1201
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
1202
|
Carey MB, Matsumoto SG. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 1999; 215:298-313. [PMID: 10545239 DOI: 10.1006/dbio.1999.9433] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells.
Collapse
Affiliation(s)
- M B Carey
- Department of Biological Structure and Function, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
1203
|
McLean JH, Harley CW, Darby-King A, Yuan Q. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem 1999; 6:608-18. [PMID: 10641765 PMCID: PMC311313 DOI: 10.1101/lm.6.6.608] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early olfactory preference learning in rat pups occurs when novel odors are paired with tactile stimulation, for example stroking. cAMP-triggered phosphorylation of cAMP response element binding protein (pCREB) has been implicated as a mediator of learning and memory changes in various animals (Frank and Greenberg 1994). In the present study we investigate whether CREB is phosphorylated in response to conditioned olfactory training as might be predicted given the proposed role of the phosphorylated protein in learning. On postnatal day 6, pups were trained for 10 min using a standard conditioned olfactory learning paradigm in which a conditioned stimulus, Odor, was either used alone or paired with an unconditioned stimulus, Stroking (using a fine brush to stroke the pup). In some instances stroking only was used. The pups were sacrificed at 0, 10, 30, or 60 min after the training. Using Western blot analysis, we observed that the majority of olfactory bulbs in conditioned pups (Odor + Stroking) had a greater increase in pCREB activation at 10 min after training than pups given nonlearning training (Odor only or Stroking only). The phosphorylated protein levels were low at 0 min and at 60 min after training. This is in keeping with the slightly delayed and short-lived activation period for this protein. The localization of pCREB increases within the olfactory bulb as seen by immunocytochemistry. Naive pups were not exposed to odor or training. There was a significantly higher level of label in mitral cell nuclei within the dorsolateral quadrant of the bulb of pups undergoing odor-stroke pairing. No significant differences were observed among nonlearning groups (Naive, Odor only, or Stroking only) or among any training groups in the granule or periglomerular cells of the dorsolateral region. The localized changes in the nuclear protein are consistent with studies showing localized changes in the bulb in response to a learned familiar odor. The present study demonstrates that selective increases in pCREB occur as an early step following pairing procedures that normally lead to the development of long-term olfactory memories in rat pups. These results support the hypothesized link between pCREB and memory formation.
Collapse
Affiliation(s)
- J H McLean
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Canada.
| | | | | | | |
Collapse
|
1204
|
Abstract
Adaptations at the cellular and molecular levels in response to stress and antidepressant treatment could represent a form of neural plasticity that contributes to the pathophysiology and treatment of depression. At the cellular level, atrophy and death of stress-vulnerable neurons in the hippocampus, as well as decreased neurogenesis of hippocampal neurons, has been reported in preclinical studies. Clinical studies also provide evidence for atrophy and cell death in the hippocampus, as well as the prefrontal cortex. It is possible that antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function. The molecular mechanisms underlying these effects are discussed, including the role of the cAMP signal transduction cascade and neurotrophic factors.
Collapse
Affiliation(s)
- R S Duman
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, USA
| | | | | |
Collapse
|
1205
|
Sutton KG, McRory JE, Guthrie H, Murphy TH, Snutch TP. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 1999; 401:800-4. [PMID: 10548106 DOI: 10.1038/44586] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spatial and temporal changes in intracellular calcium concentrations are critical for controlling gene expression in neurons. In many neurons, activity-dependent calcium influx through L-type channels stimulates transcription that depends on the transcription factor CREB by activating a calmodulin-dependent pathway. Here we show that selective influx of calcium through P/Q-type channels is responsible for activating expression of syntaxin-1A, a presynaptic protein that mediates vesicle docking, fusion and neurotransmitter release. The initial P/Q-type calcium signal is amplified by release of calcium from intracellular stores and acts through phosphorylation that is dependent on the calmodulin-dependent kinase CaM K II/IV, protein kinase A and mitogen-activated protein kinase kinase. Initiation of syntaxin-1A expression is rapid and short-lived, with syntaxin-1A ultimately interacting with the P/Q-type calcium channel to decrease channel availability. Our results define an activity-dependent feedback pathway that may regulate synaptic efficacy and function in the nervous system.
Collapse
Affiliation(s)
- K G Sutton
- Biotechnology Laboratory, Dept Psychiatry University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
1206
|
Wellmann H, Kaltschmidt B, Kaltschmidt C. Optimized protocol for biolistic transfection of brain slices and dissociated cultured neurons with a hand-held gene gun. J Neurosci Methods 1999; 92:55-64. [PMID: 10595703 DOI: 10.1016/s0165-0270(99)00094-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA-transfer into postmitotic neurons or neuronal tissues has been a major problem in neurobiology. For this aim different methods have been used such as viral infection, microinjection, lipofection or calcium phosphate precipitation. However, using these techniques, very poor transfection efficiency was achieved except for virus-mediated gene transfer. Though viral infections are very efficient, this method is expensive and labor-intensive, especially when recombination is used to prepare viral vectors. Biolistic gene transfer of neurons represents another promising transfection technique. This technique was originally used to transfect plant cells and has been further developed for gene transfer into neurons or neuronal tissues. Up to now, only a few reports are available where successful biolistic gene transfer into neurons or neuronal tissues could be shown. Transfection efficiencies were only about 2%. Most of the previously published experiments were carried out under vacuum conditions using in-chamber gene gun types. Here we describe an improved method for efficient neuronal cell transfection using a hand-held gene gun. Expression vectors could be successfully transferred into dissociated cultured hippocampal neurons, PC12 cells, cultured cerebellar granule cells and cerebellar brain slices. In cerebellar granule cells and hippocampal neurons, transfection efficiencies of about 10% were reached.
Collapse
Affiliation(s)
- H Wellmann
- Molecular Neurobiology Laboratory, Institute of Anatomy, Albert-Ludwigs-University, Freiburg, Germany
| | | | | |
Collapse
|
1207
|
Differential roles of Ca(2+)/calmodulin-dependent protein kinase II and mitogen-activated protein kinase activation in hippocampal long-term potentiation. J Neurosci 1999. [PMID: 10493730 DOI: 10.1523/jneurosci.19-19-08292.1999] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The roles of Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) and mitogen-activated protein kinase (MAPK) in long-term potentiation (LTP) were investigated in the CA1 area of hippocampal slices, using electrophysiological and biochemical approaches. A brief high-frequency stimulation, but not low-frequency stimulation, delivered to Schaffer collateral/commissural afferents produced a stable LTP and activated both CaM kinase II and 42 kDa MAPK. Different from the activity of CaM kinase II, the increase in MAPK activity was transient. At a concentration of 50 microM, but not of 30 microM, PD098059, a potent inhibitor of MAPK kinase, markedly inhibited the induction of LTP. Although the two concentrations had similar inhibitory effects on MAPK activity, only 50 microM PD098059 suppressed the activation of CaM kinase II. Application of calmidazolium, an antagonist of calmodulin, blocked both CaM kinase II activation and the LTP induction without affecting the increase in 42 kDa MAPK activity. Application of neurotrophin brain-derived neurotrophic factor (BDNF) promoted the induction of LTP, with concomitant activation of CaM kinase II. Under the same conditions, BDNF failed to activate MAPK in hippocampal slices. These results indicate that, although the LTP induction is accompanied by increases in two kinase activities, only CaM kinase II activation is required for this event.
