1201
|
Cid-Castro C, Hernández-Espinosa DR, Morán J. ROS as Regulators of Mitochondrial Dynamics in Neurons. Cell Mol Neurobiol 2018; 38:995-1007. [PMID: 29687234 DOI: 10.1007/s10571-018-0584-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolina Cid-Castro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Diego Rolando Hernández-Espinosa
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, 04510, Mexico, DF, Mexico.
| |
Collapse
|
1202
|
Farzaneh Z, Kalantar K, Iraji A, Amirghofran Z. Inhibition of LPS-induced inflammatory responses by Satureja hortensis extracts in J774.1 macrophages. J Immunoassay Immunochem 2018; 39:274-291. [PMID: 29913095 DOI: 10.1080/15321819.2018.1480495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophages are among the main cells involved in generation of inflammation. To investigate the anti-inflammatory effect of Satureja hortensis (summer savory), lipopolysaccharide (LPS)-activated J774.1 macrophages were treated with various extracts, and the expression and release of various inflammatory molecules by macrophages were examined. We showed that dichloromethane and hexane extracts reduced nitric oxide (NO) production more efficiently than other extracts. Both extracts decreased gene expression of inducible NO synthase (iNOS) (<0.44 fold of control), cyclooxygenase (COX)-2 (<0.29 fold), interleukin (IL)-1β (<0.41 fold), IL-6 (<0.25 fold) and tumor necrosis factor (TNF)-α (<0.2 fold). The extracts reduced IL-6 and IL-1β proteins production from macrophages. Surface intensity of expression of intercellular adhesion molecule (ICAM)-1 decreased to 845 ± 28.1 (dichloromethane) and 715 ± 48.6 (hexane) compared to the control (902 ± 73.1). These findings showed that Satureja hortensis, by influencing macrophages and related mediators, could contribute to reduction of inflammation and might be useful as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Zahra Farzaneh
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Aida Iraji
- b Central Research Laboratory , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Amirghofran
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran.,c Autoimmune Disease Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
1203
|
Sadaksharam J. Significance of Serum Nitric Oxide and Superoxide Dismutase in Oral Submucous Fibrosis and Squamous Cell Carcinoma: A Comparative Study. Contemp Clin Dent 2018; 9:283-288. [PMID: 29875574 PMCID: PMC5968696 DOI: 10.4103/ccd.ccd_11_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction: This study aimed at comparative analysis of serum nitric oxide (NO) and superoxide dismutase (SOD) levels as therapeutic and prognostic biomarkers in patients with oral submucous fibrosis (OSMF) and squamous cell carcinoma (SCC). Materials and Methods: Eighty-seven patients were grouped into Group I (n = 29, OSMF), Group II (n = 29, oral SCC), and Group III (n = 29, controls). Two ml of venous blood was collected from patients after overnight fast to avoid any dietary influence on the serum beta-carotene. Standard protocols were followed in transfer, storage, and processing of blood. Modified copper-cadmium reduction method for rapid assay to estimate the serum NO and Enzychrom™ SOD assay kit to determine SOD levels were used. Results: The mean level of NO level in Group I, Group II, and Group III was 42.49, 50.08, and 32.81, respectively, and mean level of SOD in Group I, Group II, and Group III were 207.65, 196.93, and 226.57, respectively. The P values were calculated and were statistically significant (<0.001). Conclusion: An increase in level of oxidant NO in OSMF followed by SCC and decrease in level of antioxidant SOD in OSMF followed by SCC were noted. These levels of NO and antioxidant SOD can be used as prognostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Jayachandran Sadaksharam
- Department of Oral Medicine and Radiology, Tamil Nadu Government Dental College and Hospital, Affiliated to Tamil Nadu Dr. M.G.R. Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
1204
|
Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy. Nutrients 2018; 10:nu10060744. [PMID: 29890625 PMCID: PMC6024519 DOI: 10.3390/nu10060744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT). We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1) and anti-PNT immunoglobulin E (IgE) levels; 2. hepatic involvement by analysing interleukin (IL)-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2) yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13) mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.
Collapse
|
1205
|
Tarifeño-Saldivia E, Aguilar A, Contreras D, Mercado L, Morales-Lange B, Márquez K, Henríquez A, Riquelme-Vidal C, Boltana S. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish. Front Immunol 2018; 9:1296. [PMID: 29922300 PMCID: PMC5996096 DOI: 10.3389/fimmu.2018.01296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar, viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar. We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.
Collapse
Affiliation(s)
- Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - David Contreras
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Katherine Márquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Adolfo Henríquez
- Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
| | - Camila Riquelme-Vidal
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Sebastian Boltana
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
1206
|
Guesmi F, Bellamine H, Landoulsi A. Hydrogen peroxide-induced oxidative stress, acetylcholinesterase inhibition, and mediated brain injury attenuated by Thymus algeriensis. Appl Physiol Nutr Metab 2018; 43:1275-1281. [PMID: 29800528 DOI: 10.1139/apnm-2018-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of the current study was to evaluate acetylcholinesterase (AChE) inhibition, antioxidant enzyme activities, and malondialdehyde (MDA) levels induced by hydrophobic fractions of Thymus algeriensis (HFTS) growing in Tunisia. The results showed that hydrogen peroxide (H2O2), an oxidative stress inducer, acts by decreasing the body mass and brain mass of rats. Moreover, we found higher MDA levels in the group treated with H2O2 (P < 0.05) and a significantly lower activity of catalase, glutathione peroxidase, glutathione S-transferase, and superoxide dismutase, as well as a reduction in reduced glutathione activity in the brain tissues of H2O2-treated rats when compared with those of the control group (P < 0.05); however, rats that received HFTS with H2O2 experienced a decrease in MDA levels in the brain. In contrast, HFTS demonstrated neuroprotective effects in rat brain. Overall, exposure to HFTS prior to H2O2 induced a marked dose-dependent increase in reactive oxygen species scavenger levels (P < 0.05) accompanied by a statistically significant decrease in MDA levels (P < 0.05) when compared with no exposure. Notably, the activity of AChE was affected by exposure to natural compounds; levels were significantly lower in HFTS-treated rats and in those treated with the combination of HFTS and a low or high dose of H2O2. Furthermore, histopathological analysis showed that brain injuries occurred with high doses of H2O2 administered alone or with a low dose of HFTS, whereas a high dose of essential oil markedly alleviated neurone degeneration. The results suggest that HFTS alleviates neuroinflammation by acting as an AChE inhibitor and attenuates H2O2-induced brain toxicity.
