1201
|
Inflammasomes in cancer: a double-edged sword. Protein Cell 2013. [DOI: 10.1007/s13238-013-3051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
1202
|
ZHOU YUN, ZHAO FUTAO, CHEN LIN, MA LI, WANG YU, HE YU, MA ZHIYUAN, LIU HAILI, GUO YONGHONG, ZHANG YING, YAO ZHIQIANG, HAO CHUNQIU, JIA ZHANSHENG. Development of a dendritic cell vaccine encoding multiple cytotoxic T lymphocyte epitopes targeting hepatitis C virus. Int J Mol Med 2013; 32:901-9. [DOI: 10.3892/ijmm.2013.1466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/18/2013] [Indexed: 11/05/2022] Open
|
1203
|
Malta FM, Bruno FR, Carvalho KI, Nastri ACSS, Kalil J, Carrilho FJ, Kallas EG, Pinho JRR. HCV viremia drives an increment of CD86 expression by myeloid dendritic cells. J Med Virol 2013; 85:1919-24. [PMID: 23926073 DOI: 10.1002/jmv.23692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 12/12/2022]
Abstract
The host immune response, including innate and adaptive immunity, plays a critical role in determining the outcome of viral infection. Nevertheless, little is known about the exact reasons for the failure of the host immune system in controlling hepatitis C virus (HCV) infection. Impairment of dendritic cells (DCs) function is probably one of the mechanisms responsible for immune evasion of HCV. In this study, the frequency and phenotype of DCs subsets were analyzed in three groups: HCV-infected individuals who developed viral persistence (1), HCV-infected individuals who spontaneously cleared the virus (2) and HCV-seronegative uninfected subjects (3). The results showed that the frequency of DCs subsets was not statistically significant between groups. Plasmacytoid DCs circulating exhibited an immature phenotype characterized by low expression of CD86. On the other hand, CD86 expression in myeloid DCs was significantly higher in chronic infected individuals compared to healthy controls (P=0.037). A positive correlation was observed between CD86(+) myeloid DC (mDC) and HCV viral load (r=0.4121, P=0.0263). These results suggest that HCV did not have an inhibitory effect on mDC maturation and the HCV viremia drives the increase of CD86 expression in mDC. The regulation of DCs maturation and migration lies at the level of intracellular signaling. HCV can activate or block intracellular signaling pathways and alter DC function. In conclusion, the present study suggests that imbalance of DC maturation by the virus represents a mechanism of evasion of the immune system despite the fact that HCV viremia appears to exert a "stimulatory" effect on cell-surface immune phenotype.
Collapse
Affiliation(s)
- F M Malta
- Department of Gastroenterology, School of Medicine, University of São Paulo, Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
1204
|
Gehring AJ, Haniffa M, Kennedy PT, Ho ZZ, Boni C, Shin A, Banu N, Chia A, Lim SG, Ferrari C, Ginhoux F, Bertoletti A. Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. J Clin Invest 2013; 123:3766-76. [PMID: 23908113 DOI: 10.1172/jci66043] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 06/06/2013] [Indexed: 12/16/2022] Open
Abstract
Selection of antigens for therapeutic vaccination against chronic viral infections is complicated by pathogen genetic variations. We tested whether antigens present during persistent viral infections could provide a personalized antigenic reservoir for therapeutic T cell expansion in humans. We focused our study on the HBV surface antigen (HBsAg), which is present in microgram quantities in the serum of chronic HBV patients. We demonstrated by quantitative fluorescent microscopy that, out of 6 professional APC populations in the circulation, only CD14 monocytes (MNs) retained an HBsAg depot. Using TCR-redirected CD8+ T cells specific for MHC-I-restricted HBV epitopes, we showed that, despite being constantly exposed to antigen, ex vivo-isolated APCs did not constitutively activate HBV-specific CD8+ T cells. However, differentiation of HBsAg+ CD14 MNs from chronic patients to MN-derived DCs (moDCs) induced cross-presentation of the intracellular reservoir of viral antigen. We exploited this mechanism to cross-present circulating viral antigen and showed that moDCs from chronically infected patients stimulated expansion of autologous HBV-specific T cells. Thus, these data demonstrate that circulating viral antigen produced during chronic infection can serve as a personalized antigenic reservoir to activate virus-specific T cells.
Collapse
Affiliation(s)
- Adam J Gehring
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1205
|
Oliviero B, Mele D, Degasperi E, Aghemo A, Cremonesi E, Rumi MG, Tinelli C, Varchetta S, Mantovani S, Colombo M, Mondelli MU. Natural killer cell dynamic profile is associated with treatment outcome in patients with chronic HCV infection. J Hepatol 2013; 59:38-44. [PMID: 23499727 DOI: 10.1016/j.jhep.2013.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A substantial proportion of patients with chronic hepatitis C virus infection treated with pegylated interferon α/ribavirin fail to achieve sustained virological response (SVR). Since growing evidence suggests that innate immunity may influence treatment responses, we examined natural killer (NK) cell phenotypic and functional changes during standard antiviral therapy. METHODS Expression of several NK-cell regulatory molecules was evaluated by flow cytometry in 37 consecutive patients with chronic HCV infection at baseline and at different time points during and after discontinuation of treatment. Cytokine production was evaluated by intracellular staining. Cytolytic potential was assessed as degranulation and as antibody-dependent cytotoxicity. RESULTS Baseline frequencies of CD56(dim) NK cells and perforin content were significantly higher, whereas CD16 expression was lower in SVR vs. non-responder subjects. Analysis by linear regression for repeated measures during the first 12 weeks showed significantly increased frequencies of activated (CD69(+)) NK cells in rapid virological responders (RVR) and identified a typical NK cell profile associated with SVR, featuring higher NK perforin content, lower CD16 expression, and higher proportion of CD56(dim)/CD16(-) cells. Moreover, SVR patients displayed higher natural and antibody-dependent NK cell cytotoxicity. IL28B rs12979860 CC homozygosis was significantly associated with SVR, independently of NK-cell phenotype and function. CONCLUSIONS Different NK-cell phenotypic and functional features, in patients with chronic hepatitis C treated with standard therapy, were observed between non-responder vs. SVR patients, suggesting a potential role of NK cells in the response to treatment.
Collapse
Affiliation(s)
- Barbara Oliviero
- Research Laboratories, Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1206
|
Horner SM, Gale M. Regulation of hepatic innate immunity by hepatitis C virus. Nat Med 2013; 19:879-88. [PMID: 23836238 PMCID: PMC4251871 DOI: 10.1038/nm.3253] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/30/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) is a global public health problem involving chronic infection of the liver, which can cause liver disease and is linked with liver cancer. Viral innate immune evasion strategies and human genetic determinants underlie the transition of acute HCV infection to viral persistence and the support of chronic infection. Host genetic factors, such as sequence polymorphisms in IFNL3, a gene in the host interferon system, can influence both the outcome of the infection and the response to antiviral therapy. Recent insights into how HCV regulates innate immune signaling within the liver reveal a complex interaction of patient genetic background with viral and host factors of innate immune triggering and control that imparts the outcome of HCV infection and immunity.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
1207
|
Ma JJ, Feng LY, Feng ZJ, Jiang HQ, Sun ZM, Zhao LM. Pathological characteristics of chronic hepatitis B in HBeAg-positive and HBeAg-negative patients: An analysis of 158 cases. Shijie Huaren Xiaohua Zazhi 2013; 21:1766-1771. [DOI: 10.11569/wcjd.v21.i18.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To find the differences in liver histopathology between HBeAg-positive and HBeAg -negative patients with chronic hepatitis B (CHB), and to analyze their relationship with clinical data.
METHODS: CHB patients ( n = 158) who were admitted to the Second Hospital of Hebei Medical University for a liver biopsy from January 2005 to December 2012 were enrolled. They were divided into an HBeAg-positive ( n = 86) and an HBeAg-negative group ( n = 72) based on the presence of HBeAg or not. Gender, age, alanine aminotransferase (ALT) and HBV DNA viral load were recorded and statistically analyzed with SPSS l3.0.
