1251
|
Schaibley VM, Zawistowski M, Wegmann D, Ehm MG, Nelson MR, St. Jean PL, Abecasis GR, Novembre J, Zöllner S, Li JZ. The influence of genomic context on mutation patterns in the human genome inferred from rare variants. Genome Res 2013; 23:1974-84. [PMID: 23990608 PMCID: PMC3847768 DOI: 10.1101/gr.154971.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/19/2013] [Indexed: 01/22/2023]
Abstract
Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.
Collapse
Affiliation(s)
- Valerie M. Schaibley
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - Daniel Wegmann
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Margaret G. Ehm
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Matthew R. Nelson
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Pamela L. St. Jean
- Department of Quantitative Sciences, GlaxoSmithKline (GSK), Research Triangle Park, North Carolina 27709, USA
| | - Gonçalo R. Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - John Novembre
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48019, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
1252
|
Effect of parental age on treatment response in adolescents with schizophrenia. Schizophr Res 2013; 151:185-90. [PMID: 24144440 PMCID: PMC4208878 DOI: 10.1016/j.schres.2013.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Advanced paternal age (APA) is associated with increased risk for schizophrenia, but its effect on treatment response has not been longitudinally studied. METHODS Association of parental ages at the time of the child's birth with age of onset, initial symptom severity and treatment response (to placebo and three different weight-based doses of paliperidone ER) in adolescents with schizophrenia was assessed in a post-hoc analysis using data from a 6-week double-blind study, the primary results of which are published (NCT00518323). RESULTS The mean (SD) paternal age was 29.2 (6.2) years, range (16-50) and maternal age was 26.8 (5.7) years, range (17-42) at childbirth for the 201 adolescents (ages 12-17 years) included in the analysis. While parental ages were uncorrelated with age of onset or initial symptom severity, both maternal and paternal ages showed significant effects on treatment response (p<0.03) of all paliperidone ER arms versus placebo. Paternal age was significantly correlated to improvement in positive symptoms and maternal age significantly related to negative symptoms, although only paternal age remained significantly associated with the treatment response in analyses that included both parents' ages. CONCLUSIONS APA was associated with greater treatment response to both paliperidone ER and placebo, but not to age of onset or initial symptom severity in adolescents with schizophrenia. The results support the contention that APA-related schizophrenia has distinct underpinnings from other cases. Further studies are required to explore the role of genetic and environmental factors, and their interactions, in treatment response in this complex disorder.
Collapse
|
1253
|
Paul C, Nagano M, Robaire B. Aging Results in Molecular Changes in an Enriched Population of Undifferentiated Rat Spermatogonia1. Biol Reprod 2013; 89:147. [DOI: 10.1095/biolreprod.113.112995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
1254
|
Sadakata T, Shinoda Y, Sato A, Iguchi H, Ishii C, Matsuo M, Yamaga R, Furuichi T. Mouse models of mutations and variations in autism spectrum disorder-associated genes: mice expressing Caps2/Cadps2 copy number and alternative splicing variants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:6335-53. [PMID: 24287856 PMCID: PMC3881117 DOI: 10.3390/ijerph10126335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disturbances in interpersonal relationships and behavior. Although the prevalence of autism is high, effective treatments have not yet been identified. Recently, genome-wide association studies have identified many mutations or variations associated with ASD risk on many chromosome loci and genes. Identification of the biological roles of these mutations or variations is necessary to identify the mechanisms underlying ASD pathogenesis and to develop clinical treatments. At present, mice harboring genetic modifications of ASD-associated gene candidates are the best animal models to analyze hereditary factors involved in autism. In this report, the biological significance of ASD-associated genes is discussed by examining the phenotypes of mouse models with ASD-associated mutations or variations in mouse homologs, with a focus on mice harboring genetic modifications of the Caps2/Cadps2 (Ca2+-dependent activator protein for secretion 2) gene.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; E-Mail:
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
| | - Yo Shinoda
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Akira Sato
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Hirotoshi Iguchi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Makoto Matsuo
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Ryosuke Yamaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
| | - Teiichi Furuichi
- JST-CREST, Kawaguchi, Saitama 332-0012, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; E-Mails: (Y.S.); (A.S.); (H.I.); (C.I.); (M.M.); (R.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-4-7122-9303; Fax: +81-4-7123-9767
| |
Collapse
|
1255
|
Vaudano E. The innovative medicines initiative: a public private partnership model to foster drug discovery. Comput Struct Biotechnol J 2013; 6:e201303017. [PMID: 24688725 PMCID: PMC3962198 DOI: 10.5936/csbj.201303017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/19/2013] [Accepted: 11/20/2013] [Indexed: 11/23/2022] Open
Abstract
The Innovative Medicines Initiative (IMI) is a large-scale public–private partnership between the European Commission and the European Federation of Pharmaceutical Industries and Associations (EFPIA). IMI aims to boost the development of new medicines across Europe by implementing new collaborative endeavours between large pharmaceutical companies and other key actors in the health-care ecosystem, i.e., academic institutions, small and medium enterprises, patients, and regulatory authorities. Currently there are more than 40 IMI projects covering the whole value chain of pharmaceutical R&D, but with a strong focus on drug discovery, as an ideal arena where the PPP concept of pre-competitive collaboration can rapidly deliver results. This article review recent achievements of the IMI consortia of relevance to drug discovery, providing proof-of-concept evidence for the efficiency of this new model of collaboration.
Collapse
Affiliation(s)
- Elisabetta Vaudano
- Innovative Medicines Initiative, Avenue de la Toison d'Or 56-60, B-1060, Brussels, Belgium
| |
Collapse
|
1256
|
Pedersen L, Parlar S, Kvist K, Whiteley P, Shattock P. Data mining the ScanBrit study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders: behavioural and psychometric measures of dietary response. Nutr Neurosci 2013; 17:207-13. [PMID: 24075141 DOI: 10.1179/1476830513y.0000000082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We previously reported results based on the examination of a gluten- and casein-free diet as an intervention for children diagnosed with an autism spectrum disorder as part of the ScanBrit collaboration. Analysis based on grouped results indicated several significant differences between dietary and non-dietary participants across various core and peripheral areas of functioning. Results also indicated some disparity in individual responses to dietary modification potentially indicative of responder and non-responder differences. Further examination of the behavioural and psychometric data garnered from participants was undertaken, with a view to determining potential factors pertinent to response to dietary intervention. Participants with clinically significant scores indicative of inattention and hyperactivity behaviours and who had a significant positive changes to said scores were defined as responders to the dietary intervention. Analyses indicated several factors to be potentially pertinent to a positive response to dietary intervention in terms of symptom presentation. Chronological age was found to be the strongest predictor of response, where those participants aged between 7 and 9 years seemed to derive most benefit from dietary intervention. Further analysis based on the criteria for original study inclusion on the presence of the urine compound, trans-indolyl-3-acryloylglycine may also merit further investigation. These preliminary observations on potential best responder characteristics to a gluten- and casein-free diet for children with autism require independent replication.