Collapse
Affiliation(s)
- Fatma Guesmi
- a Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Houda Bellamine
- b Service of Anatomo-Pathology of Menzel Bourguiba, Bizerte, Tunisia
| | - Ahmed Landoulsi
- a Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
1207
|
Sairam T, Patel AN, Subrahmanian M, Gopalan R, Pogwizd SM, Ramalingam S, Sankaran R, Rajasekaran NS. Evidence for a hyper-reductive redox in a sub-set of heart failure patients. J Transl Med 2018; 16:130. [PMID: 29776421 PMCID: PMC5960146 DOI: 10.1186/s12967-018-1503-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Oxidative stress has been linked to heart failure (HF) in humans. Antioxidant-based treatments are often ineffective. Therefore, we hypothesize that some of the HF patients might have a reductive stress (RS) condition. Investigating RS-related mechanisms will aid in personalized optimization of redox homeostasis for better outcomes among HF patients. METHODS Blood samples were collected from HF patients (n = 54) and healthy controls (n = 42) and serum was immediately preserved in - 80 °C for redox analysis. Malondialdehyde (MDA; lipid peroxidation) levels by HPLC, reduced glutathione (GSH) and its redox ratio (GSH/GSSG) using enzymatic-recycling assay in the serum of HF patients were measured. Further, the activities of key antioxidant enzymes were analyzed by UV-Vis spectrophotometry. Non-invasive echocardiography was used to relate circulating redox status with cardiac function and remodeling. RESULTS The circulatory redox state (GSH/MDA ratio) was used to stratify the HF patients into normal redox (NR), hyper-oxidative (HO), and hyper-reductive (HR) groups. While the majority of the HF patients exhibited the HO (42%), 41% of them had a normal redox (NR) state. Surprisingly, a subset of HF patients (17%) belonged to the hyper-reductive group, suggesting a strong implication for RS in the progression of HF. In all the groups of HF patients, SOD, GPx and catalase were significantly increased while GR activity was significantly reduced relative to healthy controls. Furthermore, echocardiography analyses revealed that 55% of HO patients had higher systolic dysfunction while 62.5% of the hyper-reductive patients had higher diastolic dysfunction. CONCLUSION These results suggest that RS may be associated with HF pathogenesis for a subset of cardiac patients. Thus, stratification of HF patients based on their circulating redox status may serve as a useful prognostic tool to guide clinicians designing personalized antioxidant therapies.
Collapse
Affiliation(s)
- Thiagarajan Sairam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Amit N Patel
- Division of Cardiothoracic Surgery, University of Miami-Miller School of Medicine, Miami, FL, USA
| | - Meenu Subrahmanian
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Rajendiran Gopalan
- Department of Cardiology, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Steven M Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sudha Ramalingam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India
| | - Ramalingam Sankaran
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India.
| | - Namakkal Soorapan Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Center for Free Radical Biology, Division of Molecular & Cellular Pathology, Department of Pathology, UAB
- The University of Alabama at Birmingham, BMR2 Room 533
- 901 19th Street South, Birmingham, AL, 35294-2180, USA. .,PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences & Research (Affiliated to the Tamilnadu Dr MGR Medical University), Coimbatore, Tamil Nadu, India. .,Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
1208
|
Masterson TA, Arora H, Kulandavelu S, Carroll RS, Kaiser UB, Gultekin SH, Hare JM, Ramasamy R. S-Nitrosoglutathione Reductase (GSNOR) Deficiency Results in Secondary Hypogonadism. J Sex Med 2018; 15:654-661. [PMID: 29606625 PMCID: PMC11364458 DOI: 10.1016/j.jsxm.2018.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Excess reactive oxygen species and reactive nitrogen species are implicated in male infertility and impaired spermatogenesis. AIM To investigate the effect of excess reactive nitrogen species and nitrosative stress on testicular function and the hypothalamic-pituitary-gonadal axis using the S-nitrosoglutathione reductase-null (Gsnor-/-) mouse model. METHODS Testis size, pup number, and epididymal sperm concentration and motility of Gsnor-/- mice were compared with those of age-matched wild-type (WT) mice. Reproductive hormones testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone were compared in Gsnor-/- and WT mice. Immunofluorescence for Gsnor-/- and WT testis was performed for 3β-hydroxysteroid dehydrogenase and luteinizing hormone receptor (LHR) and compared. Human chorionic gonadotropin and gonadotropin-releasing hormone stimulation tests were performed to assess and compare testicular and pituitary functions of Gsnor-/- and WT mice. OUTCOMES Evaluation of fertility and reproductive hormones in Gsnor-/- vs WT mice. Response of Gsnor-/- and WT mice to human chorionic gonadotropin and gonadotropin-releasing hormone to evaluate LH and T production. RESULTS Gsnor-/- mice had smaller litters (4.2 vs 8.0 pups per litter; P < .01), smaller testes (0.08 vs 0.09 g; P < .01), and decreased epididymal sperm concentration (69 vs 98 × 106; P < .05) and motility (39% vs 65%; P < .05) compared with WT mice. Serum T (44.8 vs 292.2 ng/dL; P < .05) and LH (0.03 vs 0.74 ng/mL; P = .04) were lower in Gsnor-/- than in WT mice despite similar follicle-stimulating hormone levels (63.98 vs 77.93 ng/mL; P = .20). Immunofluorescence of Gsnor-/- and WT testes showed similar staining of 3β-hydroxysteroid dehydrogenase and LHR. Human chorionic gonadotropin stimulation of Gsnor-/- mice increased serum T (>1,680 vs >1,680 ng/dL) and gonadotropin-releasing hormone stimulation increased serum LH (6.3 vs 8.9 ng/mL; P = .20) similar to WT mice. CLINICAL TRANSLATION These findings provide novel insight to a possible mechanism of secondary hypogonadism from increased reactive nitrogen species and excess nitrosative stress. STRENGTHS AND LIMITATIONS Limitations of this study are its small samples and variability in hormone levels. CONCLUSION Deficiency of S-nitrosoglutathione reductase results in secondary hypogonadism, suggesting that excess nitrosative stress can affect LH production from the pituitary gland. Masterson TA, Arora H, Kulandavelu S, et al. S-Nitrosoglutathione Reductase (GSNOR) Deficiency Results in Secondary Hypogonadism. J Sex Med 2018;15:654-661.
Collapse
Affiliation(s)
| | - Himanshu Arora
- Department of Urology, University of Miami, Miami, FL, USA
| | | | - Rona S Carroll
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA; Department of Medicine, University of Miami, Miami, FL, USA
| | | |
Collapse
|
1209
|
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13:757-772. [PMID: 29731617 PMCID: PMC5927356 DOI: 10.2147/cia.s158513] [Citation(s) in RCA: 2082] [Impact Index Per Article: 347.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.
Collapse
Affiliation(s)
- Ilaria Liguori
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Russo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Curcio
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Bulli
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luisa Aran
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| | - Gaetano Gargiulo
- Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy
| | - Gianluca Testa
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
1210
|
Helmig S, Walter D, Putzier J, Maxeiner H, Wenzel S, Schneider J. Oxidative and cytotoxic stress induced by inorganic granular and fibrous particles. Mol Med Rep 2018; 17:8518-8529. [PMID: 29693699 DOI: 10.3892/mmr.2018.8923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
The hazards of granular and fibrous particles have been associated with the generation of reactive oxygen species (ROS), which in turn is often associated with physicochemical properties exhibited by these particles. In the present study, the ability of various types of fibrous and granular dusts to generate oxidative stress, and their cytotoxicity, was investigated. Biopersistent granular dusts employed in the present study included micro‑ and nanosized titanium dioxide with rutile or anatase crystal structure modifications. Additionally, glass fibres, chrysotile and crocidolite asbestos representative of fibrous dust were selected. Detailed characterisation of particles was performed using scanning electron microscopy, and the effect of exposure to these particles on cell viability and intracellular ROS generation was assessed by PrestoBlue and 2',7'‑dichlorofluorescein assays, respectively. A549 human lung epithelial adenocarcinoma cells were exposed to increasing concentrations (0.1‑10 µg/cm2) of particles and fibres for 24 h. Subsequently, the gene expression of X‑linked inhibitor of apoptosis (XIAP), superoxide dismutase (SOD)1 and SOD2 were analysed by reverse transcription‑quantitative polymerase chain reaction. All investigated granular particles induce ROS production in A549 lung carcinoma cells within 24 h. Hematite increased ROS production in a dose‑dependent manner. A concentration of >1 µg/cm2 TiO2 na with its disordered surface, demonstrated the greatest ability to generate ROS. Therefore, the crystalline surface structure of the particle may be considered as a determinant of the extent of ROS induction by the particle. Fibrous particle compared with granular particles were associated with a lower ability to generate ROS. Glass fibres did not significantly increase ROS production in A549 cells, but elevated gene expression of SOD2 was observed. The results demonstrated that in general, the ability of particles to generate ROS depends on their number and crystal phase. Therefore, the present study helps to understand the cause of particle toxicity.
