1251
|
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet 2013; 9:e1003905. [PMID: 24204310 PMCID: PMC3812088 DOI: 10.1371/journal.pgen.1003905] [Citation(s) in RCA: 861] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023] Open
Abstract
We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with ∂a∂i, the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets.
Collapse
Affiliation(s)
- Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Isabelle Dupanloup
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Emilia Huerta-Sánchez
- Center for Theoretical Evolutionary Genomics, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Vitor C. Sousa
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthieu Foll
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
1252
|
Adams DH. Conceptualising a child-centric paradigm : do we have freedom of choice in donor conception reproduction? JOURNAL OF BIOETHICAL INQUIRY 2013; 10:369-381. [PMID: 23780686 DOI: 10.1007/s11673-013-9454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Since its inception, donor conception practices have been a reproductive choice for the infertile. Past and current practices have the potential to cause significant and lifelong harm to the offspring through loss of kinship, heritage, identity, and family health history, and possibly through introducing physical problems. Legislation and regulation in Australia that specifies that the welfare of the child born as a consequence of donor conception is paramount may therefore be in conflict with the outcomes. Altering the paradigm to a child-centric model, however, impinges on reproductive choice and rights of adults involved in the process. With some lobby groups pushing for increased reproductive choice while others emphasise offspring rights there is a dichotomy of interests that society and legislators need to address. Concepts pertaining to a shift toward a child-centric paradigm are discussed.
Collapse
Affiliation(s)
- Damian H Adams
- School of Nursing and Midwifery, Flinders University, Sturt Road, Bedford Park, South Australia, Australia, 5042,
| |
Collapse
|
1253
|
Ramu A, Noordam MJ, Schwartz RS, Wuster A, Hurles ME, Cartwright RA, Conrad DF. DeNovoGear: de novo indel and point mutation discovery and phasing. Nat Methods 2013; 10:985-7. [PMID: 23975140 PMCID: PMC4003501 DOI: 10.1038/nmeth.2611] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 01/19/2023]
Abstract
We present DeNovoGear software for analyzing de novo mutations from familial and somatic tissue sequencing data. DeNovoGear uses likelihood-based error modeling to reduce the false positive rate of mutation discovery in exome analysis and fragment information to identify the parental origin of germ-line mutations. We used DeNovoGear on human whole-genome sequencing data to produce a set of predicted de novo insertion and/or deletion (indel) mutations with a 95% validation rate.
Collapse
Affiliation(s)
- Avinash Ramu
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2]
| | | | | | | | | | | | | |
Collapse
|
1254
|
Abstract
Human spermatozoa are highly complex specialized cells designed to survive a long and perilous journey from the site of insemination to the upper reaches of the female reproductive tract where fertilization occurs. During this journey, these cells have to run the gauntlet laid down by the female immune system and time their physiological maturation so that as soon as an egg appears in the Fallopian tube, they are equipped to recognize this cell and participate in a remarkable cascade of cellular interactions culminating in fertilization. Despite their high level of specialization, human spermatozoa are notoriously inadequate and appear to be major contributors to the poor fertility that characterizes our species. Defective spermatozoa are also known to have a major impact on the progress of pregnancy and the health trajectory of the offspring, resulting in paternally mediated increases in miscarriage rate and a range of diseases in the progeny, including dominant genetic diseases and cancer. The causes of defective sperm function are complex and involve both genetic and environmental impacts, as well as paternal age. Where genetic factors are involved, there is a concern that the widespread use of assisted conception technologies will serve to enhance the retention of poor fertility genes in the population such that the more we use assisted reproductive technologies in one generation the more we shall need them in the next. These observations may have important implications for the health and well-being of children and for the provision of reproductive healthcare services for future generations.
Collapse
|
1255
|
Schreiber M, Dorschner M, Tsuang D. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:671-8. [PMID: 24132899 DOI: 10.1002/ajmg.b.32156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/13/2013] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder.
Collapse
Affiliation(s)
- Matthew Schreiber
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA; Mental Health Services, VA Puget Sound Health Care System, Seattle, WA
| | | | | |
Collapse
|
1256
|
Mintziori G, Lambrinoudaki I, Kolibianakis EM, Ceausu I, Depypere H, Erel CT, Pérez-López FR, Schenck-Gustafsson K, van der Schouw YT, Simoncini T, Tremollieres F, Tarlatzis BC, Rees M, Goulis DG. EMAS position statement: Late parenthood. Maturitas 2013; 76:200-4. [DOI: 10.1016/j.maturitas.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
1257
|
Campbell CD, Eichler EE. Properties and rates of germline mutations in humans. Trends Genet 2013; 29:575-84. [PMID: 23684843 PMCID: PMC3785239 DOI: 10.1016/j.tig.2013.04.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/05/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022]
Abstract
All genetic variation arises via new mutations; therefore, determining the rate and biases for different classes of mutation is essential for understanding the genetics of human disease and evolution. Decades of mutation rate analyses have focused on a relatively small number of loci because of technical limitations. However, advances in sequencing technology have allowed for empirical assessments of genome-wide rates of mutation. Recent studies have shown that 76% of new mutations originate in the paternal lineage and provide unequivocal evidence for an increase in mutation with paternal age. Although most analyses have focused on single nucleotide variants (SNVs), studies have begun to provide insight into the mutation rate for other classes of variation, including copy number variants (CNVs), microsatellites, and mobile element insertions (MEIs). Here, we review the genome-wide analyses for the mutation rate of several types of variants and suggest areas for future research.
Collapse
Affiliation(s)
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, Seattle, WA 98195
| |
Collapse
|
1258
|
Abstract
Autism spectrum disorders (ASDs) are lifelong neurodevelopmental disabilities that affect 1 in 88 children in the USA. Despite the high heritability, the genetic basis for a majority of the ASDs remains elusive. The considerable clinical and genetic heterogeneity pose a significant challenge technically. State-of-the-art high-throughput sequencing (HTS), which makes the analyses of any specific single/multiple genes or whole exomes feasible, has shown a promising perspective in disease gene discovery. To date, numerous genetic studies using HTS have been reported and many rare inherited or de novo mutations have been identified. This review will focus on the progress and prospective of genome studies of ASDs using HTS.
