1201
|
Papke CM, Smolen KA, Swingle MR, Cressey L, Heng RA, Toporsian M, Deng L, Hagen J, Shen Y, Chung WK, Kettenbach AN, Honkanen RE. A disorder-related variant (E420K) of a PP2A-regulatory subunit (PPP2R5D) causes constitutively active AKT-mTOR signaling and uncoordinated cell growth. J Biol Chem 2021; 296:100313. [PMID: 33482199 PMCID: PMC7952134 DOI: 10.1016/j.jbc.2021.100313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023] Open
Abstract
Functional genomic approaches have facilitated the discovery of rare genetic disorders and improved efforts to decipher their underlying etiology. PPP2R5D-related disorder is an early childhood onset condition characterized by intellectual disability, hypotonia, autism-spectrum disorder, macrocephaly, and dysmorphic features. The disorder is caused by de novo single nucleotide changes in PPP2R5D, which generate heterozygous dominant missense variants. PPP2R5D is known to encode a B'-type (B'56δ) regulatory subunit of a PP2A-serine/threonine phosphatase. To help elucidate the molecular mechanisms altered in PPP2R5D-related disorder, we used a CRISPR-single-base editor to generate HEK-293 cells in which a single transition (c.1258G>A) was introduced into one allele, precisely recapitulating a clinically relevant E420K variant. Unbiased quantitative proteomic and phosphoproteomic analyses of endogenously expressed proteins revealed heterozygous-dominant changes in kinase/phosphatase signaling. These data combined with orthogonal validation studies revealed a previously unrecognized interaction of PPP2R5D with AKT in human cells, leading to constitutively active AKT-mTOR signaling, increased cell size, and uncoordinated cellular growth in E420K-variant cells. Rapamycin reduced cell size and dose-dependently reduced RPS6 phosphorylation in E420K-variant cells, suggesting that inhibition of mTOR1 can suppress both the observed RPS6 hyperphosphorylation and increased cell size. Together, our findings provide a deeper understanding of PPP2R5D and insight into how the E420K-variant alters signaling networks influenced by PPP2R5D. Our comprehensive approach, which combines precise genome editing, isobaric tandem mass tag labeling of peptides generated from endogenously expressed proteins, and concurrent liquid chromatography-mass spectrometry (LC-MS3), also provides a roadmap that can be used to rapidly explore the etiologies of additional genetic disorders.
Collapse
Affiliation(s)
- Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Kali A Smolen
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Lauren Cressey
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Richard A Heng
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mourad Toporsian
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Liyong Deng
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Jacob Hagen
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA; Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA.
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
1202
|
Jin X, Simmons SK, Guo A, Shetty AS, Ko M, Nguyen L, Jokhi V, Robinson E, Oyler P, Curry N, Deangeli G, Lodato S, Levin JZ, Regev A, Zhang F, Arlotta P. In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science 2021; 370:370/6520/eaaz6063. [PMID: 33243861 DOI: 10.1126/science.aaz6063] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/24/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
The number of disease risk genes and loci identified through human genetic studies far outstrips the capacity to systematically study their functions. We applied a scalable genetic screening approach, in vivo Perturb-Seq, to functionally evaluate 35 autism spectrum disorder/neurodevelopmental delay (ASD/ND) de novo loss-of-function risk genes. Using CRISPR-Cas9, we introduced frameshift mutations in these risk genes in pools, within the developing mouse brain in utero, followed by single-cell RNA-sequencing of perturbed cells in the postnatal brain. We identified cell type-specific and evolutionarily conserved gene modules from both neuronal and glial cell classes. Recurrent gene modules and cell types are affected across this cohort of perturbations, representing key cellular effects across sets of ASD/ND risk genes. In vivo Perturb-Seq allows us to investigate how diverse mutations affect cell types and states in the developing organism.
Collapse
Affiliation(s)
- Xin Jin
- Society of Fellows, Harvard University, Cambridge, MA, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,McGovern Institute of Brain Science, Department of Brain and Cognitive Science, Department of Biological Engineering, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Sean K Simmons
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin S Shetty
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Ko
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA
| | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vahbiz Jokhi
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA
| | - Elise Robinson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Paul Oyler
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA
| | - Nathan Curry
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA
| | - Giulio Deangeli
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA
| | - Simona Lodato
- Department of Biomedical Sciences and Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
| | - Joshua Z Levin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Koch Institute of Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,McGovern Institute of Brain Science, Department of Brain and Cognitive Science, Department of Biological Engineering, Massachussetts Institute of Technology (MIT), Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
1203
|
Joo W, Vivian MD, Graham BJ, Soucy ER, Thyme SB. A Customizable Low-Cost System for Massively Parallel Zebrafish Behavioral Phenotyping. Front Behav Neurosci 2021; 14:606900. [PMID: 33536882 PMCID: PMC7847893 DOI: 10.3389/fnbeh.2020.606900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
High-throughput behavioral phenotyping is critical to genetic or chemical screening approaches. Zebrafish larvae are amenable to high-throughput behavioral screening because of their rapid development, small size, and conserved vertebrate brain architecture. Existing commercial behavioral phenotyping systems are expensive and not easily modified for new assays. Here, we describe a modular, highly adaptable, and low-cost system. Along with detailed assembly and operation instructions, we provide data acquisition software and a robust, parallel analysis pipeline. We validate our approach by analyzing stimulus response profiles in larval zebrafish, confirming prepulse inhibition phenotypes of two previously isolated mutants, and highlighting best practices for growing larvae prior to behavioral testing. Our new design thus allows rapid construction and streamlined operation of many large-scale behavioral setups with minimal resources and fabrication expertise, with broad applications to other aquatic organisms.
Collapse
Affiliation(s)
- William Joo
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael D. Vivian
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brett J. Graham
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Edward R. Soucy
- Center for Brain Science, Harvard University, Cambridge, MA, United States
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
1204
|
Guan J, Wang Y, Lin Y, Yin Q, Zhuang Y, Ji G. Cell Type-Specific Predictive Models Perform Prioritization of Genes and Gene Sets Associated With Autism. Front Genet 2021; 11:628539. [PMID: 33519924 PMCID: PMC7844401 DOI: 10.3389/fgene.2020.628539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Bulk transcriptomic analyses of autism spectrum disorder (ASD) have revealed dysregulated pathways, while the brain cell type-specific molecular pathology of ASD still needs to be studied. Machine learning-based studies can be conducted for ASD, prioritizing high-confidence gene candidates and promoting the design of effective interventions. Using human brain nucleus gene expression of ASD and controls, we construct cell type-specific predictive models for ASD based on individual genes and gene sets, respectively, to screen cell type-specific ASD-associated genes and gene sets. These two kinds of predictive models can predict the diagnosis of a nucleus with known cell type. Then, we construct a multi-label predictive model for predicting the cell type and diagnosis of a nucleus at the same time. Our findings suggest that layer 2/3 and layer 4 excitatory neurons, layer 5/6 cortico-cortical projection neurons, parvalbumin interneurons, and protoplasmic astrocytes are preferentially affected in ASD. The functions of genes with predictive power for ASD are different and the top important genes are distinct across different cells, highlighting the cell-type heterogeneity of ASD. The constructed predictive models can promote the diagnosis of ASD, and the prioritized cell type-specific ASD-associated genes and gene sets may be used as potential biomarkers of ASD.
Collapse
Affiliation(s)
- Jinting Guan
- Department of Automation, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Yang Wang
- Department of Automation, Xiamen University, Xiamen, China
| | - Yiping Lin
- Department of Automation, Xiamen University, Xiamen, China
| | - Qingyang Yin
- Department of Automation, Xiamen University, Xiamen, China
| | - Yibo Zhuang
- Xiamen YLZ Yihui Technology Co., Ltd., Xiamen, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China
| |
Collapse
|
1205
|
Transcriptional subtyping explains phenotypic variability in genetic subtypes of autism spectrum disorder. Dev Psychopathol 2021; 32:1353-1361. [PMID: 32912353 DOI: 10.1017/s0954579420000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by deficits in social communication and presence of restricted, repetitive behaviors, and interests. However, individuals with ASD vary significantly in their challenges and abilities in these and other developmental domains. Gene discovery in ASD has accelerated in the past decade, and genetic subtyping has yielded preliminary evidence of utility in parsing phenotypic heterogeneity through genomic subtypes. Recent advances in transcriptomics have provided additional dimensions with which to refine genetic subtyping efforts. In the current study, we investigate phenotypic differences among transcriptional subtypes defined by neurobiological spatiotemporal co-expression patterns. Of the four transcriptional subtypes examined, participants with mutations to genes typically expressed highly in all brain regions prenatally, and those with differential postnatal cerebellar expression relative to other brain regions, showed lower cognitive and adaptive skills, higher severity of social communication deficits, and later acquisition of speech and motor milestones, compared to those with mutations to genes highly expressed during the postnatal period across brain regions. These findings suggest higher-order characterization of genetic subtypes based on neurobiological expression patterns may be a promising approach to parsing phenotypic heterogeneity among those with ASD and related neurodevelopmental disorders.