Collapse
|
1208
|
Katoh-Semba R, Takeuchi IK, Inaguma Y, Ito H, Kato K. Brain-derived neurotrophic factor, nerve growth and neurotrophin-3 selected regions of the rat brain following kainic acid-induced seizure activity. Neurosci Res 1999; 35:19-29. [PMID: 10555160 DOI: 10.1016/s0168-0102(99)00059-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Changes in levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) in various regions of the rat brain following kainic acid-induced seizure activity were investigated. BDNF protein, as measured by a two-site enzyme immunoassay, increased transiently 12-24 h after the intraperitoneal administration of kainic acid to 61.6 ng/g wet weight in the hippocampus (approximately 10-fold increase), 19.5 ng/g in the piriform plus entorhinal cortex (approximately 10-fold) and 8.2 ng/g in the olfactory bulb (approximately 16-fold), and then rapidly decreased. Increases of 2- to 4-fold in levels of BDNF were also detected in the septum, cerebral cortex, striatum and hypothalamus, but not in the cerebellum. In contrast, levels of NGF and NT-3 decreased 24 h after the administration of kainic acid. Western and Northern blotting analyses of hippocampal tissues, respectively, revealed increase in levels of a 14-kDa protein corresponding to BDNF and its mRNA at both 4.2 and 1.4 kb. Hippocampal mRNAs for NGF and NT-3 increased and decreased, respectively, in kainic acid-treated rats. Immunohistological investigations showed that, in the hippocampus, the administration of kainic acid enhanced a homogeneous immunoreactivity of BDNF in the polymorph inner layer (the stratum radiatum of the CA3/CA4 regions and the hilar region) and in granule cells of the dentate gyrus. BDNF protein was found in neurons, but not at all in glial cells or in blood vessels, and was localized in the cytoplasm, the nucleoplasm and the primary dendrites of neurons as well as in perisynaptic extracellular spaces, but hardly in their axons. Our results show that kainic acid treatment increases levels of BDNF, but not NGF or NT-3, in various regions of the rat brain, other than the cerebellum. Also, the majority of BDNF newly synthesized by hippocampal granule neurons is secreted into the perisynaptic extracellular space in the polymorph inner layer of the dentate gyrus, supporting an autocrine-like role for the factor in synaptic functions.
Collapse
Affiliation(s)
- R Katoh-Semba
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
| | | | | | | | | |
Collapse
|
1209
|
|
1210
|
|
1211
|
|
1212
|
Abstract
The elevation of intracellular calcium is a major effector of stimulus-induced physiological change in a variety of cell types. Such change is invariably complex and frequently involves the activation of gene expression. Calcium signals are often able to activate different subsets of genes within the same cell, the basis for which has been unclear. Recent studies have revealed that a number of differing properties of the calcium signal are responsible for distinct cellular responses.
Collapse
Affiliation(s)
- G E Hardingham
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, England.
| | | |
Collapse
|
1213
|
Bading H. Nuclear calcium-activated gene expression: possible roles in neuronal plasticity and epileptogenesis. Epilepsy Res 1999; 36:225-31. [PMID: 10515167 DOI: 10.1016/s0920-1211(99)00053-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear calcium signals associated with electrical activation of neurons are critical regulators of gene expression and may cause changes in neuronal structure and function. Recent studies have identified a key component of the transcriptional machinery, the coactivator CREB binding protein (CBP), as a target for a nuclear calcium signalling pathway. Because the regulation of many genes involves transcription factors that function through their interaction with CBP, this mechanism, termed 'the coactivator control model', may modulate the expression of a large number of genes. During normal working of the brain, nuclear calcium increases may be transient and initiate transcriptional responses that are important for learning and memory. However, more intense or sustained stimulations of neurons (for example those used in the kindling model) may overactivate nuclear calcium-regulated processes. This may initiate inappropriate gene expression responses and could lead to the formation of epileptic neuronal circuits and disorders of neuronal excitability.
Collapse
Affiliation(s)
- H Bading
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
1214
|
Abstract
Nonvoltage-gated cation currents, which are activated following stimulation of phospholipase C (PLC), appear to be major modes for Ca2+ and Na+ entry in mammalian cells. The TRPC channels may mediate some of these conductances since their expression in vitro leads to PLC-dependent cation influx. We found that the TRPC3 protein was highly enriched in neurons of the central nervous system (CNS). The temporal and spatial distribution of TRPC3 paralleled that of the neurotrophin receptor TrkB. Activation of TrkB by brain-derived nerve growth factor (BDNF) led to production of a PLC-dependent, nonselective cation conductance in pontine neurons. Evidence is provided that TRPC3 contributes to this current in vivo. Thus, activation of TrkB and PLC leads to a TRPC3-dependent cation influx in CNS neurons.
Collapse
Affiliation(s)
- H S Li
- Department of Biological Chemistry and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1215
|
Schorge S, Gupta S, Lin Z, McEnery MW, Lipscombe D. Calcium channel activation stabilizes a neuronal calcium channel mRNA. Nat Neurosci 1999; 2:785-90. [PMID: 10461216 DOI: 10.1038/12153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified a calcium-dependent pathway in neurons that regulates expression levels of the alpha1B subunit and N channel current. When neurons are depolarized and voltage-gated calcium channels activated, the half-life of cellular N channel alpha1B mRNA is prolonged. This stabilizing effect of depolarization is mediated through the 3' untranslated region of a long form of the alpha1B mRNA and may represent a form of modulation of N-channel levels that does not require changes in gene transcription. Increases in N channel expression would affect several key neuronal functions controlled by calcium, including transmitter release and neurite outgrowth.
Collapse
Affiliation(s)
- S Schorge
- Department of Neuroscience, 192 Thayer Street, Brown University, Box 1953, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
1216
|
Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 1999; 96:9385-90. [PMID: 10430952 PMCID: PMC17792 DOI: 10.1073/pnas.96.16.9385] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is expressed in nociceptive sensory neurons and transported anterogradely to the dorsal horn of the spinal cord where it is located in dense core vesicles in C-fiber terminals. Peripheral inflammation substantially up-regulates BDNF mRNA and protein in the dorsal root ganglion (DRG) in a nerve growth factor-dependent fashion and results in novel expression of BDNF by DRG neurons with myelinated axons. C-fiber electrical activity also increases BDNF expression in the DRG, and both inflammation and activity increase full-length TrkB receptor levels in the dorsal horn. Sequestration of endogenous BDNF/neurotrophin 4 by intraspinal TrkB-Fc fusion protein administration does not, in noninflamed animals, change basal pain sensitivity nor the mechanical hypersensitivity induced by peripheral capsaicin administration, a measure of C fiber-mediated central sensitization. TrkB-Fc administration also does not modify basal inflammatory pain hypersensitivity, but does block the progressive hypersensitivity elicited by low-intensity tactile stimulation of inflamed tissue. BDNF, by virtue of its nerve growth factor regulation in sensory neurons including novel expression in A fibers, has a role as a central modulator of tactile stimulus-induced inflammatory pain hypersensitivity.
