC-LTP induction. These findings are of particular interest since they provide support for the view that the neural mechanisms underlying NMDA-dependent neocortical LTP constitute a possible mechanism for the learning-related functions performed by the IC.
Collapse
Affiliation(s)
- Martha L Escobar
- División de Investigación y Estudios de Posgrado, Cub. 4-5, 1er Piso Edif. D, Facultad de Psicología, Universidad Nacional Autónoma de México, D.F., Mexico.
| | | | | |
Collapse
|
1178
|
Abstract
Enhancement of memory acquisition and recall represents an important pharmacological goal in the treatment of cognitive disorders. In addition to its involvement in pH regulation, HCO3- reabsorption and CO2 expiration, carbonic anhydrase plays a crucial role in signal processing, long-term synaptic transformation and attentional gating of memory storage. Carbonic anhydrase dysfunction impairs cognition and is associated with mental retardation, Alzheimer's disease and aging. The pharmacological profile of carbonic anhydrase has been refined and specific activators have been developed. In this article, an integrated view of the involvement of carbonic anhydrase activity in synaptic plasticity and cognition will be presented, with particular focus on attentional gating of spatial learning and memory.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blânchette Rockefeller Neurosciences Institute, West Virginia University, Johns Hopkins Academic and Research Building, Room 319, 9601 Medical Center Drive, Rockville, MD 20850, USA.
| | | |
Collapse
|
1179
|
Malayev A, Gibbs TT, Farb DH. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol 2002; 135:901-9. [PMID: 11861317 PMCID: PMC1573207 DOI: 10.1038/sj.bjp.0704543] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 11/28/2001] [Accepted: 12/03/2001] [Indexed: 12/24/2022] Open
Abstract
1. The neurosteroid pregnenolone sulphate (PS) potentiates N-methyl-D-aspartate (NMDA) receptor mediated responses in various neuronal preparations. The NR1 subunit can combine with NR2A, NR2B, NR2C, or NR2D subunits to form functional receptors. Differential NR2 subunit expression in brain and during development raises the question of how the NR2 subunit influences NMDA receptor modulation by neuroactive steroids. 2. We examined the effects of PS on the four diheteromeric NMDA receptor subtypes generated by co-expressing the NR1(100) subunit with each of the four NR2 subunits in Xenopus oocytes. Whereas PS potentiated NMDA-, glutamate-, and glycine-induced currents of NR1/NR2A and NR1/NR2B receptors, it was inhibitory at NR1/NR2C and NR1/NR2D receptors. 3. In contrast, pregnanolone sulphate (3alpha5betaS), a negative modulator of the NMDA receptor that acts at a distinct site from PS, inhibited all four subtypes, but was approximately 4 fold more potent at NR1/NR2C and NR1/NR2D than at NR1/NR2A and NR1/NR2B receptors. 4. These findings demonstrate that residues on the NR2 subunit are key determinants of modulation by PS and 3alpha5betaS. The modulatory effects of PS, but not 3alpha5betaS, on dose-response curves for NMDA, glutamate, and glycine are consistent with a two-state model in which PS either stabilizes or destabilizes the active state of the receptor, depending upon which NR2 subunit is present. 5. The selectivity of sulphated steroid modulators for NMDA receptors of specific subunit composition is consistent with a neuromodulatory role for endogenous sulphated steroids. The results indicate that it may be possible to develop therapeutic agents that target steroid modulatory sites of specific NMDA receptor subtypes.