Collapse
Affiliation(s)
- Simone Helmig
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Dirk Walter
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Julia Putzier
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Hagen Maxeiner
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen and Marburg, Campus Giessen, D‑35392 Giessen, Germany
| | - Sibylle Wenzel
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| | - Joachim Schneider
- Institute and Outpatient Clinic for Occupational and Social Medicine, Justus‑Liebig University, D‑35392 Giessen, Germany
| |
Collapse
|
1211
|
Acetylcholinesterase Inhibition and Antioxidant Activity of N- trans-Caffeoyldopamine and N- trans-Feruloyldopamine. Sci Pharm 2018; 86:scipharm86020011. [PMID: 29617286 PMCID: PMC6027674 DOI: 10.3390/scipharm86020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022] Open
Abstract
Phenolic acids and their derivatives found in nature are well-known for their potential biological activity. In this study, two amides derived from trans-caffeic/ferulic acid and dopamine were synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, proton and carbon-13 nuclear magnetic resonance spectroscopy. The compounds were tested for the inhibition of acetylcholinesterase (AChE) from Electrophorus electricus and for antioxidant activity by scavenging 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+), reducing ferric ions, and ferrous ions chelation. N-trans-Feruloyldopamine displayed the highest inhibitory effect on AChE with half-maximal inhibitory concentration (IC50) values of 8.52 μM. In addition, an in silico study was done to determine the most favorable AChE cluster with the synthesized compounds. Further, these clusters were investigated for binding positions at the lowest free binding energy. Both synthesized hydroxycinnamates were found to be better antioxidants than the parent acids in in vitro tests applied. N-trans-Caffeoyldopamine showed the best antioxidant activity in the three tested methods—against non-biological stable free radicals IC50 5.95 μM for DPPH•, 0.24 μM for the ABTS•+ method, and for reducing power (ascorbic acid equivalent (AAE) 822.45 μmol/mmol)—while for chelation activity against Fe2+ ions N-trans-feruloyldopamine had slightly better antioxidant activity (IC50 3.17 mM).
Collapse
|
1212
|
Choi YH, Park SJ, Paik HJ, Kim MK, Wee WR, Kim DH. Unexpected potential protective associations between outdoor air pollution and cataracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10636-10643. [PMID: 29388156 DOI: 10.1007/s11356-018-1266-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Air pollution is one of the biggest public health issues, and the eye is continuously exposed to multiple outdoor air pollution. However, to date, no large-scale study has assessed the relationship between air pollutants and cataracts. We investigated associations between outdoor air pollution and cataracts in the Korean population. A population-based cross-sectional study was performed using data from the Korea National Health and Nutrition Examination Survey, including 18,622 adults more than 40 years of age. The presence of cataracts and their subtypes were evaluated by ophthalmologists. Air pollution data (levels of particulate matter, ozone, nitrogen dioxide, and sulfur dioxide) for the 2 years prior to the ocular examinations were collected from national monitoring stations. The associations of multiple air pollutants with cataracts were assessed by multivariate logistic regression analyses. Sociodemographic factors and previously known risk factors for cataracts were controlled as covariates (model 1 included sociodemographic factors, sun exposure, and behavioral factors, while model 2 further included clinical factors). Higher ozone concentrations were protectively associated with overall cataract which included all subtypes [single pollutant model: 0.003 ppm increase-model 1 (OR 0.89, p = 0.014), model 2 (OR 0.87, p = 0.011); multi-pollutant model: 0.003 ppm increase-model 1 (OR 0.80, p = 0.002), model 2 (OR 0.87, p = 0.002)]. Especially, higher ozone concentrations showed deeply protective association with nuclear cataract subtype [0.003 ppm increase-single pollutant model: model 2 (OR 0.84, p = 0.006), multi-pollutant model: model 2 (OR 0.73, p < 0.001)]. Higher tropospheric ozone concentrations showed protective associations with overall cataract and nuclear cataract subtype in the Korean population.
Collapse
Affiliation(s)
- Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Su Jin Park
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea
| | - Hae Jung Paik
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Won Ryang Wee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hyun Kim
- Department of Ophthalmology, Gachon University Gil Medical Center, Incheon, Korea.
| |
Collapse
|
1213
|
Datta S, Chakraborty S, Panja C, Ghosh S. Reactive nitrogen species control apoptosis and autophagy in K562 cells: implication of TAp73α induction in controlling autophagy. Free Radic Res 2018; 52:491-506. [DOI: 10.1080/10715762.2018.1449210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sampurna Datta
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | - Chiranjit Panja
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
1214
|
Synthesis of Benzofuran-2-One Derivatives and Evaluation of Their Antioxidant Capacity by Comparing DPPH Assay and Cyclic Voltammetry. Molecules 2018; 23:molecules23040710. [PMID: 29561784 PMCID: PMC6017620 DOI: 10.3390/molecules23040710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/17/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
The present work aimed to synthesise promising antioxidant compounds as a valuable alternative to the currently expensive and easily degradable molecules that are employed as stabilizers in industrial preparation. Taking into account our experience concerning domino Friedel-Crafts/lactonization reactions, we successfully improved and extended the previously reported methodology toward the synthesis of 3,3-disubstituted-3H-benzofuran-2-one derivatives 9-20 starting from polyphenols 1-6 as substrates and either diethylketomalonate (7) or 3,3,3-trifluoromethyl pyruvate (8) as electrophilic counterpart. The antioxidant capacity of the most stable compounds (9-11 and 15-20) was evaluated by both DPPH assay and Cyclic Voltammetry analyses performed in alcoholic media (methanol) as well as in aprotic solvent (acetonitrile). By comparing the recorded experimental data, a remarkable activity can be attributed to few of the tested lactones.