Collapse
|
1206
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
1207
|
Peng J, Zhou Y, Wang K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Sci Rep 2021; 11:952. [PMID: 33441621 PMCID: PMC7806931 DOI: 10.1038/s41598-020-78654-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
It is well established that epilepsy and autism spectrum disorder (ASD) commonly co-occur; however, the underlying biological mechanisms of the co-occurence from their genetic susceptibility are not well understood. Our aim in this study is to characterize genetic modules of subgroups of epilepsy and autism genes that have similar phenotypic manifestations and biological functions. We first integrate a large number of expert-compiled and well-established epilepsy- and ASD-associated genes in a multiplex network, where one layer is connected through protein-protein interaction (PPI) and the other layer through gene-phenotype associations. We identify two modules in the multiplex network, which are significantly enriched in genes associated with both epilepsy and autism as well as genes highly expressed in brain tissues. We find that the first module, which represents the Gene Ontology category of ion transmembrane transport, is more epilepsy-focused, while the second module, representing synaptic signaling, is more ASD-focused. However, because of their enrichment in common genes and association with both epilepsy and ASD phenotypes, these modules point to genetic etiologies and biological processes shared between specific subtypes of epilepsy and ASD. Finally, we use our analysis to prioritize new candidate genes for epilepsy (i.e. ANK2, CACNA1E, CACNA2D3, GRIA2, DLG4) for further validation. The analytical approaches in our study can be applied to similar studies in the future to investigate the genetic connections between different human diseases.
Collapse
Affiliation(s)
- Jacqueline Peng
- grid.25879.310000 0004 1936 8972School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Yunyun Zhou
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kai Wang
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
1208
|
Dingemans AJM, Stremmelaar DE, Vissers LELM, Jansen S, Nabais Sá MJ, van Remortele A, Jonis N, Truijen K, van de Ven S, Ewals J, Verbruggen M, Koolen DA, Brunner HG, Eichler EE, Gecz J, de Vries BBA. Human disease genes website series: An international, open and dynamic library for up-to-date clinical information. Am J Med Genet A 2021; 185:1039-1046. [PMID: 33439542 PMCID: PMC7986414 DOI: 10.1002/ajmg.a.62057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022]
Abstract
Since the introduction of next‐generation sequencing, an increasing number of disorders have been discovered to have genetic etiology. To address diverse clinical questions and coordinate research activities that arise with the identification of these rare disorders, we developed the Human Disease Genes website series (HDG website series): an international digital library that records detailed information on the clinical phenotype of novel genetic variants in the human genome (https://humandiseasegenes.info/). Each gene website is moderated by a dedicated team of clinicians and researchers, focused on specific genes, and provides up‐to‐date—including unpublished—clinical information. The HDG website series is expanding rapidly with 424 genes currently adopted by 325 moderators from across the globe. On average, a gene website has detailed phenotypic information of 14.4 patients. There are multiple examples of added value, one being the ARID1B gene website, which was recently utilized in research to collect clinical information of 81 new patients. Additionally, several gene websites have more data available than currently published in the literature. In conclusion, the HDG website series provides an easily accessible, open and up‐to‐date clinical data resource for patients with pathogenic variants of individual genes. This is a valuable resource not only for clinicians dealing with rare genetic disorders such as developmental delay and autism, but other professionals working in diagnostics and basic research. Since the HDG website series is a dynamic platform, its data also include the phenotype of yet unpublished patients curated by professionals providing higher quality clinical detail to improve management of these rare disorders.
Collapse
Affiliation(s)
- Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Diante E Stremmelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Maria J Nabais Sá
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Angela van Remortele
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Noraly Jonis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kim Truijen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Sam van de Ven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Jeroen Ewals
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Michel Verbruggen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
1209
|
Insa Pineda I, Gómez González CL. The KDM6B mutation: Phenotype and clinical characteristics-Report of a case. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021; 15:S1888-9891(21)00001-X. [PMID: 33450416 DOI: 10.1016/j.rpsm.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Alterations in the genes of lysine methylation as Lysine-specific demethylase 6B (KDM6B) have been associated with multiple neurodevelopmental disorders. Until now, there are few cases in the literature attributed to KDM6B mutations. This gap may be due to the fact that the exome sequencing technique is still being implemented in routine clinical practice. MATERIAL AND METHODS A case is presented with its clinical and phenotypic characteristics. The sequence exome analysis was done with the Nimblegen SeqCap EZ MedExome capture kit+mtDNA 47Mb. The psychopathological approach from mental health was carried out through individual and family interviews, the Conner's questionnaires, ADHD rating scale, as well as the psychometry. RESULTS A frameshift variant in the KDM6B gene related to neurodevelopmental disorders with facial and body dysmorphia was obtained. The case was oriented as a neurodevelopmental disorder secondary to a genetic alteration and a comorbid Attention Deficit Hyperactivity Disorder (ADHD). CONCLUSIONS The clinical peculiarities shared by patients identified with the KDM6B mutation, raises the need to recognize it as a particular entity. The possibility of applying the exome sequencing technique to patients with syndromic phenotype and developmental impairment may clarify its etiopathogenesis. It is highly probable that the complexity of these cases requires an approach by a multidisciplinary team that includes genetics, neurology and psychiatry, among other specialties. The coordinated approach is essential to have a comprehensive vision of the case.
Collapse
Affiliation(s)
- Inmaculada Insa Pineda
- Child and Adolescent Psychiatry and Psychology, Department of Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; Children and Adolescent Mental Health Research Group (Consolidated group 2017 SGR 964), Institut de Recerca Sant Joan de Déu, Spain.
| | - Cristina Luz Gómez González
- Child and Adolescent Psychiatry and Psychology, Department of Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
1210
|
Alonso-Gonzalez A, Calaza M, Amigo J, González-Peñas J, Martínez-Regueiro R, Fernández-Prieto M, Parellada M, Arango C, Rodriguez-Fontenla C, Carracedo A. Exploring the biological role of postzygotic and germinal de novo mutations in ASD. Sci Rep 2021; 11:319. [PMID: 33431980 PMCID: PMC7801448 DOI: 10.1038/s41598-020-79412-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
De novo mutations (DNMs), including germinal and postzygotic mutations (PZMs), are a strong source of causality for Autism Spectrum Disorder (ASD). However, the biological processes involved behind them remain unexplored. Our aim was to detect DNMs (germinal and PZMs) in a Spanish ASD cohort (360 trios) and to explore their role across different biological hierarchies (gene, biological pathway, cell and brain areas) using bioinformatic approaches. For the majority of the analysis, a combined ASD cohort (N = 2171 trios) was created using previously published data by the Autism Sequencing Consortium (ASC). New plausible candidate genes for ASD such as FMR1 and NFIA were found. In addition, genes harboring PZMs were significantly enriched for miR-137 targets in comparison with germinal DNMs that were enriched in GO terms related to synaptic transmission. The expression pattern of genes with PZMs was restricted to early mid-fetal cortex. In contrast, the analysis of genes with germinal DNMs revealed a spatio-temporal window from early to mid-fetal development stages, with expression in the amygdala, cerebellum, cortex and striatum. These results provide evidence of the pathogenic role of PZMs and suggest the existence of distinct mechanisms between PZMs and germinal DNMs that are influencing ASD risk.
Collapse
Affiliation(s)
- A Alonso-Gonzalez
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Calaza
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - J Amigo
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - J González-Peñas
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - R Martínez-Regueiro
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Fernández-Prieto
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain
| | - M Parellada
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - C Arango
- Centro De Investigación Biomédica en Red de Salud Mental (CIBERSAM), Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Cristina Rodriguez-Fontenla
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.
| | - A Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av Barcelona 31, 15706, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
1211
|
Identification of Possible Risk Variants of Familial Strabismus Using Exome Sequencing Analysis. Genes (Basel) 2021; 12:genes12010075. [PMID: 33435129 PMCID: PMC7827096 DOI: 10.3390/genes12010075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To investigate candidate genes associated with familial strabismus and propose a theory of their interaction in familial strabismus associated with early neurodevelopment. METHODS Eighteen families, including 53 patients diagnosed with strabismus and 34 unaffected family members, were analyzed. All patients with strabismus and available unaffected family members were evaluated using whole exome sequencing. The primary outcome was to identify rare occurring variants among affected individuals and investigate the evidence of their genetic heterogeneity. These results were compared with exome sequencing analysis to build a comprehensive genetic profile of the study families. RESULTS We observed 60 variants from 58 genes in 53 patients diagnosed with strabismus. We prioritized the most credible risk variants, which showed clear segregation in family members affected by strabismus. As a result, we found risk variants in four genes (FAT3, KCNH2, CELSR1, and TTYH1) in five families, suggesting their role in development of familial strabismus. In other families, there were several rare genetic variants in affected cases, but we did not find clear segregation pattern across family members. CONCLUSION Genomic sequencing holds great promise in elucidating the genetic causes of strabismus; further research with larger cohorts or other related approaches are warranted.