Collapse
Affiliation(s)
- Andrew Malayev
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts, MA 02118, U.S.A
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts, MA 02118, U.S.A
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts, MA 02118, U.S.A
| |
Collapse
|
1180
|
Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN. Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. GENES, BRAIN, AND BEHAVIOR 2002; 1:55-69. [PMID: 12886950 DOI: 10.1046/j.1601-1848.2001.00005.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studying the behavior of genetic background strains provides important information for the design and interpretation of cognitive phenotypes in mutant mice. Our experiments examined the performance of three commonly used strains (C57BL/6J, 129S6, DBA/2J) on three behavioral tests for learning and memory that measure very different forms of memory, and for which there is a lack of data on strain differences. In the social transmission of food preference test (STFP) all three strains demonstrated intact memory for an odor-cued food that had been sampled on the breath of a cagemate 24 hours previously. While C57BL/6J and 129S6 mice showed good trace fear conditioning, DBA/2J mice showed a profound deficit on trace fear conditioning. In the Barnes maze test for spatial memory, the 129S6 strain showed poor probe trial performance, relative to C57BL/6J mice. Comparison of strains for open field exploratory activity and anxiety-like behavior suggests that poor Barnes maze performance reflects low exploratory behavior, rather than a true spatial memory deficit, in 129S6 mice. This interpretation is supported by good Morris water maze performance in 129S6 mice. These data support the use of a C57BL/6J background for studying memory deficits in mutant mice using any of these tasks, and the use of a 129S6 background in all but the Barnes maze. A DBA/2J background may be particularly useful for investigating the genetic basis of emotional memory using fear conditioning.
Collapse
Affiliation(s)
- A Holmes
- Section on Behavioral Genomics, National Institute of Mental Health, NIH, Bethesda MD 20892-1375, USA.
| | | | | | | | | |
Collapse
|
1181
|
Qian A, Antonov SM, Johnson JW. Modulation by permeant ions of Mg(2+) inhibition of NMDA-activated whole-cell currents in rat cortical neurons. J Physiol 2002; 538:65-77. [PMID: 11773317 PMCID: PMC2290035 DOI: 10.1113/jphysiol.2001.012685] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole-cell N-methyl-D-aspartate (NMDA)-activated currents were recorded from cultured rat cortical neurons. We report here a powerful effect of changing permeant ion concentrations on the voltage-dependent inhibition by external Mg(2+) (Mg(2+)(o)) of these currents. Internal Cs(+) (Cs(+)(i)) affected Mg(2+)(o) inhibition of the NMDA-activated currents in a voltage-dependent manner. A decrease in Cs(+)(i) concentration ([Cs(+)](i)) from 125 to 8 mM reduced Mg(2+)(o) IC(50) by 1.4-fold at -105 mV and by 11.5-fold at -15 mV. A decrease in external Na(+) (Na(+)(o)) concentration ([Na(+)](o)) also reduced Mg(2+)(o) IC(50). This effect was voltage independent. A decrease in [Na(+)](o) from 140 to 70 mM reduced Mg(2+)(o) IC(50) by 1.4-fold at -105 mV and by 1.6-fold at -15 mV. Varying external Ca(2+) (Ca(2+)(o)) concentrations ([Ca(2+)](o)) from 0.1 to 1 mM did not affect Mg(2+)(o) inhibition, even though changing [Ca(2+)](o) in the same range strongly influenced the magnitude of NMDA-activated currents in the absence of Mg(2+)(o). However, increasing [Ca(2+)](o) to higher concentrations (2-20 mM) greatly increased Mg(2+)(o) IC(50) at hyperpolarized voltages. These data are consistent with a model in which Na(+)(i) and Cs(+)(i) modulate Mg(2+)(o) inhibition of NMDA-activated currents by occupying external permeant ion binding sites. The Mg(2+)(o) IC(50) values reported here are similar to Mg(2+)(o) K(D) values calculated from previous single-channel measurements of Mg(2+)(o) blocking kinetics. This similarity implies that Mg(2+)(o) does not affect gating while blocking the channel.
Collapse
Affiliation(s)
- Anqi Qian
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
1182
|
Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 2001; 32:1041-56. [PMID: 11754836 DOI: 10.1016/s0896-6273(01)00553-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function.