Collapse
|
1257
|
Barry G. Lamarckian evolution explains human brain evolution and psychiatric disorders. Front Neurosci 2013; 7:224. [PMID: 24324395 PMCID: PMC3840504 DOI: 10.3389/fnins.2013.00224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Affiliation(s)
- Guy Barry
- Neuroscience Division, Garvan Institute of Medical Research Darlinghurst, NSW, Australia
| |
Collapse
|
1258
|
Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-generation sequencing revolution and its impact on genomics. Cell 2013; 155:27-38. [PMID: 24074859 DOI: 10.1016/j.cell.2013.09.006] [Citation(s) in RCA: 628] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Indexed: 02/07/2023]
Abstract
Genomics is a relatively new scientific discipline, having DNA sequencing as its core technology. As technology has improved the cost and scale of genome characterization over sequencing's 40-year history, the scope of inquiry has commensurately broadened. Massively parallel sequencing has proven revolutionary, shifting the paradigm of genomics to address biological questions at a genome-wide scale. Sequencing now empowers clinical diagnostics and other aspects of medical care, including disease risk, therapeutic identification, and prenatal testing. This Review explores the current state of genomics in the massively parallel sequencing era.
Collapse
Affiliation(s)
- Daniel C Koboldt
- The Genome Institute, School of Medicine, Washington University, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
1259
|
Labuda D, Yotova V, Lefebvre JF, Moreau C, Utermann G, Williams SM. X-linked MTMR8 diversity and evolutionary history of sub-Saharan populations. PLoS One 2013; 8:e80710. [PMID: 24282552 PMCID: PMC3839994 DOI: 10.1371/journal.pone.0080710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ∼500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.
Collapse
Affiliation(s)
- Damian Labuda
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| | - Vania Yotova
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Lefebvre
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Claudia Moreau
- Centre de Recherche, CHU Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - Gerd Utermann
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Scott M. Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
1260
|
Parellada M, Penzol MJ, Pina L, Moreno C, González-Vioque E, Zalsman G, Arango C. The neurobiology of autism spectrum disorders. Eur Psychiatry 2013; 29:11-9. [PMID: 24275633 DOI: 10.1016/j.eurpsy.2013.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/22/2023] Open
Abstract
Data is progressively and robustly accumulating regarding the biological basis of autism. Autism spectrum disorders (ASD) are currently considered a group of neurodevelopmental disorders with onset very early in life and a complex, heterogeneous, multifactorial aetiology. A comprehensive search of the last five years of the Medline database was conducted in order to summarize recent evidence on the neurobiological bases of autism. The main findings on genetic influence, neuropathology, neurostructure and brain networks are summarized. In addition, findings from peripheral samples of subjects with autism and animal models, which show immune, oxidative, mitochondrial dysregulations, are reported. Then, other biomarkers from very different systems associated with autism are reported. Finally, an attempt is made to try and integrate the available evidence, which points to a oligogenetic, multifactorial aetiology that converges in an aberrant micro-organization of the cortex, with abnormal functioning of the synapses and abnormalities in very general physiological pathways (such as inflammatory, immune and redox systems).
Collapse
Affiliation(s)
- M Parellada
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain.
| | - M J Penzol
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - L Pina
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - C Moreno
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - E González-Vioque
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| | - G Zalsman
- Child and Adolescent Psychiatry, Geha Hospital, Petach Tiqva, 49100 Tel Aviv, Israel
| | - C Arango
- Child and Adolescent Psychiatry Department, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Hospital General Universitario Gregorio Marañón, CIBERSAM, Ibiza 43, 28009 Madrid, Spain
| |
Collapse
|
1261
|
Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. Proc Natl Acad Sci U S A 2013; 110:20152-7. [PMID: 24259709 DOI: 10.1073/pnas.1311381110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RAS proto-oncogene Harvey rat sarcoma viral oncogene homolog (HRAS) encodes a small GTPase that transduces signals from cell surface receptors to intracellular effectors to control cellular behavior. Although somatic HRAS mutations have been described in many cancers, germline mutations cause Costello syndrome (CS), a congenital disorder associated with predisposition to malignancy. Based on the epidemiology of CS and the occurrence of HRAS mutations in spermatocytic seminoma, we proposed that activating HRAS mutations become enriched in sperm through a process akin to tumorigenesis, termed selfish spermatogonial selection. To test this hypothesis, we quantified the levels, in blood and sperm samples, of HRAS mutations at the p.G12 codon and compared the results to changes at the p.A11 codon, at which activating mutations do not occur. The data strongly support the role of selection in determining HRAS mutation levels in sperm, and hence the occurrence of CS, but we also found differences from the mutation pattern in tumorigenesis. First, the relative prevalence of mutations in sperm correlates weakly with their in vitro activating properties and occurrence in cancers. Second, specific tandem base substitutions (predominantly GC>TT/AA) occur in sperm but not in cancers; genomewide analysis showed that this same mutation is also overrepresented in constitutional pathogenic and polymorphic variants, suggesting a heightened vulnerability to these mutations in the germline. We developed a statistical model to show how both intrinsic mutation rate and selfish selection contribute to the mutational burden borne by the paternal germline.