Collapse
|
1212
|
Affiliation(s)
- Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich
| |
Collapse
|
1213
|
Dysfunction of NMDA receptors in neuronal models of an autism spectrum disorder patient with a DSCAM mutation and in Dscam-knockout mice. Mol Psychiatry 2021; 26:7538-7549. [PMID: 34253863 PMCID: PMC8873012 DOI: 10.1038/s41380-021-01216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heterogeneity in the etiopathology of autism spectrum disorders (ASD) limits the development of generic remedies, requires individualistic and patient-specific research. Recent progress in human-induced pluripotent stem cell (iPSC) technology provides a novel platform for modeling ASDs for studying complex neuronal phenotypes. In this study, we generated telencephalic induced neuronal (iN) cells from iPSCs derived from an ASD patient with a heterozygous point mutation in the DSCAM gene. The mRNA of DSCAM and the density of DSCAM in dendrites were significantly decreased in ASD compared to control iN cells. RNA sequencing analysis revealed that several synaptic function-related genes including NMDA receptor subunits were downregulated in ASD iN cells. Moreover, NMDA receptor (R)-mediated currents were significantly reduced in ASD compared to control iN cells. Normal NMDA-R-mediated current levels were rescued by expressing wild-type DSCAM in ASD iN cells, and reduced currents were observed by truncated DSCAM expression in control iN cells. shRNA-mediated DSCAM knockdown in control iN cells resulted in the downregulation of an NMDA-R subunit, which was rescued by the overexpression of shRNA-resistant DSCAM. Furthermore, DSCAM was co-localized with NMDA-R components in the dendritic spines of iN cells whereas their co-localizations were significantly reduced in ASD iN cells. Levels of phospho-ERK1/2 were significantly lower in ASD iN cells, suggesting a potential mechanism. A neural stem cell-specific Dscam heterozygous knockout mouse model, showing deficits in social interaction and social memory with reduced NMDA-R currents. These data suggest that DSCAM mutation causes pathological symptoms of ASD by dysregulating NMDA-R function.
Collapse
|
1214
|
Chiola S, Napan KL, Wang Y, Lazarenko RM, Armstrong CJ, Cui J, Shcheglovitov A. Defective AMPA-mediated synaptic transmission and morphology in human neurons with hemizygous SHANK3 deletion engrafted in mouse prefrontal cortex. Mol Psychiatry 2021; 26:4670-4686. [PMID: 33558651 PMCID: PMC8349370 DOI: 10.1038/s41380-021-01023-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
Genetic abnormalities in synaptic proteins are common in individuals with autism; however, our understanding of the cellular and molecular mechanisms disrupted by these abnormalities is limited. SHANK3 is a postsynaptic scaffolding protein of excitatory synapses that has been found mutated or deleted in most patients with 22q13 deletion syndrome and about 2% of individuals with idiopathic autism and intellectual disability. Here, we generated CRISPR/Cas9-engineered human pluripotent stem cells (PSCs) with complete hemizygous SHANK3 deletion (SHANK3+/-), which is the most common genetic abnormality in patients, and investigated the synaptic and morphological properties of SHANK3-deficient PSC-derived cortical neurons engrafted in the mouse prefrontal cortex. We show that human PSC-derived neurons integrate into the mouse cortex by acquiring appropriate cortical layer identities and by receiving and sending anatomical projections from/to multiple different brain regions. We also demonstrate that SHANK3-deficient human neurons have reduced AMPA-, but not NMDA- or GABA-mediated synaptic transmission and exhibit impaired dendritic arbors and spines, as compared to isogenic control neurons co-engrafted in the same brain region. Together, this study reveals specific synaptic and morphological deficits caused by SHANK3 hemizygosity in human cortical neurons at different developmental stages under physiological conditions and validates the use of co-engrafted control and mutant human neurons as a new platform for studying connectivity deficits in genetic neurodevelopmental disorders associated with autism.
Collapse
Affiliation(s)
- Simone Chiola
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Kandy L. Napan
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Yueqi Wang
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Neuroscience Graduate Program, University of Utah, Salt Lake City, UT USA
| | - Roman M. Lazarenko
- grid.152326.10000 0001 2264 7217Departments of Pharmacology, Vanderbilt University, Nashville, TN USA
| | - Celeste J. Armstrong
- grid.223827.e0000 0001 2193 0096Departments of Neurobiology, University of Utah, Salt Lake City, UT USA
| | - Jun Cui
- grid.41891.350000 0001 2156 6108Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT USA
| | - Aleksandr Shcheglovitov
- Departments of Neurobiology, University of Utah, Salt Lake City, UT, USA. .,Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA. .,Department of Adult Psychiatry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
1215
|
Lv N, Wang Y, Zhao M, Dong L, Wei H. The Role of PAX2 in Neurodevelopment and Disease. Neuropsychiatr Dis Treat 2021; 17:3559-3567. [PMID: 34908837 PMCID: PMC8665868 DOI: 10.2147/ndt.s332747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
In developmental biology, transcription factors are involved in regulating the process of neural development, controlling the differentiation of nerve cells, and affecting the normal functioning of neural circuits. Transcription factors regulate the expression of multiple genes at the same time and have become a key gene category that is recognized to be disrupted in neurodevelopmental disorders such as autism spectrum disorders. This paper briefly introduces the expression and role of PAX2 in neurodevelopment and discusses the neurodevelopmental disorders associated with Pax2 mutations and its possible mechanism. Firstly, mutations in the human Pax2 gene are associated with abnormalities in multiple systems which can result in neurodevelopmental disorders such as intellectual disability, epilepsy and autism spectrum disorders. Secondly, the structure of Pax2 gene and PAX2 protein, as well as the function of Pax2 gene in neural development, was discussed. Finally, a diagram of the PAX2 protein regulatory network was made and a possible molecular mechanism of Pax2 mutations leading to neurodevelopmental disorders from the perspectives of developmental process and protein function was proposed.
Collapse
Affiliation(s)
- Na Lv
- Department of Physiology, Basic Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
1216
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
1217
|
PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology 2021; 46:70-85. [PMID: 32659782 PMCID: PMC7689467 DOI: 10.1038/s41386-020-0763-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Crucial decisions involving cell fate and connectivity that shape the distinctive development of the human brain occur in the embryonic and fetal stages-stages that are difficult to access and investigate in humans. The last decade has seen an impressive increase in resources-from atlases and databases to biological models-that is progressively lifting the curtain on this critical period. In this review, we describe the current state of genomic, transcriptomic, and epigenomic datasets charting the development of normal human brain with a particular focus on recent single-cell technologies. We discuss the emergence of brain organoids generated from pluripotent stem cells as a model to compensate for the limited availability of fetal tissue. Indeed, comparisons of neural lineages, transcriptional dynamics, and noncoding element activity between fetal brain and organoids have helped identify gene regulatory networks functioning at early stages of brain development. Altogether, we argue that large multi-omics investigations have pushed brain development into the "big data" era, and that current and future transversal approaches needed to leverage both fetal brain and organoid resources promise to answer major questions of brain biology and psychiatry.
Collapse
|
1218
|
Mulvey B, Lagunas T, Dougherty JD. Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. Biol Psychiatry 2021; 89:76-89. [PMID: 32843144 PMCID: PMC7938388 DOI: 10.1016/j.biopsych.2020.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Neuropsychiatric phenotypes have long been known to be influenced by heritable risk factors, directly confirmed by the past decade of genetic studies that have revealed specific genetic variants enriched in disease cohorts. However, the initial hope that a small set of genes would be responsible for a given disorder proved false. The more complex reality is that a given disorder may be influenced by myriad small-effect noncoding variants and/or by rare but severe coding variants, many de novo. Noncoding genomic sequences-for which molecular functions cannot usually be inferred-harbor a large portion of these variants, creating a substantial barrier to understanding higher-order molecular and biological systems of disease. Fortunately, novel genetic technologies-scalable oligonucleotide synthesis, RNA sequencing, and CRISPR (clustered regularly interspaced short palindromic repeats)-have opened novel avenues to experimentally identify biologically significant variants en masse. Massively parallel reporter assays (MPRAs) are an especially versatile technique resulting from such innovations. MPRAs are powerful molecular genetics tools that can be used to screen thousands of untranscribed or untranslated sequences and their variants for functional effects in a single experiment. This approach, though underutilized in psychiatric genetics, has several useful features for the field. We review methods for assaying putatively functional genetic variants and regions, emphasizing MPRAs and the opportunities they hold for dissection of psychiatric polygenicity. We discuss literature applying functional assays in neurogenetics, highlighting strengths, caveats, and design considerations-especially regarding disease-relevant variables (cell type, neurodevelopment, and sex), and we ultimately propose applications of MPRA to both computational and experimental neurogenetics of polygenic disease risk.