Collapse
Affiliation(s)
- J T Henderson
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, M5G 1X5, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
1183
|
Reader TA, Sénécal J. Topology of ionotropic glutamate receptors in brains of heterozygous and homozygous weaver mutant mice. Synapse 2001; 42:213-33. [PMID: 11746720 DOI: 10.1002/syn.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In weaver mice, mutation of a G-protein inwardly rectifying K(+) channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, ionotropic glutamate receptors sensitive to N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA) were examined by autoradiography with [(3)H]MK-801, [(3)H]AMPA, and [(3)H]KA. These surveys were carried out in selected areas of cerebral cortex, hippocampus and related limbic regions, basal ganglia, thalamus, hypothalamus, brainstem, and cerebellum from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild-type (+/+) mice. In wv/+ and wv/wv mutants, NMDA receptor levels were lower in cortical areas, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus, and in the cerebellar granular layer. Densities of KA receptors were lower in cortical areas, hippocampus, limbic system structures, neostriatum, nucleus accumbens, thalamus and hypothalamus, superior and inferior colliculi, and cerebellar cortex of wv/wv mutants. Levels of AMPA receptors in the weaver were higher than in +/+ mice, particularly in somatosensory and piriform cortices and periaqueductal gray of wv/+, and in somatosensory cortex, CA1 field of Ammon's horn and cerebellar granular layer of wv/wv. Abnormal developmental signals, aberrant cellular responses, or a distorted balance between neurotransmitter interactions may underlie such widespread and reciprocal glutamate receptor alterations, while in the case of cerebellar cortex, NMDA receptors are lacking due to a massive disappearance of cerebellar granule cells and some loss of Purkinje neurons.
Collapse
Affiliation(s)
- T A Reader
- Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, Montréal, Quebec, H3C 3J7 Canada.
| | | |
Collapse
|
1184
|
Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 2001; 32:911-26. [PMID: 11738035 DOI: 10.1016/s0896-6273(01)00523-2] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To examine the in vivo function of presenilin-1 (PS1), we selectively deleted the PS1 gene in excitatory neurons of the adult mouse forebrain. These conditional knockout mice were viable and grew normally, but they exhibited a pronounced deficiency in enrichment-induced neurogenesis in the dentate gyrus. This reduction in neurogenesis did not result in appreciable learning deficits, indicating that addition of new neurons is not required for memory formation. However, our postlearning enrichment experiments lead us to postulate that adult dentate neurogenesis may play a role in the periodic clearance of outdated hippocampal memory traces after cortical memory consolidation, thereby ensuring that the hippocampus is continuously available to process new memories. A chronic, abnormal clearance process in the hippocampus may conceivably lead to memory disorders in the mammalian brain.
Collapse
Affiliation(s)
- R Feng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1185
|
Abstract
Extinction of conditioned fear to a tone paired with foot shock is thought to involve the formation of new memory. In support of this, previous studies have shown that extinction of conditioned fear depends on NMDA receptor-mediated plasticity. To further investigate the role of NMDA receptors in extinction, we examined the effects of the NMDA antagonist d(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) on the extinction of conditioned freezing and suppression of bar pressing (conditioned emotional response). Rats extinguished normally during a 90 min session in the presence of systemic CPP (10 mg/kg), but were unable to recall extinction learning 24 hr later. This suggests that an NMDA-independent form of plasticity supports short-term extinction memory, but NMDA receptors are required for consolidation processes leading to long-term extinction memory. Surprisingly, extinction learned in the presence of CPP was recalled normally when tested 48 hr after training, suggesting a delayed consolidation process that was able to improve memory in the absence of further training. Delayed consolidation involves NMDA receptors because CPP injected on the rest day between training and test prevented 48 hr recall of extinction learned under CPP. Control experiments showed that the effect of CPP on memory consolidation was not caused by state-dependent learning or reduced expression of freezing under CPP. These findings demonstrate that NMDA receptor activation is critical for consolidation of extinction learning and that this process can be initiated after training has taken place. We suggest that consolidation of extinction involves off-line relearning that reinforces extinction memory through NMDA-mediated plasticity, perhaps in prefrontal-amygdala circuits.