RESULTS: The age differed significantly between the HBeAg-positive group and HBeAg-negative group (t = -7.50, P < 0.01), although there was no statistically significant difference in sex ratio between the two groups (χ2 = 0.10, P > 0.05). A significant difference was noted in the constituent ratio of liver fibrosis stages between the two groups (χ2 = 20.79, P < 0.01). The fibrosis stage score in HBeAg-positive women was lower than that in men (1.48 ± 0.69 vs 2.09 ± 1.29, P < 0.05). For HBeAg-positive patients, both inflammation grade and fibrosis stage scores were significantly higher in the > 40 years age group than in the 30-40 years age group and < 30 years age group (2.93 ± 1.03 vs 2.09 ± 1.27, 2.16 ± 0.69; 2.67 ± 1.23 vs 1.86 ± 1.25, 1.65 ± 0.99, all P < 0.05). For HBeAg-negative patients, fibrosis stage score was significantly lower in the < 30 years age group than in the 30-40 years age group and > 40 years age group (1.57 ± 0.98 vs 2.73 ± 1.37, 3.03 ± 1.06, both P < 0.05). In the HBeAg-positive group, there was a positive correlation between age and inflammation grade or fibrosis stage score (r = 0.30, 0.34, both P < 0.01). In the HBeAg-negative group, there was also a positive correlation between age and inflammation grade or fibrosis stage score (r = 0.26, 0.34, both P < 0.05). In the HBeAg-positive group, ALT levels were positively correlated with inflammation grade or fibrosis stage score (r = 0.32, 0.24, both P < 0.05). In the HBeAg-negative group, ALT levels were positively correlated inflammation grade score (r = 0.33, P < 0.01). There was a significant difference in the constituent ratio of viral load between the two groups of patients (χ2 = 38.63, P < 0.01). The positive rate of HBV DNA was significantly higher in the HBeAg-positive group (73/86) than in the HBeAg-negative group (37/72). In the HBeAg-positive group, viral load was negatively correlated with inflammation grade score (r = -0.25, P < 0.05). In the HBeAg-negative group, viral load was positively correlated with inflammation grade or fibrosis stage score (r = 0.40, 0.43, both P < 0.05).
CONCLUSION: There is a certain correlation between gender, age, ALT and HBV DNA viral load and liver pathological changes in both HBeAg-positive and -negative CHB patients. Liver injury may sometimes be heavier in HBeAg-negative CHB patients than in HBeAg-positive CHB patients.
Collapse
|
1208
|
Ringelhan M, Heikenwalder M, Protzer U. Direct effects of hepatitis B virus-encoded proteins and chronic infection in liver cancer development. Dig Dis 2013; 31:138-51. [PMID: 23797136 DOI: 10.1159/000347209] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related death worldwide with currently limited treatment options. Chronic hepatitis B virus (HBV) infection accounts for HCC development in more than 50% of cases. The lifetime risk of HBV carriers to develop cirrhosis, liver failure or HCC is estimated to be as high as 15-40%. Although several pathways and triggers contributing to HCC development have been described, many features of hepatocellular carcinogenesis and the attributed direct role of viral factors remain elusive. Host genetic factors, the geographic area and epidemiologic factors, as well as the direct risk related to chronic HBV and hepatitis C virus (HCV) infections, account for geographical and gender differences of HCC prevalence. There is growing evidence that hepatocarcinogenesis is a multistep process. Human HCC is typically preceded by chronic inflammation and apoptotic and nonapoptotic cell death with compensatory liver proliferation. However, we still lack a thorough understanding of the common underlying molecular mechanisms. High levels of HBV replication and chronicity of inflammation are known to independently increase the risk for HCC. A direct carcinogenic role of viral factors is very likely to contribute to liver cancer since HCC is known to also occur in noncirrhotic livers of individuals with an inactive chronic or even with occult HBV infection with no significant histological signs of inflammation or cytopathic effects. Furthermore, synergistic or independent viral risk factors for primary liver cancer development have been described, such as HBV genotype, integration of viral DNA into the host genome and direct effects of viral proteins. A broader understanding of these viral factors in hepatocarcinogenesis might give rise to new diagnostic and therapeutic means in the future. We review the current state of research in liver cancer development and focus on the role of direct viral factors in HBV infection.
Collapse
Affiliation(s)
- Marc Ringelhan
- Institute of Virology, Technische Universität München, Munich, Germany
| | | | | |
Collapse
|
1209
|
Abstract
Introduction With 3 – 4 million new infections occurring annually, hepatitis C virus (HCV) is a major global health problem. There is increasing evidence to suggest that HCV will be highly amenable to a vaccine approach, and despite advances in treatment, a vaccine remains the most cost-effective and realistic means to significantly reduce the worldwide mortality and morbidity associated with persistent HCV infection. Areas covered In this review we discuss immune responses to HCV during natural infection, and describe how they may inform vaccine design. We introduce the current candidate vaccines for HCV and compare how these fare against the expected requirements of an effective prophylactic HCV vaccine in relation to the breadth, functionality, magnitude and phenotype of the vaccine-induced immune response. Expert opinion Although the correlates of immune protection against HCV are not completely defined, we now have vaccine technologies capable of inducing HCV-specific adaptive immune responses to an order of magnitude that are associated with protection during natural infection. The challenge next is to i) establish well-characterised cohorts of people at risk of HCV infection for vaccine efficacy testing and ii) to better understand the correlates of protection in natural history studies. If these can be achieved, a vaccine against HCV appears a realistic goal.
Collapse
Affiliation(s)
- Leo Swadling
- University of Oxford, NDM and Jenner Institute, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | | | | |
Collapse
|
1210
|
Schmidt J, Blum HE, Thimme R. T-cell responses in hepatitis B and C virus infection: similarities and differences. Emerg Microbes Infect 2013; 2:e15. [PMID: 26038456 PMCID: PMC3630955 DOI: 10.1038/emi.2013.14] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are global health problems affecting 600 million people worldwide. Indeed, HBV and HCV are hepatotropic viruses that can cause acute and chronic liver disease progressing to liver cirrhosis and even hepatocellular carcinoma. Furthermore, co-infections of HBV and HCV with HIV are emerging worldwide. These co-infections are even more likely to develop persistent infection and are difficult to treat. There is growing evidence that virus-specific CD4+ and CD8+ T-cell responses play a central role in the outcome and pathogenesis of HBV and HCV infection. While virus-specific T-cell responses are able to successfully clear the virus in a subpopulation of patients, failure of these T-cell responses is associated with the development of viral persistence. In this review article, we will discuss similarities and differences in HBV- and HCV-specific T-cell responses that are central in determining viral clearance, persistence and liver disease.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg , D-79106 Freiburg, Germany
| |
Collapse
|
1211
|
Adeno-associated virus-mediated gene transfer leads to persistent hepatitis B virus replication in mice expressing HLA-A2 and HLA-DR1 molecules. J Virol 2013; 87:5554-63. [PMID: 23468504 DOI: 10.1128/jvi.03134-12] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) persistence may be due to impaired HBV-specific immune responses being unable to eliminate efficiently or cure infected hepatocytes. The immune mechanisms that lead to HBV persistence have not been completely identified, and no appropriate animal model is available for such studies. Therefore, we established a chronic HBV infection model in a mouse strain with human leukocyte antigen A2/DR1 (HLA-A2/DR1) transgenes and an H-2 class I/class II knockout. The liver of these mice was transduced with adeno-associated virus serotype 2/8 (AAV2/8) carrying a replication-competent HBV DNA genome. In all AAV2/8-transduced mice, hepatitis B virus surface antigen, hepatitis B virus e antigen, and HBV DNA persisted in serum for at least 1 year. Viral replication intermediates and transcripts were detected in the livers of the AAV-injected mice. The hepatitis B core antigen was expressed in 60% of hepatocytes. No significant inflammation was observed in the liver. This was linked to a higher number of regulatory T cells in liver than in controls and a defect in HBV-specific functional T-cell responses. Despite the substantial tolerance resulting from expression of HBV antigens in hepatocytes, we succeeded in priming functional HBV-specific T-cell responses in peripheral tissues, which subsequently reached the liver. This AAV2/8-HBV-transduced HLA-A2/DR1 murine model recapitulates virological and immunological characteristics of chronic HBV infection, and it could be useful for the development of new treatments and immune-based therapies or therapeutic vaccines for chronic HBV infections.