Collapse
|
1262
|
Al-Aama J, Al-Ghamdi S, Bdier A, Wilde A, Bhuiyan ZA. De novomutation in theKCNQ1gene causal to Jervell and Lange-Nielsen syndrome. Clin Genet 2013; 86:492-5. [DOI: 10.1111/cge.12300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
Affiliation(s)
- J.Y. Al-Aama
- Department of Genetic Medicine; King Abdulaziz University Hospital; Jeddah Saudi Arabia
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders; King Abdulaziz University; Jeddah Saudi Arabia
| | - S. Al-Ghamdi
- Department of Pediatric Cardiology; Prince Sultan Cardiac Center; Riyadh Saudi Arabia
| | - A.Y. Bdier
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders; King Abdulaziz University; Jeddah Saudi Arabia
| | - A.A.M. Wilde
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Cardiology, Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | - Zahurul A. Bhuiyan
- Laboratoire de Génétique Moléculaire, Service de Génétique Médicale; CHUV; Lausanne Switzerland
| |
Collapse
|
1263
|
Almeling R, Waggoner MR. MORE AND LESS THAN EQUAL: How Men Factor in the Reproductive Equation. GENDER & SOCIETY : OFFICIAL PUBLICATION OF SOCIOLOGISTS FOR WOMEN IN SOCIETY 2013; 27:10.1177/0891243213484510. [PMID: 24347818 PMCID: PMC3856903 DOI: 10.1177/0891243213484510] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In both social science and medicine, research on reproduction generally focuses on women. In this article, we examine how men's reproductive contributions are understood. We develop an analytic framework that brings together Cynthia Daniels' conceptualization of reproductive masculinity (2006) with a staged view of reproduction, where the stages include the period before conception, conception, gestation, and birth. Drawing on data from two medical sites that are oriented to the period before pregnancy (preconception health care and sperm banks), we examine how gendered knowledge about reproduction produces different reproductive equations in different stages of the reproductive process. We conclude with a new research agenda that emerges from rethinking the role of men and masculinity in reproduction.
Collapse
|
1264
|
General triallelic frequency spectrum under demographic models with variable population size. Genetics 2013; 196:295-311. [PMID: 24214345 DOI: 10.1534/genetics.113.158584] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is becoming routine to obtain data sets on DNA sequence variation across several thousands of chromosomes, providing unprecedented opportunity to infer the underlying biological and demographic forces. Such data make it vital to study summary statistics that offer enough compression to be tractable, while preserving a great deal of information. One well-studied summary is the site frequency spectrum-the empirical distribution, across segregating sites, of the sample frequency of the derived allele. However, most previous theoretical work has assumed that each site has experienced at most one mutation event in its genealogical history, which becomes less tenable for very large sample sizes. In this work we obtain, in closed form, the predicted frequency spectrum of a site that has experienced at most two mutation events, under very general assumptions about the distribution of branch lengths in the underlying coalescent tree. Among other applications, we obtain the frequency spectrum of a triallelic site in a model of historically varying population size. We demonstrate the utility of our formulas in two settings: First, we show that triallelic sites are more sensitive to the parameters of a population that has experienced historical growth, suggesting that they will have use if they can be incorporated into demographic inference. Second, we investigate a recently proposed alternative mechanism of mutation in which the two derived alleles of a triallelic site are created simultaneously within a single individual, and we develop a test to determine whether it is responsible for the excess of triallelic sites in the human genome.
Collapse
|
1265
|
Doi K, Monjo T, Hoang PH, Yoshimura J, Yurino H, Mitsui J, Ishiura H, Takahashi Y, Ichikawa Y, Goto J, Tsuji S, Morishita S. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. ACTA ACUST UNITED AC 2013; 30:815-22. [PMID: 24215022 PMCID: PMC3957077 DOI: 10.1093/bioinformatics/btt647] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motivation: Long expansions of short tandem repeats (STRs), i.e. DNA repeats of 2–6 nt, are associated with some genetic diseases. Cost-efficient high-throughput sequencing can quickly produce billions of short reads that would be useful for uncovering disease-associated STRs. However, enumerating STRs in short reads remains largely unexplored because of the difficulty in elucidating STRs much longer than 100 bp, the typical length of short reads. Results: We propose ab initio procedures for sensing and locating long STRs promptly by using the frequency distribution of all STRs and paired-end read information. We validated the reproducibility of this method using biological replicates and used it to locate an STR associated with a brain disease (SCA31). Subsequently, we sequenced this STR site in 11 SCA31 samples using SMRTTM sequencing (Pacific Biosciences), determined 2.3–3.1 kb sequences at nucleotide resolution and revealed that (TGGAA)- and (TAAAATAGAA)-repeat expansions determined the instability of the repeat expansions associated with SCA31. Our method could also identify common STRs, (AAAG)- and (AAAAG)-repeat expansions, which are remarkably expanded at four positions in an SCA31 sample. This is the first proposed method for rapidly finding disease-associated long STRs in personal genomes using hybrid sequencing of short and long reads. Availability and implementation: Our TRhist software is available at http://trhist.gi.k.u-tokyo.ac.jp/. Contact:moris@cb.k.u-tokyo.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Koichiro Doi
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Department of Information and Communication Engineering, Faculty of Engineering and Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1266
|
Recent advances in cardiovascular development. Circ Res 2013; 113:e102-5. [PMID: 24201114 DOI: 10.1161/circresaha.113.302820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
1267
|
Hemani G, Yang J, Vinkhuyzen A, Powell JE, Willemsen G, Hottenga JJ, Abdellaoui A, Mangino M, Valdes AM, Medland SE, Madden PA, Heath AC, Henders AK, Nyholt DR, de Geus EJC, Magnusson PKE, Ingelsson E, Montgomery GW, Spector TD, Boomsma DI, Pedersen NL, Martin NG, Visscher PM. Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs. Am J Hum Genet 2013; 93:865-75. [PMID: 24183453 DOI: 10.1016/j.ajhg.2013.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 01/09/2023] Open
Abstract
Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 × 10(-)(7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 × 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.
Collapse
Affiliation(s)
- Gibran Hemani
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; The University of Queensland, Queensland Brain Institute, Brisbane, QLD 4027, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1268
|
Gouraud A, Brazeau MA, Grégoire MC, Simard O, Massonneau J, Arguin M, Boissonneault G. "Breaking news" from spermatids. Basic Clin Androl 2013; 23:11. [PMID: 25780573 PMCID: PMC4349474 DOI: 10.1186/2051-4190-23-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 01/06/2023] Open
Abstract
During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.