Collapse
|
1186
|
Hong CJ, Yu YW, Lin CH, Cheng CY, Tsai SJ. Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr Genet 2001; 11:219-22. [PMID: 11807413 DOI: 10.1097/00041444-200112000-00007] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is known that a syndrome resembling schizophrenia is produced by the N-methyl-d-aspartate receptor antagonists. It has also been demonstrated that the level of an ionotropic N-methyl-d-aspartate 2B subunit (GRIN2B) of the glutamate receptor tends to increase after subchronic administration of clozapine, suggesting that GRIN2B may play an active role in the pathogenesis of schizophrenia and the function of clozapine medication. We studied 100 schizophrenic patients, investigating the associations for the GRIN2B genetic variants, and psychiatric symptoms and clozapine response. No significant differences were demonstrated comparing these three groups in terms of the baseline Brief Psychiatric Rating Scale (BPRS) score (P = 0.441). The percentage of patients scoring within 20% of baseline BPRS after clozapine treatment was similar for the three genotype groups (P = 0.132). A marginally higher mean clozapine dosage was revealed, however, for patients bearing the 2664C/C genotype (P = 0.013). Although replication of this research is required to confirm the results, an association for the GRIN2B C2664T polymorphism and clozapine treatment is suggested from our findings, which may assist in the prediction of optimal dosage for schizophrenic patients.
Collapse
Affiliation(s)
- C J Hong
- Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
1187
|
Chizh BA, Headley PM, Tzschentke TM. NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 2001; 22:636-42. [PMID: 11730974 DOI: 10.1016/s0165-6147(00)01863-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ifenprodil and a group of related compounds are selective antagonists of NR2B-containing NMDA receptors. These compounds are antinociceptive in a variety of preclinical pain models and have a much lower side-effect profile compared with other NMDA receptor antagonists. It remains unclear whether the improved safety of these compounds is due to their subtype selectivity or to a unique mode of inhibition of the receptor. Human trials have so far confirmed the good tolerability of these subtype-selective NMDA receptor antagonists; however, whether they are as effective as other NMDA receptor antagonists in pain patients remains to be demonstrated.
Collapse
Affiliation(s)
- B A Chizh
- Dept of Pharmacology, Grünenthal GmbH Research & Development, Zieglerstr. 6, 52078, Aachen, Germany.
| | | | | |
Collapse
|
1188
|
Lu HC, Gonzalez E, Crair MC. Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition. Neuron 2001; 32:619-34. [PMID: 11719203 DOI: 10.1016/s0896-6273(01)00501-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The regulation of NMDA receptor (NMDAR) subunit composition and expression during development is thought to control the process of thalamocortical afferent innervation, segregation, and plasticity. Thalamocortical synaptic plasticity in the mouse is dependent on NMDARs containing the NR2B subunit, which are the dominant form during the "critical period" window for plasticity. Near the end of the critical period there is a gradual increase in the contribution of NR2A subunits that happens in parallel to changes in NMDAR-mediated current kinetics. However, no extension of the critical period occurs in NR2A knockout mice, despite the fact that NMDA subunit composition and current kinetics remain immature past the end of the critical period. These data suggest that regulation of NMDAR subunit composition is not essential for closing the critical period plasticity window in mouse somatosensory barrel cortex.
Collapse
Affiliation(s)
- H C Lu
- Division of Neuroscience and Program in Developmental Biology, One Baylor Plaza, S-603, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
1189
|
Contet C, Rawlins JN, Bannerman DM. Faster is not surer--a comparison of C57BL/6J and 129S2/Sv mouse strains in the watermaze. Behav Brain Res 2001; 125:261-7. [PMID: 11682117 DOI: 10.1016/s0166-4328(01)00295-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In recent years the use of genetic manipulations to investigate the molecular mechanisms underlying learning and memory has become a common approach. In a great many cases, the spatial learning ability of mutant mice has been assessed using the Morris watermaze task. The performance of these mice may, however, be strongly influenced by their genetic background and, therefore, the interpretation of their phenotype requires a preliminary characterization of the parental strains. The present study compared 129S2/Sv and C57/BL/6J inbred mouse strains, which have been widely used in deriving lines of genetically modified mice, on the hidden platform version of the watermaze task. During acquisition, the C57 mice displayed shorter escape latencies to find the platform than the 129S2s. Further analysis revealed, however, that the C57 mice also swam faster than the 129S2s. The analysis of path lengths was thus a more reliable measure of spatial learning, and revealed an equal level of performance in the two strains. This conclusion was confirmed during the two probe trials with both strains showing a similar spatial preference for the training site. These results suggest that the 129S2 substrain is no less proficient than the C57 substrain in terms of spatial learning in the watermaze, and also demonstrates the importance of not relying solely on escape latency as a measure of watermaze performance.