Collapse
|
1259
|
Abstract
The timing of human evolution can be inferred from DNA sequence comparisons, but this requires an accurate estimate of the mutation rate. While recent data suggested a lower rate and a longer timeline, a new study reinstates the previous timeline.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | | |
Collapse
|
1260
|
Alkhayal A, San Gabriel M, Zeidan K, Alrabeeah K, Noel D, McGraw R, Bissonnette F, Kadoch IJ, Zini A. Sperm DNA and chromatin integrity in semen samples used for intrauterine insemination. J Assist Reprod Genet 2013; 30:1519-24. [PMID: 24068511 DOI: 10.1007/s10815-013-0101-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sperm DNA damage is associated with male infertility but whether normozoospermic infertile men also have DNA damage is unknown. OBJECTIVE To evaluate sperm DNA and chromatin integrity in men with mild male factor infertility. DESIGN, SETTING AND PARTICIPANTS Prospective study of 102 consecutive men (78 normozoospermic, 15 asthenozoospermic, 9 oligozoospermic) enrolled for intrauterine insemination (IUI) and 15 fertile controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Standard semen parameters and sperm chromatin and DNA integrity were assessed and compared between groups. Sperm chromatin quality was assessed by (1) aniline blue staining (AB is specific to histone lysines), (2) iodoacetamide fluorescein fluorescence (IAF targets free protamine sulfhydryl groups) and (3) sperm chromatin structure assay (SCSA) with the results expressed as % DNA fragmentation index (%DFI). RESULTS AND LIMITATIONS The mean (±SD) percentage of spermatozoa with positive IAF fluorescence was significantly higher in the IUI population compared to fertile controls (17 % ± 10 % vs. 8 % ± 6 %, P = 0.0011) and also in the normozoospermic subset (n = 78) compared to controls (16 % ± 9 % vs. 8 % ± 6 %, P < 0.0001, ANOVA). We also observed a trend toward lower %progressive motility, and higher %AB staining and %DFI in the IUI group compared to controls. We observed significant relationships between sperm %DFI and progressive motility (r = -0.40, P < 0.0001) and between positive AB staining and IAF fluorescence (r = 0.58, P < 0.0001). CONCLUSIONS The data indicate that sperm chromatin integrity may be abnormal in men enrolled in IUI treatment cycles, despite the fact that most of these men are normozoospermic.
Collapse
Affiliation(s)
- Abdullah Alkhayal
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
1261
|
Comparative analysis of context-dependent mutagenesis using human and mouse models. BIOMED RESEARCH INTERNATIONAL 2013; 2013:989410. [PMID: 24058920 PMCID: PMC3766559 DOI: 10.1155/2013/989410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022]
Abstract
Substitution rates strongly depend on their nucleotide context. One of the most studied examples is the excess of C > T mutations in the CG context in various groups of organisms, including vertebrates. Studies on the molecular mechanisms underlying this mutation regularity have provided insights into evolution, mutagenesis, and cancer development. Recently several other hypermutable motifs were identified in the human genome. There is an increased frequency of T > C mutations in the second position of the words ATTG and ATAG and an increased frequency of A > C mutations in the first position of the word ACAA. For a better understanding of evolution, it is of interest whether these mutation regularities are human specific or present in other vertebrates, as their presence might affect the validity of currently used substitution models and molecular clocks. A comprehensive analysis of mutagenesis in 4 bp mutation contexts requires a vast amount of mutation data. Such data may be derived from the comparisons of individual genomes or from single nucleotide polymorphism (SNP) databases. Using this approach, we performed a systematical comparison of mutation regularities within 2-4 bp contexts in Mus musculus and Homo sapiens and uncovered that even closely related organisms may have notable differences in context-dependent mutation regularities.
Collapse
|
1262
|
Replicative mechanisms for CNV formation are error prone. Nat Genet 2013; 45:1319-26. [PMID: 24056715 PMCID: PMC3821386 DOI: 10.1038/ng.2768] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/27/2013] [Indexed: 01/20/2023]
Abstract
We investigated 67 breakpoint junctions of gene copy number gains (CNVs) in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase-slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex CNVs. These simple nucleotide variants (SNV) were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate a low fidelity error-prone DNA polymerase in synthesis associated with DNA repair mechanisms that leads to a local increase in point mutation burden associated with human CGR.
Collapse
|
1263
|
Neuropathology and animal models of autism: genetic and environmental factors. AUTISM RESEARCH AND TREATMENT 2013; 2013:731935. [PMID: 24151553 PMCID: PMC3787615 DOI: 10.1155/2013/731935] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
Collapse
|
1264
|
Lucock MD, Martin CE, Yates ZR, Veysey M. Diet and our genetic legacy in the recent anthropocene: a Darwinian perspective to nutritional health. J Evid Based Complementary Altern Med 2013; 19:68-83. [PMID: 24647381 DOI: 10.1177/2156587213503345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient-gene research tends to focus on human disease, although such interactions are often a by-product of our evolutionary heritage. This review explores health in this context, reframing genetic variation/epigenetic phenomena linked to diet in the framework of our recent evolutionary past. This "Darwinian/evolutionary medicine" approach examines how diet helped us evolve among primates and to adapt (or fail to adapt) our metabolome to specific environmental conditions leading to major diseases of civilization. This review presents updated evidence from a diet-gene perspective, portraying discord that exists with respect to health and our overall nutritional, cultural, and activity patterns. While Darwinian theory goes beyond nutritional considerations, a significant component within this concept does relate to nutrition and the mismatch between genes, modern diet, obesogenic lifestyle, and health outcomes. The review argues that nutritional sciences should expand knowledge on the evolutionary connection between food and disease, assimilating it into clinical training with greater prominence.
Collapse
Affiliation(s)
- Mark D Lucock
- University of Newcastle, Ourimbah, New South Wales, Australia
| | | | | | | |
Collapse
|
1265
|
Kiran Kumar HB, Castellani C, Maiti S, O'Reilly R, Singh SM. Search for missing schizophrenia genes will require a new developmental neurogenomic perspective. J Genet 2013; 92:335-40. [PMID: 23970094 DOI: 10.1007/s12041-013-0262-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Even the most powerful experimental designs in search of genetic causes of schizophrenia have not met the desired goal. It is imperative to review the reasons for such an outcome and to formulate novel strategies for the future direction of this research in the new era of individual genomes. Here, we will review aspects of neurodevelopmental hypothesis of schizophrenia in the light of novel genomic and epigenomic insights. Specifically, we will argue for the involvement of de novo mutations and epigenetic modifications during neurodevelopment that may result in schizophrenia. Our conclusion is that the successful elucidation of hereditary mechanisms in neuropsychiatric disorders must begin with attention to discrete endophenotypes; consideration of ontogeny, forethought of genome structure including temporal and spatial patterns of (epi) mutations and the use of judicious techniques that go beyond association studies.
Collapse
Affiliation(s)
- H B Kiran Kumar
- Molecular Genetics Unit, Department of Biology and Psychiatry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
1266
|
Hehir-Kwa JY, Pfundt R, Veltman JA, de Leeuw N. Pathogenic or not? Assessing the clinical relevance of copy number variants. Clin Genet 2013; 84:415-21. [PMID: 23895381 DOI: 10.1111/cge.12242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 02/04/2023]
Abstract
The availability of commercially produced genomic microarrays has resulted in the wide spread implementation of genomic microarrays, often as a first-tier diagnostic test for copy number variant (CNV) screening of patients who are suspected for chromosomal aberrations. Patients with intellectual disability (ID) and/or multiple congenital anomalies (MCA) were traditionally the main focus for this microarray-based CNV screening, but the application of microarrays to other (neurodevelopmental) disorders and tumor diagnostics has also been explored and implemented. The diagnostic workflow for patients with ID is now well established, relying on the identification of rare CNVs and determining their inheritance patterns. However, experience gained through screening large numbers of samples has revealed many subtleties and complexities of CNV interpretation. This has resulted in a better understanding of the contribution of CNVs to genomic disorders not only via de novo occurrence, but also via X-linked and recessive inheritance models as well as through models taking into account mosaicisms, imprinting, and digenic inheritance. In this review, we discuss CNV interpretation within the context of these different genetic disease models and common pitfalls that can occur when searching for supportive evidence that a CNV is clinically relevant.
