1301
|
Schikora A, Carreri A, Charpentier E, Hirt H. The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an endopathogenic lifestyle. PLoS One 2008; 3:e2279. [PMID: 18509467 PMCID: PMC2386236 DOI: 10.1371/journal.pone.0002279] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/23/2008] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serovar typhimurium contaminated vegetables and fruits are considerable sources of human infections. Bacteria present in raw plant-derived nutrients cause salmonellosis, the world wide most spread food poisoning. This facultative endopathogen enters and replicates in host cells and actively suppresses host immune responses. Although Salmonella survives on plants, the underlying bacterial infection mechanisms are only poorly understood. In this report we investigated the possibility to use Arabidopsis thaliana as a genetically tractable host system to study Salmonella-plant interactions. Using green fluorescent protein (GFP) marked bacteria, we show here that Salmonella can infect various Arabidopsis tissues and proliferate in intracellular cellular compartments. Salmonella infection of Arabidopsis cells can occur via intact shoot or root tissues resulting in wilting, chlorosis and eventually death of the infected organs. Arabidopsis reacts to Salmonella by inducing the activation of mitogen-activated protein kinase (MAPK) cascades and enhanced expression of pathogenesis related (PR) genes. The induction of defense responses fails in plants that are compromised in ethylene or jasmonic acid signaling or in the MKK3-MPK6 MAPK pathway. These findings demonstrate that Arabidopsis represents a true host system for Salmonella, offering unique possibilities to study the interaction of this human pathogen with plants at the molecular level for developing novel drug targets and addressing current safety issues in human nutrition.
Collapse
Affiliation(s)
- Adam Schikora
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/University of Evry Val d'Essonne, Evry, France
| | - Alessandro Carreri
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, Vienna, Austria
| | - Emmanuelle Charpentier
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, Vienna, Austria
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/University of Evry Val d'Essonne, Evry, France
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, Vienna, Austria
| |
Collapse
|
1302
|
Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 2008; 16:115-25. [PMID: 18289856 DOI: 10.1016/j.tim.2007.12.009] [Citation(s) in RCA: 1096] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 10/22/2022]
Abstract
In the context of biocontrol of plant diseases, the three families of Bacillus lipopeptides - surfactins, iturins and fengycins were at first mostly studied for their antagonistic activity for a wide range of potential phytopathogens, including bacteria, fungi and oomycetes. Recent investigations have shed light on the fact that these lipopeptides can also influence the ecological fitness of the producing strain in terms of root colonization (and thereby persistence in the rhizosphere) and also have a key role in the beneficial interaction of Bacillus species with plants by stimulating host defence mechanisms. The different structural traits and physico-chemical properties of these effective surface- and membrane-active amphiphilic biomolecules explain their involvement in most of the mechanisms developed by bacteria for the biocontrol of different plant pathogens.
Collapse
Affiliation(s)
- Marc Ongena
- Walloon Centre for Industrial Biology, Agricultural University of Gembloux, Passage des Déportés, 2, B-5030 Gembloux, Belgium
| | | |
Collapse
|
1303
|
Vargas WA, Djonović S, Sukno SA, Kenerley CM. Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 2008; 283:19804-15. [PMID: 18487198 DOI: 10.1074/jbc.m802724200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soilborne fungus Trichoderma virens secretes a small protein (Sm1) that induces local and systemic defenses in plants. This protein belongs to the ceratoplatanin protein family and is mainly present as a monomer in culture filtrates. However, Hypocrea atroviride (the telomorph form of Trichoderma atroviride) secretes an Sm1-homologous protein, Epl1, with high levels of dimerization. Nonetheless, the molecular mechanisms involved in recognition and the signaling pathways involved in the induction of systemic resistance in plants are still unclear. In this report, we demonstrate that Sm1 and Epl1 are mainly produced as monomer and a dimer, respectively, in the presence of maize seedlings. The results presented show that the ability to induce plant defenses reside only in the monomeric form of both Sm1 and Epl1, and we demonstrate for the first time that the monomeric form of Epl1, likewise Sm1, induces defenses in maize plants. Biochemical analyses indicate that monomeric Sm1 is produced as a glycoprotein, but the glycosyl moiety is missing from its dimeric form, and Epl1 is produced as a nonglycosylated protein. Moreover, for Sm1 homologues in various fungal strains, there is a negative correlation between the presence of the glycosylation site and their ability to aggregate. We propose a subdivision in the ceratoplatanin protein family according to the presence of the glycosylation site and the ability of the proteins to aggregate. The data presented suggest that the elicitor's aggregation may control the Trichoderma-plant molecular dialogue and block the activation of induced systemic resistance in plants.