Collapse
Affiliation(s)
- C Contet
- Ecole Normale Supérieure, 45, rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
1190
|
Abstract
Over the past decade, viral vectors have slowly gained mainstream acceptance in the neuroscience and genetics communities for the in vivo study of gene function [1]. Using stereotactic techniques, it is possible to characterize neuroanatomical relationships through the delivery of neurotropic viral vectors to specific brain regions. More sophisticated studies combine viral vectors with other methods of genetic manipulation such as germline transgenic mice. As more is learned about the properties of different viral vectors, it has become possible to use viral vectors to test hypotheses about the function of genes, through targeted in vivo delivery to the central nervous system (CNS). The effects of gene expression in the brain can be measured on the molecular, biochemical, electrophysiological, morphological, and behavioral levels. We propose that viral vectors should be considered as part of an integrated functional genomics platform in the CNS.
Collapse
Affiliation(s)
- C G Janson
- CNS Gene Therapy Center, 1025 Walnut Street, Suite 511, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
1191
|
Abstract
The aims of this paper are to provide a comprehensive and up to date review of the mechanisms of induction and expression of long-term depression (LTD) of synaptic transmission. The review will focus largely on homosynaptic LTD and other forms of LTD will be considered only where appropriate for a fuller understanding of LTD mechanisms. We shall concentrate on what are felt to be some of the most interesting recent findings concerning LTD in the central nervous system. Wherever possible we shall try to consider some of the disparities in results and possible reasons for these. Finally, we shall briefly consider some of the possible functional consequences of LTD for normal physiological function.
Collapse
Affiliation(s)
- N Kemp
- Department of Anatomy, University of Bristol, MRC Centre for Synaptic Plasticity, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|
1192
|
Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, Bear MF. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology 2001; 41:762-70. [PMID: 11640931 DOI: 10.1016/s0028-3908(01)00136-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The NMDA receptor (NMDAR) is a heteromer comprised of NR1 and NR2 subunits. Mice that overexpress the NR2B subunit exhibit enhanced hippocampal LTP, prolonged NMDAR currents, and improved memory ( Tang et al., 1999). In the current study, we explored visual cortex plasticity and NMDAR function in NR2B overexpressing transgenic mice. Unlike the hippocampus, in vitro synaptic plasticity of the visual cortex was unaltered by NR2B overexpression. Consistent with the plasticity findings, NMDAR excitatory postsynaptic current (EPSC) durations from layer 2/3 pyramidal cells were similar in wild-type (wt) and transgenic (tg) mice. Furthermore, temporal summation of NMDAR EPSCs to 10, 20, and 40 Hz stimulation did not differ between cells from wt and tg mice. Finally, although in situ studies clearly demonstrate overexpression of NR2B mRNA in visual cortex, we failed to observe a significant elevation in the synaptic expression of NR2B protein. We conclude that the synaptic ratio of NR2B over NR2A in the NMDA receptor complex in the visual cortex is not significantly influenced by the transgene overexpression. These data suggest that mRNA availability is not a limiting factor for the synthesis of NR2B protein in the visual cortex, and support the hypothesis that levels of NR2A, rather than NR2B, normally determine the subunit composition of NMDARs in visual cortex.