Collapse
Affiliation(s)
- Anne Gouraud
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marc-André Brazeau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Marie-Chantal Grégoire
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Olivier Simard
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Julien Massonneau
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Mélina Arguin
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| | - Guylain Boissonneault
- Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8 Canada
| |
Collapse
|
1269
|
Takahashi Y, Fukuda Y, Yoshimura J, Toyoda A, Kurppa K, Moritoyo H, Belzil V, Dion P, Higasa K, Doi K, Ishiura H, Mitsui J, Date H, Ahsan B, Matsukawa T, Ichikawa Y, Moritoyo T, Ikoma M, Hashimoto T, Kimura F, Murayama S, Onodera O, Nishizawa M, Yoshida M, Atsuta N, Sobue G, Fifita J, Williams K, Blair I, Nicholson G, Gonzalez-Perez P, Brown R, Nomoto M, Elenius K, Rouleau G, Fujiyama A, Morishita S, Goto J, Tsuji S, Tsuji S. ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19. Am J Hum Genet 2013; 93:900-5. [PMID: 24119685 DOI: 10.1016/j.ajhg.2013.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/26/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by the degeneration of motor neurons and typically results in death within 3-5 years from onset. Familial ALS (FALS) comprises 5%-10% of ALS cases, and the identification of genes associated with FALS is indispensable to elucidating the molecular pathogenesis. We identified a Japanese family affected by late-onset, autosomal-dominant ALS in which mutations in genes known to be associated with FALS were excluded. A whole- genome sequencing and parametric linkage analysis under the assumption of an autosomal-dominant mode of inheritance with incomplete penetrance revealed the mutation c.2780G>A (p. Arg927Gln) in ERBB4. An extensive mutational analysis revealed the same mutation in a Canadian individual with familial ALS and a de novo mutation, c.3823C>T (p. Arg1275Trp), in a Japanese simplex case. These amino acid substitutions involve amino acids highly conserved among species, are predicted as probably damaging, and are located within a tyrosine kinase domain (p. Arg927Gln) or a C-terminal domain (p. Arg1275Trp), both of which mediate essential functions of ErbB4 as a receptor tyrosine kinase. Functional analysis revealed that these mutations led to a reduced autophosphorylation of ErbB4 upon neuregulin-1 (NRG-1) stimulation. Clinical presentations of the individuals with mutations were characterized by the involvement of both upper and lower motor neurons, a lack of obvious cognitive dysfunction, and relatively slow progression. This study indicates that disruption of the neuregulin-ErbB4 pathway is involved in the pathogenesis of ALS and potentially paves the way for the development of innovative therapeutic strategies such using NRGs or their agonists to upregulate ErbB4 functions.
Collapse
|
1270
|
Abstract
Substitution rates vary between species, and many explanations regarding the causes of this variation have been proposed. Here we consider how new genomic data on the per-generation mutation rate impinge on proposed hypotheses for substitution rate variation in primates. We propose that the generation-time effect as it is usually understood cannot explain the observed rate variation, but instead that selection for decreased somatic mutation rates can. By considering the disparate causes underlying mutation rate changes in recent human history, we also show that the per-generation mutation rate is increasing even as the per-cell-division rate is decreasing.
Collapse
|
1271
|
Periwal A. Cellular senescence in the Penna model of aging. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052702. [PMID: 24329291 DOI: 10.1103/physreve.88.052702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/10/2013] [Indexed: 06/03/2023]
Abstract
Cellular senescence is thought to play a major role in age-related diseases, which cause nearly 67% of all human deaths worldwide. Recent research in mice showed that exercising mice had higher levels of telomerase, an enzyme that helps maintain telomere length, than nonexercising mice. A commonly used model for biological aging was proposed by Penna. I propose a modification of the Penna model that incorporates cellular senescence and find an analytical steady-state solution following Coe, Mao, and Cates [Phys. Rev. Lett. 89, 288103 (2002)]. I find that models corresponding to delayed cellular senescence have younger populations that live longer. I fit the model to the United Kingdom's death distribution, which the original Penna model cannot do.
Collapse
Affiliation(s)
- Avikar Periwal
- Montgomery Blair High School, 51 University Boulevard East, Silver Spring, Maryland 20901, USA
| |
Collapse
|
1272
|
Chatterjee I, Ibanez-Ventoso C, Vijay P, Singaravelu G, Baldi C, Bair J, Ng S, Smolyanskaya A, Driscoll M, Singson A. Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Exp Gerontol 2013; 48:1156-66. [PMID: 23916839 PMCID: PMC4169024 DOI: 10.1016/j.exger.2013.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/25/2013] [Indexed: 01/03/2023]
Abstract
Although much is known about female reproductive aging, fairly little is known about the causes of male reproductive senescence. We developed a method that facilitates culture maintenance of Caenorhabditis elegans adult males, which enabled us to measure male fertility as populations age, without profound loss of males from the growth plate. We find that the ability of males to sire progeny declines rapidly in the first half of adult lifespan and we examined potential factors that contribute towards reproductive success, including physical vigor, sperm quality, mating apparatus morphology, and mating ability. Of these, we find little evidence of general physical decline in males or changes in sperm number, morphology, or capacity for activation, at time points when reproductive senescence is markedly evident. Rather, it is the loss of efficient mating ability that correlates most strongly with reproductive senescence. Low insulin signaling can extend male ability to sire progeny later in life, although insulin impact on individual facets of mating behavior is complex. Overall, we suggest that combined modest deficits, predominantly affecting the complex mating behavior rather than sperm quality, sum up to block effective C. elegans male reproduction in middle adult life.
Collapse
|
1273
|
Osada N, Nakagome S, Mano S, Kameoka Y, Takahashi I, Terao K. Finding the factors of reduced genetic diversity on X chromosomes of Macaca fascicularis: male-driven evolution, demography, and natural selection. Genetics 2013; 195:1027-35. [PMID: 24026095 PMCID: PMC3813834 DOI: 10.1534/genetics.113.156703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022] Open
Abstract
The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
Collapse
Affiliation(s)
- Naoki Osada
- Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 4118540, Japan
- Department of Genetics, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 4118540, Japan
| | - Shigeki Nakagome
- The Institute of Statistical Mathematics, Tachikawa, Tokyo 1908562, Japan
| | - Shuhei Mano
- The Institute of Statistical Mathematics, Tachikawa, Tokyo 1908562, Japan
| | - Yosuke Kameoka
- Department of Disease Bioresources Research, National Institute of Biomedical Innovation, Osaka 5670085 Japan
| | - Ichiro Takahashi
- Department of Disease Bioresources Research, National Institute of Biomedical Innovation, Osaka 5670085 Japan
| | - Keiji Terao
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba 3050843, Japan
| |
Collapse
|
1274
|
Kovac JR, Addai J, Smith RP, Coward RM, Lamb DJ, Lipshultz LI. The effects of advanced paternal age on fertility. Asian J Androl 2013; 15:723-8. [PMID: 23912310 PMCID: PMC3854059 DOI: 10.1038/aja.2013.92] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/14/2013] [Accepted: 06/23/2013] [Indexed: 12/29/2022] Open
Abstract
Modern societal pressures and expectations over the past several decades have resulted in the tendency for couples to delay conception. While women experience a notable decrease in oocyte production in their late thirties, the effect of age on spermatogenesis is less well described. While there are no known limits to the age at which men can father children, the effects of advanced paternal age are incompletely understood. This review summarizes the current state of knowledge regarding advanced paternal age and its implications on semen quality, reproductive success and offspring health. This review will serve as a guide to physicians in counseling men about the decision to delay paternity and the risks involved with conception later in life.