Collapse
Affiliation(s)
- Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomás Lagunas
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
1219
|
Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry 2021; 12:734837. [PMID: 34744824 PMCID: PMC8568770 DOI: 10.3389/fpsyt.2021.734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and characterized by early childhood-onset impairments in social interaction and communication, restricted and repetitive patterns of behavior or interests. So far there is no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic and epigenetic factors have been considered to be the main cause of ASD. It is known that endocannabinoid and its receptors are widely distributed in the central nervous system, and provide a positive and irreversible change toward a more physiological neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to participate in the regulation of social reward behavior, which has attracted considerable attention from neuroscientists and neurologists. Both animal models and clinical studies have shown that the ECS is a potential target for the treatment of autism, but the mechanism is still unknown. In the brain, microglia express a complete ECS signaling system. Studies also have shown that modulating ECS signaling can regulate the functions of microglia. By comprehensively reviewing previous studies and combining with our recent work, this review addresses the effects of targeting ECS on microglia, and how this can contribute to maintain the positivity of the central nervous system, and thus improve the symptoms of autism. This will provide insights for revealing the mechanism and developing new treatment strategies for autism.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Qiang Li
- Exchange, Development and Service Center for Science and Technology Talents, The Ministry of Science and Technology, Beijing, China
| | - Jiacai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lei Pei
- Collaborative Innovation Center for Brain Science, The Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
1220
|
Enriquez KD, Gupta AR, Hoffman EJ. Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Front Psychiatry 2021; 12:716673. [PMID: 34690830 PMCID: PMC8531220 DOI: 10.3389/fpsyt.2021.716673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders associated with deficits in social communication and restrictive, repetitive patterns of behavior, that affect up to 1 in 54 children. ASDs clearly demonstrate a male bias, occurring ~4 times more frequently in males than females, though the basis for this male predominance is not well-understood. In recent years, ASD risk gene discovery has accelerated, with many whole-exome sequencing studies identifying genes that converge on common pathways, such as neuronal communication and regulation of gene expression. ASD genetics studies have suggested that there may be a "female protective effect," such that females may have a higher threshold for ASD risk, yet its etiology is not well-understood. Here, we review common biological pathways implicated by ASD genetics studies as well as recent analyses of sex differential processes in ASD using imaging genomics, transcriptomics, and animal models. Additionally, we discuss recent investigations of ASD risk genes that have suggested a potential role for estrogens as modulators of biological pathways in ASD, and highlight relevant molecular and cellular pathways downstream of estrogen signaling as potential avenues for further investigation.
Collapse
Affiliation(s)
- Kristen D Enriquez
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Abha R Gupta
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Ellen J Hoffman
- Program on Neurogenetics, Child Study Center, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
1221
|
Searles Quick VB, Wang B, State MW. Leveraging large genomic datasets to illuminate the pathobiology of autism spectrum disorders. Neuropsychopharmacology 2021; 46:55-69. [PMID: 32668441 PMCID: PMC7688655 DOI: 10.1038/s41386-020-0768-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
"Big data" approaches in the form of large-scale human genomic studies have led to striking advances in autism spectrum disorder (ASD) genetics. Similar to many other psychiatric syndromes, advances in genotyping technology, allowing for inexpensive genome-wide assays, has confirmed the contribution of polygenic inheritance involving common alleles of small effect, a handful of which have now been definitively identified. However, the past decade of gene discovery in ASD has been most notable for the application, in large family-based cohorts, of high-density microarray studies of submicroscopic chromosomal structure as well as high-throughput DNA sequencing-leading to the identification of an increasingly long list of risk regions and genes disrupted by rare, de novo germline mutations of large effect. This genomic architecture offers particular advantages for the illumination of biological mechanisms but also presents distinctive challenges. While the tremendous locus heterogeneity and functional pleiotropy associated with the more than 100 identified ASD-risk genes and regions is daunting, a growing armamentarium of comprehensive, large, foundational -omics databases, across species and capturing developmental trajectories, are increasingly contributing to a deeper understanding of ASD pathology.
Collapse
Affiliation(s)
- Veronica B Searles Quick
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
1222
|
Chew L, Sun KL, Sun W, Wang Z, Rajadas J, Flores RE, Arnold E, Jo B, Fung LK. Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology 2021; 123:105039. [PMID: 33161257 PMCID: PMC8428554 DOI: 10.1016/j.psyneuen.2020.105039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) has been associated with imbalance between excitatory and inhibitory (E/I) neurotransmission systems, as well as with neuroinflammation. Sitting at the crossroads between E/I imbalance and neuroinflammation is a class of endogenous hormones known as neurosteroids. Current literature points to dysregulated steroid metabolism and atypical neurosteroid levels in ASD as early as in utero. However, due to the complexity of neurosteroid metabolomics, including possible sex differences, the impact of neurosteroids on ASD symptomatology remains unclear. In this study, we assessed neurosteroid levels and ASD symptom severity of 21 males with ASD and 20 full-scale-IQ-matched typically developing (TD) males, all aged 18-39. Using liquid chromatography-tandem mass spectrometry, concentrations of allopregnanolone, cortisol, dehydroepiandrosterone, progesterone, and testosterone were measured in saliva and serum. With the exception of cortisol's, all neurosteroids' concentrations were found to have ASD vs. TD group differences in distribution, where one group was normally distributed and the other non-normally distributed. Serum allopregnanolone levels in males with ASD were found to negatively correlate with clinician-rated measures of restricted and repetitive behavior measures (ADOS-2 RRB and ADI-R RRSB domain scores). Additionally, lower serum allopregnanolone levels were found to predict more negative camouflaging scores, which represent greater differences in self- and clinician-rated symptom severity, of both ASD symptomatology overall and repetitive behaviors in particular. Taken together, our findings demonstrate that in adult males with ASD, decreased serum allopregnanolone levels are associated with more severe restricted and repetitive behaviors and with less insight into the severity of these behaviors.
Collapse
Affiliation(s)
- Leila Chew
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Kevin L Sun
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Wenchao Sun
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Zhe Wang
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Jayakumar Rajadas
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Ryan E Flores
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Emily Arnold
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA.
| |
Collapse
|
1223
|
Nomura S. Single-cell genomics to understand disease pathogenesis. J Hum Genet 2021; 66:75-84. [PMID: 32951011 PMCID: PMC7728598 DOI: 10.1038/s10038-020-00844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023]
Abstract
Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics for the understanding of disease pathogenesis and discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
1224
|
Abstract
Recent progress in the identification of genes and genomic regions contributing to autism spectrum disorder (ASD) has had a broad impact on our understanding of the nature of genetic risk for a range of psychiatric disorders, on our understanding of ASD biology, and on defining the key challenges now facing the field in efforts to translate gene discovery into an actionable understanding of pathology. While these advances have not yet had a transformative impact on clinical practice, there is nonetheless cause for real optimism: reliable lists of risk genes are large and growing rapidly; the identified encoded proteins have already begun to point to a relatively small number of areas of biology, where parallel advances in neuroscience and functional genomics are yielding profound insights; there is strong evidence pointing to mid-fetal prefrontal cortical development as one nexus of vulnerability for some of the largest-effect ASD risk genes; and there are multiple plausible paths forward toward rational therapeutics development that, while admittedly challenging, constitute fundamental departures from what was possible prior to the era of successful gene discovery.
Collapse
Affiliation(s)
- Devanand S Manoli
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, Neuroscience Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
1225
|
Hernandez LM, Kim M, Hoftman GD, Haney JR, de la Torre-Ubieta L, Pasaniuc B, Gandal MJ. Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biol Psychiatry 2021; 89:54-64. [PMID: 32792264 PMCID: PMC7718368 DOI: 10.1016/j.biopsych.2020.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, large-scale genetic studies have successfully identified hundreds of genetic variants robustly associated with risk for psychiatric disorders. However, mechanistic insight and clinical translation continue to lag the pace of risk variant identification, hindered by the sheer number of targets and their predominant noncoding localization, as well as pervasive pleiotropy and incomplete penetrance. Successful next steps require identification of "causal" genetic variants and their proximal biological consequences; placing variants within biologically defined functional contexts, reflecting specific molecular pathways, cell types, circuits, and developmental windows; and characterizing the downstream, convergent neurobiological impact of polygenicity within an individual. Here, we discuss opportunities and challenges of high-throughput transcriptomic profiling in the human brain, and how transcriptomic approaches can help pinpoint mechanisms underlying genetic risk for psychiatric disorders at a scale necessary to tackle daunting levels of polygenicity. These include transcriptome-wide association studies for risk gene prioritization through integration of genome-wide association studies with expression quantitative trait loci. We outline transcriptomic results that inform our understanding of the brain-level molecular pathology of psychiatric disorders, including autism spectrum disorder, bipolar disorder, major depressive disorder, and schizophrenia. Finally, we discuss systems-level approaches for integration of distinct genetic, genomic, and phenotypic levels, including combining spatially resolved gene expression and human neuroimaging maps. Results highlight the importance of understanding gene expression (dys)regulation across human brain development as a major contributor to psychiatric disease pathogenesis, from common variants acting as expression quantitative trait loci to rare variants enriched for gene expression regulatory pathways.