Collapse
|
1215
|
Miranowicz-Dzierżawska K. A comparative study of using free radical generators in the testing of chosen oxidative stress parameters in the different types of cells. Toxicol Ind Health 2018. [PMID: 29519201 DOI: 10.1177/0748233717752090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to assess whether there are differences between the results of determining oxidative stress markers obtained from different origin cell lines after exposure to chemicals generating free radicals. The studies considered two markers of oxidative stress: the level of thiobarbituric acid reactive substances (TBARS) and superoxide dismutase activity. The evaluation was performed in five cell lines: Chinese hamster ovary (CHO-9) cells, lung adenocarcinoma A549, macrophages RAW264.7, skin carcinoma cells A431, and keratinocytes HaCaT. Three compounds generating free radicals were used as a source of reactive oxygen/nitrogen: 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH), sodium persulfate (SP), and 3-morpholinosydnonimine hydrochloride (SIN-1). The most appropriate cell line to assess the level of TBARS proved to be the murine macrophage cell line RAW 264.7. Equally, good performance was observed in the lung cancer cell line A549, but only when tested with AAPH and SP. In the case of measuring superoxide dismutase activity, it appeared that the most suitable cell line was also the RAW 264.7 line, although dispersion increased significantly at the highest concentrations of AAPH and SP measurements. When choosing a cell line to determine oxidative stress, the specificity of the stress-inducing compound and the parameter determined should be taken into consideration.
Collapse
Affiliation(s)
- Katarzyna Miranowicz-Dzierżawska
- Laboratory of Toxicology, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| |
Collapse
|
1216
|
Li Z, Guo M. Healthy efficacy of Nostoc commune Vaucher. Oncotarget 2018; 9:14669-14679. [PMID: 29581873 PMCID: PMC5865699 DOI: 10.18632/oncotarget.23620] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Nostoc commune Vaucher, a macroscopic cyanobacterium, has long been appreciated as a healthy food and traditional medicine worldwide. Accumulated evidence has demonstrated that it possesses a wide range of remarkably protective physiological and pharmacological activities, largely based on animal and in vitro studies. In this review, we summarise and update evidence regarding the chemical composition and nutritional characteristics of Nostoc commune Vaucher, and comprehensively discuss the recent studies on the antioxidative, anti-inflammatory, anti-carcinogenic and immune regulation properties of Nostoc commune Vaucher and Nostoc commune Vaucher-derived extracts. The available results demonstrate the potential of it to act as a functional food for the amelioration of human associated diseases. More details from human clinical trials should be a matter of further investigation.
Collapse
Affiliation(s)
- Zhuoyu Li
- College of Life Science, Shanxi University, Taiyuan 030006, China
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Min Guo
- College of Life Science, Shanxi University, Taiyuan 030006, China
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
1217
|
Yarosz EL, Chang CH. The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw 2018; 18:e14. [PMID: 29503744 PMCID: PMC5833121 DOI: 10.4110/in.2018.18.e14] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Emily L Yarosz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
1218
|
Petersen RC, Reddy MS, Liu PR. Advancements in Free-Radical Pathologies and an Important Treatment Solution with a Free-Radical Inhibitor. SF JOURNAL OF BIOTECHNOLOGY AND BIOMEDICAL ENGINEERING 2018; 1:1003. [PMID: 29984367 PMCID: PMC6034992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Unsaturated carbon-carbon double bonds particularly at exposed end groups of nonsolid fluids are susceptible to free-radical covalent bonding on one carbon atom creating a new free radical on the opposite carbon atom. Subsequent reactive secondary sequence free-radical polymerization can then continue across extensive carbon-carbon double bonds to form progressively larger molecules with ever-increasing viscosity and eventually produce solids. In a fluid solution when carbon-carbon double bonds are replaced by carbon-carbon single bonds to decrease fluidity, increasing molecular organization can interfere with molecular oxygen (O2) diffusion. During normal eukaryote cellular energy synthesis O2 is required by mitochondria to combine with electrons from the electron transport chain and hydrogen cations from the proton gradient to form water. When O2 is absent during periods of irregular hypoxia in mitochondrial energy synthesis, the generation of excess electrons can develop free radicals or excess protons can produce acid. Free radicals formed by limited O2 can damage lipids and proteins and greatly increase molecular sizes in growing vicious cycles to reduce oxygen availability even more for mitochondria during energy synthesis. Further, at adequate free-radical concentrations a reactive crosslinking unsaturated aldehyde lipid breakdown product can significantly support free-radical polymerization of lipid oils into rubbery gel-like solids and eventually even produce a crystalline lipid peroxidation with the double bond of O2. Most importantly, free-radical inhibitor hydroquinone intended for medical treatments in much pathology such as cancer, atherosclerosis, diabetes, infection/inflammation and also ageing has proven extremely effective in sequestering free radicals to prevent chain-growth reactive secondary sequence polymerization.
Collapse
Affiliation(s)
- RC Petersen
- Departments of Biomaterials and Restorative Sciences, University of Alabama at Birmingham, USA
| | - MS Reddy
- Office of the Dean, School of Dentistry, University of Alabama at Birmingham, USA
| | - P-R Liu
- Department of Restorative Sciences, University of Alabama at Birmingham, USA
| |
Collapse
|
1219
|
Casquilho NV, Moreira-Gomes MD, Magalhães CB, Okuro RT, Ortenzi VH, Feitosa-Lima EK, Lima LM, Barreiro EJ, Soares RM, Azevedo SMFO, Valença SS, Fortunato RS, Carvalho AR, Zin WA. Oxidative imbalance in mice intoxicated by microcystin-LR can be minimized. Toxicon 2018; 144:75-82. [PMID: 29454806 DOI: 10.1016/j.toxicon.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/19/2022]
Abstract
Microcystins-LR (MC-LR) is a cyanotoxin produced by cyanobacteria. We evaluated the antioxidant potential of LASSBio-596 (LB-596, inhibitor of phosphodiesterases 4 and 5), per os, and biochemical markers involved in lung and liver injury induced by exposure to sublethal dose of MC-LR. Fifty male Swiss mice received an intraperitoneal injection of 60 μL of saline (CTRL group, n = 20) or a sublethal dose of MC-LR (40 μg/kg, TOX group, n = 20). After 6 h the animals received either saline (TOX and CTRL groups) or LB-596 (50 mg/kg, TOX + LASS group, n = 10) by gavage. At 6 h after exposure, respiratory mechanics was evaluated in 10 CTRL and 10 TOX mice: there was a significant increase of all lung mechanics parameters (static elastance, viscoelastic component of elastance and lung resistive and viscoelastic/inhomogeneous pressures) in TOX compared to CTRL. 8 h after saline or MC-LR administration, i.e., 2 h after treatment with LB-596, blood serum levels of alanine aminotransferase and aspartate aminotransferase, activity of superoxide dismutase, catalase, and content of malondialdehyde and carbonyl in lung and liver, NADPH oxidase 2 and 4 mRNA expressions, dual oxidase enzyme activity and H2O2 generation were analyzed in lung homogenates. All parameters were significantly higher in TOX than in the other groups. There was no significant difference between CTRL and TOX + LASS. MC-LR deteriorated lung and liver functions and induced redox imbalance in them, which was prevented by oral administration of LB-596.
Collapse
Affiliation(s)
- Natália V Casquilho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Respiratory Physiology and Biochemistry, Superior Institute of Biomedical Sciences, Universidade Estadual do Ceará, Fortaleza, Brazil
| | - Clarissa B Magalhães
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata T Okuro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Ortenzi
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emanuel K Feitosa-Lima
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidia M Lima
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio(®)), Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel M Soares
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; NUMPEX-BIO - Multidisciplinar Center of Biological Research, Universidade Federal do Rio de Janeiro, Polo Xerém, Duque de Caxias, RJ, Brazil
| | - Sandra M F O Azevedo
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel S Valença
- Laboratory of Biology Redox, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter A Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
1220
|
Franchina DG, Dostert C, Brenner D. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends Immunol 2018; 39:489-502. [PMID: 29452982 DOI: 10.1016/j.it.2018.01.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells.