Collapse
Affiliation(s)
- B D Philpot
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Box 1953, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
1193
|
Kral A, Hartmann R, Tillein J, Heid S, Klinke R. Delayed maturation and sensitive periods in the auditory cortex. Audiol Neurootol 2001; 6:346-62. [PMID: 11847463 DOI: 10.1159/000046845] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Behavioral data indicate the existence of sensitive periods in the development of audition and language. Neurophysiological data demonstrate deficits in the cerebral cortex of auditory-deprived animals, mainly in reduced cochleotopy and deficits in corticocortical and corticothalamic loops. In addition to current spread in the cochlea, reduced cochleotopy leads to channel interactions after cochlear implantation. Deficits in corticocortical and corticothalamic loops interfere with normal processing of auditory activity in cortical areas. Thus, the deprived auditory cortex cannot mature normally in congenital deafness. This maturation can be achieved using auditory experience through cochlear implants. However, implantation is necessary within the sensitive period of the auditory system. The functional role of long-term potentiation and long-term depression, inhibition, cholinergic modulation and neurotrophins in auditory development and sensitive periods are discussed.
Collapse
Affiliation(s)
- A Kral
- Physiologisches Institut II, J.W. Goethe-Universität, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
1194
|
Tang YP, Wang H, Feng R, Kyin M, Tsien JZ. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology 2001; 41:779-90. [PMID: 11640933 DOI: 10.1016/s0028-3908(01)00122-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been known that environmental enrichment leads to better learning and memory in mice. However, the molecular mechanisms are not known. In this study, we used the 10th-12th of the NR2B transgenic (Tg) lines, in which the NMDA receptor function is enhanced via the NR2B subunit transgene in neurons of the forebrain, to test the hypothesis of the involvement of NMDA receptor function in enrichment-induced better learning and memory. Consistent with our previous results, both larger long-term potentiation (LTP) in the hippocampus and superior learning and memory were observed in naive NR2B Tg mice even after the 10th-12th generation of breeding. After enrichment, wild-type mice exhibited overall improvement in their performances in contextual and cued conditioning, fear extinctions, and novel object recognition tasks. Interestingly, the same enrichment procedures could not further increase the performance of NR2B Tg mice in contextual conditioning, cued conditioning, or fear extinction, thereby indicating that enhanced NMDA receptor function can occlude these enrichment effects. However, we found that in the novel object recognition task enriched NR2B Tg mice exhibited much longer recognition memory (up to 1 week), compared to that (up to 3 days) in naive NR2B Tg mice. Furthermore, our biochemical experiments showed that enrichment significantly increased protein levels of GluR1, NR2B, and NR2A subunits of glutamate receptors in both wild-type and NR2B Tg mice. Therefore, our results suggest an interactive nature of molecular pathways involved in both environmental and genetic NMDA receptor manipulations for enhancing learning and memory.
Collapse
Affiliation(s)
- Y P Tang
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
1195
|
Gore AC. Gonadotropin-releasing hormone neurons, NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:235-48. [PMID: 11744089 DOI: 10.1016/s0165-0173(01)00121-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of ovarian steroid hormones on gonadotropin-releasing hormone (GnRH) neurons have been studied for many years. In addition to their regulation by sex steroids, GnRH neurons are affected by inputs from neurotransmitters such as glutamate, acting via the NMDA receptor (NMDAR). Moreover, the NMDAR itself is subject to estrogen regulation. Thus, effects of ovarian steroids on GnRH neurons and the NMDAR, and their interactions, are under intense investigation. Messenger RNA and protein levels of GnRH and NMDAR subunits were measured in neuroendocrine brain regions in response to estrogen treatment, or across the reproductive cycle. Stimulatory effects of ovarian steroids on GnRH gene expression occur during the preovulatory LH surge in young adult rats, and this is abolished in middle-aged rats that have an attenuated LH surge. Effects of estrogen on GnRH neurons have also been studied in the ovariectomized, estrogen-primed rat, and while results vary between laboratories, there appear to be age-related changes in the sensitivity of GnRH neurons to estrogen. Estrogen also has effects on NMDAR mRNA levels. In intact rats, mRNA levels of NMDAR decrease during reproductive aging in the preoptic area, the site of GnRH perikarya, while in the medial basal hypothalamus-median eminence, the site of GnRH neuroterminals, levels of NMDAR subunit mRNAs increase with aging. Thus, glutamatergic inputs to GnRH perikarya and neuroterminals and other neuroendocrine cells may change during reproductive aging in intact rats. In ovariectomized rats, NMDAR subunit mRNA levels also undergo age-related changes, and respond to estrogen replacement in a subunit- and age-specific manner. Notably, there are major differences in NMDAR gene expression during aging between intact and ovariectomized rats, suggesting that ovarian factors other than estrogen play a role in the regulation of this receptor.