Collapse
|
1275
|
Gulsuner S, Walsh T, Watts AC, Lee MK, Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RCP, Savage RM, Swerdlow NR, Gur RE, Braff DL, King MC, McClellan JM. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 2013; 154:518-29. [PMID: 23911319 DOI: 10.1016/j.cell.2013.06.049] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.
Collapse
Affiliation(s)
- Suleyman Gulsuner
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1276
|
Xu L, Shi R. Noninvasive prenatal diagnosis using next-generation sequencing. Gynecol Obstet Invest 2013; 77:73-7. [PMID: 24192219 DOI: 10.1159/000355693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022]
Abstract
Nowadays, prenatal diagnosis is necessary for pregnant women. For the parents who are expecting a child, the genetic test may provide the information whether they are carrying rare gene mutations and whether they are at risk of passing them onto their offspring. However, the ultimate determination of genetic diseases often requires invasive procedures such as amniocentesis and chorionic villus sampling, which may cause fetal miscarriage. A noninvasive type of prenatal diagnosis needs to be developed in clinical practice to dispel safety concerns. In this paper, we will review the technical advancement of using maternal circulating nucleic acids as the sample in noninvasive studies, and highlight the utilization of next-generation sequencing in the screening of genetic diseases.
Collapse
Affiliation(s)
- Liang Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
1277
|
Affiliation(s)
- John Hawks
- Department of Anthropology, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
1278
|
McGrath J, Mortensen PB, Pedersen CB, Ehrenstein V, Petersen L. Paternal age and general cognitive ability-a cross sectional study of Danish male conscripts. PLoS One 2013; 8:e77444. [PMID: 24116230 PMCID: PMC3792927 DOI: 10.1371/journal.pone.0077444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/02/2013] [Indexed: 01/27/2023] Open
Abstract
Objectives Offspring of older men have impaired cognitive ability as children, but it is unclear if this impairment persists into adulthood. The main objective of this study was to explore the association between paternal age at offspring birth and general cognitive ability as young adults. Design Population-based cross-sectional study with prospectively collected data on obstetric factors and parental education. Setting Nationwide Danish sample. Participants Male conscripts (n = 169,009). Primary and secondary outcome measures General cognitive ability as assessed by the Børge Priens test score, an intelligence test with components related to logical, verbal, numerical and spatial reasoning. Results We observed an inverse U-shaped association between paternal age and general cognitive ability (slightly lower test scores in the offspring of fathers aged less than 25 years and older than 40 years, compared with fathers aged 25 to 29 years). However, after adjustment for maternal age, parental education and birth order the shape of the association changed. Offspring of fathers younger than 20 still showed slightly lower cognitive ability (-1.11 (95% CI -1.68 to -0.54)), but no significant impairments were identified in the men whose fathers were older than 29 years at the time of their birth (e.g. the mean difference in test score in the offspring of fathers aged 40 to 44 years were -0.03 [95% CI (-0.27 to 0.20)] compared with fathers aged 25 to 29 years). Conclusions We did not find that the offspring of older fathers had impaired cognitive ability as young adults. Whereas, we found a tendency that the offspring of teen fathers have lower cognitive ability. Thus, our results suggest that any potentially deleterious effects of older fathers on general cognitive ability as young adults may be counter-balanced by other potentially beneficial factors.
Collapse
Affiliation(s)
- John McGrath
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Richlands, Australia
| | - Preben Bo Mortensen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CIRRAU, Aarhus University, Aarhus, Denmark
| | - Carsten Bøcker Pedersen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- CIRRAU, Aarhus University, Aarhus, Denmark
| | - Vera Ehrenstein
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Liselotte Petersen
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
1279
|
Dumont BL, Eichler EE. Signals of historical interlocus gene conversion in human segmental duplications. PLoS One 2013; 8:e75949. [PMID: 24124524 PMCID: PMC3790853 DOI: 10.1371/journal.pone.0075949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/17/2013] [Indexed: 12/04/2022] Open
Abstract
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i) a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii) the alignment-based method implemented in the GENECONV program. One-quarter (25.4%) of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.
Collapse
Affiliation(s)
- Beth L. Dumont
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
1280
|
Dorn C, Grunert M, Sperling SR. Application of high-throughput sequencing for studying genomic variations in congenital heart disease. Brief Funct Genomics 2013; 13:51-65. [PMID: 24095982 DOI: 10.1093/bfgp/elt040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Congenital heart diseases (CHD) represent the most common birth defect in human. The majority of cases are caused by a combination of complex genetic alterations and environmental influences. In the past, many disease-causing mutations have been identified; however, there is still a large proportion of cardiac malformations with unknown precise origin. High-throughput sequencing technologies established during the last years offer novel opportunities to further study the genetic background underlying the disease. In this review, we provide a roadmap for designing and analyzing high-throughput sequencing studies focused on CHD, but also with general applicability to other complex diseases. The three main next-generation sequencing (NGS) platforms including their particular advantages and disadvantages are presented. To identify potentially disease-related genomic variations and genes, different filtering steps and gene prioritization strategies are discussed. In addition, available control datasets based on NGS are summarized. Finally, we provide an overview of current studies already using NGS technologies and showing that these techniques will help to further unravel the complex genetics underlying CHD.