Collapse
|
1212
|
Abstract
Hepatitis C virus (HCV) infections become chronic in the majority of infected individuals, and chronic hepatitis C (CHC) can lead to cirrhosis and hepatocellular carcinoma. The innate immune system is central to host-virus interactions during the entire natural course of the disease. The HCV NS3/4A protease efficiently cleaves and inactivates two important signaling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce interferons (IFNs), i.e., mitochondrial antiviral signaling protein (MAVS) and Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). Despite this viral escape mechanism, the innate immune system strongly reacts to HCV within the first days after infection. The sensory pathways, the type(s) of IFNs involved and the cellular source of IFNs are largely unknown. After 4-8weeks, HCV specific T cells are recruited to the liver. IFN-γ-stimulated genes get strongly expressed in the liver. In about 30% of patients, the virus is eliminated during the acute phase of the infection by T cell-mediated antiviral mechanisms. In the remaining 70% of patients, HCV persists for decades. During this phase, T cell-derived IFN-γ cannot be detected any more in liver biopsies. Instead, in about half of the patients, hundreds of type I or III IFN-stimulated genes become again strongly expressed. However, this innate immune reaction is ineffective against HCV. Moreover, patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The viral escape mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cells with refractory IFN signal transduction pathways or to cell compartments that are not accessible to antiviral IFN-stimulated effector systems. Recently, genetic variations near the IL28B (IFN-λ3) were found to be strongly associated with spontaneous clearance of HCV and response to treatment with PegIFN-α and ribavirin. The finding supports a central role of the innate immune response in host-viral interactions. The signaling pathways that link genetic variants of IL28B with immune answers to HCV remain to be elucidated. The present review article attempts to summarize current knowledge of some central aspects of the interactions of HCV with the innate immune system.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
1213
|
Willimsky G, Schmidt K, Loddenkemper C, Gellermann J, Blankenstein T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J Clin Invest 2013; 123:1032-43. [PMID: 23454765 DOI: 10.1172/jci64742] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
T cell surveillance is often effective against virus-associated tumors because of their high immunogenicity. It is not clear why surveillance occasionally fails, particularly against hepatitis B virus- or hepatitis C virus-associated hepatocellular carcinoma (HCC). We established a transgenic murine model of virus-induced HCC by hepatocyte-specific adenovirus-induced activation of the oncogenic SV40 large T antigen (TAg). Adenovirus infection induced cytotoxic T lymphocytes (CTLs) targeted against the virus and TAg, leading to clearance of the infected cells. Despite the presence of functional, antigen-specific T cells, a few virus-infected cells escaped immune clearance and progressed to HCC. These cells expressed TAg at levels similar to HCC isolated from neonatal TAg-tolerant mice, suggesting that CTL clearance does not select for cells with low immunogenicity. Virus-infected mice revealed significantly greater T cell infiltration in early-stage HCC compared with that in late-stage HCC, demonstrating progressive local immune suppression through inefficient T cell infiltration. Programmed cell death protein-1 (PD-1) and its ligand PD-L1 were expressed in all TAg-specific CD8+ T cells and HCC, respectively, which contributed to local tumor-antigen-specific tolerance. Thus, we have developed a model of virus-induced HCC that may allow for a better understanding of human HCC.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
1214
|
Seigel B, Bengsch B, Lohmann V, Bartenschlager R, Blum HE, Thimme R. Factors that determine the antiviral efficacy of HCV-specific CD8(+) T cells ex vivo. Gastroenterology 2013; 144:426-436. [PMID: 23142136 DOI: 10.1053/j.gastro.2012.10.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Dysfunctional CD8(+) T cells are believed to contribute to the ability of hepatitis C virus (HCV) to evade the immune response. Most studies have focused on the effector functions of HCV-specific CD8(+) T cells or their surface expression of inhibitory receptors. There is currently no information available about the ex vivo ability of HCV-specific CD8(+) T cells to inhibit viral replication (antiviral efficacy). METHODS To analyze the antiviral efficacy of virus-specific CD8(+) T cells ex vivo, we used an immunologic model based on a cell line that expresses HLA-A*02 and contains a stably replicating HCV reporter replicon. We isolated HCV-specific CD8(+) T cells from 18 HLA-A*02-positive patients with chronic HCV infection and 15 subjects with resolved HCV infection (7 spontaneous, 8 after therapy). Replicon cells were labeled with virus-specific peptides; inhibition of HCV replication was determined by measuring luciferase activity after 72 hours of coculture with virus-specific CD8(+) T cells. RESULTS HCV-specific CD8(+) T cells from patients with chronic HCV infection had a significantly lower antiviral efficacy than influenza-, Epstein-Barr virus-, and cytomegalovirus-specific CD8(+) T cells. Antiviral efficacy was associated with the ability of virus-specific CD8(+) T cells to secrete interferon gamma. The antiviral efficacy of HCV-specific CD8(+) T cells was linked to surface expression of CD127 and PD-1. The cytokines interleukin-2, interleukin-7, and interleukin-15 increased the antiviral efficacy of CD127-positive but not of CD127-negative, HCV-specific CD8(+) T cells. Spontaneous, but not antiviral therapy-induced, viral clearance was associated with increased antiviral efficacy. CONCLUSIONS The ability of CD8(+) T cells to inhibit HCV replication ex vivo is associated with their ability to secrete interferon gamma and their surface expression of CD127 and PD-1.
Collapse
Affiliation(s)
- Bianca Seigel
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Hubert E Blum
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital of Freiburg, Freiburg, Germany.
| |
Collapse
|
1215
|
Fernández-Rodríguez A, Rallón N, Berenguer J, Jiménez-Sousa MA, Cosín J, Guzmán-Fulgencio M, Restrepo C, Lopez JC, García-Álvarez M, Miralles P, Soriano V, Benito JM, Resino S. Analysis of IL28B alleles with virologic response patterns and plasma cytokine levels in HIV/HCV-coinfected patients. AIDS 2013; 27:163-73. [PMID: 23135173 DOI: 10.1097/qad.0b013e32835c11e8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To estimate the impact of interleukin 28B (IL28B) polymorphisms (rs12980275, rs8099917, rs7248668, and rs11881222) and their haplotypes on hepatitis C virus (HCV) treatment (peg-interferon-α and ribavirin) success in 324 HIV/HCV-coinfected patients. We also explore the behavior of plasma cytokine levels. DESIGN Retrospective follow-up study. METHODS Virologic response to HCV treatment was measured by plasma HCV viral load at different endpoints: rapid virologic response (RVR), early virologic response (EVR), end-of-treatment virologic response (ETVR) and sustained virologic response (SVR). IL28B polymorphisms were genotyped using GoldenGate assay. Finally, 13 cytokines were measured at baseline in 57 plasma samples using a multiplex immunoassay kit. RESULTS IL28B polymorphisms were strongly associated to virologic responses (RVR, EVR, ETVR, and SVR), although only for HCV genotypes 1 and 4 (P < 0.05). Strong linkage disequilibrium was detected for rs12980275/rs11881222 (r = 0.94) and rs8099917/rs7248668 (r = 0.99). IL28B haplotypes showed association but no improvement on treatment outcome prediction. Thus, the genotyping of only one single-nucleotide polymorphism was enough for predicting treatment response in GT1/4 patients with favorable rs12980275 (AA) genotype, while for subjects harboring unfavorable genotypes, the inclusion of rs8099917 was useful (SVR increased from 31 to 45%). Moreover, patients with rs12980275 (AA) that achieved SVR showed reduced plasma levels of Th1 (IFN-γ), Th2 (IL-6 and IL-9), and proinflammatory (TNF-α) cytokines. CONCLUSION The presence of IL28B polymorphisms was significantly associated with HCV clearance during and after HCV therapy. The evaluated cytokine profile was much more favorable in patients with rs12980275 (AA) who achieved SVR.
Collapse
Affiliation(s)
- Amanda Fernández-Rodríguez
- Unidad de coinfección HIV/hepatitis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1216
|
Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, Hergott D, Porter-Gill P, Mumy A, Kohaar I, Chen S, Brand N, Tarway M, Liu L, Sheikh F, Astemborski J, Bonkovsky HL, Edlin BR, Howell CD, Morgan TR, Thomas DL, Rehermann B, Donnelly RP, O'Brien TR. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013; 45:164-71. [PMID: 23291588 DOI: 10.1038/ng.2521] [Citation(s) in RCA: 757] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/07/2012] [Indexed: 02/06/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.