Collapse
Affiliation(s)
- A C Gore
- Mount Sinai School of Medicine, Kastor Neurobiology of Aging Laboratories, Fishborg Center Neurobiology, Brookdate Dept. Geriatrics, Box 1639, New York, NY 10029, USA.
| |
Collapse
|
1196
|
Sun JH, Yan XQ, Xiao H, Zhou JW, Chen YZ, Wang CA. Restoration of decreased N-methyl-d-asparate receptor activity by brain-derived neurotrophic factor in the cultured hippocampal neurons: involvement of cAMP. Arch Biochem Biophys 2001; 394:209-15. [PMID: 11594735 DOI: 10.1006/abbi.2001.2547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) may play an important role in the modulation of N-methyl-d-asparate (NMDA) receptor function. To elucidate the underlying mechanisms, whole-cell patch-clamp recording was used to assess the effect of BDNF on the responses of cultured hippocampal neurons to the glutamate receptor agonist NMDA. We found that peak amplitude of NMDA-evoked currents in cultured hippocampal pyramidal neurons at Day 18 in vitro decreased significantly compared to that of NMDA currents at Day 10 or 14. Interestingly, NMDA-evoked currents were greatly enhanced by BDNF (50 ng/ml) in cultured neurons at Day 18, but not at Day 10 or 14. Treatment with Rp-cAMP abolished the potentiating effects of BDNF on NMDA current. Elevating the amount of cytosolic cAMP by preincubation with forskolin or Sp-cAMP also enhanced NMDA currents as effectively as BDNF in 18-day-old hippocampal neurons. Measurement of the cellular content of cAMP by RIA indicated that cultured hippocampal neurons showed decreased basal cAMP levels at the time NMDA currents were decreased and BDNF increased the decreased cAMP levels. Taken together, these results suggest that BDNF may restore decreased NMDA receptor activity in cultured hippocampal neurons by the cAMP pathway.
Collapse
Affiliation(s)
- J H Sun
- Department of Physiology, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
1197
|
Morris JG. Human health effects and Pfiesteria exposure: a synthesis of available clinical data. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109 Suppl 5:787-90. [PMID: 11677190 PMCID: PMC1240612 DOI: 10.1289/ehp.01109s5787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An association between human illness and exposure to Pfiesteria was first observed among laboratory personnel working with the microorganism. In 1997, in the setting of Pfiesteria activity on the Pocomoke River in Maryland, difficulties with learning and memory were epidemiologically associated with high-level exposure to waterways in which the organism was known to be present. In the Maryland studies, neurocognitive function of affected persons returned to within normal ranges within a period of 3-6 months. Persons with the most severe neurocognitive deficits were significantly more likely to have skin lesions characterized on biopsy by evidence of a toxic/allergic inflammatory reaction. Acute high-level exposures to waterways where Pfiesteria has been identified have been linked with eye and respiratory irritation, headache, and gastrointestinal complaints. Recent data, collected using molecular techniques, suggest that the organism is present in multiple locations in the Chesapeake Bay environment; available data are insufficient to comment on the possible cumulative health impact of chronic low-level environmental exposure to Pfiesteria.