Collapse
Affiliation(s)
- Cornelia Dorn
- Department of Cardiovascular Genetics, Experimental and Clinical Research Center (ECRC), Charité-University Medicine Berlin and Max Delbrück Center (MDC) for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany. Department of Biochemistry, Free University Berlin, Berlin, Germany. Tel.: +49-(0)30-450540123; Fax: +49-(0)30-84131699;
| | | | | |
Collapse
|
1281
|
Abstract
In the September 12, 2013 issue of Nature, the Epi4K Consortium (Allen et al., 2013) reported sequencing 264 patient trios with epileptic encephalopathies. The Consortium focused on genes exceptionally intolerant to sequence variations and found substantial interconnections with autism and intellectual disability gene networks.
Collapse
Affiliation(s)
- Gaia Novarino
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
1282
|
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet 2013; 9:e1003905. [PMID: 24204310 PMCID: PMC3812088 DOI: 10.1371/journal.pgen.1003905] [Citation(s) in RCA: 883] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023] Open
Abstract
We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with ∂a∂i, the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets.
Collapse
Affiliation(s)
- Laurent Excoffier
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Isabelle Dupanloup
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Emilia Huerta-Sánchez
- Center for Theoretical Evolutionary Genomics, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Vitor C. Sousa
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthieu Foll
- CMPG, Institute of Ecology and Evolution, Berne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
1283
|
Adams DH. Conceptualising a child-centric paradigm : do we have freedom of choice in donor conception reproduction? JOURNAL OF BIOETHICAL INQUIRY 2013; 10:369-381. [PMID: 23780686 DOI: 10.1007/s11673-013-9454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/05/2013] [Indexed: 06/02/2023]
Abstract
Since its inception, donor conception practices have been a reproductive choice for the infertile. Past and current practices have the potential to cause significant and lifelong harm to the offspring through loss of kinship, heritage, identity, and family health history, and possibly through introducing physical problems. Legislation and regulation in Australia that specifies that the welfare of the child born as a consequence of donor conception is paramount may therefore be in conflict with the outcomes. Altering the paradigm to a child-centric model, however, impinges on reproductive choice and rights of adults involved in the process. With some lobby groups pushing for increased reproductive choice while others emphasise offspring rights there is a dichotomy of interests that society and legislators need to address. Concepts pertaining to a shift toward a child-centric paradigm are discussed.
Collapse
Affiliation(s)
- Damian H Adams
- School of Nursing and Midwifery, Flinders University, Sturt Road, Bedford Park, South Australia, Australia, 5042,
| |
Collapse
|
1284
|
Ramu A, Noordam MJ, Schwartz RS, Wuster A, Hurles ME, Cartwright RA, Conrad DF. DeNovoGear: de novo indel and point mutation discovery and phasing. Nat Methods 2013; 10:985-7. [PMID: 23975140 PMCID: PMC4003501 DOI: 10.1038/nmeth.2611] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 01/19/2023]
Abstract
We present DeNovoGear software for analyzing de novo mutations from familial and somatic tissue sequencing data. DeNovoGear uses likelihood-based error modeling to reduce the false positive rate of mutation discovery in exome analysis and fragment information to identify the parental origin of germ-line mutations. We used DeNovoGear on human whole-genome sequencing data to produce a set of predicted de novo insertion and/or deletion (indel) mutations with a 95% validation rate.
Collapse
Affiliation(s)
- Avinash Ramu
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2]
| | | | | | | | | | | | | |
Collapse
|
1285
|
Abstract
Human spermatozoa are highly complex specialized cells designed to survive a long and perilous journey from the site of insemination to the upper reaches of the female reproductive tract where fertilization occurs. During this journey, these cells have to run the gauntlet laid down by the female immune system and time their physiological maturation so that as soon as an egg appears in the Fallopian tube, they are equipped to recognize this cell and participate in a remarkable cascade of cellular interactions culminating in fertilization. Despite their high level of specialization, human spermatozoa are notoriously inadequate and appear to be major contributors to the poor fertility that characterizes our species. Defective spermatozoa are also known to have a major impact on the progress of pregnancy and the health trajectory of the offspring, resulting in paternally mediated increases in miscarriage rate and a range of diseases in the progeny, including dominant genetic diseases and cancer. The causes of defective sperm function are complex and involve both genetic and environmental impacts, as well as paternal age. Where genetic factors are involved, there is a concern that the widespread use of assisted conception technologies will serve to enhance the retention of poor fertility genes in the population such that the more we use assisted reproductive technologies in one generation the more we shall need them in the next. These observations may have important implications for the health and well-being of children and for the provision of reproductive healthcare services for future generations.
Collapse
|
1286
|
Schreiber M, Dorschner M, Tsuang D. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:671-8. [PMID: 24132899 DOI: 10.1002/ajmg.b.32156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/13/2013] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder.
Collapse
Affiliation(s)
- Matthew Schreiber
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA; Mental Health Services, VA Puget Sound Health Care System, Seattle, WA
| | | | | |
Collapse
|
1287
|
Mintziori G, Lambrinoudaki I, Kolibianakis EM, Ceausu I, Depypere H, Erel CT, Pérez-López FR, Schenck-Gustafsson K, van der Schouw YT, Simoncini T, Tremollieres F, Tarlatzis BC, Rees M, Goulis DG. EMAS position statement: Late parenthood. Maturitas 2013; 76:200-4. [DOI: 10.1016/j.maturitas.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
1288
|
Campbell CD, Eichler EE. Properties and rates of germline mutations in humans. Trends Genet 2013; 29:575-84. [PMID: 23684843 PMCID: PMC3785239 DOI: 10.1016/j.tig.2013.04.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/05/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022]
Abstract
All genetic variation arises via new mutations; therefore, determining the rate and biases for different classes of mutation is essential for understanding the genetics of human disease and evolution. Decades of mutation rate analyses have focused on a relatively small number of loci because of technical limitations. However, advances in sequencing technology have allowed for empirical assessments of genome-wide rates of mutation. Recent studies have shown that 76% of new mutations originate in the paternal lineage and provide unequivocal evidence for an increase in mutation with paternal age. Although most analyses have focused on single nucleotide variants (SNVs), studies have begun to provide insight into the mutation rate for other classes of variation, including copy number variants (CNVs), microsatellites, and mobile element insertions (MEIs). Here, we review the genome-wide analyses for the mutation rate of several types of variants and suggest areas for future research.