Collapse
Affiliation(s)
- Davide G Franchina
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
1221
|
Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti‑neuroinflammatory mechanisms by inhibiting lipopolysaccharide‑induced microglial inflammation. Int J Mol Med 2018; 41:3033-3040. [PMID: 29436598 DOI: 10.3892/ijmm.2018.3479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kenny Gah Leong Voon
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
1222
|
Cruz-Gregorio A, Manzo-Merino J, Lizano M. Cellular redox, cancer and human papillomavirus. Virus Res 2018; 246:35-45. [DOI: 10.1016/j.virusres.2018.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
|
1223
|
Lebedeva NS, Yurina ES, Gubarev YA, Lyubimtsev AV, Syrbu SA. Effect of irradiation spectral range on porphyrin—Protein complexes. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
1224
|
Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan. Curr Microbiol 2017; 75:519-530. [DOI: 10.1007/s00284-017-1412-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
1225
|
De-la-Re-Vega E, Sánchez-Paz A, Gallardo-Ybarra C, Lastra-Encinas MA, Castro-Longoria R, Grijalva-Chon JM, López-Torres MA, Maldonado-Arce AD. The Pacific oyster (Crassostrea gigas) Hsp70 modulates the Ostreid herpes virus 1 infectivity. FISH & SHELLFISH IMMUNOLOGY 2017; 71:127-135. [PMID: 28986219 DOI: 10.1016/j.fsi.2017.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The Ostreid herpes virus type 1 (OsHV-1) is one of the most devastating pathogen in oyster cultures. Among several factors, as food limitation, oxygen depletion, salinity and temperature variations, episodes of "summer mortality" of the Pacific oyster Crassostrea gigas have also been associated with OsHV-1 infection. Mortalities of C. gigas spat and juveniles have increased significantly in Europe, and contemporary mortality records of this mollusk in México have been associated with the occurrence of OsHV-1. In the present study, the expression of the heat shock protein 70 gene from the Pacific oyster correlates with the abundance of DNA polymerase transcripts from the OsHV-1. This may suggest that the induction on the expression of the Pacific oyster hsp70 may potentially participate in the immune response against the virus. Furthermore, this study reports for the first time a TEM representative image of the OsHV-1 in aqueous solution, which possesses an icosahedral shape with a diameter of 70 nm × 100 nm. Finally, the examined sequence encoding the ORF4 of the OsHV-1 isolate from northwest Mexico showed specific sequence variations when compared with OsHV-1 isolates from distant geographical areas.
Collapse
Affiliation(s)
- Enrique De-la-Re-Vega
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico.
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Calle Hermosa 101, Col. Los Ángeles, CP 83106 Hermosillo, Sonora, Mexico
| | - Carolina Gallardo-Ybarra
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Manuel Adolfo Lastra-Encinas
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Reina Castro-Longoria
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - José Manuel Grijalva-Chon
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | - Marco Antonio López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora (DICTUS), 83000 Hermosillo, Sonora, Mexico
| | | |
Collapse
|
1226
|
Josino JB, Serra DS, Gomes MDM, Araújo RS, de Oliveira MLM, Cavalcante FSÁ. Changes of respiratory system in mice exposed to PM 4.0 or TSP from exhaust gases of combustion of cashew nut shell. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:1-9. [PMID: 28858710 DOI: 10.1016/j.etap.2017.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Air pollution is a topic discussed all over the world and the search for alternatives to reduce it is of great interest to many researchers. The use of alternative energy sources and biofuels seems to be the environmentally safer solution. In this work, the deleterious effects on the respiratory system of mice exposed to PM4.0 or TSP, present in exhaust gases from the combustion of CNS were investigated, through data from respiratory system mechanics, oxidative stress, histopathology and morphometry of the parenchyma pulmonary. The results show changes in all variables of respiratory system mechanics, in oxidative stress, the histopathological analysis and lung morphometry. The results provide experimental support for epidemiological observations of association between effects on the respiratory system and exposure to PM4.0 or TSP from CNS combustion exhaust gases, even at acute exposure. It can serve as a basis for regulation or adjustment of environmental laws that control the emissions of these gases.
Collapse
|
1227
|
Lewandowski M, Gwozdzinski K. Nitroxides as Antioxidants and Anticancer Drugs. Int J Mol Sci 2017; 18:ijms18112490. [PMID: 29165366 PMCID: PMC5713456 DOI: 10.3390/ijms18112490] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Nitroxides are stable free radicals that contain a nitroxyl group with an unpaired electron. In this paper, we present the properties and application of nitroxides as antioxidants and anticancer drugs. The mostly used nitroxides in biology and medicine are a group of heterocyclic nitroxide derivatives of piperidine, pyrroline and pyrrolidine. The antioxidant action of nitroxides is associated with their redox cycle. Nitroxides, unlike other antioxidants, are characterized by a catalytic mechanism of action associated with a single electron oxidation and reduction reaction. In biological conditions, they mimic superoxide dismutase (SOD), modulate hemoprotein’s catalase-like activity, scavenge reactive free radicals, inhibit the Fenton and Haber-Weiss reactions and suppress the oxidation of biological materials (peptides, proteins, lipids, etc.). The use of nitroxides as antioxidants against oxidative stress induced by anticancer drugs has also been investigated. The application of nitroxides and their derivatives as anticancer drugs is discussed in the contexts of breast, hepatic, lung, ovarian, lymphatic and thyroid cancers under in vivo and in vitro experiments. In this article, we focus on new natural spin-labelled derivatives such as camptothecin, rotenone, combretastatin, podophyllotoxin and others. The applications of nitroxides in the aging process, cardiovascular disease and pathological conditions were also discussed.
Collapse
Affiliation(s)
- Marcin Lewandowski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
1228
|
Tharmalingam S, Alhasawi A, Appanna VP, Lemire J, Appanna VD. Reactive nitrogen species (RNS)-resistant microbes: adaptation and medical implications. Biol Chem 2017. [PMID: 28622140 DOI: 10.1515/hsz-2017-0152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrosative stress results from an increase in reactive nitrogen species (RNS) within the cell. Though the RNS - nitric oxide (·NO) and peroxynitrite (ONOO-) - play pivotal physiological roles, at elevated concentrations, these moieties can be poisonous to both prokaryotic and eukaryotic cells alike due to their capacity to disrupt a variety of essential biological processes. Numerous microbes are known to adapt to nitrosative stress by elaborating intricate strategies aimed at neutralizing RNS. In this review, we will discuss both the enzymatic systems dedicated to the elimination of RNS as well as the metabolic networks that are tailored to generate RNS-detoxifying metabolites - α-keto-acids. The latter has been demonstrated to nullify RNS via non-enzymatic decarboxylation resulting in the production of a carboxylic acid, many of which are potent signaling molecules. Furthermore, as aerobic energy production is severely impeded during nitrosative stress, alternative ATP-generating modules will be explored. To that end, a holistic understanding of the molecular adaptation to nitrosative stress, reinforces the notion that neutralization of toxicants necessitates significant metabolic reconfiguration to facilitate cell survival. As the alarming rise in antimicrobial resistant pathogens continues unabated, this review will also discuss the potential for developing therapies that target the alternative ATP-generating machinery of bacteria.