Collapse
Affiliation(s)
- J Y Hehir-Kwa
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
1267
|
Segmenting the human genome based on states of neutral genetic divergence. Proc Natl Acad Sci U S A 2013; 110:14699-704. [PMID: 23959903 DOI: 10.1073/pnas.1221792110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.
Collapse
|
1268
|
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9:e1003671. [PMID: 23966865 PMCID: PMC3744441 DOI: 10.1371/journal.pgen.1003671] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/10/2013] [Indexed: 01/31/2023] Open
Abstract
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. The genetic underpinnings of autism spectrum disorder (ASD) have proven difficult to determine, despite a wealth of evidence for genetic causes and ongoing effort to identify genes. Recently investigators sequenced the coding regions of the genomes from ASD children along with their unaffected parents (ASD trios) and identified numerous new candidate genes by pinpointing spontaneously occurring (de novo) mutations in the affected offspring. A gene with a severe (de novo) mutation observed in more than one individual is immediately implicated in ASD; however, the majority of severe mutations are observed only once per gene. These genes create a short list of candidates, and our results suggest about 50% are true risk genes. To strengthen our inferences, we develop a novel statistical method (TADA) that utilizes inherited variation transmitted to affected offspring in conjunction with (de novo) mutations to identify risk genes. Through simulations we show that TADA dramatically increases power. We apply this approach to nearly 1000 ASD trios and 2000 subjects from a case-control study and identify several promising genes. Through simulations and application we show that TADA's integration of sequencing data can be a highly effective means of identifying risk genes.
Collapse
Affiliation(s)
- Xin He
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Stephan J. Sanders
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elaine T. Lim
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - James S. Sutcliffe
- Vanderbilt Brain Institute, Departments of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gerard D. Schellenberg
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Friedman Brain Institute, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Matthew W. State
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn Roeder
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
1269
|
Brown A, Bao Y, McKeague I, Shen L, Schaefer C. Parental age and risk of bipolar disorder in offspring. Psychiatry Res 2013; 208:225-31. [PMID: 23790979 PMCID: PMC3725196 DOI: 10.1016/j.psychres.2013.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/19/2022]
Abstract
We investigated prospectively documented parental age and bipolar disorder (BD) in a multi-ethnic birth cohort. The study was based on a nested case-control design from the Child Health and Development Study (CHDS) birth cohort from 1959 to 1966. Potential cases with BD were ascertained by database linkages between CHDS, Kaiser Permanente Medical Care Plan (KPNC), and Alameda County Behavioral Health Care Services, and mailed questionnaires. Consensus diagnoses with the SCID for DSM-IV-TR were made. The total number of BD cases was 94. Controls (N=746) were selected from the birth cohort and matched on date of birth, sex, and KPNC membership or residence in Alameda County. For every 10-year increment of paternal age, there was no significant association with BD, adjusting for maternal age. There was also no significant association between maternal age, modeled in 10-year increments, and risk of BD after adjustment for paternal age and maternal race, although there was a suggestion for a protective relationship between increasing maternal age and BD with psychotic features. These findings suggest that if advanced paternal age is a risk factor for BD, the strength of the relationship is small.
Collapse
Affiliation(s)
- Alan Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Yuanyuan Bao
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032
| | - Ian McKeague
- Department of Biostatistics, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032
| | - Ling Shen
- Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612
| |
Collapse
|
1270
|
Kanda RK, Tristem M, Coulson T. Exploring the effects of immunity and life history on the dynamics of an endogenous retrovirus. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120505. [PMID: 23938754 DOI: 10.1098/rstb.2012.0505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian DNA is littered with the signatures of past retroviral infections. For example, at least 8% of the human genome can be attributed to endogenous retroviruses (ERVs). We take a single-locus approach to develop a simple susceptible-infected-recovered model to investigate the circumstances under which a disease-causing retrovirus can become incorporated into the host genome and spread through the host population if it were to confer an immunological advantage. In the absence of any fitness benefit provided by the long terminal repeat (LTR), we conclude that signatures of ERVs are likely to go to fixation within a population when the probability of evolving cellular/humoral immunity to a related exogenous version of the virus is extremely small. We extend this model to examine whether changing the speed of the host life history influences the likelihood that an exogenous retrovirus will incorporate and spread to fixation. Our results reveal the parameter space under which incorporation of exogenous retroviruses into a host genome may be beneficial to the host. In our final model, we find that the likelihood of an LTR reaching fixation in a host population is not strongly affected by host life history.
Collapse
Affiliation(s)
- R K Kanda
- Department of Zoology, University of Oxford, , Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | | | | |
Collapse
|
1271
|
Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T, Goldstein DB, Han Y, Heinzen EL, Hitomi Y, Howell KB, Johnson MR, Kuzniecky R, Lowenstein DH, Lu YF, Madou MRZ, Marson AG, Mefford HC, Esmaeeli Nieh S, O'Brien TJ, Ottman R, Petrovski S, Poduri A, Ruzzo EK, Scheffer IE, Sherr EH, Yuskaitis CJ, Abou-Khalil B, Alldredge BK, Bautista JF, Berkovic SF, Boro A, Cascino GD, Consalvo D, Crumrine P, Devinsky O, Dlugos D, Epstein MP, Fiol M, Fountain NB, French J, Friedman D, Geller EB, Glauser T, Glynn S, Haut SR, Hayward J, Helmers SL, Joshi S, Kanner A, Kirsch HE, Knowlton RC, Kossoff EH, Kuperman R, Kuzniecky R, Lowenstein DH, McGuire SM, Motika PV, Novotny EJ, Ottman R, Paolicchi JM, Parent JM, Park K, Poduri A, Scheffer IE, Shellhaas RA, Sherr EH, Shih JJ, Singh R, Sirven J, Smith MC, Sullivan J, Lin Thio L, Venkat A, Vining EPG, Von Allmen GK, Weisenberg JL, Widdess-Walsh P, Winawer MR. De novo mutations in epileptic encephalopathies. Nature 2013; 501:217-21. [PMID: 23934111 PMCID: PMC3773011 DOI: 10.1038/nature12439] [Citation(s) in RCA: 1136] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ∼4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 × 10(-3)). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 × 10(-10) and P = 7.8 × 10(-12), respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P < 10(-8)), as has been reported previously for autism spectrum disorders.
Collapse
|
1272
|
Jiang YH, Yuen R, Jin X, Wang M, Chen N, Wu X, Ju J, Mei J, Shi Y, He M, Wang G, Liang J, Wang Z, Cao D, Carter M, Chrysler C, Drmic I, Howe J, Lau L, Marshall C, Merico D, Nalpathamkalam T, Thiruvahindrapuram B, Thompson A, Uddin M, Walker S, Luo J, Anagnostou E, Zwaigenbaum L, Ring R, Wang J, Lajonchere C, Wang J, Shih A, Szatmari P, Yang H, Dawson G, Li Y, Scherer S. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet 2013; 93:249-63. [PMID: 23849776 DOI: 10.1016/j.ajhg.2013.06.012] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 01/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.