Collapse
Affiliation(s)
- R J Mannion
- Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1217
|
Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF-kappaB potentiates amyloid beta-mediated neuronal apoptosis. Proc Natl Acad Sci U S A 1999; 96:9409-14. [PMID: 10430956 PMCID: PMC17796 DOI: 10.1073/pnas.96.16.9409] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 06/04/1999] [Indexed: 11/18/2022] Open
Abstract
One mechanism leading to neurodegeneration during Alzheimer's disease (AD) is amyloid beta peptide (Abeta) neurotoxicity. Abeta elicits in cultured central nervous system neurons a biphasic response: a low-dose neurotrophic response and a high-dose neurotoxic response. Previously we reported that NF-kappaB is activated by low doses of Abeta only. Here we show that NF-kappaB activation leads to neuroprotection. In primary neurons we found that a pretreatment with 0.1 microM Abeta-(1-40) protects against neuronal death induced with 10 microM Abeta-(1-40). As a known neuroprotective agent we next analyzed the effect of tumor necrosis factor alpha (TNF-alpha). Maximal activation of NF-kappaB was found with 2 ng/ml TNF-alpha. Pretreatment with TNF-alpha protected cerebellar granule cells from cell death induced by 10 microM Abeta-(1-40). This protection is described by an inverted U-shaped dose response and is maximal with a NF-kappaB-activating dose. The molecular specificity of this protective effect was analyzed by specific blockade of NF-kappaB activation. Overexpression of a transdominant negative IkappaB-alpha blocks NF-kappaB activation and potentiates Abeta-mediated neuronal apoptosis. Our findings show that activation of NF-kappaB is the underlying mechanism of the neuroprotective effect of low-dose Abeta and TNF-alpha. In accordance with these in vitro data we find that nuclear NF-kappaB immunoreactivity around various plaque stages of AD patients is reduced in comparison to age-matched controls. Taken together these data suggest that pharmacological NF-kappaB activation may be a useful approach in the treatment of AD and related neurodegenerative disorders.
Collapse
Affiliation(s)
- B Kaltschmidt
- Molecular Neurobiology Laboratory, Institute of Anatomy, Albert-Ludwigs-University, Stefan-Meier-Strasse 19, D-79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
1218
|
Owens DF, Liu X, Kriegstein AR. Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. J Neurophysiol 1999; 82:570-83. [PMID: 10444657 DOI: 10.1152/jn.1999.82.2.570] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from several brain regions suggests gamma-aminobutyric acid (GABA) can exert a trophic influence during development, expanding the role of this amino acid beyond its function as an inhibitory neurotransmitter. Proliferating precursor cells in the neocortical ventricular zone (VZ) express functional GABA(A) receptors as do immature postmigratory neurons in the developing cortical plate (CP); however, GABA(A) receptor properties in these distinct cell populations have not been compared. Using electrophysiological techniques in embryonic and early postnatal neocortex, we find that GABA(A) receptors expressed by VZ cells have a higher apparent affinity for GABA and are relatively insensitive to receptor desensitization compared with neurons in the CP. GABA-induced current magnitude increases with maturation with the smallest responses found in recordings from precursor cells in the VZ. No evidence was found that GABA(A) receptors on VZ cells are activated synaptically, consistent with previous data suggesting that these receptors are activated in a paracrine fashion by nonsynaptically released ligand. After neurons are born and migrate to the CP, they begin to demonstrate spontaneous synaptic activity, the majority of which is GABA(A) mediated. These spontaneous GABA(A) postsynaptic currents (sPSCs) first were detected at embryonic day 18 (E18). At birth, approximately 50% of recordings from cortical neurons demonstrated GABA(A)-mediated sPSCs, and this value increased with age. GABA(A)-mediated sPSCs were action potential dependent and arose from local GABAergic interneurons. GABA application could evoke action potential-dependent PSCs in neonatal cortical neurons, suggesting that during the first few postnatal days, GABA can act as an excitatory neurotransmitter. Finally, N-methyl-D-aspartate (NMDA)- but not non-NMDA-mediated sPSCs were also present in early postnatal neurons. These events were not observed in cells voltage clamped at negative holding potentials (-60 to -70 mV) but were evident when the holding potential was set at positive values (+30 to +60 mV). Together these results provide evidence for the early maturation of GABAergic communication in the neocortex and a functional change in GABA(A)-receptor properties between precursor cells and early postmitotic neurons. The change in GABA(A)-receptor properties may reflect the shift from paracrine to synaptic receptor activation.
Collapse
Affiliation(s)
- D F Owens
- The Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
1219
|
Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ. Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 1999; 92:841-53. [PMID: 10426526 DOI: 10.1016/s0306-4522(99)00027-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peripheral nerve injury results in plastic changes in the dorsal root ganglia and spinal cord, and is often complicated with neuropathic pain. The mechanisms underlying these changes are not known. We have now investigated the expression of brain-derived neurotrophic factor in the dorsal root ganglia with histochemical and biochemical methods following sciatic nerve lesion in the rat. The percentage of neurons immunoreactive for brain-derived neurotrophic factor in the ipsilateral dorsal root ganglia was significantly increased as early as 24 h after the nerve lesion and the increase lasted for at least two weeks. The level of brain-derived neurotrophic factor messenger RNA was also significantly increased in the ipsibut not contralateral dorsal root ganglia. Both neurons and satellite cells in the lesioned dorsal root ganglia synthesized brain-derived neurotrophic factor messenger RNA after the nerve lesion. There was a dramatic shift in size distribution of positive neurons towards large sizes seven days after sciatic nerve lesion. Morphometric analysis and retrograde tracing studies showed that no injured neurons smaller than 600 microm2 were immunoreactive for brain-derived neurotrophic factor, whereas the majority of large injured neurons were immunoreactive in the ipsilateral dorsal root ganglia seven days postlesion. The brain-derived neurotrophic factor-immunoreactive nerve terminals in the ipsilateral spinal cord were reduced in the central region of lamina II, but increased in more medial regions or deeper into laminae III/IV. These studies indicate that sciatic nerve injury results in a differential regulation of brain-derived neurotrophic factor in different subpopulations of sensory neurons in the dorsal root ganglia. Small neurons switched off their normal synthesis of brain-derived neurotrophic factor, whereas larger ones switched to a brain-derived neurotrophic factor phenotype. The phenotypic switch may have functional implications in neuronal plasticity and generation of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- X F Zhou
- Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
1220
|
Mu JS, Li WP, Yao ZB, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 1999; 835:259-65. [PMID: 10415381 DOI: 10.1016/s0006-8993(99)01592-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is abundantly expressed in the hippocampus and cerebral cortex and is involved in synaptic plasticity and long-term potentiation (LTP). The present study was under taken to investigate whether endogenous BDNF was required for spatial learning and memory in a rat model. Antibodies to BDNF (anti-BDNF, n=7) or control immunoglobulin G (control, n=6) were delivered into the rat brain continuously for 7 days with an osmotic pump. The rats were then subjected to a battery of behavioral tests. The results show that the average escape latencies in the BDNF antibody treated group were dramatically longer than those of the control (F=13.3, p<0.001). The rats treated with control IgG swam for a significantly longer distance in the P quadrant (where the escape plane had been placed) compared with the other three quadrants (p<0.05). In contrast, anti-BDNF-treated rats swam an equivalent distance in all four quadrants. The average percentage of swimming distance in the P quadrant by anti-BDNF-treated rats was much less than that by control IgG treated rats (p<0.001). These results suggest that endogenous BDNF is required for spatial learning and memory in adult rats.