Collapse
|
1229
|
Zhu L, Lu Y, Zhang J, Hu Q. Subcellular Redox Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:385-398. [DOI: 10.1007/978-3-319-63245-2_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
1230
|
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2017; 59:580-596. [DOI: 10.1080/10408398.2017.1381583] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Wang
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Yakindra Prasad Timilsena
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| | - Ewan Blanch
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Benu Adhikari
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| |
Collapse
|
1231
|
Inozemtsev AN, Bokieva SB, Karpukhina OV, Gumargalieva KZ, Kamenskii AA, Myasoedov NF. Paradoxical influence of combined effect of Semax and ammonium molybdate on learning and memory in rats. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s0096392517030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
1232
|
Zheng F, Yu X, Huang J, Dai Y. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep 2017; 16:8029-8036. [PMID: 28983619 PMCID: PMC5779885 DOI: 10.3892/mmr.2017.7638] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic synovial inflammation and finally leads to variable degrees of bone and cartilage erosion. The diagnosis of RA is not an accurate indicator, but a series of scores and the mechanisms underlying it remain only partially understood. The present study explored whether circular RNAs (circRNAs) contribute to the RA pathophysiological mechanism. Total RNA from peripheral blood mononuclear cells of 10 RA patients and 10 healthy controls were extracted and circRNA expression profiling was followed by microarray analysis. In addition, circRNA interactions with microRNAs were performed and microRNA response elements were listed to identify differentially expressed binding site targets in RA. Reverse transcription-quantitative polymerase chain reaction amplification (RT-qPCR) was used to verify the differential expression of circRNAs. A total of 584 circRNAs were differentially expressed in RA patients vs. healthy controls, by circRNA microarray, including 255 circRNAs which were significantly upregulated and 329 downregulated among the RA samples. RT-qPCR validation demonstrated that the expression levels of hsa_circRNA_104194, hsa_circRNA_104593, hsa_circRNA_103334, hsa_circRNA_101407 and hsa_circRNA_102594 were consistent with the results from the microarray analysis. The current study presented differentially expressed circRNAs and their corresponding microRNA binding sites in RA. circRNAs may exhibit a role in the regulation of expression of symbol genes that influence the occurrence and development of RA.
Collapse
Affiliation(s)
- Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiangqi Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Jiahuang Huang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
1233
|
Ahmad W, Ijaz B, Shabbiri K, Ahmed F, Rehman S. Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation. J Biomed Sci 2017; 24:76. [PMID: 28927401 PMCID: PMC5606025 DOI: 10.1186/s12929-017-0379-z] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxidative species (ROS) toxicity remains an undisputed cause and link between Alzheimer’s disease (AD) and Type-2 Diabetes Mellitus (T2DM). Patients with both AD and T2DM have damaged, oxidized DNA, RNA, protein and lipid products that can be used as possible disease progression markers. Although the oxidative stress has been anticipated as a main cause in promoting both AD and T2DM, multiple pathways could be involved in ROS production. The focus of this review is to summarize the mechanisms involved in ROS production and their possible association with AD and T2DM pathogenesis and progression. We have also highlighted the role of current treatments that can be linked with reduced oxidative stress and damage in AD and T2DM.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, University of Queensland, Brisbane, 4072, Australia.
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Thokar Niaz Baig, Lahore, 54000, Pakistan
| | - Khadija Shabbiri
- School of Biological Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Fayyaz Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Thokar Niaz Baig, Lahore, 54000, Pakistan
| | - Sidra Rehman
- COMSATS Institute of Information Technology Abbottabad, Abbottabad, 22010, Pakistan
| |
Collapse
|
1234
|
Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6412682. [PMID: 29104729 PMCID: PMC5625755 DOI: 10.1155/2017/6412682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments.
Collapse
|
1235
|
Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5273403. [PMID: 29075364 PMCID: PMC5623775 DOI: 10.1155/2017/5273403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 01/29/2023]
Abstract
This systematic review was performed to identify the role of photobiomodulation therapy on experimental muscle injury models linked to induce oxidative stress. EMBASE, PubMed, and CINAHL were searched for studies published from January 2006 to January 2016 in the areas of laser and oxidative stress. Any animal model using photobiomodulation therapy to modulate oxidative stress was included in analysis. Eight studies were selected from 68 original articles targeted on laser irradiation and oxidative stress. Articles were critically assessed by two independent raters with a structured tool for rating the research quality. Although the small number of studies limits conclusions, the current literature indicates that photobiomodulation therapy can be an effective short-term approach to reduce oxidative stress markers (e.g., thiobarbituric acid-reactive) and to increase antioxidant substances (e.g., catalase, glutathione peroxidase, and superoxide dismutase). However, there is a nonuniformity in the terminology used to describe the parameters and dose for low-level laser treatment.
Collapse
|
1236
|
The Evaluation of Oxidative Stress Parameters in Serum Patients with Relapsing-Remitting Multiple Sclerosis Treated with II-Line Immunomodulatory Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9625806. [PMID: 29138683 PMCID: PMC5613460 DOI: 10.1155/2017/9625806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
Abstract
Objectives The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods One hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN, fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and total oxidative status (TOS) were determined. Results LHP, MDA, and TOS were lower in NT and FG groups compared to the de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion The II-line immunomodulatory treatment decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.
Collapse
|
1237
|
Hammam N, Gheita TA. Impact of secondhand smoking on disease activity in women with rheumatoid arthritis. Clin Rheumatol 2017; 36:2415-2420. [PMID: 28842759 DOI: 10.1007/s10067-017-3795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 12/23/2022]
Abstract
Smoking is an established risk factor for the development and severity of rheumatoid arthritis (RA) with prominent production of cytokines. The aim of the work was to study the possible effect of secondhand exposure on disease activity in non-smoking female RA patients. This cross-sectional study include 100 women with RA attending the rheumatology outpatient clinic and were grouped according to the non-smoking status into those not exposed to smoking and those considered secondhand smokers (SHS). Disease activity score in 28 joints (DAS28) was calculated and the patients' global assessment (PGA) score were assessed. The mean age of the patients was 45.2 ± 12.1 years and disease duration was 8.3 ± 6 years. Their DAS28 score was 4.3 ± 0.93 with a PGA score of 1.47 ± 1.36. Forty-seven of the patients were SHS and 53 were non-exposed. The secondhand smokers were significantly younger (41.6 ± 11.7 years) than the non-smokers (48.3 ± 11.6 years) (p = 0.005), and the DAS28 was significantly higher (4.6 ± 0.84 versus 4.1 ± 0.97; p = 0.02) compared to non-smokers. The disease duration and medications received were comparable. There is evidence pointing to the important role of secondhand smoking on disease activity in RA female patients. Studying the effect of secondhand smoking in view of the cytokine milieu could help confirm the relation to the disease pathogenesis. Taking into consideration the risk of cardiovascular disease and interplay with other potential factors should be well thought of. It is essential to draw patients' attention to the expected hazardous effect of passive smoking.