Collapse
|
1273
|
Comparative analysis of context-dependent mutagenesis in humans and fruit flies. Int J Genomics 2013; 2013:173616. [PMID: 23984310 PMCID: PMC3747623 DOI: 10.1155/2013/173616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/07/2013] [Indexed: 11/17/2022] Open
Abstract
In general, mutation frequencies are context-dependent: specific adjacent nucleotides may influence the probability to observe a specific type of mutation in a genome. Recently, several hypermutable motifs were identified in the human genome. Namely, there is an increased frequency of T>C mutations in the second position of the words ATTG and ATAG and an increased frequency of A>C mutations in the first position of the word ACAA. Previous studies have also shown that there is a remarkable difference between the mutagenesis of humans and drosophila. While C>T mutations are overrepresented in the CG context in humans (and other vertebrates), this mutation regularity is not observed in Drosophila melanogaster. Such differences in the observed regularities of mutagenesis between representatives of different taxa might reflect differences in the mechanisms involved in mutagenesis. We performed a systematical comparison of mutation regularities within 2-4 bp contexts in Homo sapiens and Drosophila melanogaster and found that the aforementioned contexts are not hypermutable in fruit flies. It seems that most mutation contexts affect mutation rates in a similar manner in H. sapiens and D. melanogaster; however, several important exceptions are noted and discussed.
Collapse
|
1274
|
The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum Genet 2013; 132:1197-211. [PMID: 23907654 DOI: 10.1007/s00439-013-1344-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
Autozygosity, or the inheritance of two copies of an ancestral allele, has the potential to not only reveal phenotypes caused by biallelic mutations in autosomal recessive genes, but to also facilitate the mapping of such mutations by flagging the surrounding haplotypes as tractable runs of homozygosity (ROH), a process known as autozygosity mapping. Since SNPs replaced microsatellites as markers for the purpose of genomewide identification of ROH, autozygosity mapping of Mendelian genes has witnessed a significant acceleration. Historically, successful mapping traditionally required favorable family structure that permits the identification of an autozygous interval that is amenable to candidate gene selection and confirmation by Sanger sequencing. This requirement presented a major bottleneck that hindered the utilization of simplex cases and many multiplex families with autosomal recessive phenotypes. However, the advent of next-generation sequencing that enables massively parallel sequencing of DNA has largely bypassed this bottleneck and thus ushered in an era of unprecedented pace of Mendelian disease gene discovery. The ability to identify a single causal mutation among a massive number of variants that are uncovered by next-generation sequencing can be challenging, but applying autozygosity as a filter can greatly enhance the enrichment process and its throughput. This review will discuss the power of combining the best of both techniques in the mapping of recessive disease genes and offer some tips to troubleshoot potential limitations.
Collapse
|
1275
|
|
1276
|
Charlesworth B. Why we are not dead one hundred times over. Evolution 2013; 67:3354-61. [PMID: 24152012 DOI: 10.1111/evo.12195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/14/2013] [Indexed: 12/25/2022]
Abstract
The possibility of pervasive weak selection at tens or hundreds of millions of sites across the genome, suggested by recent studies of silent site DNA sequence variation and divergence, raises the problem of the survival of the population in the face of the large genetic load that may result. Two alternative resolutions of this problem are presented for populations where recombination is sufficiently frequent that different sites under selection evolve independently. One invokes weak stabilizing selection, of the magnitude compatible with abundant silent site variability. This can be shown to produce only a modest genetic load, due to the effectiveness of even weak stabilizing selection in keeping the trait mean close to the optimum. The other invokes soft selection, whereby individuals compete for a limiting resource whose abundance determines the absolute fitness of the population. Weak purifying selection at a large number of sites produces only a small variance in fitness among individuals within the population, due to the fact that most sites are fixed rather than polymorphic. Even when it produces a large genetic load, it is compatible with the observations on fitness variance when selection is soft. It may be very difficult to distinguish between these two possibilities.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| |
Collapse
|
1277
|
Abstract
The autism spectrum disorders (ASD) are characterized by impairments in social interaction and stereotyped behaviors. For the majority of individuals with ASD, the causes of the disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Chromosomal rearrangements as well as rare and de novo copy-number variants are present in ∼10-20% of individuals with ASD, compared with 1-2% in the general population and/or unaffected siblings. Rare and de novo coding-sequence mutations affecting neuronal genes have also been identified in ∼5-10% of individuals with ASD. Common variants such as single-nucleotide polymorphisms seem to contribute to ASD susceptibility, but, taken individually, their effects appear to be small. Despite a heterogeneous genetic landscape, the genes implicated thus far-which are involved in chromatin remodeling, metabolism, mRNA translation, and synaptic function-seem to converge in common pathways affecting neuronal and synaptic homeostasis. Animal models developed to study these genes should lead to a better understanding of the diversity of the genetic landscapes of ASD.
Collapse
Affiliation(s)
- Guillaume Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, 75015 Paris, France;
| | | | | |
Collapse
|
1278
|
Strøm-Roum EM, Haavaldsen C, Tanbo TG, Eskild A. Paternal age, placental weight and placental to birthweight ratio: a population-based study of 590,835 pregnancies. Hum Reprod 2013; 28:3126-33. [PMID: 23873147 DOI: 10.1093/humrep/det299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
STUDY QUESTION Is the age of the father associated with placental weight or the ratio of placental weight to birthweight? SUMMARY ANSWER Placental weight and placental to birthweight ratio increased according to increasing paternal age, also after adjustment for maternal age. WHAT IS KNOWN ALREADY High paternal age and also high placental to birthweight ratio have been associated with adverse pregnancy outcome. STUDY DESIGN, SIZE AND DURATION We performed a population-based study and included all singleton births after 22 weeks of gestation in the Medical Birth Registry of Norway (n = 590,835) during the years 1999-2009. PARTICIPANTS/MATERIALS, SETTING, METHODS We compared mean placental weight and placental to birthweight ratio between paternal age groups. The association of paternal age with placental weight was estimated by linear regression analyses, and adjustments were made for maternal age, birthweight, parity, offspring sex, gestational age at birth, maternal smoking, pre-eclampsia, maternal diabetes mellitus and pregnancy after assisted reproductive technology (ART). MAIN RESULTS AND THE ROLE OF CHANCE In pregnancies with fathers aged 20-24 years old, the mean placental weight was 656.2 g [standard deviation (SD) 142.8], whereas it was 677.8 g (SD 160.0) in pregnancies with fathers aged 50 years or older (P < 0.001). The mean offspring birthweight in pregnancies with fathers aged 20-24 year old was 3465.0 g (SD 583.8), and it was 3498.9 g (SD 621.8) when the father was 50 years or older (P < 0.001). The placental to birthweight ratio in the corresponding paternal age groups were 0.191 (SD 0.039) and 0.196 (SD 0.044) (P < 0.001). In multivariable linear regression analysis the placentas in pregnancies fathered by a man of 50 years or older were estimated to weigh 13.99 g [95% confidence interval (CI) 10.88-17.10] more than in pregnancies with a 20-24-year-old father (P < 0.001) after adjustment for maternal age, birthweight, parity, offspring sex, gestational age at birth, maternal smoking, pre-eclampsia, maternal diabetes mellitus and pregnancy after ART. LIMITATIONS, REASONS FOR CAUTION Paternal age explains only a small proportion of the total variation in placental weight. WIDER IMPLICATIONS OF THE FINDINGS Our findings may increase the understanding of the father's role in human pregnancy. STUDY FUNDING/ COMPETING INTEREST(S) Norwegian Resource Centre for Women's Health, Norway. No conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- E M Strøm-Roum
- Department of Gynecology and Obstetrics, Akershus University Hospital and Institute of Clinical Medicine, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway
| | | | | | | |
Collapse
|
1279
|
Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013; 19:604-24. [PMID: 23856356 DOI: 10.1093/humupd/dmt031] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are known to act as epigenetic modifiers, inducing histone modifications and DNA methylation, perhaps playing a role in transgenerational epigenetic inherence. Transcript profiling holds considerable potential for the discovery of fertility biomarkers for both agriculture and human medicine. Comparing the differential RNA profiles of infertile and fertile individuals as well as assessing species similarities, should resolve the regulatory pathways contributing to male factor infertility. CONCLUSIONS Dad delivers a complex population of RNAs to the oocyte at fertilization that likely influences fertilization, embryo development, the phenotype of the offspring and possibly future generations. Development is continuing on the use of spermatozoal RNA profiles as phenotypic markers of male factor status for use as clinical diagnostics of the father's contribution to the birth of a healthy child.