Collapse
Affiliation(s)
- J S Mu
- Department of Neurology, Nanfang Hospital, First Military Medical University, Guangzhou, 510515, China
| | | | | | | |
Collapse
|
1221
|
Berchtold NC, Oliff HS, Isackson P, Cotman CW. Hippocampal BDNF mRNA shows a diurnal regulation, primarily in the exon III transcript. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:11-22. [PMID: 10407182 DOI: 10.1016/s0169-328x(99)00137-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endogenous expression levels of brain-derived neurotrophic factor (BDNF) mRNA were assessed using in situ hybridization to investigate whether there is a natural diurnal fluctuation in BDNF mRNA expression in the hippocampus of rats housed with a normal (12:12 h) light/dark cycle. BDNF expression was increased during lights out (dark-cycle) to 134%-158% of light-cycle levels in hippocampal regions CA1, CA3, and hilus. In addition, expression levels of the four BDNF transcript forms, exons I-IV, were assessed to evaluate whether expression of specific BDNF transcripts exhibited differential endogenous fluctuation. All exons had lowest levels of expression at either noon or 6 p.m. Significant correlations were found between exon expression level and time, with elevated expression occurring at dark-cycle timepoints. The exon III transcript showed the greatest diurnal change in expression in all hippocampal fields, with dark-cycle expression elevated to 219-419% of light-cycle expression level. In addition to exon III, dark-cycle exon II mRNA levels were elevated in all hippocampal subfields, to 140-180% of light-cycle levels, suggesting that the endogenous fluctuation in BDNF expression results predominantly from activation of the promoters linked to exons II and III. Previously we have shown that physical activity increases BDNF expression. The naturally occurring rise in BDNF expression during the dark-cycle, the time when rats are most physically active, may be due to increased activity and arousal levels. Because BDNF has a role in plasticity, the increase in BDNF expression during the time that a rat is maximally interacting with its surroundings may be part of an ongoing stimulus-encoding mechanism, or may be a mechanism to maximize information storage about the environment.
Collapse
Affiliation(s)
- N C Berchtold
- Institute for Brain Aging and Dementia, University of California, Irvine, 1226 Gillespie Building, Irvine, CA 92697-4540, USA.
| | | | | | | |
Collapse
|
1222
|
Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A 1999; 96:7723-30. [PMID: 10393888 PMCID: PMC33609 DOI: 10.1073/pnas.96.14.7723] [Citation(s) in RCA: 409] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory pain manifests as spontaneous pain and pain hypersensitivity. Spontaneous pain reflects direct activation of specific receptors on nociceptor terminals by inflammatory mediators. Pain hypersensitivity is the consequence of early posttranslational changes, both in the peripheral terminals of the nociceptor and in dorsal horn neurons, as well as later transcription-dependent changes in effector genes, again in primary sensory and dorsal horn neurons. This inflammatory neuroplasticity is the consequence of a combination of activity-dependent changes in the neurons and specific signal molecules initiating particular signal-transduction pathways. These pathways phosphorylate membrane proteins, changing their function, and activate transcription factors, altering gene expression. Two distinct aspects of sensory neuron function are changed as a result of these processes, basal sensitivity, or the capacity of peripheral stimuli to evoke pain, and stimulus-evoked hypersensitivity, the capacity of certain inputs to generate prolonged alterations in the sensitivity of the system. Posttranslational changes largely alter basal sensitivity. Transcriptional changes both potentiate the system and alter neuronal phenotype. Potentiation occurs as a result of the up-regulation in the dorsal root ganglion of centrally acting neuromodulators and simultaneously in the dorsal horn of their receptors. This means that the response to subsequent inputs is augmented, particularly those that induce stimulus-induced hypersensitivity. Alterations in phenotype includes the acquisition by A fibers of neurochemical features typical of C fibers, enabling these fibers to induce stimulus-evoked hypersensitivity, something only C fiber inputs normally can do. Elucidation of the molecular mechanisms responsible provides new opportunities for therapeutic approaches to managing inflammatory pain.
Collapse
Affiliation(s)
- C J Woolf
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital-East, Charlestown, MA 02129, USA.
| | | |
Collapse
|
1223
|
Obrietan K, Impey S, Smith D, Athos J, Storm DR. Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 1999; 274:17748-56. [PMID: 10364217 DOI: 10.1074/jbc.274.25.17748] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A program of stringently-regulated gene expression is thought to be a fundamental component of the circadian clock. Although recent work has implicated a role for E-box-dependent transcription in circadian rhythmicity, the contribution of other enhancer elements has yet to be assessed. Here, we report that cells of the suprachiasmatic nuclei (SCN) exhibit a prominent circadian oscillation in cAMP response element (CRE)-mediated gene expression. Maximal reporter gene expression occurred from late-subjective night to mid-subjective day. Cycling of CRE-dependent transcription was not observed in other brain regions, including the supraoptic nucleus and piriform cortex. Levels of the phospho-active form of the transcription factor CREB (P-CREB) varied as a function of circadian time. Peak P-CREB levels occurred during the mid- to late-subjective night. Furthermore, photic stimulation during the subjective night, but not during the subjective day, triggered a marked increase in CRE-mediated gene expression in the SCN. Reporter gene experiments showed that activation of the p44/42 mitogen-activated protein kinase signaling cascade is required for Ca2+-dependent stimulation of CRE-mediated transcription in the SCN. These findings reveal the CREB/CRE transcriptional pathway to be circadian-regulated within the SCN, and raise the possibility that this pathway provides signaling information essential for normal clock function.
Collapse
Affiliation(s)
- K Obrietan
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | | | |
Collapse
|
1224
|
Abstract
The recent discovery that familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6 are allelic disorders caused by different mutations in CACNA1A, a calcium-channel-encoding gene, adds to a growing list of channelopathies causing paroxysmal neurologic disturbance and progressive neurodegeneration. Calcium channelopathies in the central nervous system provide a model to study the important roles that calcium channels play in neuronal function.