Collapse
Affiliation(s)
- Walter A Vargas
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
1304
|
Wang X, Wang H, Li Y, Cao K, Ge X. A rice lipid transfer protein binds to plasma membrane proteinaceous sites. Mol Biol Rep 2008; 36:745-50. [PMID: 18461470 DOI: 10.1007/s11033-008-9238-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 03/26/2008] [Indexed: 11/30/2022]
Abstract
Nonspecific lipid transfer protein (nsLTP) is usually basic and secreted low-molecular-mass protein in plants. The 3-D structure of nsLTP1 resembles that of elicitin produced by the plant pathogen Phytophthora cryptogea, which can bind to the plant plasma membrane putative receptor and activate the downstream responses. It is inferred that nsLTP1 may have similar binding sites on the plasma membranes. In this work, rice recombinant protein TRX-nsLTP110 labeled with (125)I was shown to bind to rice plasma membrane preparations in a saturable curve, with an apparent K(d) of 13.6 nM and B(max) of 150 fmol/mg proteins. Competition experiments revealed that the binding of TRX-nsLTP110 was specific, in contrast to the nonspecific binding of the fusion tag thioredoxin. Protease treatment assay showed that the binding sites were proteinaceous. Our results suggest that the binding sites of nsLTPs on plasma membranes may be ubiquitous in the plant kingdom. They may be competed out from the binding sites under pathogen attack, supporting a role for nsLTP1 in host defense response to pathogens.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Handan Road 220#, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
1305
|
Harfouche AL, Rugini E, Mencarelli F, Botondi R, Muleo R. Salicylic acid induces H2O2 production and endochitinase gene expression but not ethylene biosynthesis in Castanea sativa in vitro model system. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:734-44. [PMID: 17765360 DOI: 10.1016/j.jplph.2007.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/14/2007] [Accepted: 03/16/2007] [Indexed: 05/08/2023]
Abstract
Salicylic acid (SA), ethylene (ET), and wounding are all known to influence plant defense response. Experiments attempting to determine SA's relation to ET biosynthesis and defense gene expression have shown conflicting results. To confront this, we developed an in vitro model system to investigate how SA affects ET biosynthesis, hydrogen peroxide (H(2)O(2)) production and endochitinase gene expression in the European chestnut. ET measurements of in vitro shoots indicated a critical time point for SA exogenous application, enabling us to study its effects independent of ET. In addition, ET measurements demonstrated that its own increased biosynthesis was a response to wounding but not to SA treatment. Application of the ET biosynthesis inhibitor, aminoethoxyvinylglycine (AVG), on wounded and SA-treated shoots blocked wounding-induced ET production. Interestingly, SA inhibited ET production, but to a lesser extent than AVG. Additionally, SA also induced the accumulation of endochitinase transcript level. Likewise, a sensitive tissue-print assay showed that SA further increased the level of H(2)O(2). Yet, SA-induced endochitinase gene expression and SA-enhanced H(2)O(2) production levels were independent of ET. The cumulative results indicate that SA acts as an inducer of endochitinase PR gene expression and of H(2)O(2) oxidative burst. This suggests that SA is a component of the signal transduction pathway leading to defense against pathogens in chestnut. Further, the model system developed for this experiment should facilitate the deciphering of defense signaling pathways and their cross-talk. Moreover, it should also benefit the study of trees of long generation time that are known to be recalcitrant to in vitro studies.
Collapse
Affiliation(s)
- Antoine L Harfouche
- Dipartimento di Produzione Vegetale, Università degli Studi della Tuscia, Via S.C. de Lellis, Viterbo 01100, Italy
| | | | | | | | | |
Collapse
|
1306
|
Zhang Z, Lenk A, Andersson MX, Gjetting T, Pedersen C, Nielsen ME, Newman MA, Hou BH, Somerville SC, Thordal-Christensen H. A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. MOLECULAR PLANT 2008; 1:510-27. [PMID: 19825557 DOI: 10.1093/mp/ssn011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildew-induced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPR1-dependent. These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.