Collapse
Affiliation(s)
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, Seattle, WA 98195
| |
Collapse
|
1289
|
Abstract
Autism spectrum disorders (ASDs) are lifelong neurodevelopmental disabilities that affect 1 in 88 children in the USA. Despite the high heritability, the genetic basis for a majority of the ASDs remains elusive. The considerable clinical and genetic heterogeneity pose a significant challenge technically. State-of-the-art high-throughput sequencing (HTS), which makes the analyses of any specific single/multiple genes or whole exomes feasible, has shown a promising perspective in disease gene discovery. To date, numerous genetic studies using HTS have been reported and many rare inherited or de novo mutations have been identified. This review will focus on the progress and prospective of genome studies of ASDs using HTS.
Collapse
|
1290
|
Abstract
The timing of human evolution can be inferred from DNA sequence comparisons, but this requires an accurate estimate of the mutation rate. While recent data suggested a lower rate and a longer timeline, a new study reinstates the previous timeline.
Collapse
Affiliation(s)
- Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, USA
| | | |
Collapse
|
1291
|
Alkhayal A, San Gabriel M, Zeidan K, Alrabeeah K, Noel D, McGraw R, Bissonnette F, Kadoch IJ, Zini A. Sperm DNA and chromatin integrity in semen samples used for intrauterine insemination. J Assist Reprod Genet 2013; 30:1519-24. [PMID: 24068511 DOI: 10.1007/s10815-013-0101-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/15/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Sperm DNA damage is associated with male infertility but whether normozoospermic infertile men also have DNA damage is unknown. OBJECTIVE To evaluate sperm DNA and chromatin integrity in men with mild male factor infertility. DESIGN, SETTING AND PARTICIPANTS Prospective study of 102 consecutive men (78 normozoospermic, 15 asthenozoospermic, 9 oligozoospermic) enrolled for intrauterine insemination (IUI) and 15 fertile controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Standard semen parameters and sperm chromatin and DNA integrity were assessed and compared between groups. Sperm chromatin quality was assessed by (1) aniline blue staining (AB is specific to histone lysines), (2) iodoacetamide fluorescein fluorescence (IAF targets free protamine sulfhydryl groups) and (3) sperm chromatin structure assay (SCSA) with the results expressed as % DNA fragmentation index (%DFI). RESULTS AND LIMITATIONS The mean (±SD) percentage of spermatozoa with positive IAF fluorescence was significantly higher in the IUI population compared to fertile controls (17 % ± 10 % vs. 8 % ± 6 %, P = 0.0011) and also in the normozoospermic subset (n = 78) compared to controls (16 % ± 9 % vs. 8 % ± 6 %, P < 0.0001, ANOVA). We also observed a trend toward lower %progressive motility, and higher %AB staining and %DFI in the IUI group compared to controls. We observed significant relationships between sperm %DFI and progressive motility (r = -0.40, P < 0.0001) and between positive AB staining and IAF fluorescence (r = 0.58, P < 0.0001). CONCLUSIONS The data indicate that sperm chromatin integrity may be abnormal in men enrolled in IUI treatment cycles, despite the fact that most of these men are normozoospermic.
Collapse
Affiliation(s)
- Abdullah Alkhayal
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
1292
|
Comparative analysis of context-dependent mutagenesis using human and mouse models. BIOMED RESEARCH INTERNATIONAL 2013; 2013:989410. [PMID: 24058920 PMCID: PMC3766559 DOI: 10.1155/2013/989410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/19/2013] [Indexed: 11/17/2022]
Abstract
Substitution rates strongly depend on their nucleotide context. One of the most studied examples is the excess of C > T mutations in the CG context in various groups of organisms, including vertebrates. Studies on the molecular mechanisms underlying this mutation regularity have provided insights into evolution, mutagenesis, and cancer development. Recently several other hypermutable motifs were identified in the human genome. There is an increased frequency of T > C mutations in the second position of the words ATTG and ATAG and an increased frequency of A > C mutations in the first position of the word ACAA. For a better understanding of evolution, it is of interest whether these mutation regularities are human specific or present in other vertebrates, as their presence might affect the validity of currently used substitution models and molecular clocks. A comprehensive analysis of mutagenesis in 4 bp mutation contexts requires a vast amount of mutation data. Such data may be derived from the comparisons of individual genomes or from single nucleotide polymorphism (SNP) databases. Using this approach, we performed a systematical comparison of mutation regularities within 2-4 bp contexts in Mus musculus and Homo sapiens and uncovered that even closely related organisms may have notable differences in context-dependent mutation regularities.
Collapse
|
1293
|
Replicative mechanisms for CNV formation are error prone. Nat Genet 2013; 45:1319-26. [PMID: 24056715 PMCID: PMC3821386 DOI: 10.1038/ng.2768] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 08/27/2013] [Indexed: 01/20/2023]
Abstract
We investigated 67 breakpoint junctions of gene copy number gains (CNVs) in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase-slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex CNVs. These simple nucleotide variants (SNV) were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate a low fidelity error-prone DNA polymerase in synthesis associated with DNA repair mechanisms that leads to a local increase in point mutation burden associated with human CGR.
Collapse
|
1294
|
Neuropathology and animal models of autism: genetic and environmental factors. AUTISM RESEARCH AND TREATMENT 2013; 2013:731935. [PMID: 24151553 PMCID: PMC3787615 DOI: 10.1155/2013/731935] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
Collapse
|
1295
|
Lucock MD, Martin CE, Yates ZR, Veysey M. Diet and our genetic legacy in the recent anthropocene: a Darwinian perspective to nutritional health. J Evid Based Complementary Altern Med 2013; 19:68-83. [PMID: 24647381 DOI: 10.1177/2156587213503345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient-gene research tends to focus on human disease, although such interactions are often a by-product of our evolutionary heritage. This review explores health in this context, reframing genetic variation/epigenetic phenomena linked to diet in the framework of our recent evolutionary past. This "Darwinian/evolutionary medicine" approach examines how diet helped us evolve among primates and to adapt (or fail to adapt) our metabolome to specific environmental conditions leading to major diseases of civilization. This review presents updated evidence from a diet-gene perspective, portraying discord that exists with respect to health and our overall nutritional, cultural, and activity patterns. While Darwinian theory goes beyond nutritional considerations, a significant component within this concept does relate to nutrition and the mismatch between genes, modern diet, obesogenic lifestyle, and health outcomes. The review argues that nutritional sciences should expand knowledge on the evolutionary connection between food and disease, assimilating it into clinical training with greater prominence.