Collapse
Affiliation(s)
- Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
1280
|
Lewis SEM, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, Giwercman A, Gharagozloo P. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online 2013; 27:325-37. [PMID: 23948450 DOI: 10.1016/j.rbmo.2013.06.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/09/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022]
Abstract
Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths, weaknesses and clinical applicability of current sperm DNA tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. DNA damage in human spermatozoa is an important attribute of semen quality. It should be part of the clinical work up and properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency. Sperm DNA damage is a useful biomarker for male infertility diagnosis and prediction of assisted reproduction outcomes. It is associated with reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage and childhood diseases. With all of these fertility check points, it shows more promise than conventional semen parameters from a diagnostic perspective. Despite this, few infertility clinics use it routinely. This review provides a synopsis of the most recent studies from each of the authors, all of whom have major track records in the field of sperm DNA damage in the clinical setting. It explores current laboratory tests and the accumulating body of knowledge concerning the relationship between sperm DNA damage and clinical outcomes. The paper proceeds to discuss the strengths and weaknesses and clinical applicability of current sperm DNA fragmentation tests. Next, the biological significance of DNA damage in the male germ line is considered. Finally, as sperm DNA damage is often the result of increased oxidative stress in the male reproductive tract, the potential contribution of antioxidant therapy in the clinical management of this condition is discussed. As those working in this field of clinical research, we conclude that DNA damage in human spermatozoa is an important attribute of semen quality which should be carefully assessed in the clinical work up of infertile couples and that properly controlled trials addressing the effectiveness of antioxidant therapy should be undertaken as a matter of urgency.
Collapse
Affiliation(s)
- Sheena E M Lewis
- Centre for Public Health, Institute of Clinical Sciences, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
1281
|
Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S, Jentsch T, Pazzi M, Restifo LL, Talwar D, Erickson RP, Hammer MF. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54:1270-81. [PMID: 23647072 PMCID: PMC3700577 DOI: 10.1111/epi.12201] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses. METHODS We performed WES (mean coverage approximately 40×) on 10 trios comprised of unaffected parents and a child with sporadic epilepsy characterized by difficult-to-control seizures and some combination of developmental delay, epileptic encephalopathy, autistic features, cognitive impairment, or motor deficits. Sequence processing and variant calling were performed using standard bioinformatics tools. A custom filtering system was used to prioritize de novo variants of possible functional significance for validation by Sanger sequencing. KEY FINDINGS In 9 of 10 probands, we identified one or more de novo variants predicted to alter protein function, for a total of 15. Four probands had de novo mutations in genes previously shown to harbor heterozygous mutations in patients with severe, early onset epilepsies (two in SCN1A, and one each in CDKL5 and EEF1A2). In three children, the de novo variants were in genes with functional roles that are plausibly relevant to epilepsy (KCNH5, CLCN4, and ARHGEF15). The variant in KCNH5 alters one of the highly conserved arginine residues of the voltage sensor of the encoded voltage-gated potassium channel. In vitro analyses using cell-based assays revealed that the CLCN4 mutation greatly impaired ion transport by the ClC-4 2Cl(-) /H(+) -exchanger and that the mutation in ARHGEF15 reduced GEF exchange activity of the gene product, Ephexin5, by about 50%. Of interest, these seven probands all presented with seizures within the first 6 months of life, and six of these have intractable seizures. SIGNIFICANCE The finding that 7 of 10 children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
Collapse
Affiliation(s)
- Krishna R Veeramah
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Laurel Johnstone
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tatiana M Karafet
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Daniel Wolf
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ryan Sprissler
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| | - John Salogiannis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Till Stuhlmann
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Stefanie Weinert
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Thomas Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | | | - Linda L Restifo
- Department of Neurology, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Neuroscience, University of Arizona, Tucson, AZ 85821, USA
- Department of Cellular & Molecular Medicine, Arizona Health Science Center, Tucson, AZ 85724, USA
| | - Dinesh Talwar
- Center for Neurosciences, Tucson, AZ 85718, USA
- Department of Neurology, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Pediatrics, Arizona Health Science Center, Tucson AZ 85724, USA
| | - Robert P Erickson
- Department of Pediatrics, Arizona Health Science Center, Tucson AZ 85724, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Michael F Hammer
- ARL Division of Biotechnology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
1282
|
Stone BA, Alex A, Werlin LB, Marrs RP. Age thresholds for changes in semen parameters in men. Fertil Steril 2013; 100:952-8. [PMID: 23809502 DOI: 10.1016/j.fertnstert.2013.05.046] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine whether age thresholds for elements of semen quality exist. DESIGN Retrospective analysis (covariance and point-change analysis) of results of 4,822 semen analyses and 259 fluorescence in situ hybridization (FISH) analyses. SETTING Reference laboratory within an infertility clinic. PATIENT(S) A total of 5,081 men aged 16.5-72.3 years. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Ejaculate volume, sperm concentration, sperm motility, sperm motion parameters, strict morphology, and results of FISH analysis. RESULT(S) Measured parameters of ejaculates did not change before 34 years of age. Immediately thereafter, total sperm numbers (and total motile) declined. Sperm concentration and the proportion of sperm of normal morphology declined after 40 years. Sperm motility and progressive parameters of motile sperm fell after 43 years and ejaculate volume after 45 years. The ratio of Y:X-bearing sperm in ejaculates decreased only after 55 years. CONCLUSION(S) Our findings project a declining likelihood of pregnancy following intercourse with men >34 years old, independent from the woman's age and increasing with advancing age. Age-related mechanisms associated with this oligoasthenoteratozoospermic progression are discussed.