Collapse
Affiliation(s)
- Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1217
|
Rau SJ, Hildt E, Himmelsbach K, Thimme R, Wakita T, Blum HE, Fischer R. CD40 inhibits replication of hepatitis C virus in primary human hepatocytes by c-Jun N terminal kinase activation independent from the interferon pathway. Hepatology 2013; 57:23-36. [PMID: 22814930 DOI: 10.1002/hep.25966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 07/01/2012] [Indexed: 12/27/2022]
Abstract
UNLABELLED CD40, a member of the tumor necrosis factor receptor family, and its ligand, CD40L (CD154), are important regulators of the antiviral immune response. CD40L is up-regulated on lymphocytes and CD40 on hepatocytes during infection with hepatitis C virus (HCV); we investigated the role of CD40 signaling during HCV replication in hepatocytes. Viral replication was studied in primary human hepatocytes (PHH) and Huh7.5 cells using the infectious HCV Japanese fulminate hepatitis 1 isolate (JFH1) culture system, and in coculture with HCV antigen-specific CD8+ T cells. CD40L rapidly and transiently inhibits expression of the HCV nonstructural proteins NS3 and NS5A as well as HCV structural proteins core and E2 in Huh7.5 cells. Similarly, CD40L prevented replication of HCV in PHH, in synergy with interferon (IFN)-alpha. In Huh7.5 cells with replicating HCV, CD40L prevented production of infectious viral particles. When HCV antigen-specific CD8+ T cells were cocultured with HLA-A2-expressing Huh7 cells that had replicating virus, the T cells became activated, up-regulated CD40L, and inhibited HCV replication. Inhibition of CD40L partially prevented the antiviral activity of the CD8+ T cells. The antiviral effect of CD40L required activation of c-Jun N terminal kinases (JNK)1/2, but not induction of apoptosis or the JAK/STAT pathway that is necessary for the antiviral effects of IFNs. CONCLUSION CD40 inhibits HCV replication by a novel, innate immune mechanism. This pathway might mediate viral clearance, and disruptions might be involved in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Sibylle J Rau
- Department of Medicine II, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
1218
|
Neumann-Haefelin C, Thimme R. Adaptive immune responses in hepatitis C virus infection. Curr Top Microbiol Immunol 2013; 369:243-62. [PMID: 23463204 DOI: 10.1007/978-3-642-27340-7_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune response plays a central role in the outcome of hepatitis C virus (HCV) infection. Indeed, spontaneous viral clearance is associated with an early neutralizing antibody response as well as vigorous and sustained HCV-specific CD4+ and CD8+ T cell responses. In persistent HCV infection, however, all three components of the antiviral adaptive immune response fail due to different viral evasion strategies. In this chapter, we will describe the components of a successful immune response against HCV and summarize the mechanisms of immune failure. We will also highlight characteristics of protective CD8+ T cell responses which is the key factor to the design of an efficacious vaccine.
Collapse
|
1219
|
Metz P, Dazert E, Ruggieri A, Mazur J, Kaderali L, Kaul A, Zeuge U, Windisch MP, Trippler M, Lohmann V, Binder M, Frese M, Bartenschlager R. Identification of type I and type II interferon-induced effectors controlling hepatitis C virus replication. Hepatology 2012; 56:2082-93. [PMID: 22711689 DOI: 10.1002/hep.25908] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Persistent infection with hepatitis C virus (HCV) can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. All current therapies of hepatitis C include interferon-alpha (IFN-α). Moreover, IFN-gamma (IFN-γ), the only type II IFN, strongly inhibits HCV replication in vitro and is the primary mediator of HCV-specific antiviral T-cell responses. However, for both cytokines the precise set of effector protein(s) responsible for replication inhibition is not known. The aim of this study was the identification of IFN-α and IFN-γ stimulated genes (ISGs) responsible for controlling HCV replication. We devised an RNA interference (RNAi)-based "gain of function" screen and identified, in addition to known ISGs earlier reported to suppress HCV replication, several new ones with proven antiviral activity. These include IFIT3 (IFN-induced protein with tetratricopeptide repeats 3), TRIM14 (tripartite motif containing 14), PLSCR1 (phospholipid scramblase 1), and NOS2 (nitric oxide synthase 2, inducible). All ISGs identified in this study were up-regulated both by IFN-α and IFN-γ, demonstrating a substantial overlap of HCV-specific effectors induced by either cytokine. Nevertheless, some ISGs were more specific for IFN-α or IFN-γ, which was most pronounced in case of PLSCR1 and NOS2 that were identified as main effectors of IFN-γ-mediated anti-HCV activity. Combinatorial knockdowns of ISGs suggest additive or synergistic effects demonstrating that with either IFN, inhibition of HCV replication is caused by the combined action of multiple ISGs. CONCLUSION Our study identifies a number of novel ISGs contributing to the suppression of HCV replication by type I and type II IFN. We demonstrate a substantial overlap of antiviral programs triggered by either cytokine and show that suppression of HCV replication is mediated by the concerted action of multiple effectors.
Collapse
Affiliation(s)
- Philippe Metz
- Department of Molecular Virology, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1220
|
Park H, Serti E, Eke O, Muchmore B, Prokunina-Olsson L, Capone S, Folgori A, Rehermann B. IL-29 is the dominant type III interferon produced by hepatocytes during acute hepatitis C virus infection. Hepatology 2012; 56:2060-70. [PMID: 22706965 PMCID: PMC3581145 DOI: 10.1002/hep.25897] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/30/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Early, vigorous intrahepatic induction of interferon (IFN)-stimulated gene (ISG) induction is a feature of hepatitis C virus (HCV) infection, even though HCV inhibits the induction of type I IFNs in vitro. To identify the cytokines and cells that drive ISG induction and mediate antiviral activity during acute HCV infection, type I and III IFN responses were studied in (1) serial liver biopsies and plasma samples obtained from 6 chimpanzees throughout acute HCV infection and (2) primary human hepatocyte (PHH) cultures upon HCV infection. Type I IFNs were minimally induced at the messenger RNA (mRNA) level in the liver and were undetectable at the protein level in plasma during acute HCV infection of chimpanzees. In contrast, type III IFNs, in particular, interleukin (IL)-29 mRNA and protein, were strongly induced and these levels correlated with ISG expression and viremia. However, there was no association between intrahepatic or peripheral type III IFN levels and the outcome of acute HCV infection. Infection of PHH with HCV recapitulated strong type III and weak type I IFN responses. Supernatants from HCV-infected PHH cultures mediated antiviral activity upon transfer to HCV-replicon-containing cells. This effect was significantly reduced by neutralization of type III IFNs and less by neutralization of type I IFNs. Furthermore, IL-29 production by HCV-infected PHH occurred independently from type I IFN signaling and was not enhanced by the presence of plasmacytoid dendritic cells. CONCLUSION Hepatocyte-derived type III IFNs contribute to ISG induction and antiviral activity, but are not the principal determinant of the outcome of HCV infection.
Collapse
Affiliation(s)
- Heiyoung Park
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD
| | - Elisavet Serti
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD
| | - Onyinyechi Eke
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD
| | - Brian Muchmore
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD
| | | | | | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD
| |
Collapse
|
1221
|
Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog 2012; 8:e1003042. [PMID: 23209413 PMCID: PMC3510254 DOI: 10.1371/journal.ppat.1003042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Collapse
|
1222
|
Takagi A, Kobayashi N, Taneichi M, Uchida T, Akatsuka T. Coupling to the surface of liposomes alters the immunogenicity of hepatitis C virus-derived peptides and confers sterile immunity. Biochem Biophys Res Commun 2012; 430:183-9. [PMID: 23159619 PMCID: PMC7124229 DOI: 10.1016/j.bbrc.2012.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
We have previously demonstrated that antigens chemically coupled to the surface of liposomes consisting of unsaturated fatty acids were cross-presented by antigen presenting cells to cytotoxic T lymphocytes (CTLs). Liposomal form of immunodominant CTL epitope peptides derived from lymphocytic choriomeningitis virus exhibited highly efficient antiviral CTL responses in immunized mice. In this study, we coupled 15 highly conserved immunodominant CTL epitope peptides derived from hepatitis C virus (HCV) to the surface of liposomes. We also emulsified the peptides in incomplete Freund’s adjuvant, and compared the immune responses of the two methods of presenting the peptides by cytotoxicity induction and interferon-gamma (IFN-γ) production by CD8+ T cells of the immunized mice. We noticed significant variations of the immunogenicity of each peptide between the two antigen delivery systems. In addition, the immunogenicity profiles of the peptides were also different from those observed in the mice infected with recombinant adenoviruses expressing HCV proteins as previously reported. Induction of anti-viral immunity by liposomal peptides was tested by the challenge experiments using recombinant vaccinia viruses expressing corresponding HCV epitopes. One Db-restricted and three HLA-A*0201-restricted HCV CTL epitope peptides on the surface of liposomes were found to confer complete protection to immunized mice with establishment of long-term memory. Interestingly, their protective efficacy seemed to correlate with the induction of IFN-γ producing cells rather than the cytotoxicity induction suggesting that the immunized mice were protected through non-cytolytic mechanisms. Thus, these liposomal peptides might be useful as HCV vaccines not only for prevention but also for therapeutic use.