Collapse
Affiliation(s)
- J Jen
- Department of Neurology, UCLA School of Medicine, Box 951769, 710 Westwood Plaza, Los Angeles, California 90095-1769, USA.
| |
Collapse
|
1225
|
Griesbeck O, Canossa M, Campana G, Gärtner A, Hoener MC, Nawa H, Kolbeck R, Thoenen H. Are there differences between the secretion characteristics of NGF and BDNF? Implications for the modulatory role of neurotrophins in activity-dependent neuronal plasticity. Microsc Res Tech 1999; 45:262-75. [PMID: 10383119 DOI: 10.1002/(sici)1097-0029(19990515/01)45:4/5<262::aid-jemt10>3.0.co;2-k] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In previous experiments the activity-dependent secretion of nerve growth factor (NGF) from native hippocampal slices and from NGF-cDNA transfected hippocampal neurons showed unusual characteristics [Blochl and Thoenen (1995) Eur J Neurosci 7:1220-1228; (1996) Mol Cell Neurosci 7:173-190]. In both hippocampal slices and cultured hippocampal neurons the activity-dependent secretion proved to be independent of extracellular calcium, but dependent on the release of calcium from intracellular stores. Under different experimental conditions, Goodman et al. [(1996) Mol Cell Neurosci 7:222-238] reported that the high potassium-mediated secretion of brain-derived neurotrophic factor (BDNF) from hippocampal cultures was dependent on extracellular calcium. Mowla et al. [(1997) Proc 27th Annu Meet Soc Neurosci New Orleans 875.10] reported on even further-reaching differences between NGF and BDNF secretion, namely, that in hippocampal neurons and in pituitary cell lines NGF was secreted exclusively according to the constitutive pathway, whereas BDNF was exclusively sorted according to the activity-dependent regulated pathway. In view of the crucial importance of such potential differences between the processing, sorting, and secretory mechanisms of different neurotrophins for their modulatory roles in activity-dependent neuronal plasticity, a thorough analysis under comparable experimental conditions was mandatory. We demonstrate that in native hippocampal slices and adenoviral-transduced hippocampal neurons there are no differences between NGF and BDNF with respect to the subcellular distribution and mechanism of secretion; that the activity-dependent secretion of both NGF and BDNF is dependent on intact intracellular calcium stores; and that the differences between our own observations and those of Goodman et al. (ibid.) regarding the dependence on extracellular calcium do not reflect differences between NGF and BDNF sorting and secretion, but reflect the differing experimental conditions used.
Collapse
Affiliation(s)
- O Griesbeck
- Max-Planck-Institute of Neurobiology, Department of Neurobiochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
1226
|
Abstract
Despite considerable evidence that neuronal activity influences the organization and function of circuits in the developing and adult brain, the molecular signals that translate activity into structural and functional changes in connections remain largely obscure. This review discusses the evidence implicating neurotrophins as molecular mediators of synaptic and morphological plasticity. Neurotrophins are attractive candidates for these roles because they and their receptors are expressed in areas of the brain that undergo plasticity, activity can regulate their levels and secretion, and they regulate both synaptic transmission and neuronal growth. Although numerous experiments show demonstrable effects of neurotrophins on synaptic plasticity, the rules and mechanisms by which they exert their effects remain intriguingly elusive.
Collapse
Affiliation(s)
- A K McAllister
- Howard Hughes Medical Institute, Salk Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
1227
|
Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J Neurosci 1999. [PMID: 10066247 DOI: 10.1523/jneurosci.19-06-01940.1999] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor-1 (IGF-1)/receptor tyrosine kinase recently has been shown to mediate neuronal survival and potentiate the activity of specific calcium channel subtypes; survival requires Akt, a serine/threonine kinase. We demonstrate here that Akt mediates the IGF-1-induced potentiation of L channel currents, but not that of N channels. Transient expression of wild-type, dominant-negative, and constitutively active forms of Akt in cerebellar granule neurons causes, respectively, no change in IGF-1/L channel potentiation, complete inhibition of potentiation, and a dramatic increase in basal L currents accompanied by the loss of ability to induce further increases. In no case is the IGF-1 potentiation of N currents affected. We additionally find that IGF-1 partially mediates granule neuron survival via L channel activity and that Akt-dependent L channel modulation is a necessary component. Interestingly, very brief exposure (1 min) to IGF-1 triggers nearly complete survival and requires L channel activity. These results strongly suggest that neuronal receptor tyrosine kinases can control long-term calcium-dependent processes via the rapid control of voltage-sensitive channels.
Collapse
|
1228
|
Dalley JW, Thomas KL, Howes SR, Tsai TH, Aparicio-Legarza MI, Reynolds GP, Everitt BJ, Robbins TW. Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur J Neurosci 1999; 11:1265-74. [PMID: 10103121 DOI: 10.1046/j.1460-9568.1999.00532.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study investigated the effects of excitotoxic lesions of the prefrontal cortex (PFC) on dopamine (DA) and excitatory amino acid (EAA) function in the nucleus accumbens core using in vivo microdialysis in freely moving rats. As a postsynaptic marker of neuronal function, the nuclear levels of the transcriptional factor CREB and its active phosphorylated form, CREB-P, were measured in the ventral tegmental area (VTA), and in the core and shell subregions of the nucleus accumbens of sham and lesioned animals. PFC-lesioned animals exhibited a greater locomotor response to novelty and amphetamine administration (125-500 microg/kg i.v.). No change was observed in extracellular levels of glutamate or saturable d-aspartate binding (a marker for the high-affinity EAA transporter) in the nucleus accumbens of PFC-lesioned animals. Extracellular levels of DA were comparable in sham and lesioned animals under tonic conditions, however, following amphetamine administration, DA efflux was significantly attenuated in lesioned animals. No correlation was observed between microdialysate levels of amino acids and the attenuated dopaminergic response to amphetamine in lesioned animals. Further, no effect of the lesion was found on nuclear CREB protein in saline- and amphetamine-treated rats. The density of CREB-P immunoreactive nuclei, while remaining unchanged in the VTA, increased in the nucleus accumbens shell following amphetamine treatment in lesioned animals. The results show that an important modulatory role of the PFC on the behavioural response to novelty and amphetamine is associated with the level of immediate-early gene regulation rather than levels of extracellular DA and amino acids in the ventral striatum.
Collapse
Affiliation(s)
- J W Dalley
- Department of Experimental Psychology, University of Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
1229
|
Abstract
The transcription factor CREB is involved in mediating many of the long-term effects of activity-dependent plasticity at glutamatergic synapses. Here, we show that activation of NMDA receptors and voltage-sensitive calcium channels leads to CREB-mediated transcription in cortical neurons via a mechanism regulated by CREB-binding protein (CBP). Recruitment of CBP to the promoter is not sufficient for transactivation, but calcium influx can induce CBP-mediated transcription via two distinct transactivation domains. CBP-mediated transcription is stimulus strength-dependent and can be induced by activation of CaM kinase II, CaM kinase IV, and protein kinase A, but not by activation of the Ras-MAP kinase pathway. These observations indicate that CBP can function as a calcium-sensitive transcriptional coactivator that may act as a regulatory switch for glutamate-induced CREB-mediated transcription.
Collapse
Affiliation(s)
- S C Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
1230
|
Hardingham GE, Chawla S, Cruzalegui FH, Bading H. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 1999; 22:789-98. [PMID: 10230798 DOI: 10.1016/s0896-6273(00)80737-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recruitment of the coactivator CBP by signal-regulated transcription factors and stimulation of CBP activity are key regulatory events in the induction of gene transcription following Ca2+ flux through ligand- and/or voltage-gated ion channels in hippocampal neurons. The mode of Ca2+ entry (L-type Ca2+ channels versus NMDA receptors) differentially controls the CBP recruitment step to CREB, providing a molecular basis for the observed Ca2+ channel type-dependent differences in gene expression. In contrast, activation of CBP is triggered irrespective of the route of Ca2+ entry, as is activation of c-Jun, that recruits CBP independently of phosphorylation at major regulatory c-Jun phosphorylation sites, serines 63 and 73. This control of CBP recruitment and activation is likely relevant to other CBP-interacting transcription factors and represents a general mechanism through which Ca2+ signals associated with electrical activity may regulate the expression of many genes.