Collapse
Affiliation(s)
- Bronte A Stone
- Reproductive Technology Laboratories, Los Angeles, California; Utah Fertility Partners, Pleasant Grove, Utah.
| | | | | | | |
Collapse
|
1283
|
Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe'er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013; 498:220-3. [PMID: 23665959 PMCID: PMC3706629 DOI: 10.1038/nature12141] [Citation(s) in RCA: 678] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/02/2013] [Indexed: 11/24/2022]
Abstract
Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.
Collapse
Affiliation(s)
- Samir Zaidi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1284
|
Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet 2013; 9:e1003521. [PMID: 23754952 PMCID: PMC3675002 DOI: 10.1371/journal.pgen.1003521] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/06/2013] [Indexed: 01/23/2023] Open
Abstract
There has been much recent excitement about the use of genetics to elucidate ancestral history and demography. Whole genome data from humans and other species are revealing complex stories of divergence and admixture that were left undiscovered by previous smaller data sets. A central challenge is to estimate the timing of past admixture and divergence events, for example the time at which Neanderthals exchanged genetic material with humans and the time at which modern humans left Africa. Here, we present a method for using sequence data to jointly estimate the timing and magnitude of past admixture events, along with population divergence times and changes in effective population size. We infer demography from a collection of pairwise sequence alignments by summarizing their length distribution of tracts of identity by state (IBS) and maximizing an analytic composite likelihood derived from a Markovian coalescent approximation. Recent gene flow between populations leaves behind long tracts of identity by descent (IBD), and these tracts give our method power by influencing the distribution of shared IBS tracts. In simulated data, we accurately infer the timing and strength of admixture events, population size changes, and divergence times over a variety of ancient and recent time scales. Using the same technique, we analyze deeply sequenced trio parents from the 1000 Genomes project. The data show evidence of extensive gene flow between Africa and Europe after the time of divergence as well as substructure and gene flow among ancestral hominids. In particular, we infer that recent African-European gene flow and ancient ghost admixture into Europe are both necessary to explain the spectrum of IBS sharing in the trios, rejecting simpler models that contain less population structure.
Collapse
Affiliation(s)
- Kelley Harris
- Department of Mathematics, University of California Berkeley, Berkeley, CA, USA.
| | | |
Collapse
|
1285
|
Larimore J, Ryder PV, Kim KY, Ambrose LA, Chapleau C, Calfa G, Gross C, Bassell GJ, Pozzo-Miller L, Smith Y, Talbot K, Park IH, Faundez V. MeCP2 regulates the synaptic expression of a Dysbindin-BLOC-1 network component in mouse brain and human induced pluripotent stem cell-derived neurons. PLoS One 2013; 8:e65069. [PMID: 23750231 PMCID: PMC3672180 DOI: 10.1371/journal.pone.0065069] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/22/2013] [Indexed: 02/06/2023] Open
Abstract
Clinical, epidemiological, and genetic evidence suggest overlapping pathogenic mechanisms between autism spectrum disorder (ASD) and schizophrenia. We tested this hypothesis by asking if mutations in the ASD gene MECP2 which cause Rett syndrome affect the expression of genes encoding the schizophrenia risk factor dysbindin, a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), and associated interacting proteins. We measured mRNA and protein levels of key components of a dysbindin interaction network by, quantitative real time PCR and quantitative immunohistochemistry in hippocampal samples of wild-type and Mecp2 mutant mice. In addition, we confirmed results by performing immunohistochemistry of normal human hippocampus and quantitative qRT-PCR of human inducible pluripotent stem cells (iPSCs)-derived human neurons from Rett syndrome patients. We defined the distribution of the BLOC-1 subunit pallidin in human and mouse hippocampus and contrasted this distribution with that of symptomatic Mecp2 mutant mice. Neurons from mutant mice and Rett syndrome patients displayed selectively reduced levels of pallidin transcript. Pallidin immunoreactivity decreased in the hippocampus of symptomatic Mecp2 mutant mice, a feature most prominent at asymmetric synapses as determined by immunoelectron microcopy. Pallidin immunoreactivity decreased concomitantly with reduced BDNF content in the hippocampus of Mecp2 mice. Similarly, BDNF content was reduced in the hippocampus of BLOC-1 deficient mice suggesting that genetic defects in BLOC-1 are upstream of the BDNF phenotype in Mecp2 deficient mice. Our results demonstrate that the ASD-related gene Mecp2 regulates the expression of components belonging to the dysbindin interactome and these molecular differences may contribute to synaptic phenotypes that characterize Mecp2 deficiencies and ASD.
Collapse
Affiliation(s)
- Jennifer Larimore
- Department of Biology, Agnes Scott College, Decatur, Georgia, United States of America
| | - Pearl V. Ryder
- Cell Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - L. Alex Ambrose
- Department of Biology, Agnes Scott College, Decatur, Georgia, United States of America
| | - Christopher Chapleau
- Department of Neurobiology, The University of Alabama, Birmingham, Alabama, United States of America
| | - Gaston Calfa
- Department of Neurobiology, The University of Alabama, Birmingham, Alabama, United States of America
| | - Christina Gross
- Cell Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gary J. Bassell
- Cell Biology, Emory University, Atlanta, Georgia, United States of America
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama, Birmingham, Alabama, United States of America
| | - Yoland Smith
- Department of Neurology, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Center, Emory University, Atlanta, Georgia, United States of America
| | - Konrad Talbot
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Victor Faundez
- Cell Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
1286
|
Shinde DN, Elmer DP, Calabrese P, Boulanger J, Arnheim N, Tiemann-Boege I. New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 2013; 22:4117-26. [PMID: 23740942 PMCID: PMC3781639 DOI: 10.1093/hmg/ddt260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10−6. We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.
Collapse
Affiliation(s)
- Deepali N Shinde
- The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
| | | | | | | | | | | |
Collapse
|
1287
|
Abstract
Because spontaneous mutation is the source of all genetic diversity, measuring mutation rates can reveal how natural selection drives patterns of variation within and between species. We sequenced eight genomes produced by a mutation-accumulation experiment in Drosophila melanogaster. Our analysis reveals that point mutation and small indel rates vary significantly between the two different genetic backgrounds examined. We also find evidence that ∼2% of mutational events affect multiple closely spaced nucleotides. Unlike previous similar experiments, we were able to estimate genome-wide rates of large deletions and tandem duplications. These results suggest that, at least in inbred lines like those examined here, mutational pressures may result in net growth rather than contraction of the Drosophila genome. By comparing our mutation rate estimates to polymorphism data, we are able to estimate the fraction of new mutations that are eliminated by purifying selection. These results suggest that ∼99% of duplications and deletions are deleterious--making them 10 times more likely to be removed by selection than nonsynonymous mutations. Our results illuminate not only the rates of new small- and large-scale mutations, but also the selective forces that they encounter once they arise.