Collapse
Affiliation(s)
- Akira Takagi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | | | |
Collapse
|
1223
|
Krämer B, Körner C, Kebschull M, Glässner A, Eisenhardt M, Nischalke HD, Alexander M, Sauerbruch T, Spengler U, Nattermann J. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 2012; 56:1201-13. [PMID: 22532190 DOI: 10.1002/hep.25804] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/16/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Natural killer (NK) cells play a role in the early control and natural course of hepatitis C virus (HCV) infection. NK cell function is regulated by a multitude of receptors, including activating NKp46 receptor. However, reports on NKp46 in hepatitis C are controversial. Therefore, we investigated the hepatic recruitment and function of NKp46(+) NK cells, considering differential surface expression of NKp46 resulting in NKp46(High) and NKp46(Dim) subsets. Intra- and extrahepatic NK-cell subsets from HCV-infected patients were characterized by flow cytometry. Cytotoxic activity and interferon-gamma (IFN-γ) secretion were studied using K-562, P815, and primary hepatic stellate cells as targets. Anti-HCV activity of NK-cell subsets was studied using the replicon system. Density of NKp46 surface expression clearly segregated NKp46(Dim) and NKp46(High) subsets, which differed significantly with respect to the coexpression of maturation markers and NK-cell receptors. More important, NKp46(High) NK cells showed a higher cytolytic activity and stronger IFN-γ secretion than NKp46(Dim) NK cells. Accordingly, NKp46(High) NK cells efficiently blocked HCV replication in vitro. Blocking experiments confirmed an important role for the NKp46 receptor. Furthermore, we found an intrahepatic accumulation of NKp46(High) NK cells. Of note, high cytolytic activity of NKp46(High) NK cells was also confirmed in the intrahepatic NK-cell population, and the frequency of intrahepatic NKp46(High) NK cells was inversely correlated with HCV-RNA levels and fibrosis stage. CONCLUSIONS NKp46(High) expression defines a specific NK-cell subset that may be involved in both the suppression of HCV replication and HCV-associated liver damage underpinning the role of NK cells in the immunopathogenesis of HCV.
Collapse
Affiliation(s)
- Benjamin Krämer
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1224
|
Pasetto A, Frelin L, Aleman S, Holmström F, Brass A, Ahlén G, Brenndörfer ED, Lohmann V, Bartenschlager R, Sällberg M, Bertoletti A, Chen M. TCR-redirected human T cells inhibit hepatitis C virus replication: hepatotoxic potential is linked to antigen specificity and functional avidity. THE JOURNAL OF IMMUNOLOGY 2012; 189:4510-9. [PMID: 23024278 DOI: 10.4049/jimmunol.1201613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Virus-specific CTL with high levels of functional avidity have been associated with viral clearance in hepatitis C virus (HCV) infection and with enhanced protective immunity. In chronic HCV infection, lack of antiviral CTL is frequently observed. In this study, we aim to investigate novel HCV TCRs that differ in Ag specificity. This involved isolating new HCV-specific murine TCRs that recognize a conserved HLA-A2-restricted CTL epitope within the nonstructural protein (NS) 5A viral protein and comparing them with TCRs recognizing another conserved CTL target in the NS3 viral protein. This was done by expressing the TCRs in human T cells and analyzing the function of the resulting TCR-transduced T cells. Our result indicates that these TCRs are efficiently assembled in transduced human T cells. They recognize peptide-loaded targets and demonstrate polyfunctional features such as IL-2, IFN-γ, and TNF-α secretion. However, in contrast to NS3-specific TCRs, the NS5A TCR-transduced T cells consist of a smaller proportion of polyfunctional T cells and require more peptide ligands to trigger the effector functions, including degranulation. Despite the differences, NS5A TCRs show effective inhibition of HCV replication in human hepatoma cells with persistent HCV RNA replication. Moreover, cellular injury demonstrated by aspartate aminotransferase release and cell death is less significant in the hepatoma cells following coincubation with NS5A TCR-transduced T cells, which is a property consistent with noncytotoxic antiviral CTLs. Our results suggest that HCV TCR-transduced T cells may be promising for the treatment of patients with chronic HCV infections.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Dental Medicine, Karolinska Institutet, Huddinge 141 04, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1225
|
Wohlleber D, Kashkar H, Gärtner K, Frings M, Odenthal M, Hegenbarth S, Börner C, Arnold B, Hämmerling G, Nieswandt B, van Rooijen N, Limmer A, Cederbrant K, Heikenwalder M, Pasparakis M, Protzer U, Dienes HP, Kurts C, Krönke M, Knolle P. TNF-Induced Target Cell Killing by CTL Activated through Cross-Presentation. Cell Rep 2012; 2:478-87. [DOI: 10.1016/j.celrep.2012.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/04/2012] [Accepted: 08/01/2012] [Indexed: 01/12/2023] Open
|
1226
|
Affiliation(s)
- Victoria M Velazquez
- Emory Vaccine Center, Division of Microbiology and Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
1227
|
Jo J, Bengsch B, Seigel B, Rau SJ, Schmidt J, Bisse E, Aichele P, Aichele U, Joeckel L, Royer C, Sá Ferreira K, Borner C, Baumert TF, Blum HE, Lohmann V, Fischer R, Thimme R. Low perforin expression of early differentiated HCV-specific CD8+ T cells limits their hepatotoxic potential. J Hepatol 2012; 57:9-16. [PMID: 22425625 DOI: 10.1016/j.jhep.2012.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/24/2012] [Accepted: 02/13/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Perforin plays a central role in the immunopathogenesis of different viral infections. However, its role in hepatitis C virus (HCV) infection has not been fully understood. Here, we analyzed two closely related questions: first, is CD8+ T cell-mediated killing of HCV-replicating human hepatoma cells mediated by perforin? Second, if so, do HCV-specific CD8+ T cells obtained from chronically HCV infected patients express and upregulate perforin? METHODS Susceptibility of HCV-replicating human hepatoma cells to the cytotoxic pathway was tested in vitro by addition of perforin substitute streptolysin O and granzyme B and by co-culture experiments with a perforin-expressing HCV-specific CD8+ T cell clone in the presence of perforin or caspase inhibitors. HCV-specific CD8+ T cells were obtained and analyzed for perforin expression and differentiation markers ex vivo from 12 chronically infected patients and 12 patients with resolved HCV infection. RESULTS HCV-replicating human hepatoma cells were susceptible to cytotoxic killing in vitro and a dominant role of perforin in HCV-specific CD8+ T cell-mediated cytolysis was observed. However, HCV-specific CD8+ T cells obtained ex vivo from chronically HCV infected patients expressed only low levels of perforin and showed an impaired ability to upregulate perforin. This was tightly linked to the distinct differentiation stage of HCV-specific CD8+ T cell differentiation ex vivo since early and intermediate differentiated HCV-specific CD8+ T cells only showed weak perforin expression in contrast to late differentiated CD8+ T cells that displayed strong perforin expression. CONCLUSIONS Our results suggest that perforin plays a dominant role in CD8+ T cell-mediated lysis of HCV-replicating human hepatoma cells but that lysis may be limited in human chronic viral infection by the low perforin expression of early/intermediate differentiated HCV-specific CD8+ T cells.
Collapse
Affiliation(s)
- Juandy Jo
- Department of Medicine II, University Medical Center Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1228
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
1229
|
Stegmann KA, Björkström NK, Ciesek S, Lunemann S, Jaroszewicz J, Wiegand J, Malinski P, Dustin LB, Rice CM, Manns MP, Pietschmann T, Cornberg M, Ljunggren HG, Wedemeyer H. Interferon α-stimulated natural killer cells from patients with acute hepatitis C virus (HCV) infection recognize HCV-infected and uninfected hepatoma cells via DNAX accessory molecule-1. J Infect Dis 2012; 205:1351-62. [PMID: 22457290 DOI: 10.1093/infdis/jis210] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells are an important component of the innate immune defense against viruses, including hepatitis C virus (HCV). The cell culture system using HCV-permissive Huh-7.5 cells make studies on interaction of NK cells and HCV-infected target cells possible. We used this system to characterize interactions of HCV-infected Huh-7.5 cells and NK cells from healthy controls and patients with acute HCV infection. METHODS IFNα- and IL-2 stimulated NK cells were cultured with HCV-infected hepatoma cells and subsequently analyzed (for degranulation and cytokine production) via multicolour flow cytometry. Luciferase assyas have been used to study inhibition of HCV replication. Further, PBMC from patients with acute hepatitis C as well as HCV-infected Huh7.5 cells have been analyzed via flow cytometry for expression of NK cell receptors and ligands, respectively. RESULTS After interferon (IFN) α stimulation, NK cells from healthy controls and patients with acute hepatitis C efficiently recognized both HCV-infected and uninfected hepatoma cells. Subsequent dissection of receptor-ligand interaction revealed a dominant role for DNAM-1 and a complementary contribution of NKG2D for NK cell activation in this setting. Furthermore, IFN-α-stimulated NK cells effectively inhibited HCV replication in a DNAM-1-dependent manner. CONCLUSIONS Human NK cells recognize HCV-infected hepatoma cells after IFN-α stimulation in a DNAM-1-dependent manner. Furthermore, interaction of IFN-α-stimulated NK cells with HCV-infected hepatoma cells efficiently reduced HCV replication. This study opens up future studies of NK cell interaction with HCV-infected hepatocytes to gain further insight into the pathogenesis of human HCV infection and the therapeutic effects of IFN-α.