Collapse
Affiliation(s)
- J G Morris
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore 21201, USA.
| |
Collapse
|
1198
|
Sze SC, Wong CK, Yung KK. Modulation of the gene expression of N-methyl-D-aspartate receptor NR2B subunit in the rat neostriatum by a single dose of specific antisense oligodeoxynucleotide. Neurochem Int 2001; 39:319-27. [PMID: 11551672 DOI: 10.1016/s0197-0186(01)00032-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-methyl-D-aspartate receptors (NRs) are a group of ionotropic glutamate receptors in the brain and they are composed of heteromeric subunits (NR1, NR2A-D and NR3). In the neostriatum, a brain region that is associated with movement in animals, NMDA channels are known to involve in the motor control. Our previous report (Lai et al., 2000, Neuroscience 98, 493-500) has shown that a single dose of antisense oligodeoxynucleotides that are specific to NR1 subunit results in blockage of the gene expression of NR1 as well as NR2A subunits in the neostriatum. In the present study, antisense oligodeoxynucleotides that are specific to NR2B (ANR2B) were then employed as molecular tools to further investigate the molecular interactions of NMDA receptor subunits in the neostriatum. A single dose of ANR2B was injected unilaterally into the rat neostriatum. After one day of injection, no modification of motor behavior was found in the ANR2B-injected rats. The mRNA level of NR2B in the ANR2B-injected neostriatum was found to be decreased (-20.4%) by reverse transcriptase polymerase chain reaction (RT-PCR). However, the mRNA levels of NR1, NR2A, NR2C and NR2D in the ANR2B-treated neostriatum were found to be unchanged. After two days of injection, NR2B immunoreactivity was found to decrease in the ANR2B-treated neostriatum by immunofluorescence (-35.1%). At higher magnification, NR2B immunoreactivity was found to decrease in presumed spiny neurons of the neostriatum (-23.4%). No change in NR1 immunoreactivity was observed. These results indicate that a single dose of ANR2B can successfully block the gene expression of NR2B in neurons of the neostriatum and there is less effect on NR1 and other NR2 subunits. The blockage of the gene expression of NR2B is therefore specific and the present results may provide important implications in applications of antisense in research and in clinical therapy of neurological diseases.
Collapse
Affiliation(s)
- S C Sze
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
1199
|
Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 2001. [PMID: 11517276 DOI: 10.1523/jneurosci.21-17-06889.2001] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lateral nucleus of the amygdala (LA) is an essential component of the neural circuitry underlying Pavlovian fear conditioning. Although blockade of NMDA receptors in LA and adjacent areas before training disrupts the acquisition of fear conditioning, blockade before testing also often disrupts the expression of fear responses. With this pattern of results, it is not possible to distinguish a contribution of NMDA receptors to plasticity from a role in synaptic transmission. In past studies, NMDA blockade has been achieved using the antagonist d,l-2-amino-5-phosphovalerate, which blocks the entire heteromeric receptor complex. The present experiments examined the effects of selective blockade of the NR2B subunit of the NMDA receptor in LA using the selective antagonist ifenprodil. Systemic injections of ifenprodil before training led to a dose-dependent impairment in the acquisition of auditory and contextual fear conditioning, whereas injections before testing had no effect. Intra-amygdala infusions of ifenprodil mirrored these results and, in addition, showed that the effects are attributable to a disruption of fear learning rather than a disruption of memory consolidation. NMDA receptors in LA are thus involved in fear conditioning, and the NR2B subunit appears to make unique contributions to the underlying plasticity.
Collapse
|
1200
|
Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 2001; 24:1161-92. [PMID: 11520931 DOI: 10.1146/annurev.neuro.24.1.1161] [Citation(s) in RCA: 1649] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Naturally occurring variations in maternal care alter the expression of genes that regulate behavioral and endocrine responses to stress, as well as hippocampal synaptic development. These effects form the basis for the development of stable, individual differences in stress reactivity and certain forms of cognition. Maternal care also influences the maternal behavior of female offspring, an effect that appears to be related to oxytocin receptor gene expression, and which forms the basis for the intergenerational transmission of individual differences in stress reactivity. Patterns of maternal care that increase stress reactivity in offspring are enhanced by stressors imposed on the mother. These findings provide evidence for the importance of parental care as a mediator of the effects of environmental adversity on neural development.
Collapse
Affiliation(s)
- M J Meaney
- Developmental Neuroendocrinology Laboratory, Douglas Hospital Research Centre, Department of Psychiatry and McGill Centre for the Study of Behavior, Genes and Environment, McGill University, Montréal, Canada.
| |
Collapse
|