Collapse
|
1288
|
High prevalence of isolated sperm DNA damage in infertile men with advanced paternal age. J Assist Reprod Genet 2013; 30:843-8. [PMID: 23722935 DOI: 10.1007/s10815-013-0015-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/17/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Sperm DNA damage is associated with male infertility, lower pregnancy rates and pregnancy loss. OBJECTIVE The primary aim of our study was to evaluate the prevalence of sperm DNA damage in younger and older men with normozoospermia. DESIGN, SETTING AND PARTICIPANTS We obtained semen from 277 consecutive non-azoospermic men presenting for sperm DNA testing. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The main outcome measures included sperm % DNA fragmentation index (%DFI, using sperm chromatin structure assay), sperm concentration, motility and morphology, and, paternal age. RESULTS AND LIMITATIONS Sperm % DFI was positively correlated with paternal age (r = 0.20, P < 0.001) and inversely correlated % progressive motility (r = -0.16, P = 0.01). Sperm %DFI was significantly higher in older (≥40 years) compared to younger (<40 years) normozoospermic men (17 ± 13 vs. 12 ± 8, respectively P = 0.008), whereas, sperm concentration, progressive motility and morphology were not significantly different in these two groups. Moreover, the prevalence of high levels of sperm DNA damage (>30 % DFI) was significantly higher in older compared to younger normozoospermic men (17 % vs. 3 %, respectively, P < 0.001). CONCLUSION The data indicate that a conventional semen analysis can often fail to detect a defect in spermatogenesis (high %DFI) in older men and suggest that infertile couples with advanced paternal age, including those with normal semen parameters, should consider sperm DNA testing as part of the couple evaluation.
Collapse
|
1289
|
de Ligt J, Veltman JA, Vissers LELM. Point mutations as a source of de novo genetic disease. Curr Opin Genet Dev 2013; 23:257-63. [DOI: 10.1016/j.gde.2013.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/17/2013] [Indexed: 12/30/2022]
|
1290
|
|
1291
|
Schizophrenia susceptibility and age of diagnosis--a frailty approach. Schizophr Res 2013; 147:140-146. [PMID: 23541033 DOI: 10.1016/j.schres.2013.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Using a frailty model approach, we aim to evaluate the effect of early-life risk factors on susceptibility and age at diagnosis of schizophrenia. We assume paternal age and familial schizophrenia influence the susceptibility, while these and several early risk factors influence the age of diagnosis. METHOD Schizophrenia incidence data were derived from the population-based Swedish Patient Registry; including individuals aged 18 to 45 years, diagnosed between 1974 and 2008. Data were analyzed by a frailty model, a random effects model in survival analysis, using a compound Poisson model. RESULTS 15,340 incident schizophrenia cases were included. For individuals without familial schizophrenia, a protective effect was seen across most ages of diagnosis for females, low paternal age, born in rural areas, and being born in later cohorts. For individuals with familial schizophrenia, a protective effect is found for females diagnosed between ages 18 and 30 years, corresponding values were 18-25 years for low paternal age. Being born in rural areas and in the last birth cohort was protective for all. The estimated proportion of susceptible was 5% for those without familial schizophrenia and 18% for individuals with familial schizophrenia. There was no statistically significant effect of paternal age on the proportion of susceptible. DISCUSSION To our knowledge, this is the first regression modeling of time to schizophrenia diagnosis allowing for a non-susceptible fraction of the population, including age dependent modeling of covariate effects and an interaction. Applying frailty model to schizophrenia provide etiological clues, elucidating patterns of susceptibility and age-at-diagnosis for which early-life factors are of importance.
Collapse
|
1292
|
Goriely A, McGrath JJ, Hultman CM, Wilkie AOM, Malaspina D. "Selfish spermatogonial selection": a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am J Psychiatry 2013; 170:599-608. [PMID: 23639989 PMCID: PMC4001324 DOI: 10.1176/appi.ajp.2013.12101352] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is robust evidence from epidemiological studies that the offspring of older fathers have an increased risk of neurodevelopmental disorders, such as schizophrenia and autism. The authors present a novel mechanism that may contribute to this association. Because the male germ cell undergoes many more cell divisions across the reproductive age range, copy errors taking place in the paternal germline are associated with de novo mutations in the offspring of older men. Recently it has been recognized that somatic mutations in male germ cells that modify proliferation through dysregulation of the RAS protein pathway can lead to within-testis expansion of mutant clonal lines. First identified in association with rare disorders related to paternal age (e.g., Apert syndrome, achondroplasia), this process is known as "selfish spermatogonial selection." This mechanism favors propagation of germ cells carrying pathogenic mutations, increasingly skews the mutational profile of sperm as men age, and enriches de novo mutations in the offspring of older fathers that preferentially affect specific cellular signaling pathways. This mechanism not only offers a parsimonious explanation for the association between advanced paternal age and various neurodevelopmental disorders but also provides insights into the genetic architecture (role of de novo mutations), neurobiological correlates (altered cell cycle), and some epidemiological features of these disorders. The authors outline hypotheses to test this model. Given the secular changes for delayed parenthood in most societies, this hypothesis has important public health implications.
Collapse
Affiliation(s)
- Anne Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
1293
|
Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 2013; 45:234-8. [PMID: 23438595 DOI: 10.1038/ng.2555] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pedigree, linkage and association studies are consistent with heritable variation for complex disease due to the segregation of genetic factors in families and in the population. In contrast, de novo mutations make only minor contributions to heritability estimates for complex traits. Nonetheless, some de novo variants are known to be important in disease etiology. The identification of risk-conferring de novo variants will contribute to the discovery of etiologically relevant genes and pathways and may help in genetic counseling. There is considerable interest in the role of such mutations in complex neuropsychiatric disease, largely driven by new genotyping and sequencing technologies. An important role for large de novo copy number variations has been established. Recently, whole-exome sequencing has been used to extend the investigation of de novo variation to point mutations in protein-coding regions. Here, we consider several challenges for the interpretation of such mutations in the context of their role in neuropsychiatric disease.
Collapse
|
1294
|
Chen JM, Férec C, Cooper DN. Patterns and mutational signatures of tandem base substitutions causing human inherited disease. Hum Mutat 2013; 34:1119-30. [PMID: 23606422 DOI: 10.1002/humu.22341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/09/2013] [Indexed: 12/31/2022]
Abstract
Tandem base substitutions (TBSs) are multiple mutations that comprise two or more contiguous nucleotide substitutions without any net gain or loss of bases. They have recently become recognized as a distinct category of human genomic variant. However, their role in causing human inherited disease so far has not been studied methodically. Here, using data from the Human Gene Mutation Database (http://www.hgmd.org), we identified 477 events to be TBSs (doublets, 448; triplets, 16; and quadruplets to octuplets, 13). A comprehensive sequence pattern and context analysis implied the likely fundamental importance of translesion synthesis (TLS) DNA polymerases in generating these diverse TBSs but revealed that TLS polymerases may operate differently in generating TBSs of ≤ 3 bases (bypass of endogenous DNA lesions) than those of ≥ 4 bases (serial replication slippage). Moreover, GC was found to be the most frequently affected dinucleotide with GC/GC>AA/TT being the most frequent double TBS. Comparison with cancer genome mutational spectra allowed us to conclude that human germline TBSs arise predominantly through the action of endogenous mechanisms of mutagenesis rather than through exposure to exogenous mutagens. Finally, the rates of double and triple TBSs were estimated to be 0.2-1.2 × 10(-10) and 0.8-4.8 × 10(-12) per base per generation, respectively.