Collapse
Affiliation(s)
- Nevin Hammam
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Assiut University, Asyut, Egypt. .,Faculty of Rehabilitation, University of Alberta, Edmonton, Alberta, Canada.
| | - Tamer A Gheita
- Rheumatology and Clinical Immunology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
1238
|
Macías Pérez ME, Hernández Rodríguez M, Cabrera Pérez LC, Fragoso-Vázquez MJ, Correa-Basurto J, Padilla-Martínez II, Méndez Luna D, Mera Jiménez E, Flores Sandoval C, Tamay Cach F, Rosales-Hernández MC. Aromatic Regions Govern the Recognition of NADPH Oxidase Inhibitors as Diapocynin and its Analogues. Arch Pharm (Weinheim) 2017; 350. [PMID: 28833480 DOI: 10.1002/ardp.201700041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
Oxidative stress is related to the pathogenesis and progress of several human diseases. NADPH oxidase (NOX), and mainly the NOX2 isoform, produces superoxide anions (O2•- ). To date, it is known that NOX2 can be inhibited by preventing the assembly of its subunits, p47phox and p22phox. In this work, we analyzed the binding to NOX2 of the apocynin dimer, diapocynin (C1), a known NOX2 inhibitor, and of 18 designed compounds (C2-C19) which have chemical relationships to C1, by in silico methods employing a p47phox structure from the Protein Data Bank (PDB code: 1WLP). C1 and six of the designed compounds were recognized in the region where p22phox binds to p47phox and makes π-π interactions principally with W193, W263, and Y279, which form an aromatic-rich region. C8 was chosen as the best compound according to the in silico studies and was synthesized and evaluated in vitro. C8 was able to prevent the production of reactive oxygen species (ROS) similar to C1. In conclusion, targeting the aromatic region of p47phox through π-interactions is important for inhibiting NOX activity.
Collapse
Affiliation(s)
- Martha E Macías Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Maricarmen Hernández Rodríguez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Laura C Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - M Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México.,Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzia I Padilla-Martínez
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - David Méndez Luna
- Laboratorio de Modelado Molecular y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular de la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - César Flores Sandoval
- Gerencia de Desarrollo de Materiales y Productos Químicos, Instituto Mexicano del Petróleo, Eje Central (Lázaro Cárdenas), Ciudad de México, México
| | - Feliciano Tamay Cach
- Laboratorio de Investigación de Bioquímica, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
1239
|
Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017; 8:600. [PMID: 28878685 PMCID: PMC5572357 DOI: 10.3389/fphys.2017.00600] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Atherogenesis, the formation of atherosclerotic plaques, is a complex process that involves several mechanisms, including endothelial dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The pathogenesis and progression of atherosclerosis are explained differently by different scholars. One of the most common theories is the destruction of well-balanced homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is widely regarded as the redox status realized when an imbalance exists between antioxidant capability and activity species including reactive oxygen (ROS), nitrogen (RNS) and halogen species, non-radical as well as free radical species. This occurrence results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via cell death signaling pathways responsible for accelerating atherogenesis. This paper discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative stress that may prevent atherosclerosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China
| | - Yanda Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Xiaomeng Ren
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Dan Hu
- Masonic Medical Research LaboratoryUtica, NY, United States
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
1240
|
DR1 activation reduces the proliferation of vascular smooth muscle cells by JNK/c-Jun dependent increasing of Prx3. Mol Cell Biochem 2017; 440:157-165. [DOI: 10.1007/s11010-017-3164-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
|
1241
|
Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1215-1229. [DOI: 10.1080/21691401.2017.1366335] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ghassan M. Sulaiman
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| | - Amer T. Tawfeeq
- Molecular Biology Department, Iraqi Center for Cancer and Medical Genetics Research, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Amal S. Naji
- Biotechnology Division, Applied Science Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
1242
|
MAJIDI Z, DJALALI M, JAVANBAKHT MH, FATHI M, ZAREI M, FOLADSAZ K. Evaluation of the Level of Zinc and Malondialdehyde in Basal Cell Carcinoma. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1104-1109. [PMID: 28894712 PMCID: PMC5575390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Basal Cell Carcinoma (BCC) is one of the most common skin cancers in the world and that use to lifestyle, increasing chemical pollutions, environmental factors and poor nutrition. The most important cause of this cancer is oxidative stress and free radicals so antioxidant activities for the body are so important. The aim of this study was to determine the variation of zinc and (Malondialdehyde) MDA in BCC patients. METHODS This study has been performed on case and control patients from 2013 to 2014. The samples were collected from cell carcinoma patients at Razi Hospital in Tehran, Iran. We evaluated the level of zinc with the use of Atomic Absorption Spectroscopy (AAS) method. Besides, we evaluated MDA with colorimetric assay. RESULTS The concentration of MDA was significantly higher in case group in comparison to control group (P=0.001). In addition, case group had lower concentration of zinc than the control group (P=0.000). There was no correlation between MDA and body mass index (BMI) and between zinc and BMI. CONCLUSION All the patients with BCC showed a significant MDA serum in comparison with control group. However, significant decrease in zinc serum of the patients was seen that is because of consuming zinc during oxidative stress process so topical use of zinc in the form of 2+ ions could be effective on antioxidant protection against the sun UV radiation.
Collapse
Affiliation(s)
- Ziba MAJIDI
- Dept. of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud DJALALI
- Dept. of Cellular & Molecular Nutrition, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan JAVANBAKHT
- Dept. of Cellular & Molecular Nutrition, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba FATHI
- Dept. of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahnaz ZAREI
- Dept. of Cellular & Molecular Nutrition, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh FOLADSAZ
- Dept. of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Corresponding Author:
| |
Collapse
|
1243
|
Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 2017; 94:100-108. [PMID: 28756367 DOI: 10.1016/j.biopha.2017.07.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species are produced during oxygen reduction and are characterized by high reactivity. They participate in many important physiological processes, but if produced in high concentrations they lead to oxidative stress development and disturb pro-oxidative/anti-oxidative balance towards the oxidation reaction - leading to damage of lipids, proteins, carbohydrates or nucleic acids. Asthma is a chronic inflammatory disease of the airways of various pathogenesis and clinical symptoms, prevalence in recent years has increased significantly. Recently published literature point out the involvement of reactive oxygen species in the pathogenesis of asthma. Changes in the protein and lipid oxidation lead, among others, to pathological changes in the respiratory epithelial cells, an increase in vascular permeability, mucus overproduction, smooth muscle contraction or airway hyperresponsiveness (AHR). The aim of this study is to present the current state of knowledge on the influence of oxidative stress parameters on asthma development.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland.
| |
Collapse
|
1244
|
Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1675230. [PMID: 28814984 PMCID: PMC5549471 DOI: 10.1155/2017/1675230] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe and irreversible vision loss and is characterized by progressive degeneration of the retina resulting in loss of central vision. The retinal pigment epithelium (RPE) is a critical site of pathology of AMD. Mitochondria and the endoplasmic reticulum which lie in close anatomic proximity to each other are targets of oxidative stress and endoplasmic reticulum (ER) stress, respectively, and contribute to the progression of AMD. The two organelles exhibit close interactive function via various signaling mechanisms. Evidence for ER-mitochondrial crosstalk in RPE under ER stress and signaling pathways of apoptotic cell death is presented. The role of humanin (HN), a prominent member of a newly discovered family of mitochondrial-derived peptides (MDPs) expressed from an open reading frame of mitochondrial 16S rRNA, in modulation of ER and oxidative stress in RPE is discussed. HN protected RPE cells from oxidative and ER stress-induced cell death by upregulation of mitochondrial GSH, inhibition of ROS generation, and caspase 3 and 4 activation. The underlying mechanisms of ER-mitochondrial crosstalk and modulation by exogenous HN are discussed. The therapeutic use of HN and related MDPs could potentially prove to be a valuable approach for treatment of AMD.