Collapse
Affiliation(s)
- Kerstin A Stegmann
- Department for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1230
|
Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM, Stamataki Z, Meredith LW, Rowe IA, Luo G, Lopez–ramirez MIGUELA, Baumert TF, Weksler B, Couraud PO, Kim KS, Romero IA, Jopling C, Morgello S, Balfe P, Mckeating JA. Hepatitis C virus infects the endothelial cells of the blood-brain barrier. Gastroenterology 2012; 142:634-643.e6. [PMID: 22138189 PMCID: PMC3801216 DOI: 10.1053/j.gastro.2011.11.028] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 10/18/2011] [Accepted: 11/15/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection leads to progressive liver disease and is associated with a variety of extrahepatic syndromes, including central nervous system (CNS) abnormalities. However, it is unclear whether such cognitive abnormalities are a function of systemic disease, impaired hepatic function, or virus infection of the CNS. METHODS We measured levels of HCV RNA and expression of the viral entry receptor in brain tissue samples from 10 infected individuals (and 3 uninfected individuals, as controls) and human brain microvascular endothelial cells by using quantitative polymerase chain reaction and immunochemical and confocal imaging analyses. HCV pseudoparticles and cell culture-derived HCV were used to study the ability of endothelial cells to support viral entry and replication. RESULTS Using quantitative polymerase chain reaction, we detected HCV RNA in brain tissue of infected individuals at significantly lower levels than in liver samples. Brain microvascular endothelia and brain endothelial cells expressed all of the recognized HCV entry receptors. Two independently derived brain endothelial cell lines, hCMEC/D3 and HBMEC, supported HCV entry and replication. These processes were inhibited by antibodies against the entry factors CD81, scavenger receptor BI, and claudin-1; by interferon; and by reagents that inhibit NS3 protease and NS5B polymerase. HCV infection promotes endothelial permeability and cellular apoptosis. CONCLUSIONS Human brain endothelial cells express functional receptors that support HCV entry and replication. Virus infection of the CNS might lead to HCV-associated neuropathologies.
Collapse
Affiliation(s)
- Nicola F. Fletcher
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Garrick K. Wilson
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Jacinta Murray
- School of Pharmacy, University of Nottingham, Nottingham, England
| | - Ke Hu
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Andrew Lewis
- School of Pharmacy, University of Nottingham, Nottingham, England
| | - Gary M. Reynolds
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Zania Stamataki
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Luke W. Meredith
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Ian A. Rowe
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Guangxiang Luo
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky
| | | | - Thomas F. Baumert
- Université de Strasbourg and Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Pierre-Olivier Couraud
- Institut Cochin, CNRS UMR 8104, INSERM Unité 567, Université Paris Descartes, Paris, France
| | - Kwang Sik Kim
- Division of Infectious Diseases, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ignacio A. Romero
- Department of Life Sciences, The Open University, Milton Keynes, England
| | | | - Susan Morgello
- Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Peter Balfe
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| | - Jane A. Mckeating
- Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, England
| |
Collapse
|
1231
|
Recruitment and interaction of human dendritic and T cells in autologous liver slices experimentally infected with HCV produced in cell culture. J Immunol Methods 2012; 378:51-5. [PMID: 22349126 DOI: 10.1016/j.jim.2012.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/24/2022]
Abstract
Studying the immunological processes taking place during the initial steps of acute hepatitis C virus (HCV) infection has been a challenge in patients. Shin et al. have recently reported that delayed induction, not impaired recruitment of specific CD8(+) T cells, causes the late onset of acute hepatitis C in chimpanzees (Gastroenterology, 2011). However, further elucidation of the underlying mechanisms is difficult in vivo. We made observations consistent with their conclusions in human liver slices inoculated ex vivo with HCV produced in cell culture (HCVcc). Autologous immune cells were purified from blood and differentially stained prior to their incubation with the slices for 2 hours. A two-photon confocal microscopic analysis revealed that many more stained dendritic and T cells contracted interactions within two-day infected slices than non-inoculated ones (p<0.001). While in the first instance some dendritic and T cells entered into closer interactions, they never did in the latter case. These results suggest that ex vivo infection of human liver slices with HCVcc may be useful for gaining experimental insight regarding the immunological processes taking place at early steps of HCV infections.
Collapse
|
1232
|
Wölk B, Trautwein C, Büchele B, Kersting N, Blum HE, Rammensee HG, Cerny A, Stevanovic S, Moradpour D, Brass V. Identification of naturally processed hepatitis C virus-derived major histocompatibility complex class I ligands. PLoS One 2012; 7:e29286. [PMID: 22235280 PMCID: PMC3250420 DOI: 10.1371/journal.pone.0029286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/24/2011] [Indexed: 11/18/2022] Open
Abstract
Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS3₁₄₀₆₋₁₄₁₅ and NS5B₂₅₉₄₋₂₆₀₂). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.
Collapse
Affiliation(s)
- Benno Wölk
- Department of Medicine II, University of Freiburg, Freiburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Benjamin Büchele
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Nadine Kersting
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | - Hubert E. Blum
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | | - Andreas Cerny
- Clinical Pharmacology and Clinical Immunology/Allergology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Darius Moradpour
- Department of Medicine II, University of Freiburg, Freiburg, Germany
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Volker Brass
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
1233
|
Bamboat ZM, Pillarisetty VG, DeMatteo RP. Liver immunology. BLUMGART'S SURGERY OF THE LIVER, PANCREAS AND BILIARY TRACT 2012:153-165.e2. [DOI: 10.1016/b978-1-4377-1454-8.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
1234
|
Darling JM, Lemon SM, Fried MW. Hepatitis C. SCHIFF'S DISEASES OF THE LIVER 2011:582-652. [DOI: 10.1002/9781119950509.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
1235
|
Petrovic D, Dempsey E, Doherty DG, Kelleher D, Long A. Hepatitis C virus--T-cell responses and viral escape mutations. Eur J Immunol 2011; 42:17-26. [PMID: 22125159 DOI: 10.1002/eji.201141593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 10/05/2011] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
1236
|
Edwards VC, Tarr AW, Urbanowicz RA, Ball JK. The role of neutralizing antibodies in hepatitis C virus infection. J Gen Virol 2011; 93:1-19. [PMID: 22049091 DOI: 10.1099/vir.0.035956-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatitis C virus (HCV) is a blood-borne virus estimated to infect around 170 million people worldwide and is, therefore, a major disease burden. In some individuals the virus is spontaneously cleared during the acute phase of infection, whilst in others a persistent infection ensues. Of those persistently infected, severe liver diseases such as cirrhosis and primary liver cancer may develop, although many individuals remain asymptomatic. A range of factors shape the course of HCV infection, not least host genetic polymorphisms and host immunity. A number of studies have shown that neutralizing antibodies (nAb) arise during HCV infection, but that these antibodies differ in their breadth and mechanism of neutralization. Recent studies, using both mAbs and polyclonal sera, have provided an insight into neutralizing determinants and the likely protective role of antibodies during infection. This understanding has helped to shape our knowledge of the overall structure of the HCV envelope glycoproteins--the natural target for nAb. Most nAb identified to date target receptor-binding sites within the envelope glycoprotein E2. However, there is some evidence that other viral epitopes may be targets for antibody neutralization, suggesting the need to broaden the search for neutralization epitopes beyond E2. This review provides a comprehensive overview of our current understanding of the role played by nAb in HCV infection and disease outcome and explores the limitations in the study systems currently used. In addition, we briefly discuss the potential therapeutic benefits of nAb and efforts to develop nAb-based therapies.