Collapse
Affiliation(s)
- Leanna M Hernandez
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Minsoo Kim
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gil D Hoftman
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jillian R Haney
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Luis de la Torre-Ubieta
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Bogdan Pasaniuc
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael J Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
1226
|
Douard E, Zeribi A, Schramm C, Tamer P, Loum MA, Nowak S, Saci Z, Lord MP, Rodríguez-Herreros B, Jean-Louis M, Moreau C, Loth E, Schumann G, Pausova Z, Elsabbagh M, Almasy L, Glahn DC, Bourgeron T, Labbe A, Paus T, Mottron L, Greenwood CMT, Huguet G, Jacquemont S. Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome. Am J Psychiatry 2021; 178:87-98. [PMID: 32911998 PMCID: PMC8931740 DOI: 10.1176/appi.ajp.2020.19080834] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deleterious copy number variants (CNVs) are identified in up to 20% of individuals with autism. However, levels of autism risk conferred by most rare CNVs remain unknown. The authors recently developed statistical models to estimate the effect size on IQ of all CNVs, including undocumented ones. In this study, the authors extended this model to autism susceptibility. METHODS The authors identified CNVs in two autism populations (Simons Simplex Collection and MSSNG) and two unselected populations (IMAGEN and Saguenay Youth Study). Statistical models were used to test nine quantitative variables associated with genes encompassed in CNVs to explain their effects on IQ, autism susceptibility, and behavioral domains. RESULTS The "probability of being loss-of-function intolerant" (pLI) best explains the effect of CNVs on IQ and autism risk. Deleting 1 point of pLI decreases IQ by 2.6 points in autism and unselected populations. The effect of duplications on IQ is threefold smaller. Autism susceptibility increases when deleting or duplicating any point of pLI. This is true for individuals with high or low IQ and after removing de novo and known recurrent neuropsychiatric CNVs. When CNV effects on IQ are accounted for, autism susceptibility remains mostly unchanged for duplications but decreases for deletions. Model estimates for autism risk overlap with previously published observations. Deletions and duplications differentially affect social communication, behavior, and phonological memory, whereas both equally affect motor skills. CONCLUSIONS Autism risk conferred by duplications is less influenced by IQ compared with deletions. The model applied in this study, trained on CNVs encompassing >4,500 genes, suggests highly polygenic properties of gene dosage with respect to autism risk and IQ loss. These models will help to interpret CNVs identified in the clinic.
Collapse
Affiliation(s)
- Elise Douard
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Abderrahim Zeribi
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Catherine Schramm
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Petra Tamer
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Mor Absa Loum
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sabrina Nowak
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Zohra Saci
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Marie-Pier Lord
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Borja Rodríguez-Herreros
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
- Sensory-Motor Laboratory, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Clara Moreau
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Gunter Schumann
- Center for Population Neuroscience and Stratified Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mayada Elsabbagh
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Pennsylvania, United States
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Pennsylvania, United States
| | - David C. Glahn
- Departments of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Aurélie Labbe
- Département de Sciences de la Décision, HEC Montreal, Montreal, Quebec, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Mottron
- Centre de Recherche de CIUSSS-NIM, Montreal, Quebec, Canada
- Département de Psychiatrie, Université de Montréal, Montreal, Quebec, Canada
| | - Célia M. T. Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sébastien Jacquemont
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|
1227
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
1228
|
Liu Z, Mao X, Dan Z, Pei Y, Xu R, Guo M, Liu K, Zhang F, Chen J, Su C, Zhuang Y, Tang J, Xia Y, Qin L, Hu Z, Liu X. Gene variations in autism spectrum disorder are associated with alteration of gut microbiota, metabolites and cytokines. Gut Microbes 2021; 13:1-16. [PMID: 33412999 PMCID: PMC7808426 DOI: 10.1080/19490976.2020.1854967] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023] Open
Abstract
The genetic variations and dysbiosis of gut microbiota are associated with ASD. However, the role of the microbiota in the etiology of ASD in terms of host genetic susceptibility remains unclear. This study aims to systematically explore the interplay between host genetic variation and gut microbiota in ASD children. Whole-exon sequencing was applied to 26 ASD children and 26 matched controls to identify the single nucleotide variations (SNVs) in ASD. Our previous study revealed alteration in gut microbiota and disorder of metabolism activity in ASD for this cohort. Systematic bioinformatic analyses were further performed to identify associations between SNVs and gut microbiota, as well as their metabolites. The ASD SNVs were significantly enriched in genes associated with innate immune response, protein glycosylation process, and retrograde axonal transport. These SNVs were also correlated with the microbiome composition and a broad aspect of microbial functions, especially metabolism. Additionally, the abundance of metabolites involved in the metabolic network of neurotransmitters was inferred to be causally related to specific SNVs and microbes. Furthermore, our data suggested that the interaction of host genetics and gut microbes may play a crucial role in the immune and metabolism homeostasis of ASD. This study may provide valuable clues to investigate the interaction of host genetic variations and gut microbiota in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Zhou Dan
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Yang Pei
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Mengchen Guo
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Kangjian Liu
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Faming Zhang
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| | - Junyu Chen
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chuan Su
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yaoyao Zhuang
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Junming Tang
- Department of Clinical Laboratory, Affiliated Yixing People’s Hospital, Jiangsu University, Wuxi, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Lianhong Qin
- Children Growth Center of Bo’ai Homestead in Yixing, Yixing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
- Key Laboratory of Holistic Integrative Enterology, Second Affiliated Hospital of Nanjing Medical University, Najing, China
| |
Collapse
|
1229
|
FOXP1 negatively regulates intrinsic excitability in D2 striatal projection neurons by promoting inwardly rectifying and leak potassium currents. Mol Psychiatry 2021; 26:1761-1774. [PMID: 33402705 PMCID: PMC8255328 DOI: 10.1038/s41380-020-00995-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/18/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023]
Abstract
Heterozygous loss-of-function mutations in the transcription factor FOXP1 are strongly associated with autism. Dopamine receptor 2 expressing (D2) striatal projection neurons (SPNs) in heterozygous Foxp1 (Foxp1+/-) mice have higher intrinsic excitability. To understand the mechanisms underlying this alteration, we examined SPNs with cell-type specific homozygous Foxp1 deletion to study cell-autonomous regulation by Foxp1. As in Foxp1+/- mice, D2 SPNs had increased intrinsic excitability with homozygous Foxp1 deletion. This effect involved postnatal mechanisms. The hyperexcitability was mainly due to down-regulation of two classes of potassium currents: inwardly rectifying (KIR) and leak (KLeak). Single-cell RNA sequencing data from D2 SPNs with Foxp1 deletion indicated the down-regulation of transcripts of candidate ion channels that may underlie these currents: Kcnj2 and Kcnj4 for KIR and Kcnk2 for KLeak. This Foxp1-dependent regulation was neuron-type specific since these same currents and transcripts were either unchanged, or very little changed, in D1 SPNs with cell-specific Foxp1 deletion. Our data are consistent with a model where FOXP1 negatively regulates the excitability of D2 SPNs through KIR and KLeak by transcriptionally activating their corresponding transcripts. This, in turn, provides a novel example of how a transcription factor may regulate multiple genes to impact neuronal electrophysiological function that depends on the integration of multiple current types - and do this in a cell-specific fashion. Our findings provide initial clues to altered neuronal function and possible therapeutic strategies not only for FOXP1-associated autism but also for other autism forms associated with transcription factor dysfunction.
Collapse
|
1230
|
Sarovic D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front Psychiatry 2021; 12:767075. [PMID: 34867553 PMCID: PMC8637925 DOI: 10.3389/fpsyt.2021.767075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
This paper presents a unifying theory for autism by applying the framework of a pathogenetic triad to the scientific literature. It proposes a deconstruction of autism into three contributing features (an autistic personality dimension, cognitive compensation, and neuropathological risk factors), and delineates how they interact to cause a maladaptive behavioral phenotype that may require a clinical diagnosis. The autistic personality represents a common core condition, which induces a set of behavioral issues when pronounced. These issues are compensated for by cognitive mechanisms, allowing the individual to remain adaptive and functional. Risk factors, both exogenous and endogenous ones, show pathophysiological convergence through their negative effects on neurodevelopment. This secondarily affects cognitive compensation, which disinhibits a maladaptive behavioral phenotype. The triad is operationalized and methods for quantification are presented. With respect to the breadth of findings in the literature that it can incorporate, it is the most comprehensive model yet for autism. Its main implications are that (1) it presents the broader autism phenotype as a non-pathological core personality domain, which is shared across the population and uncoupled from associated features such as low cognitive ability and immune dysfunction, (2) it proposes that common genetic variants underly the personality domain, and that rare variants act as risk factors through negative effects on neurodevelopment, (3) it outlines a common pathophysiological mechanism, through inhibition of neurodevelopment and cognitive dysfunction, by which a wide range of endogenous and exogenous risk factors lead to autism, and (4) it suggests that contributing risk factors, and findings of immune and autonomic dysfunction are clinically ascertained rather than part of the core autism construct.