Collapse
Affiliation(s)
- G E Hardingham
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
1231
|
Young D, Lawlor PA, Leone P, Dragunow M, During MJ. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 1999; 5:448-53. [PMID: 10202938 DOI: 10.1038/7449] [Citation(s) in RCA: 561] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mammalian brain has a high degree of plasticity, with dentate granule cell neurogenesis and glial proliferation stimulated by an enriched environment combining both complex inanimate and social stimulation. Moreover, rodents exposed to an enriched environment both before and after a cerebral insult show improved cognitive performance. One of the most robust associations of environmental enrichment is improved learning and memory in the Morris water maze, a spatial task that mainly involves the hippocampus. Furthermore, clinical evidence showing an association between higher educational attainment and reduced risk of Alzheimer and Parkinson-related dementia indicates that a stimulating environment has positive effects on cerebral health that may provide some resilience to cerebral insults. Here we show that in addition to its effects on neurogenesis, an enriched environment reduces spontaneous apoptotic cell death in the rat hippocampus by 45%. Moreover, these environmental conditions protect against kainate-induced seizures and excitotoxic injury. The enriched environment induces expression of glial-derived neurotrophic factor and brain-derived neurotrophic factor and increases phosphorylation of the transcription factor cyclic-AMP response element binding protein, indicating that the influence of the environment on spontaneous apoptosis and cerebral resistance to insults may be mediated through transcription factor activation and induction of growth factor expression.
Collapse
Affiliation(s)
- D Young
- Department of Molecular Medicine, University of Auckland School of Medicine, New Zealand
| | | | | | | | | |
Collapse
|
1232
|
Kasahara J, Fukunaga K, Miyamoto E. Differential effects of a calcineurin inhibitor on glutamate-induced phosphorylation of Ca2+/calmodulin-dependent protein kinases in cultured rat hippocampal neurons. J Biol Chem 1999; 274:9061-7. [PMID: 10085155 DOI: 10.1074/jbc.274.13.9061] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinases (CaM kinases) are major multifunctional enzymes that play important roles in calcium-mediated signal transduction. To characterize their regulatory mechanisms in neurons, we compared glutamate-induced phosphorylation of CaM kinase IV and CaM kinase II in cultured rat hippocampal neurons. We observed that dephosphorylation of these kinases followed different time courses, suggesting different regulatory mechanisms for each kinase. Okadaic acid, an inhibitor of protein phosphatase (PP) 1 and PP2A, increased the phosphorylation of both kinases. In contrast, cyclosporin A, an inhibitor of calcineurin, showed different effects: the phosphorylation and activity of CaM kinase IV were significantly increased with this inhibitor, but those of CaM kinase II were not significantly increased. Cyclosporin A treatment of neurons increased phosphorylation of Thr196 of CaM kinase IV, the activated form with CaM kinase kinase, which was recognized with an anti-phospho-Thr196 antibody. Moreover, recombinant CaM kinase IV was dephosphorylated and inactivated with calcineurin as well as with PP1, PP2A, and PP2C in vitro. These results suggest that CaM kinase IV, but not CaM kinase II, is directly regulated with calcineurin.
Collapse
Affiliation(s)
- J Kasahara
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
1233
|
Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M, Hemperly JJ, Maness PF. NCAM stimulates the ras-MAPK pathway and CREB phosphorylation in neuronal cells. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199903)38:4<542::aid-neu9>3.0.co;2-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1234
|
Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M, Hemperly JJ, Maness PF. NCAM stimulates the ras-MAPK pathway and CREB phosphorylation in neuronal cells. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199903)38:4%3c542::aid-neu9%3e3.0.co;2-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1235
|
Tanaka K, Nagata E, Suzuki S, Dembo T, Nogawa S, Fukuuchi Y. Immunohistochemical analysis of cyclic AMP response element binding protein phosphorylation in focal cerebral ischemia in rats. Brain Res 1999; 818:520-6. [PMID: 10082840 DOI: 10.1016/s0006-8993(98)01263-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of cyclic AMP response element binding protein (CREB) is one of the most important mechanisms controlling various gene transcriptions. In the present study, the phosphorylation of CREB was examined immunohistochemically at 24 h of recirculation following 1.5 h of middle cerebral artery occlusion (MCAO) in rats. MCAO was induced by the intraluminal suture method. The infarct core revealed a significant reduction in the number of immunoreactive cells with the anti-phosphorylated CREB and with the anti-CREB antibody, which binds to both unphosphorylated and phosphorylated CREB. In contrast, the peri-infarct area exhibited a marked increase in the number of immunopositive cells as well as in the intensity of nuclear staining with each antibody, so that almost all of the cells expressing CREB demonstrated phosphorylation of CREB. On the other hand, about half of the CREB immunopositive cells reacted weakly with the anti-phosphorylated CREB antibody in the sham group. These findings indicated that the expression as well as phosphorylation of CREB protein was significantly activated in the regions surrounding the infarct area. Since phosphorylation of CREB has recently been implicated in signal transductions that promote the survival and differentiation of neurons, the present data suggest that tissue repair mechanisms may be markedly activated in the peri-infarct area.
Collapse
Affiliation(s)
- K Tanaka
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
1236
|
NMDA receptor-mediated refinement of a transient retinotectal projection during development requires nitric oxide. J Neurosci 1999. [PMID: 9870953 DOI: 10.1523/jneurosci.19-01-00229.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A transient ipsilateral retinotectal projection is normally eliminated during embryonic development of the chick visual system. Administration of the NMDA receptor antagonist 5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) during the developmental period in which this projection normally disappears prevented its complete elimination. Previous studies showed that tectal cells express nitric oxide synthase during development, and blocking synthesis of nitric oxide also prevented elimination of the ipsilateral retinotectal projection. The effect of NMDA receptor blockade on nitric oxide synthase activity in tectal cells was assessed biochemically in chick embryos. Increasing concentrations of MK-801 resulted in a dose-dependent decrease in nitric oxide synthase activity. This result suggests that NMDA receptor activation can regulate nitric oxide synthase activity in the tectum. The degree of rescue of the ipsilateral retinotectal projection was compared in embryos treated either with MK-801 or with an inhibitor of nitric oxide synthesis, Nomega-nitro-L-arginine (L-NoArg). At comparable levels of inhibition of nitric oxide synthesis, no significant difference was observed in the degree of rescue mediated by NMDA receptor blockade or nitric oxide synthesis blockade. These results suggest that NMDA receptor-mediated elimination of the ipsilateral retinotectal projection is completely mediated via nitric oxide.