Collapse
Affiliation(s)
- Victoria C Edwards
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander W Tarr
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Richard A Urbanowicz
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jonathan K Ball
- School of Molecular Medical Sciences and The Nottingham Digestive Diseases Centre Biomedical Research Unit, The University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
1237
|
|
1238
|
Cell-to-cell contact with hepatitis C virus-infected cells reduces functional capacity of natural killer cells. J Virol 2011; 85:12557-69. [PMID: 21937646 DOI: 10.1128/jvi.00838-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The distinct feature of hepatitis C virus (HCV) infection is a high incidence of chronicity. The reason for chronic HCV infection has been actively investigated, and impairment of innate and adaptive immune responses against HCV is proposed as a plausible cause. Whereas functional impairment of HCV-specific T cells is well characterized, the role and functional status of natural killer (NK) cells in each phase of HCV infection are still elusive. We therefore investigated whether direct interaction between NK cells and HCV-infected cells modulates NK cell function. HCV-permissive human hepatoma cell lines were infected with cell culture-generated HCV virions and cocultured with primary human NK cells. Cell-to-cell contact between NK cells and HCV-infected cells reduced NK cells' capacity to degranulate and lyse target cells, especially in the CD56(dim) NK cell subset, which is characterized by low-density surface expression of CD56. The decrease in degranulation capacity was correlated with downregulated expression of NK cell-activating receptors, such as NKG2D and NKp30, on NK cells. The ability of NK cells to produce and secrete gamma interferon (IFN-γ) also diminished after exposure to HCV-infected cells. The decline of IFN-γ production was consistent with the reduction of NK cell degranulation. In conclusion, cell-to-cell contact with HCV-infected cells negatively modulated functional capacity of NK cells, and the inhibition of NK cell function was associated with downregulation of NK-activating receptors on NK cell surfaces. These observations suggest that direct cell-to-cell interaction between NK cells and HCV-infected hepatocytes may impair NK cell function in vivo and thereby contribute to the establishment of chronic infection.
Collapse
|
1239
|
Thomson EC, Smith JA, Klenerman P. The natural history of early hepatitis C virus evolution; lessons from a global outbreak in human immunodeficiency virus-1-infected individuals. J Gen Virol 2011; 92:2227-2236. [PMID: 21775583 PMCID: PMC3347798 DOI: 10.1099/vir.0.033910-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
New insights into the early viral evolution and cellular immune response during acute hepatitis C virus (HCV) infection are being gained following a global outbreak in human immunodeficiency virus-1 (HIV)-positive men who have sex with men. Cross-sectional and longitudinal sequence analysis at both the population and individual level have facilitated tracking of the HCV epidemic across the world and enabled the development of tests of viral diversity in individual patients in order to predict spontaneous clearance of HCV and response to treatment. Immunological studies in HIV-positive cohorts have highlighted the role of the CD4+ T-cell response in the control of early HCV infection and will increase the opportunity for the identification of protective epitopes that could be used in future vaccine development.
Collapse
Affiliation(s)
- Emma C Thomson
- Department of Hepatology, Imperial College London, Norfolk Place, London W2 1PG, UK.,Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Jennifer A Smith
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| |
Collapse
|
1240
|
Abstract
The hepatitis C virus (HCV) is a global public health problem affecting approximately 2% of the human population. The majority of HCV infections (more than 70%) result in life-long persistence of the virus that substantially increases the risk of serious liver diseases, including cirrhosis and hepatocellular carcinoma. The remainder (less than 30%) resolves spontaneously, often resulting in long-lived protection from persistence upon reexposure to the virus. To persist, the virus must replicate and this requires effective evasion of adaptive immune responses. In this review, the role of humoral and cellular immunity in preventing HCV persistence, and the mechanisms used by the virus to subvert protective host responses, are considered.
Collapse
|
1241
|
Abstract
Antiviral adaptive immune defenses consist of humoral and cell-mediated responses, which together eliminate extracellular and intracellular virus. As most retrovirus-infected individuals do not raise efficient protective antivirus immune responses, the relative importance of humoral and cell-mediated responses in restraining retroviral infection is not well understood. We utilized retrovirus-resistant I/LnJ mice, which control infection with mouse mammary tumor virus (MMTV) and murine leukemia virus (MuLV) via an adaptive immune mechanism, to assess the contribution of cellular responses and virus-neutralizing antibodies (Abs) to the control of retroviral infection. We found that in retrovirus-infected CD8-deficient I/LnJ mice, viral titers exceed the neutralizing capability of antiviral Abs, resulting in augmented virus spread and disease induction. Thus, even in the presence of robust neutralizing Ab responses, CD8-mediated responses are essential for full protection against retroviral infection.
Collapse
|
1242
|
Jo J, Lohmann V, Bartenschlager R, Thimme R. Experimental models to study the immunobiology of hepatitis C virus. J Gen Virol 2010; 92:477-93. [PMID: 21148278 DOI: 10.1099/vir.0.027987-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Effective host immune responses are essential for the control of hepatitis C virus (HCV) infection and persistence of HCV has indeed been attributed to their failure. In recent years, several in vitro and in vivo experimental models have allowed studies of host immune responses against HCV. Numerous observations derived from these models have improved our understanding of the mechanisms responsible for the host's ability to clear the virus as well as of the mechanisms responsible for the host's failure to control HCV replication. Importantly, several findings obtained with these model systems have been confirmed in studies of acutely or chronically HCV-infected individuals. Collectively, several mechanisms are used by HCV to escape host immune responses, such as poor induction of the innate immune response and escaping/impairing adaptive immunity. In this review, we summarize current findings from experimental models available for studies of the immune response targeting HCV and discuss the relevance of these findings for the in vivo situation in HCV-infected humans.
Collapse
Affiliation(s)
- Juandy Jo
- Department of Medicine II, University Medical Center Freiburg, Germany
| | | | | | | |
Collapse
|
1243
|
Shen T, Zheng J, Xu C, Liu J, Zhang W, Lu F, Zhuang H. PD-1 expression on peripheral CD8+ TEM/TEMRA subsets closely correlated with HCV viral load in chronic hepatitis C patients. Virol J 2010; 7:310. [PMID: 21070674 PMCID: PMC2989324 DOI: 10.1186/1743-422x-7-310] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/12/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Tight correlation between host circulating CD8+ T cell-mediated immune response and control of viral replication is classical characteristic of long-term HCV infection. CD8+ T cell maturation/activation markers are expected to be associated with viral replication and disease progression in chronic HCV infection. The aim of the present study was to explore novel markers on CD8+ T cells with ability to evaluate HCV viral replication and disease progression. METHODS PBMCs were isolated from 37 chronic HCV-infected patients and 17 healthy controls. Distributed pattern of CD8+ T cells subsets and expression of PD-1, CD38, HLA-DR and CD127 were analyzed by flow cytometry. The correlation between expression of surface markers and HCV viral load or ALT was studied. RESULTS Declined naïve and increased TEMRA CD8+ T subsets were found in HCV-infected individuals compared with healthy controls. Percentage and MFI of PD-1, CD38 and HLA-DR on all CD8+ T cell subsets were higher in HCV-infected patients than healthy controls. In contrast, CD127 expression on CD8+ TCM showed an opposite trend as PD-1, CD38 and HLA-DR did. In chronic HCV infection, MFI of PD-1 on CD8+ TEM (p < 0.0001) and TEMRA (p = 0.0015) was positively correlated with HCV viral load while HLA-DR expression on non-naive CD8+ T cell subsets (p < 0.05) was negatively correlated with HCV viral load. CONCLUSION PD-1 level on peripheral CD8+ TEM/TEMRA was highly correlated with HCV viral load in chronic HCV-infected patients, which made PD-1 a novel indicator to evaluate HCV replication and disease progression in chronic hepatitis C patients.