Collapse
Affiliation(s)
- Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale, Brest, France.
| | | | | |
Collapse
|
1295
|
Affiliation(s)
- Aiden Corvin
- Department of Psychiatry & Neuropsychiatric Genetics Research Group, Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
1296
|
Frans EM, Sandin S, Reichenberg A, Långström N, Lichtenstein P, McGrath JJ, Hultman CM. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiatry 2013; 70:516-21. [PMID: 23553111 PMCID: PMC3701020 DOI: 10.1001/jamapsychiatry.2013.1180] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Advancing paternal age has been linked to autism. OBJECTIVE To further expand knowledge about the association between paternal age and autism by studying the effect of grandfathers' age on childhood autism. DESIGN Population-based, multigenerational, case-control study. SETTING Nationwide multigeneration and patient registers in Sweden. PARTICIPANTS We conducted a study of individuals born in Sweden since 1932. Parental age at birth was obtained for more than 90% of the cohort. Grandparental age at the time of birth of the parent was obtained for a smaller subset (5936 cases and 30 923 controls). MAIN OUTCOME AND MEASURE International Classification of Diseases diagnosis of childhood autism in the patient registry. RESULTS A statistically significant monotonic association was found between advancing grandpaternal age at the time of birth of the parent and risk of autism in grandchildren. Men who had fathered a daughter when they were 50 years or older were 1.79 times (95% CI, 1.35-2.37; P < .001) more likely to have a grandchild with autism, and men who had fathered a son when they were 50 years or older were 1.67 times (95% CI, 1.35-2.37; P < .001) more likely to have a grandchild with autism, compared with men who had fathered children when they were 20 to 24 years old, after controlling for birth year and sex of the child, age of the spouse, family history of psychiatric disorders, highest family educational level, and residential county. A statistically significant monotonic association was also found between advancing paternal age and risk of autism in the offspring. Sensitivity analyses indicated that these findings were not the result of bias due to missing data on grandparental age. CONCLUSIONS AND RELEVANCE Advanced grandparental age was associated with increased risk of autism, suggesting that risk of autism could develop over generations. The results are consistent with mutations and/or epigenetic alterations associated with advancing paternal age.
Collapse
Affiliation(s)
- Emma M Frans
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Abraham Reichenberg
- Department of Psychosis Studies, Institute of Psychiatry, King’s Health Partners, King’s College London, London, UK.
,Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - Niklas Långström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
,Centre for Violence Prevention, Karolinska Institutet, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John J McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Australia
,Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
,Department of Psychiatry, The University of Queensland, St. Lucia, Australia
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
1297
|
Errors in DNA replication and genetic diseases. Curr Opin Cardiol 2013; 28:269-71. [PMID: 23549234 DOI: 10.1097/hco.0b013e328360426c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
1298
|
Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neurosci Biobehav Rev 2013; 37:2424-37. [PMID: 23628741 DOI: 10.1016/j.neubiorev.2013.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/17/2013] [Indexed: 01/12/2023]
Abstract
Genetic research targeting schizophrenia has undergone tremendous development during recent years. Supported by recently developed high-throughput genotyping technologies, both rare and common genetic variants have been identified that show consistent association with schizophrenia. These results have been replicated by independent studies and refined in meta-analyses. The genetic variation uncovered consists of common alleles, i.e. single nucleotide polymorphisms (SNPs) conveying small effects (odds ratios below 1.1) on disease risk. The source of rare variants is copy number variations (CNVs), only detectable in a small proportion of patients (3-5% for all known CNVs) with schizophrenia, furthermore extremely rare de novo mutations captured by next generation sequencing, the most recent technological advancement in the field. Despite these findings, the search for the genetic architecture underlying schizophrenia continues since these variants explain only a small proportion of the overall phenotypic variance. Gene-environment interactions provide a compelling model for resolving this paradox and interpreting the risk factors of schizophrenia. Epidemiologically proven risk factors, such as prenatal infection, obstetric complications, urbanicity, cannabis, and trauma have been demonstrated to interact with genetic risk, giving rise to higher prevalence rates or more severe symptomatology in individuals with direct or indirect genetic predisposition for schizophrenia. Further research will have to explain how the different forms of genetic variation interact and how environmental factors modulate their effects. Moreover, the challenging question lying ahead of us is how genetic and environmental factors translate to molecular disease pathways. New approaches, including animal studies and in vitro disease modeling, as well as innovative real-world environment assessment methods, will help to understand the complex etiology of schizophrenia.
Collapse
|
1299
|
Abstract
Birth rates for older fathers have increased 30% since 1980. When combined with the increased risk for genetic and multifactorial disorders in children conceived by older fathers, paternal age has become an important health issue for modern society. Laboratory research in this area has been minimal, perhaps because of significant experimental barriers, not the least of which is inadequate access to fresh, disease-free human testicular tissue. Regardless, progress has been made and intriguing models supported by experimental evidence have been proposed. The putative mechanisms range from reduced DNA repair activity, leading to increased mutagenesis, to positive selection of germ cells harboring specific disease-causing mutations. There remain many important venues for research in this increasingly relevant phenomenon that impacts future generations.
Collapse
Affiliation(s)
- Jamila R Momand
- South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
1300
|
Bouhassira EE. Therapeutic potential of hematopoietic cells derived from pluripotent stem cells. Expert Opin Biol Ther 2013; 13:1099-102. [PMID: 23611514 DOI: 10.1517/14712598.2013.792803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several challenges must be overcome before hematopoietic cells derived from pluripotent stem cells (PSCs) can be tested in the clinics. Pre-existing genetic mutations in somatic cells are a major concern for the production of iPSCs (induced pluripotent stem cells). This raises the question of what is the best somatic cell source to reprogram into iPSCs. Adult stem cells such as germ cell precursors and hematopoietic stem cells (HSCs) which are believed to be protected from somatic mutation accumulation are good candidates. Three gene editing methods have now been developed for human cells. Careful comparison of these methods is needed to determine the most appropriate for clinical applications. Differentiation of PSCs generally recapitulates early development. Therefore, cells produced from PSCs have an embryonic phenotype. Because transplantable HSCs and red blood cells expressing adult hemoglobin arise late in development, long after gastrulation, they have been difficult to produce from PSCs. The most difficult challenge is perhaps the development of methods to produce cells with an adult phenotype. Interestingly, recent reports suggest that primitive hematopoietic cells might make important contributions to adult hematopoiesis. Production of primitive hematopoietic cells might therefore have clinical applications.
Collapse
|