Collapse
|
1237
|
Fujita Y, Katagi J, Tabuchi A, Tsuchiya T, Tsuda M. Coactivation of secretogranin-II and BDNF genes mediated by calcium signals in mouse cerebellar granule cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 63:316-24. [PMID: 9878806 DOI: 10.1016/s0169-328x(98)00299-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In primary culture of mouse cerebellar granule cells, the brain-derived neurotrophic factor (BDNF) gene is activated in an activity-dependent manner, accompanying Ca2+ influx into neurons through voltage-dependent calcium channels (VDCCs). In this study, we investigated the inducibility of secretogranin-II (Sg-II) gene in terms of Ca2+ signals evoked via VDCCs, by a comparison with BDNF and c-fos genes. Deprivation and subsequent induction of membrane depolarization by lowering and reelevating the extracellular concentration of potassium chloride (KCl), respectively, led to an decrease and then an increase in the Sg-II, BDNF and c-fos mRNA expression. The increase in Sg-II mRNA expression was detected as early as but was slower than that of BDNF one. The increase in Sg-II mRNA expression was induced depending upon the extracellular Ca2+ and inhibited by nicardipine, indicating a requirement of Ca2+ influx through VDCCs for the Sg-II as well as BDNF gene induction. Inhibition of de novo protein synthesis by cycloheximide did not affect the Sg-II induction. The response of Sg-II gene to the changes in extracellular KCl concentration was the same as that of BDNF but different from that of c-fos gene. Thus, Sg-II gene is coactivated with BDNF gene in response to the intracellular Ca2+ signals evoked via Ca2+ influx through VDCCs.
Collapse
Affiliation(s)
- Y Fujita
- Toyama Medical and Pharmaceutical University, Faculty of Pharmaceutical Sciences, Department of Biological Chemistry, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
1238
|
Orban PC, Chapman PF, Brambilla R. Is the Ras-MAPK signalling pathway necessary for long-term memory formation? Trends Neurosci 1999; 22:38-44. [PMID: 10088998 DOI: 10.1016/s0166-2236(98)01306-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetic and pharmacological experiments have recently implicated several protein kinase cascades in LTP and memory formation. The small GTPases of the Ras subfamily are activated by multiple extracellular stimuli and, via a complex array of downstream effectors, they control a variety of cellular events that culminate in gene transcription. In the well-characterized Aplysia gill-withdrawal reflex, activation of the Ras-dependent mitogen-activated protein kinase (MAPK) cascade is essential for the long-term, but not the short-term, facilitation process. In addition, in the rodent hippocampus, specific inhibition of the MAPK pathway significantly impairs the induction of LTP, which implicates this signalling cascade in hippocampal-dependent behaviour. Mice that lack the neuronal-specific Ras regulator, Ras-GRF (guanine-releasing factor), have severely impaired LTP in the amygdala and a corresponding deficit in long-term memory for aversive events. The results obtained from these different systems demonstrate the involvement of Ras-dependent signalling in neuronal plasticity and behaviour and raise a number of intriguing questions.
Collapse
Affiliation(s)
- P C Orban
- San Raffaele Scientific Institute, Milano, Italy
| | | | | |
Collapse
|
1239
|
Pham TA, Impey S, Storm DR, Stryker MP. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron 1999; 22:63-72. [PMID: 10027290 DOI: 10.1016/s0896-6273(00)80679-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuronal activity-dependent processes are believed to mediate the formation of synaptic connections during neocortical development, but the underlying intracellular mechanisms are not known. In the visual system, altering the pattern of visually driven neuronal activity by monocular deprivation induces cortical synaptic rearrangement during a postnatal developmental window, the critical period. Here, using transgenic mice carrying a CRE-lacZ reporter, we demonstrate that a calcium- and cAMP-regulated signaling pathway is activated following monocular deprivation. We find that monocular deprivation leads to an induction of CRE-mediated lacZ expression in the visual cortex preceding the onset of physiologic plasticity, and this induction is dramatically downregulated following the end of the critical period. These results suggest that CRE-dependent coordinate regulation of a network of genes may control physiologic plasticity during postnatal neocortical development.
Collapse
Affiliation(s)
- T A Pham
- Department of Physiology, The W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco 94143, USA.
| | | | | | | |
Collapse
|
1240
|
Timmusk T, Palm K, Lendahl U, Metsis M. Brain-derived Neurotrophic Factor Expression in VivoIs under the Control of Neuron-restrictive Silencer Element. J Biol Chem 1999. [DOI: 10.1016/s0021-9258(19)88378-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
1241
|
Lewin MR, Walters ET. Cyclic GMP pathway is critical for inducing long-term sensitization of nociceptive sensory neurons. Nat Neurosci 1999; 2:18-23. [PMID: 10195175 DOI: 10.1038/4520] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noxious stimulation can trigger persistent sensitization of somatosensory systems that involves memory-like mechanisms. Here we report that noxious stimulation of the mollusc Aplysia produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cyclic GMP-protein kinase G (PKG) pathway. Injection of cGMP induced LTH, whereas antagonists of the NO-cGMP-PKG pathway prevented pinch-induced LTH. Co-injection of calcium/cAMP-responsive-element (CRE) blocked both pinch-induced LTH and cAMP-induced LTH, but antagonists of protein kinase A (PKA) failed to block pinch-induced LTH. Thus the NO-cGMP-PKG pathway and at least one other pathway, but not the cAMP-PKA pathway, are critical for inducing LTH after brief, noxious stimulation.
Collapse
Affiliation(s)
- M R Lewin
- Department of Integrative Biology, Physiology and Pharmacology, University of Texas-Houston 77030, USA
| | | |
Collapse
|
1242
|
Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MW, Fisher DE. alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem 1998; 273:33042-7. [PMID: 9830058 DOI: 10.1074/jbc.273.49.33042] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pituitary peptide alpha-melanocyte-stimulating hormone (alpha-MSH) stimulates melanocytes to up-regulate cAMP, but the downstream targets of cAMP are not well understood mechanistically. One consequence of alpha-MSH stimulation is increased melanization attributable to induction of pigmentation enzymes, including tyrosinase, which catalyzes a rate-limiting step in melanin synthesis. The tyrosinase promoter is a principle target of the melanocyte transcription factor Microphthalmia (Mi), a factor for which deficiency in humans causes Waardenburg syndrome II. We show here that both alpha-MSH and forskolin, a drug that increases cAMP, stimulate a rapid increase in Mi mRNA and protein levels in both melanoma cell lines and primary melanocytes. This up-regulation requires a cAMP-responsive element within the Mi promoter, and the pathway leading to Mi stimulation is subject to tight homeostatic regulation. Although cAMP signaling is ubiquitous, the Mi promoter was seen to be cAMP-responsive in melanocytes but not in nonmelanocytes. Moreover, dominant negative interference with Mi impeded successful alpha-MSH stimulation of tyrosinase. The regulation of Mi expression via alpha-MSH thus provides a direct mechanistic link to pigmentation. In addition, because the human melanocyte and deafness condition Waardenburg syndrome is sometimes caused by haploinsufficiency of Mi, its modulation by alpha-MSH suggests therapeutic strategies targeted at up-regulating the remaining wild type Mi allele.