Collapse
Affiliation(s)
- Mark D Lucock
- University of Newcastle, Ourimbah, New South Wales, Australia
| | | | | | | |
Collapse
|
1296
|
Kiran Kumar HB, Castellani C, Maiti S, O'Reilly R, Singh SM. Search for missing schizophrenia genes will require a new developmental neurogenomic perspective. J Genet 2013; 92:335-40. [PMID: 23970094 DOI: 10.1007/s12041-013-0262-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Even the most powerful experimental designs in search of genetic causes of schizophrenia have not met the desired goal. It is imperative to review the reasons for such an outcome and to formulate novel strategies for the future direction of this research in the new era of individual genomes. Here, we will review aspects of neurodevelopmental hypothesis of schizophrenia in the light of novel genomic and epigenomic insights. Specifically, we will argue for the involvement of de novo mutations and epigenetic modifications during neurodevelopment that may result in schizophrenia. Our conclusion is that the successful elucidation of hereditary mechanisms in neuropsychiatric disorders must begin with attention to discrete endophenotypes; consideration of ontogeny, forethought of genome structure including temporal and spatial patterns of (epi) mutations and the use of judicious techniques that go beyond association studies.
Collapse
Affiliation(s)
- H B Kiran Kumar
- Molecular Genetics Unit, Department of Biology and Psychiatry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | |
Collapse
|
1297
|
Hehir-Kwa JY, Pfundt R, Veltman JA, de Leeuw N. Pathogenic or not? Assessing the clinical relevance of copy number variants. Clin Genet 2013; 84:415-21. [PMID: 23895381 DOI: 10.1111/cge.12242] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 02/04/2023]
Abstract
The availability of commercially produced genomic microarrays has resulted in the wide spread implementation of genomic microarrays, often as a first-tier diagnostic test for copy number variant (CNV) screening of patients who are suspected for chromosomal aberrations. Patients with intellectual disability (ID) and/or multiple congenital anomalies (MCA) were traditionally the main focus for this microarray-based CNV screening, but the application of microarrays to other (neurodevelopmental) disorders and tumor diagnostics has also been explored and implemented. The diagnostic workflow for patients with ID is now well established, relying on the identification of rare CNVs and determining their inheritance patterns. However, experience gained through screening large numbers of samples has revealed many subtleties and complexities of CNV interpretation. This has resulted in a better understanding of the contribution of CNVs to genomic disorders not only via de novo occurrence, but also via X-linked and recessive inheritance models as well as through models taking into account mosaicisms, imprinting, and digenic inheritance. In this review, we discuss CNV interpretation within the context of these different genetic disease models and common pitfalls that can occur when searching for supportive evidence that a CNV is clinically relevant.
Collapse
Affiliation(s)
- J Y Hehir-Kwa
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
1298
|
Segmenting the human genome based on states of neutral genetic divergence. Proc Natl Acad Sci U S A 2013; 110:14699-704. [PMID: 23959903 DOI: 10.1073/pnas.1221792110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements.
Collapse
|
1299
|
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, Schellenberg GD, Gibbs RA, Daly MJ, Buxbaum JD, State MW, Devlin B, Roeder K. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet 2013; 9:e1003671. [PMID: 23966865 PMCID: PMC3744441 DOI: 10.1371/journal.pgen.1003671] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/10/2013] [Indexed: 01/31/2023] Open
Abstract
De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. The genetic underpinnings of autism spectrum disorder (ASD) have proven difficult to determine, despite a wealth of evidence for genetic causes and ongoing effort to identify genes. Recently investigators sequenced the coding regions of the genomes from ASD children along with their unaffected parents (ASD trios) and identified numerous new candidate genes by pinpointing spontaneously occurring (de novo) mutations in the affected offspring. A gene with a severe (de novo) mutation observed in more than one individual is immediately implicated in ASD; however, the majority of severe mutations are observed only once per gene. These genes create a short list of candidates, and our results suggest about 50% are true risk genes. To strengthen our inferences, we develop a novel statistical method (TADA) that utilizes inherited variation transmitted to affected offspring in conjunction with (de novo) mutations to identify risk genes. Through simulations we show that TADA dramatically increases power. We apply this approach to nearly 1000 ASD trios and 2000 subjects from a case-control study and identify several promising genes. Through simulations and application we show that TADA's integration of sequencing data can be a highly effective means of identifying risk genes.
Collapse
Affiliation(s)
- Xin He
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Stephan J. Sanders
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Li Liu
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elaine T. Lim
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - James S. Sutcliffe
- Vanderbilt Brain Institute, Departments of Molecular Physiology & Biophysics and Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gerard D. Schellenberg
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Psychiatry, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
- Friedman Brain Institute, Icahn Mount Sinai School of Medicine, New York, New York, United States of America
| | - Matthew W. State
- Departments of Psychiatry and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kathryn Roeder
- Lane Center of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
1300
|
Brown A, Bao Y, McKeague I, Shen L, Schaefer C. Parental age and risk of bipolar disorder in offspring. Psychiatry Res 2013; 208:225-31. [PMID: 23790979 PMCID: PMC3725196 DOI: 10.1016/j.psychres.2013.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/19/2022]
Abstract
We investigated prospectively documented parental age and bipolar disorder (BD) in a multi-ethnic birth cohort. The study was based on a nested case-control design from the Child Health and Development Study (CHDS) birth cohort from 1959 to 1966. Potential cases with BD were ascertained by database linkages between CHDS, Kaiser Permanente Medical Care Plan (KPNC), and Alameda County Behavioral Health Care Services, and mailed questionnaires. Consensus diagnoses with the SCID for DSM-IV-TR were made. The total number of BD cases was 94. Controls (N=746) were selected from the birth cohort and matched on date of birth, sex, and KPNC membership or residence in Alameda County. For every 10-year increment of paternal age, there was no significant association with BD, adjusting for maternal age. There was also no significant association between maternal age, modeled in 10-year increments, and risk of BD after adjustment for paternal age and maternal race, although there was a suggestion for a protective relationship between increasing maternal age and BD with psychotic features. These findings suggest that if advanced paternal age is a risk factor for BD, the strength of the relationship is small.
Collapse
Affiliation(s)
- Alan Brown
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Yuanyuan Bao
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032
| | - Ian McKeague
- Department of Biostatistics, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY 10032
| | - Ling Shen
- Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612
| |
Collapse
|