Collapse
Affiliation(s)
- Darko Sarovic
- Gillberg Neuropsychiatry Centre, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.,MedTech West, Gothenburg, Sweden
| |
Collapse
|
1231
|
Zhao X, Chen J, Xiao P, Feng J, Nie Q, Zhao XM. Identifying age-specific gene signatures of the human cerebral cortex with joint analysis of transcriptomes and functional connectomes. Brief Bioinform 2020; 22:6048938. [PMID: 33367491 DOI: 10.1093/bib/bbaa388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
The human cerebral cortex undergoes profound structural and functional dynamic variations across the lifespan, whereas the underlying molecular mechanisms remain unclear. Here, with a novel method transcriptome-connectome correlation analysis (TCA), which integrates the brain functional magnetic resonance images and region-specific transcriptomes, we identify age-specific cortex (ASC) gene signatures for adolescence, early adulthood and late adulthood. The ASC gene signatures are significantly correlated with the cortical thickness (P-value <2.00e-3) and myelination (P-value <1.00e-3), two key brain structural features that vary in accordance with brain development. In addition to the molecular underpinning of age-related brain functions, the ASC gene signatures allow delineation of the molecular mechanisms of neuropsychiatric disorders, such as the regulation between ARNT2 and its target gene ETF1 involved in Schizophrenia. We further validate the ASC gene signatures with published gene sets associated with the adult cortex, and confirm the robustness of TCA on other brain image datasets. Availability: All scripts are written in R. Scripts for the TCA method and related statistics result can be freely accessed at https://github.com/Soulnature/TCA. Additional data related to this paper may be requested from the authors.
Collapse
Affiliation(s)
- Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Peipei Xiao
- Department of Electronic and Information Engineering, Tongji University, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Qing Nie
- Department of Biomedical Engineering, University of California, Irvine, USA
| | - Xing-Ming Zhao
- ISTBI, RIICS, Fudan University, and MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and Frontiers Center for Brain Science, China
| |
Collapse
|
1232
|
Xie J, Wettschurack K, Yuan C. Review: In vitro Cell Platform for Understanding Developmental Toxicity. Front Genet 2020; 11:623117. [PMID: 33424939 PMCID: PMC7785584 DOI: 10.3389/fgene.2020.623117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/30/2022] Open
Abstract
Developmental toxicity and its affiliation to long-term health, particularly neurodegenerative disease (ND) has attracted significant attentions in recent years. There is, however, a significant gap in current models to track longitudinal changes arising from developmental toxicity. The advent of induced pluripotent stem cell (iPSC) derived neuronal culture has allowed for more complex and functionally active in vitro neuronal models. Coupled with recent progress in the detection of ND biomarkers, we are equipped with promising new tools to understand neurotoxicity arising from developmental exposure. This review provides a brief overview of current progress in neuronal culture derived from iPSC and in ND markers.
Collapse
Affiliation(s)
- Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kyle Wettschurack
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
1233
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
1234
|
Brkić D, Ng-Cordell E, O'Brien S, Scerif G, Astle D, Baker K. Gene functional networks and autism spectrum characteristics in young people with intellectual disability: a dimensional phenotyping study. Mol Autism 2020; 11:98. [PMID: 33308299 PMCID: PMC7731560 DOI: 10.1186/s13229-020-00403-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The relationships between specific genetic aetiology and phenotype in neurodevelopmental disorders are complex and hotly contested. Genes associated with intellectual disability (ID) can be grouped into networks according to gene function. This study explored whether individuals with ID show differences in autism spectrum characteristics (ASC), depending on the functional network membership of their rare, pathogenic de novo genetic variants. METHODS Children and young people with ID of known genetic origin were allocated to two broad functional network groups: synaptic physiology (n = 29) or chromatin regulation (n = 23). We applied principle components analysis to the Social Responsiveness Scale to map the structure of ASC in this population and identified three components-Inflexibility, Social Understanding and Social Motivation. We then used Akaike information criterion to test the best fitting models for predicting ASC components, including demographic factors (age, gender), non-ASC behavioural factors (global adaptive function, anxiety, hyperactivity, inattention), and gene functional networks. RESULTS We found that, when other factors are accounted for, the chromatin regulation group showed higher levels of Inflexibility. We also observed contrasting predictors of ASC within each network group. Within the chromatin regulation group, Social Understanding was associated with inattention, and Social Motivation was predicted by hyperactivity. Within the synaptic group, Social Understanding was associated with hyperactivity, and Social Motivation was linked to anxiety. LIMITATIONS Functional network definitions were manually curated based on multiple sources of evidence, but a data-driven approach to classification may be more robust. Sample sizes for rare genetic diagnoses remain small, mitigated by our network-based approach to group comparisons. This is a cross-sectional study across a wide age range, and longitudinal data within focused age groups will be informative of developmental trajectories across network groups. CONCLUSION We report that gene functional networks can predict Inflexibility, but not other ASC dimensions. Contrasting behavioural associations within each group suggest network-specific developmental pathways from genomic variation to autism. Simple classification of neurodevelopmental disorder genes as high risk or low risk for autism is unlikely to be valid or useful.
Collapse
Affiliation(s)
- Diandra Brkić
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Sinéad O'Brien
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK
| | - Duncan Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| |
Collapse
|
1235
|
Kimura H, Mori D, Aleksic B, Ozaki N. Elucidation of molecular pathogenesis and drug development for psychiatric disorders from rare disease-susceptibility variants. Neurosci Res 2020; 170:24-31. [PMID: 33316300 DOI: 10.1016/j.neures.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Recent rapid progress in genome analysis and large-scale consortia has made it possible to discover variants with a variety of allele frequencies and effect sizes associated with psychiatric disorders. Among psychiatric disorder-susceptibility variants, rare variants with large effect sizes detected by sequencing analysis or array comparative genomic hybridization would be particularly useful for elucidating pathophysiology by developing disease models, such as genome-edited mouse or induced pluripotent stem cells. In the last decade, investigations of rare variants with large effect size have revealed an important role of neurodevelopment in the pathogenesis of psychiatric disorders. In future research, integration of recent evidence concerning the contribution of the immune system or gut microbiota will enhance our understanding of psychiatric disorders and facilitate novel drug development.
Collapse
Affiliation(s)
- Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain & Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
1236
|
Mizuno S, Hirota JN, Ishii C, Iwasaki H, Sano Y, Furuichi T. Comprehensive Profiling of Gene Expression in the Cerebral Cortex and Striatum of BTBRTF/ArtRbrc Mice Compared to C57BL/6J Mice. Front Cell Neurosci 2020; 14:595607. [PMID: 33362469 PMCID: PMC7758463 DOI: 10.3389/fncel.2020.595607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Mouse line BTBR T+ Iptr3tf/J (hereafter referred as to BTBR/J) is a mouse strain that shows lower sociability compared to the C57BL/6J mouse strain (B6) and thus is often utilized as a model for autism spectrum disorder (ASD). In this study, we utilized another subline, BTBRTF/ArtRbrc (hereafter referred as to BTBR/R), and analyzed the associated brain transcriptome compared to B6 mice using microarray analysis, quantitative RT-PCR analysis, various bioinformatics analyses, and in situ hybridization. We focused on the cerebral cortex and the striatum, both of which are thought to be brain circuits associated with ASD symptoms. The transcriptome profiling identified 1,280 differentially expressed genes (DEGs; 974 downregulated and 306 upregulated genes, including 498 non-coding RNAs [ncRNAs]) in BTBR/R mice compared to B6 mice. Among these DEGs, 53 genes were consistent with ASD-related genes already established. Gene Ontology (GO) enrichment analysis highlighted 78 annotations (GO terms) including DNA/chromatin regulation, transcriptional/translational regulation, intercellular signaling, metabolism, immune signaling, and neurotransmitter/synaptic transmission-related terms. RNA interaction analysis revealed novel RNA–RNA networks, including 227 ASD-related genes. Weighted correlation network analysis highlighted 10 enriched modules including DNA/chromatin regulation, neurotransmitter/synaptic transmission, and transcriptional/translational regulation. Finally, the behavioral analyses showed that, compared to B6 mice, BTBR/R mice have mild but significant deficits in social novelty recognition and repetitive behavior. In addition, the BTBR/R data were comprehensively compared with those reported in the previous studies of human subjects with ASD as well as ASD animal models, including BTBR/J mice. Our results allow us to propose potentially important genes, ncRNAs, and RNA interactions. Analysis of the altered brain transcriptome data of the BTBR/R and BTBR/J sublines can contribute to the understanding of the genetic underpinnings of autism susceptibility.