Collapse
|
1245
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
1246
|
Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int J Mol Sci 2017; 18:ijms18071352. [PMID: 28672811 PMCID: PMC5535845 DOI: 10.3390/ijms18071352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested the potential involvement of oxidative stress in gastrointestinal cancers. In light of this, research efforts have been focused on the potential of dietary antioxidant intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Rice bran, a by-product of rice milling, has been shown to contain an abundance of phytochemicals, which are dietary antioxidants. To date, a number of studies have shown the antioxidative effect of rice bran intake, and some demonstrated that such an effect may contribute to gastrointestinal cancer prevention, largely through the antioxidative properties of rice bran phytochemicals. In addition, these phytochemicals were shown to provide protection against cancer through mechanisms linked to oxidative stress, including β-catenin-mediated cell proliferation and inflammation. The present article provides an overview of current evidence for the antioxidative properties of rice bran and its phytochemicals, and for the potential of such properties in cancer prevention through the oxidative-stress-linked mechanisms mentioned above. The article also highlights the need for an evaluation of the effectiveness of rice bran dietary interventions among cancer survivors in ameliorating oxidative stress and reducing the level of gastrointestinal cancer biomarkers, thereby establishing the potential of such interventions among these individuals in the prevention of cancer recurrence.
Collapse
|
1247
|
Dos Santos SA, Dos Santos Vieira MA, Simões MCB, Serra AJ, Leal-Junior EC, de Carvalho PDTC. Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model. Lasers Med Sci 2017; 32:1071-1079. [PMID: 28429194 DOI: 10.1007/s10103-017-2209-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by chronic and systemic inflammation, which leads to the destruction of the cartilage and bone and affects tissues in multiple joints. Oxidative stress has been implicated with regards to involvement in various disease conditions, such as diabetes mellitus and neurodegenerative, respiratory, cardiovascular, and RA diseases. In vivo experimental studies using photobiomodulation therapy (PBMT) have shown positive effects in reducing lipid peroxidation and in increasing antioxidant activity. The regular practice of physical exercise has also been reported to be a beneficial treatment capable of reducing oxidative damage. Thus, the aim of this study was to analyze the effects of photobiomodulation therapy at 2- and 4-J doses associated with physical exercise on oxidative stress in an experimental model of RA in protein expression involving superoxide dismutase (SOD), glutathione peroxidase (GPX), and/or catalase (CAT) on thiobarbituric acid reactive substances (TBARS). In this study, 24 male Wistar rats divided into four groups were submitted to an RA model (i.e., collagen-induced arthritis, CIA), with the first immunization performed at the base of the tail on days 0 and 7 were included. After 28 days, a third intraarticular dose was administered in both knees of the animals. After the last induction, PBMT was started immediately, transcutaneously at two points (i.e., the medial and lateral), with a total of 15 applications. Treadmill exercise was also started the day after the last induction, and lasted for 5 weeks. With respect to results, we obtained the decreases in the lipid peroxidation and the increases of the antioxidant activities of SOD, GPX and CAT, with physical exercise associated to PBMT in doses of 2 and 4 J. In conclusion, physical exercise associated with PBMT decreases lipid peroxidation and increases antioxidant activity.
Collapse
Affiliation(s)
- Solange Almeida Dos Santos
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Marcia Ataize Dos Santos Vieira
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Maira Cécilia Brandão Simões
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Ernesto Cesar Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho, (UNINOVE), Rua Vergueiro 235, São Paulo, SP, Brazil. .,Postgraduate Program in Biophotonics, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.
| |
Collapse
|
1248
|
Petersen RC. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. AIMS BIOPHYSICS 2017; 4:240-283. [PMID: 29202036 PMCID: PMC5707132 DOI: 10.3934/biophy.2017.2.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.
Collapse
Affiliation(s)
- Richard C Petersen
- Biomaterials, SDB 539, 1919 7th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Biomedical Research Technologies, 3830 Avenida Del Presidente, M/S 36, San Clemente, CA, 92674, USA
| |
Collapse
|
1249
|
Szyller J, Kozakiewicz M, Siermontowski P. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review. POLISH HYPERBARIC RESEARCH 2017. [DOI: 10.1515/phr-2017-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2) and an increased pressure (hyperbaric conditions) leads to an intensification of oxidative stress. Reactive oxygen species (ROS) damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP). Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS). Its product - nitrogen oxide (NO) can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.
Collapse
Affiliation(s)
- Jakub Szyller
- DiaLab Medical Laboratories Życzliwa 15-17, 50-001 Wrocław , Poland
| | - Mariusz Kozakiewicz
- Department and Institute of Foodstuff Chemistry, the L. Rydygier Collegium Medicum, Bydgoszcz , Poland
| | - Piotr Siermontowski
- Military Institute of Medicine, Department of Marine and Hyperbaric Medicine, Gdynia , Poland
| |
Collapse
|
1250
|
Kortas J, Kuchta A, Prusik K, Prusik K, Ziemann E, Labudda S, Ćwiklińska A, Wieczorek E, Jankowski M, Antosiewicz J. Nordic walking training attenuation of oxidative stress in association with a drop in body iron stores in elderly women. Biogerontology 2017; 18:517-524. [PMID: 28229255 PMCID: PMC5514214 DOI: 10.1007/s10522-017-9681-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
Excess body iron accumulation and oxidative stress has been associated with ageing. Regular exercise has been shown to reduce oxidative stress and induce some changes in iron metabolism. However, the effects of exercise on both of these parameters have been poorly investigated. In our study, 35 elderly women participated in 12 weeks of Nordic walking (NW) training (three times a week). We demonstrated that the training caused a significant reduction in malondialdehyde advanced oxidation protein products—markers of oxidative stress but had no effects on paraoxonase 1 activity. These changes were associated with the decrease of blood ferritin (99.4 ± 62.7 vs. 81.4 ± 61.7 ng/ml p < 0.05). Measurement of physical fitness revealed that the training caused a significant improvement in performance and a negative correlation between the blood ferritin and endurance test was recorded (r = −0.34, p = 0.03). In addition, a significant correlation between blood ferritin and fasting glucose level was noted. The training induced a rise of HDL cholesterol from 70.8 ± 19.3–75.3 ± 21.1, p < 0.05, whereas other lipid parameters remained unchanged. In conclusion, NW training reduced body iron stores and it was associated with lower oxidative stress and better endurance.
Collapse
Affiliation(s)
- Jakub Kortas
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdansk, Poland.
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Prusik
- Department of Recreation and Qualify Tourism, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336, Gdansk, Poland
| | - Katarzyna Prusik
- Department of Biomedical Basis of Health, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ewa Ziemann
- Department of Physiology and Pharmacology, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Sandra Labudda
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Ewa Wieczorek
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Jedrzej Antosiewicz
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|