Collapse
Affiliation(s)
- E R Price
- Department of Pediatric Hematology/Oncology, Dana Farber Cancer Research Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
1243
|
Wang Y, Sheen VL, Macklis JD. Cortical interneurons upregulate neurotrophins in vivo in response to targeted apoptotic degeneration of neighboring pyramidal neurons. Exp Neurol 1998; 154:389-402. [PMID: 9878177 DOI: 10.1006/exnr.1998.6965] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intercellular signals provided by growth and neurotrophic factors play a critical role during neurogenesis and as part of cellular repopulation strategies directed toward reconstruction of complex CNS circuitry. Local signals influence the differentiation of transplanted and endogenous neurons and neural precursors, but the cellular sources and control over expression of these molecules remain unclear. We have previously examined microenvironmental control in neocortex over neuron and neural precursor migration and differentiation following transplantation, using an approach of targeted apoptotic neuronal degeneration to specific neuronal populations in vivo. Prior results suggested the hypothesis that upregulated or reexpressed developmental signal molecules, produced by degenerating pyramidal neurons and/or by neighboring neurons or nonneuronal cells, may be responsible for observed events of directed migration, differentiation, and connectivity by transplanted immature neurons and precursors. To directly investigate this hypothesis, we analyzed the gene expression of candidate and control neurotrophins, growth factors, and receptors within regions of targeted neuronal cell death, first by quantitative Northern blot analysis and then by in situ hybridization combined with immunocytochemical analysis. The genes for BDNF, NT-4/5, trkB receptors, and to a lesser extent NT-3 were upregulated specifically within the regions of neocortex undergoing targeted neuronal degeneration and specifically during the period of ongoing pyramidal neuron apoptosis. Upregulation occurred during the same 3-week period as the previously investigated cellular events of directed migration, differentiation, and integration. No upregulation was seen in panels of control neurotrophins, growth factors, and receptors that are not as developmentally regulated in cortex or that are thought to have primary actions in other CNS regions. In situ hybridization and immunocytochemistry revealed that BDNF mRNA expression was upregulated specifically by local interneurons adjacent to degenerating pyramidal neurons. These findings suggest specific effects of targeted apoptosis on neurotrophin and other gene expression via mechanisms, including intercellular signaling between degenerating pyramidal neurons and surrounding interneurons. Further understanding of these and other controls over neocortical projection neuron differentiation may provide insight regarding normal neocortical development, intercellular signaling induced by apoptosis, and toward reconstruction and cellular repopulation of complex neocortical and other CNS circuitry.
Collapse
Affiliation(s)
- Y Wang
- Department of Neurology and Program in Neuroscience, Children's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | | | | |
Collapse
|
1244
|
Chiang MY, Misner D, Kempermann G, Schikorski T, Giguère V, Sucov HM, Gage FH, Stevens CF, Evans RM. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 1998; 21:1353-61. [PMID: 9883728 DOI: 10.1016/s0896-6273(00)80654-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are the most widely studied forms of synaptic plasticity thought to underlie spatial learning and memory. We report here that RARbeta deficiency in mice virtually eliminates hippocampal CA1 LTP and LTD. It also results in substantial performance deficits in spatial learning and memory tasks. Surprisingly, RXRgamma null mice exhibit a distinct phenotype in which LTD is lost whereas LTP is normal. Thus, while retinoid receptors contribute to both LTP and LTD, they do so in different ways. These findings not only genetically uncouple LTP and LTD but also reveal a novel and unexpected role for vitamin A in higher cognitive functions.
Collapse
Affiliation(s)
- M Y Chiang
- Gene Expression Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1998; 1:595-601. [PMID: 10196567 DOI: 10.1038/2830] [Citation(s) in RCA: 406] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies suggest that the CREB-CRE transcriptional pathway is pivotal in the formation of some types of long-term memory. However, it has not been demonstrated that stimuli that induce learning and memory activate CRE-mediated gene expression. To address this issue, we used a mouse strain transgenic for a CRE-lac Z reporter to examine the effects of hippocampus-dependent learning on CRE-mediated gene expression in the brain. Training for contextual conditioning or passive avoidance led to significant increases in CRE-dependent gene expression in areas CA1 and CA3 of the hippocampus. Auditory cue fear-conditioning, which is amygdala dependent, was associated with increased CRE-mediated gene expression in the amygdala, but not the hippocampus. These data demonstrate that learning in response to behavioral conditioning activates the CRE transcriptional pathway in specific areas of brain.
Collapse
Affiliation(s)
- S Impey
- Department of Pharmacology, University of Washington, Seattle 98195-7280, USA
| | | | | | | | | | | |
Collapse
|
1246
|
Oliff HS, Berchtold NC, Isackson P, Cotman CW. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:147-53. [PMID: 9795193 DOI: 10.1016/s0169-328x(98)00222-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Previous results from our laboratory indicate that two nights of voluntary wheel running upregulates brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. In order to investigate the time-course of the BDNF response and to examine how physical activity preferentially activates particular transcriptional pathways, the effects of 6 and 12 h of voluntary wheel running on BDNF and exons I-IV mRNA expression were investigated in rats. Hippocampal full-length BDNF mRNA expression was rapidly influenced by physical activity, showing significant increases in expression levels as soon as 6 h of voluntary wheel running. Moreover, there was a strong positive correlation between distance run and BDNF mRNA expression. Exon I mRNA expression was significantly upregulated after 6 h of running and was maintained or enhanced by 12 h of voluntary running. Exon II had a slower time-course and was significantly upregulated after 12 h, selectively in the CA1 hippocampal region. Exon III and Exon IV showed no significant increase in expression level after 6 or 12 h of running in the paradigm studied. It is significant that the rapid neurotrophin response is demonstrated for a physiologically relevant stimulus, as opposed to the extreme conditions of seizure paradigms. Furthermore, exercise-induced upregulation of BDNF may help increase the brain's resistance to damage and neurodegeneration that occurs with aging.
Collapse
Affiliation(s)
- H S Oliff
- Institute for Brain Aging and Dementia, University of California, Irvine, Irvine, CA 92697-4540, USA
| | | | | | | |
Collapse
|
1247
|
|
1248
|
Murphy DD, Cole NB, Segal M. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons. Proc Natl Acad Sci U S A 1998; 95:11412-7. [PMID: 9736750 PMCID: PMC21656 DOI: 10.1073/pnas.95.19.11412] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.
Collapse
Affiliation(s)
- D D Murphy
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
1249
|
Akutagawa E, Konishi M. Transient expression and transport of brain-derived neurotrophic factor in the male zebra finch's song system during vocal development. Proc Natl Acad Sci U S A 1998; 95:11429-34. [PMID: 9736753 PMCID: PMC21659 DOI: 10.1073/pnas.95.19.11429] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/1998] [Indexed: 11/18/2022] Open
Abstract
The distribution of brain-derived neurotrophic factor (BDNF) in the song system of male zebra finches changes with posthatching age. At day 20, the hyperstriatum ventrale, pars caudale is the only song nucleus in which neurons showed BDNF immunoreactivity. At day 45, the staining in hyperstriatum ventrale, pars caudale was denser than at day 20 and the robust nucleus of the archistriatum, another song nucleus, showed BDNF labeling. By day 65, two additional song nuclei, area X and the lateral magnocellular nucleus of the anterior neostriatum, have become immunoreactive. In the adult, however, the amount of BDNF labeling in all of these brain nuclei is sharply reduced. These sequential events, the anatomical connections between these song nuclei, and the labeling of relevant axons and terminals suggest anterograde transport of BDNF. Furthermore, the timing of BDNF expression coincident with the development of singing behavior suggests that this neurotrophin may be directly involved with the differentiation of the song system.
Collapse
Affiliation(s)
- E Akutagawa
- Division of Biology, 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|