Collapse
Affiliation(s)
- Shota Mizuno
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Jun-Na Hirota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
1237
|
Emberti Gialloreti L, Enea R, Di Micco V, Di Giovanni D, Curatolo P. Clustering Analysis Supports the Detection of Biological Processes Related to Autism Spectrum Disorder. Genes (Basel) 2020; 11:genes11121476. [PMID: 33316975 PMCID: PMC7763205 DOI: 10.3390/genes11121476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Genome sequencing has identified a large number of putative autism spectrum disorder (ASD) risk genes, revealing possible disrupted biological pathways; however, the genetic and environmental underpinnings of ASD remain mostly unanswered. The presented methodology aimed to identify genetically related clusters of ASD individuals. By using the VariCarta dataset, which contains data retrieved from 13,069 people with ASD, we compared patients pairwise to build “patient similarity matrices”. Hierarchical-agglomerative-clustering and heatmapping were performed, followed by enrichment analysis (EA). We analyzed whole-genome sequencing retrieved from 2062 individuals, and isolated 11,609 genetic variants shared by at least two people. The analysis yielded three clusters, composed, respectively, by 574 (27.8%), 507 (24.6%), and 650 (31.5%) individuals. Overall, 4187 variants (36.1%) were common to the three clusters. The EA revealed that the biological processes related to the shared genetic variants were mainly involved in neuron projection guidance and morphogenesis, cell junctions, synapse assembly, and in observational, imitative, and vocal learning. The study highlighted genetic networks, which were more frequent in a sample of people with ASD, compared to the overall population. We suggest that itemizing not only single variants, but also gene networks, might support ASD etiopathology research. Future work on larger databases will have to ascertain the reproducibility of this methodology.
Collapse
Affiliation(s)
- Leonardo Emberti Gialloreti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Roberto Enea
- IMME Research Centre, Via Giotto 43, 81100 Caserta, Italy;
| | - Valentina Di Micco
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (V.D.M.); (P.C.)
| | - Daniele Di Giovanni
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy;
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (V.D.M.); (P.C.)
| |
Collapse
|
1238
|
Kato H, Kushima I, Mori D, Yoshimi A, Aleksic B, Nawa Y, Toyama M, Furuta S, Yu Y, Ishizuka K, Kimura H, Arioka Y, Tsujimura K, Morikawa M, Okada T, Inada T, Nakatochi M, Shinjo K, Kondo Y, Kaibuchi K, Funabiki Y, Kimura R, Suzuki T, Yamakawa K, Ikeda M, Iwata N, Takahashi T, Suzuki M, Okahisa Y, Takaki M, Egawa J, Someya T, Ozaki N. Rare genetic variants in the gene encoding histone lysine demethylase 4C (KDM4C) and their contributions to susceptibility to schizophrenia and autism spectrum disorder. Transl Psychiatry 2020; 10:421. [PMID: 33279929 PMCID: PMC7719193 DOI: 10.1038/s41398-020-01107-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Dysregulation of epigenetic processes involving histone methylation induces neurodevelopmental impairments and has been implicated in schizophrenia (SCZ) and autism spectrum disorder (ASD). Variants in the gene encoding lysine demethylase 4C (KDM4C) have been suggested to confer a risk for such disorders. However, rare genetic variants in KDM4C have not been fully evaluated, and the functional impact of the variants has not been studied using patient-derived cells. In this study, we conducted copy number variant (CNV) analysis in a Japanese sample set (2605 SCZ and 1141 ASD cases, and 2310 controls). We found evidence for significant associations between CNVs in KDM4C and SCZ (p = 0.003) and ASD (p = 0.04). We also observed a significant association between deletions in KDM4C and SCZ (corrected p = 0.04). Next, to explore the contribution of single nucleotide variants in KDM4C, we sequenced the coding exons in a second sample set (370 SCZ and 192 ASD cases) and detected 18 rare missense variants, including p.D160N within the JmjC domain of KDM4C. We, then, performed association analysis for p.D160N in a third sample set (1751 SCZ and 377 ASD cases, and 2276 controls), but did not find a statistical association with these disorders. Immunoblotting analysis using lymphoblastoid cell lines from a case with KDM4C deletion revealed reduced KDM4C protein expression and altered histone methylation patterns. In conclusion, this study strengthens the evidence for associations between KDM4C CNVs and these two disorders and for their potential functional effect on histone methylation patterns.
Collapse
Affiliation(s)
- Hidekazu Kato
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Daisuke Mori
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XBrain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Akira Yoshimi
- grid.259879.80000 0000 9075 4535Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Branko Aleksic
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Toyama
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yanjie Yu
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.437848.40000 0004 0569 8970Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Keita Tsujimura
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInnovative Research Unit for Developmental Disorders, Institute of Advanced Research, Nagoya University, Nagoya, Japan
| | - Mako Morikawa
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- grid.27476.300000 0001 0943 978XPublic Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- grid.27476.300000 0001 0943 978XDivision of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- grid.27476.300000 0001 0943 978XDivision of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- grid.27476.300000 0001 0943 978XDepartment of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuko Funabiki
- grid.258799.80000 0004 0372 2033Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Ryo Kimura
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimitsu Suzuki
- grid.260433.00000 0001 0728 1069Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan ,grid.474690.8Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuhiro Yamakawa
- grid.260433.00000 0001 0728 1069Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan ,grid.474690.8Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Masashi Ikeda
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- grid.256115.40000 0004 1761 798XDepartment of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tsutomu Takahashi
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- grid.267346.20000 0001 2171 836XDepartment of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan ,grid.267346.20000 0001 2171 836XResearch Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Okahisa
- grid.261356.50000 0001 1302 4472Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Manabu Takaki
- grid.261356.50000 0001 1302 4472Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Egawa
- grid.260975.f0000 0001 0671 5144Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiyuki Someya
- grid.260975.f0000 0001 0671 5144Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Norio Ozaki
- grid.27476.300000 0001 0943 978XDepartment of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
1239
|
Abstract
Researchers from the Autism Sequencing Consortium (ASC) led by Joseph Buxbaum at the Icahn School of Medicine at Mount Sinai report the largest exome sequencing study in autism spectrum disorder (ASD) to date.
Collapse
Affiliation(s)
- Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL.,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL.,Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL.,Center for Autism and Neurodevelopment, Northwestern University, Chicago, IL
| |
Collapse
|
1240
|
Doostparast Torshizi A, Ionita-Laza I, Wang K. Cell Type-Specific Annotation and Fine Mapping of Variants Associated With Brain Disorders. Front Genet 2020; 11:575928. [PMID: 33343624 PMCID: PMC7744805 DOI: 10.3389/fgene.2020.575928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Common genetic variants confer susceptibility to a large number of complex brain disorders. Given that such variants predominantly localize in non-coding regions of the human genome, there is a significant challenge to predict and characterize their functional consequences. More importantly, most available computational methods, generally defined as context-free methods, output prediction scores regarding the functionality of genetic variants irrespective of the context, i.e., the tissue or cell-type affected by a disease, limiting the ability to predict the functional consequences of common variants on brain disorders. In this study, we introduce a comparative multi-step pipeline to investigate the relative effectiveness of context-specific and context-free approaches to prioritize disease causal variants. As an experimental case, we focused on schizophrenia (SCZ), a debilitating neuropsychiatric disease for which a large number of susceptibility variants is identified from genome-wide association studies. We tested over two dozen available methods and examined potential associations between the cell/tissue-specific mapping scores and open chromatin accessibility, and provided a prioritized map of SCZ risk loci for in vitro or in-vivo functional analysis. We found extensive differences between context-free and tissue-specific approaches and showed how they may play complementary roles. As a proof of concept, we found a few sets of genes, through a consensus mapping of both categories, including FURIN to be among the top hits. We showed that the genetic variants in this gene and related genes collectively dysregulate gene expression patterns in stem cell-derived neurons and characterize SCZ phenotypic manifestations, while genes which were not shared among highly prioritized candidates in both approaches did not demonstrate such characteristics. In conclusion, by combining context-free and tissue-specific predictions, our pipeline enables prioritization of the most likely disease-causal common variants in complex brain disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
1241
|
Aida T, Feng G. The dawn of non-human primate models for neurodevelopmental disorders. Curr Opin Genet Dev 2020; 65:160-168. [PMID: 32693220 PMCID: PMC7955645 DOI: 10.1016/j.gde.2020.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Non-human primates (NHPs) have been proposed as good models for neurodevelopmental disorders due to close similarities to humans in terms of brain structure and cognitive function. The recent development of genome editing technologies has opened new avenues to generate and investigate genetically modified NHPs as models for human disorders. Here, we review the early successes of genetic NHP models for neurodevelopmental disorders and further discuss the technological challenges and opportunities to create next generation NHP models with more sophisticated genetic manipulation and faithful representations of the human genetic mutations. Taken together, the field is now poised to usher in a new era of research using genetically modified NHP models to empower a more rapid translation of basic research and maximize the preclinical potential for biomarker discovery and therapeutic development.