Collapse
Affiliation(s)
- Tao Shen
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, PR China
| | | | | | | | | | | | | |
Collapse
|
1244
|
Billerbeck E, Kang YH, Walker L, Lockstone H, Grafmueller S, Fleming V, Flint J, Willberg CB, Bengsch B, Seigel B, Ramamurthy N, Zitzmann N, Barnes EJ, Thevanayagam J, Bhagwanani A, Leslie A, Oo YH, Kollnberger S, Bowness P, Drognitz O, Adams DH, Blum HE, Thimme R, Klenerman P. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci U S A 2010; 107:3006-11. [PMID: 20133607 PMCID: PMC2840308 DOI: 10.1073/pnas.0914839107] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CD8(+) T lymphocytes play a key role in host defense, in particular against important persistent viruses, although the critical functional properties of such cells in tissue are not fully defined. We have previously observed that CD8(+) T cells specific for tissue-localized viruses such as hepatitis C virus express high levels of the C-type lectin CD161. To explore the significance of this, we examined CD8(+)CD161(+) T cells in healthy donors and those with hepatitis C virus and defined a population of CD8(+) T cells with distinct homing and functional properties. These cells express high levels of CD161 and a pattern of molecules consistent with type 17 differentiation, including cytokines (e.g., IL-17, IL-22), transcription factors (e.g., retinoic acid-related orphan receptor gamma-t, P = 6 x 10(-9); RUNX2, P = 0.004), cytokine receptors (e.g., IL-23R, P = 2 x 10(-7); IL-18 receptor, P = 4 x 10(-6)), and chemokine receptors (e.g., CCR6, P = 3 x 10(-8); CXCR6, P = 3 x 10(-7); CCR2, P = 4 x 10(-7)). CD161(+)CD8(+) T cells were markedly enriched in tissue samples and coexpressed IL-17 with high levels of IFN-gamma and/or IL-22. The levels of polyfunctional cells in tissue was most marked in those with mild disease (P = 0.0006). These data define a T cell lineage that is present already in cord blood and represents as many as one in six circulating CD8(+) T cells in normal humans and a substantial fraction of tissue-infiltrating CD8(+) T cells in chronic inflammation. Such cells play a role in the pathogenesis of chronic hepatitis and arthritis and potentially in other infectious and inflammatory diseases of man.
Collapse
Affiliation(s)
- Eva Billerbeck
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Yu-Hoi Kang
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Lucy Walker
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Helen Lockstone
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Stefanie Grafmueller
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Vicki Fleming
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Chris B. Willberg
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Bertram Bengsch
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Bianca Seigel
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Narayan Ramamurthy
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Nicole Zitzmann
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Eleanor J. Barnes
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | | | - Anisha Bhagwanani
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
| | - Alasdair Leslie
- Weatherall Institute for Molecular Medicine, Oxford OX3 9TU, United Kingdom
| | - Ye H. Oo
- Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UnitedKingdom
| | - Simon Kollnberger
- Weatherall Institute for Molecular Medicine, Oxford OX3 9TU, United Kingdom
| | - Paul Bowness
- Weatherall Institute for Molecular Medicine, Oxford OX3 9TU, United Kingdom
| | - Oliver Drognitz
- Department of Surgery, University Hospital Freiburg, 79106 Freiburg, Germany; and
| | - David H. Adams
- Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, UnitedKingdom
| | - Hubert E. Blum
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II and Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Oxford OX1 3SY, United Kingdom
- Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9TU, United Kingdom
| |
Collapse
|
1245
|
Ohira M, Ishiyama K, Tanaka Y, Doskali M, Igarashi Y, Tashiro H, Hiraga N, Imamura M, Sakamoto N, Asahara T, Chayama K, Ohdan H. Adoptive immunotherapy with liver allograft-derived lymphocytes induces anti-HCV activity after liver transplantation in humans and humanized mice. J Clin Invest 2009; 119:3226-35. [PMID: 19805910 DOI: 10.1172/jci38374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/29/2009] [Indexed: 12/12/2022] Open
Abstract
After liver transplantation in HCV-infected patients, the virus load inevitably exceeds pre-transplantation levels. This phenomenon reflects suppression of the host-effector immune responses that control HCV replication by the immunosuppressive drugs used to prevent rejection of the transplanted liver. Here, we describe an adoptive immunotherapy approach, using lymphocytes extracted from liver allograft perfusate (termed herein liver allograft-derived lymphocytes), which includes an abundance of NK/NKT cells that mounted an anti-HCV response in HCV-infected liver transplantation recipients, despite the immunosuppressive environment. This therapy involved intravenously injecting patients 3 days after liver transplantation with liver allograft-derived lymphocytes treated with IL-2 and the CD3-specific mAb OKT3. During the first month after liver transplantation, the HCV RNA titers in the sera of recipients who received immunotherapy were markedly lower than those in the sera of recipients who did not receive immunotherapy. We further explored these observations in human hepatocyte-chimeric mice, in which mouse hepatocytes were replaced by human hepatocytes. These mice unfailingly developed HCV infections after inoculation with HCV-infected human serum. However, injection of human liver-derived lymphocytes treated with IL-2/OKT3 completely prevented HCV infection. Furthermore, an in vitro study using genomic HCV replicon-containing hepatic cells revealed that IFN-gamma-secreting cells played a pivotal role in such anti-HCV responses. Thus, our study presents what we believe to be a novel paradigm for the inhibition of HCV replication in HCV-infected liver transplantation recipients.
Collapse
Affiliation(s)
- Masahiro Ohira
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku,Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1246
|
|
1247
|
Stiffler JD, Nguyen M, Sohn JA, Liu C, Kaplan D, Seeger C. Focal distribution of hepatitis C virus RNA in infected livers. PLoS One 2009; 4:e6661. [PMID: 19688046 PMCID: PMC2722721 DOI: 10.1371/journal.pone.0006661] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background Hepatitis C virus (HCV) is a plus-strand RNA virus that replicates by amplification of genomic RNA from minus strands leading to accumulation of almost one thousand copies per cell under in vitro cell culture conditions. In contrast, HCV RNA copy numbers in livers of infected patients appear to be much lower, estimated at a few copies per cell. Methodology/Principal Findings To gain insights into mechanisms that control HCV replication in vivo, we analyzed HCV RNA levels as well as expression of interferon beta (IFNβ) and several interferon stimulated genes (ISGs) from whole liver sections and micro-dissected subpopulations of hepatocytes in biopsy samples from 21 HCV-infected patients. The results showed that intrahepatic HCV RNA levels range form less than one copy per hepatocyte to a maximum of about eight. A correlation existed between viral RNA levels and IFNβ expression, but not between viral RNA and ISG levels. Also, IFNβ expression did not correlate with ISGs levels. Replication of HCV RNA occurred in focal areas in the liver in the presence of a general induction of ISGs. Conclusion/Significance The low average levels of HCV RNA in biopsy samples can be explained by focal distribution of infected hepatocytes. HCV replication directly induces IFNβ, which then activates ISGs. The apparent lack of a correlation between levels of IFNβ and ISG expression indicates that control of the innate immune response during HCV infections depends on multiple factors.
Collapse
Affiliation(s)
- J. David Stiffler
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Minhhuyen Nguyen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Ji A. Sohn
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Chen Liu
- University of Florida, Gainesville, Florida, United States of America
| | - David Kaplan
- Research Section, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, United States of America
- Gastroenterology Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christoph Seeger
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
1248
|
Bellecave P, Gouttenoire J, Gajer M, Brass V, Koutsoudakis G, Blum HE, Bartenschlager R, Nassal M, Moradpour D. Hepatitis B and C virus coinfection: a novel model system reveals the absence of direct viral interference. Hepatology 2009; 50:46-55. [PMID: 19333911 DOI: 10.1002/hep.22951] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV) has been associated with severe liver disease and frequent progression to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests reciprocal replicative suppression of the two viruses, or viral interference. However, interactions between HBV and HCV have been difficult to study due to the lack of appropriate model systems. We have established a novel model system to investigate interactions between HBV and HCV. Stable Huh-7 cell lines inducibly replicating HBV were transfected with selectable HCV replicons or infected with cell culture-derived HCV. In this system, both viruses were found to replicate in the same cell without overt interference. Specific inhibition of one virus did not affect the replication and gene expression of the other. Furthermore, cells harboring replicating HBV could be infected with cell culture-derived HCV, arguing against superinfection exclusion. Finally, cells harboring replicating HBV supported efficient production of infectious HCV. CONCLUSION HBV and HCV can replicate in the same cell without evidence for direct interference in vitro. Therefore, the viral interference observed in coinfected patients is probably due to indirect mechanisms mediated by innate and/or adaptive host immune responses. These findings provide new insights into the pathogenesis of HBV-HCV coinfection and may contribute to its clinical management in the future.
Collapse
Affiliation(s)
- Pantxika Bellecave
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
1249
|
Rehermann B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J Clin Invest 2009; 119:1745-54. [PMID: 19587449 DOI: 10.1172/jci39133] [Citation(s) in RCA: 418] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Since the identification of the hepatitis C virus (HCV) 20 years ago, much progress has been made in our understanding of its life cycle and interaction with the host immune system. Much has been learned from HCV itself, which, via decades of coevolution, gained an intricate knowledge of host innate and adaptive immune responses and developed sophisticated ways to preempt, subvert, and antagonize them. This review discusses the clinical, virological, and immunological features of acute and chronic hepatitis C and the role of the immune response in spontaneous and treatment-induced HCV clearance.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH/DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|