Collapse
Affiliation(s)
- Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
1242
|
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Autism is a neurodevelopmental condition with genetic heterogeneity. It is characterized by difficulties in reciprocal social interactions with strong repetitive behaviors and stereotyped interests. Copy number variations (CNVs) are genomic structural variations altering the genomic structure either by duplication or deletion. De novo or inherited CNVs are found in 5–10% of autistic subjects with a size range of few kilobases to several megabases. CNVs predispose humans to various diseases by altering gene regulation, generation of chimeric genes, and disruption of the coding region or through position effect. Although, CNVs are not the initiating event in pathogenesis; additional preceding mutations might be essential for disease manifestation. The present study is aimed to identify the primary CNVs responsible for autism susceptibility in healthy cohorts to sensitize secondary-hits. In the current investigation, primary-hit autism gene CNVs are characterized in 1715 healthy cohorts of varying ethnicities across 12 populations using Affymetrix high-resolution array study. Thirty-eight individuals from twelve families residing in Karnataka, India, with the age group of 13–73 years are included for the comparative CNV analysis. The findings are validated against global 179 autism whole-exome sequence datasets derived from Simons Simplex Collection. These datasets are deposited at the Simons Foundation Autism Research Initiative (SFARI) database.
Results
The study revealed that 34.8% of the subjects carried 2% primary-hit CNV burden with 73 singleton-autism genes in different clusters. Of these, three conserved CNV breakpoints were identified with ARHGAP11B, DUSP22, and CHRNA7 as the target genes across 12 populations. Enrichment analysis of the population-specific autism genes revealed two signaling pathways—calcium and mitogen-activated protein kinases (MAPK) in the CNV identified regions. These impaired pathways affected the downstream cascades of neuronal function and physiology, leading to autism behavior. The pathway analysis of enriched genes unravelled complex protein interaction networks, which sensitized secondary sites for autism. Further, the identification of miRNA targets associated with autism gene CNVs added severity to the condition.
Conclusion
These findings contribute to an atlas of primary-hit genes to detect autism susceptibility in healthy cohorts, indicating their impact on secondary sites for manifestation.
Collapse
|
1243
|
Spiess K, Won H. Regulatory landscape in brain development and disease. Curr Opin Genet Dev 2020; 65:53-60. [PMID: 32563855 PMCID: PMC7746596 DOI: 10.1016/j.gde.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/06/2020] [Accepted: 05/01/2020] [Indexed: 01/16/2023]
Abstract
Although many regulatory elements in the non-coding genome are linked to brain development and disease, deciphering their function has been challenging due to the lack of a genomic toolbox. However, recent advances in high throughput sequencing techniques have allowed us to begin decoding its function, enhancing our understanding of the regulatory landscape that underpins human traits and brain disorders. Here, we review how the regulatory landscape of the human brain undergoes dynamic changes across neurodevelopment, different cell types, and human evolution. We then discuss how regulatory landscapes shed light onto the molecular basis of neuropsychiatric disorders and guide the development of specifically targeted molecular therapies. Finally, we offer some thoughts on how these discoveries might impact the direction of future studies.
Collapse
Affiliation(s)
- Keeley Spiess
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
1244
|
Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell 2020; 183:1742-1756. [DOI: 10.1016/j.cell.2020.11.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
|
1245
|
Wamsley B, Geschwind DH. Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Curr Opin Genet Dev 2020; 65:117-125. [PMID: 32634676 PMCID: PMC8171040 DOI: 10.1016/j.gde.2020.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 12/30/2022]
Abstract
Neurodegenerative and neuropsychiatric disorders are pervasive and debilitating conditions characterized by diverse clinical syndromes and comorbidities, whose origins are as complex and heterogeneous as their associated phenotypes. Risk for these disorders involves substantial genetic liability, which has fueled large-scale genetic studies that have led to a flood of discoveries. In turn, these discoveries have exposed substantial gaps in our knowledge with regards to the complicated genetic architecture of each disorder and the substantial amount of genetic overlap among disorders, which implies some degree of shared pathophysiology underlying these clinically distinct, multifactorial disorders. Understanding the role of specific genetic variants will involve resolving the connections between molecular pathways, heterogeneous cell types, specific circuits and disease pathogenesis at the tissue and patient level. We consider the current known genetic basis of these disorders and highlight the utility of molecular systems approaches that establish the function of genetic variation in the context of specific neurobiological networks, cell-types, and life stages. Beyond expanding our knowledge of disease mechanisms, understanding these relationships provides promise for early detection and potential therapeutic interventions.
Collapse
Affiliation(s)
- Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Program in Neurobehavioral Genetics and Center for Autism Research and Treatment Semel Institute and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
1246
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
1247
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1248
|
Lee J, Shah M, Ballouz S, Crow M, Gillis J. CoCoCoNet: conserved and comparative co-expression across a diverse set of species. Nucleic Acids Res 2020; 48:W566-W571. [PMID: 32392296 PMCID: PMC7319556 DOI: 10.1093/nar/gkaa348] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Co-expression analysis has provided insight into gene function in organisms from Arabidopsis to zebrafish. Comparison across species has the potential to enrich these results, for example by prioritizing among candidate human disease genes based on their network properties or by finding alternative model systems where their co-expression is conserved. Here, we present CoCoCoNet as a tool for identifying conserved gene modules and comparing co-expression networks. CoCoCoNet is a resource for both data and methods, providing gold standard networks and sophisticated tools for on-the-fly comparative analyses across 14 species. We show how CoCoCoNet can be used in two use cases. In the first, we demonstrate deep conservation of a nucleolus gene module across very divergent organisms, and in the second, we show how the heterogeneity of autism mechanisms in humans can be broken down by functional groups and translated to model organisms. CoCoCoNet is free to use and available to all at https://milton.cshl.edu/CoCoCoNet, with data and R scripts available at ftp://milton.cshl.edu/data.
Collapse
Affiliation(s)
- John Lee
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 500 Sunnyside Blvd., Woodbury, NY 11797, USA
| | - Manthan Shah
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 500 Sunnyside Blvd., Woodbury, NY 11797, USA
| | - Sara Ballouz
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 500 Sunnyside Blvd., Woodbury, NY 11797, USA
| | - Megan Crow
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 500 Sunnyside Blvd., Woodbury, NY 11797, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, 500 Sunnyside Blvd., Woodbury, NY 11797, USA
| |
Collapse
|
1249
|
Christian DL, Wu DY, Martin JR, Moore JR, Liu YR, Clemens AW, Nettles SA, Kirkland NM, Papouin T, Hill CA, Wozniak DF, Dougherty JD, Gabel HW. DNMT3A Haploinsufficiency Results in Behavioral Deficits and Global Epigenomic Dysregulation Shared across Neurodevelopmental Disorders. Cell Rep 2020; 33:108416. [PMID: 33238114 PMCID: PMC7716597 DOI: 10.1016/j.celrep.2020.108416] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/17/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in DNA methyltransferase 3A (DNMT3A) have been detected in autism and related disorders, but how these mutations disrupt nervous system function is unknown. Here, we define the effects of DNMT3A mutations associated with neurodevelopmental disease. We show that diverse mutations affect different aspects of protein activity but lead to shared deficiencies in neuronal DNA methylation. Heterozygous DNMT3A knockout mice mimicking DNMT3A disruption in disease display growth and behavioral alterations consistent with human phenotypes. Strikingly, in these mice, we detect global disruption of neuron-enriched non-CG DNA methylation, a binding site for the Rett syndrome protein MeCP2. Loss of this methylation leads to enhancer and gene dysregulation that overlaps with models of Rett syndrome and autism. These findings define the effects of DNMT3A haploinsufficiency in the brain and uncover disruption of the non-CG methylation pathway as a convergence point across neurodevelopmental disorders.
Collapse
Affiliation(s)
- Diana L Christian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - J Russell Moore
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Yiran R Liu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Nicole M Kirkland
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110-1093, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
1250
|
Gozes I. The ADNP Syndrome and CP201 (NAP) Potential and Hope. Front Neurol 2020; 11:608444. [PMID: 33329371 PMCID: PMC7732499 DOI: 10.3389/fneur.2020.608444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome, also known as Helsmoortel-Van Der Aa syndrome, is a rare condition, which is diagnosed in children exhibiting signs of autism. Specifically, the disease is suspected when a child is suffering from developmental delay and/or intellectual disability. The syndrome occurs when one of the two copies of the ADNP gene carries a pathogenic sequence variant, mostly a de novo mutation resulting in loss of normal functions. Original data showed that Adnp+/− mice suffer from learning and memory deficiencies, muscle weakness, and communication problems. Further studies showed that the ADNP microtubule-interacting fragment NAP (called here CP201) resolves, in part, Adnp deficiencies and protects against ADNP pathogenic sequence variant abnormalities. With a clean toxicology and positive human adult experience, CP201 is planned for future clinical trials in the ADNP syndrome.
Collapse
Affiliation(s)
- Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|