Collapse
Affiliation(s)
- Ziguo Zhang
- Plant and Soil Science, Dept of Agricultural Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1307
|
Schütze K, Harter K, Chaban C. Post-translational regulation of plant bZIP factors. TRENDS IN PLANT SCIENCE 2008; 13:247-55. [PMID: 18424222 DOI: 10.1016/j.tplants.2008.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/14/2008] [Accepted: 03/21/2008] [Indexed: 05/07/2023]
Abstract
The post-translational regulation of transcription factors plays an important role in the control of gene expression in eukaryotes. The mechanisms of regulation include not only factor modifications but also regulated protein-protein interaction, protein degradation and intracellular partitioning. In plants, the basic-region leucine zipper (bZIP) transcription factors contribute to many transcriptional response pathways. Despite this, little is known about their post-translational regulation. Recent findings suggest that plant bZIP factors are under the control of various partially signal-induced and reversible post-translational mechanisms that are crucial for the control of their function. However, the fact that, to date, only a few plant bZIPs have been analyzed with respect to post-translational regulation indicates that we have just identified the tip of an iceberg.
Collapse
Affiliation(s)
- Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, Tübingen, Germany
| | | | | |
Collapse
|
1308
|
[Phloem, transport between organs and long-distance signalling]. C R Biol 2008; 331:334-46. [PMID: 18472079 DOI: 10.1016/j.crvi.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.
Collapse
|
1309
|
Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J. Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:106-17. [PMID: 18088304 DOI: 10.1111/j.1365-313x.2007.03400.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato (Lycopersicum esculentum) and wheat (Triticum aestivum). Arabidopsis FATTY ACID DESATURASE7 (FAD7), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 (SFD1) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7, sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7, SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1-encoded lipid transfer protein for long-distance signaling in SAR. FAD7-synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR.
Collapse
Affiliation(s)
- Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | | | | | | | | | |
Collapse
|
1310
|
Chong J, Le Henanff G, Bertsch C, Walter B. Identification, expression analysis and characterization of defense and signaling genes in Vitis vinifera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:469-81. [PMID: 17988883 DOI: 10.1016/j.plaphy.2007.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Indexed: 05/18/2023]
Abstract
The reduction of phytochemicals applied to grapevine relies on the development of alternative strategies involving activation of the plant's own defense system. The aim of this work was to study the signaling of defense responses to pathogens in Vitis vinifera. We identified in V. vinifera cv. Chardonnay two putative regulatory elements, VvNHL1 and VvEDS1, with similarity to Arabidopsis defense regulators NDR1 and EDS1. Expression studies of these putative signaling genes together with other known grape defense genes show that they are differentially regulated by salicylic acid and jasmonate-ethylene treatments, as well as by inoculation with different types of pathogens. The expression of VvEDS1 was stimulated by salicylic acid treatment, Botrytis cinerea and Plasmopara viticola inoculation, whereas VvNHL1 was repressed by B. cinerea. VvNHL1 overexpression introduced in Arabidopsis ndr1 mutant did not complement the mutation in terms of sensitivity to avirulent Pseudomonas syringae pv. tomato. Moreover, we observed a weakened resistance to B. cinerea of ndr1 mutants overexpressing VvNHL1, which may be related to cell death enhancement. Together, our results identify two new pathogen-responsive regulatory elements in Vitis vinifera, with potential roles in pathogen defense.
Collapse
Affiliation(s)
- Julie Chong
- Université de Haute Alsace, Laboratoire Vigne, Biotechnologies et Environnement (LVBE), Colmar, France.
| | | | | | | |
Collapse
|
1311
|
Wubben MJE, Jin J, Baum TJ. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:424-32. [PMID: 18321188 DOI: 10.1094/mpmi-21-4-0424] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Compatible plant-nematode interactions involve the formation of an elaborate feeding site within the host root that requires the evasion of plant defense mechanisms by the parasite. Little is known regarding plant defense signaling pathways that limit nematode parasitism during a compatible interaction. Therefore, we utilized Arabidopsis thaliana mutants perturbed in salicylic acid (SA) biosynthesis or signal transduction to investigate the role of SA in inhibiting parasitism by the beet cyst nematode Heterodera schachtii. We determined that SA-deficient mutants (sid2-1, pad4-1, and NahG) exhibited increased susceptibility to H. schachtii. In contrast, SA-treated wild-type plants showed decreased H. schachtii susceptibility. The npr1-2 and npr1-3 mutants, which are impaired in SA signaling, also showed increased susceptibility to H. schachtii, whereas the npr1-suppressor mutation sni1 showed decreased susceptibility. Constitutive pathogenesis-related (PR) gene-expressing mutants (cpr1 and cpr6) did not show altered susceptibility to H. schachtii; however, constitutive PR gene expression was restricted to cpr1 shoots with wild-type levels of PR-1 transcript present in cpr1 roots. Furthermore, we determined that H. schachtii infection elicits SA-independent PR-2 and PR-5 induction in wild-type roots, while PR-1 transcript and total SA levels remained unaltered. This was in contrast to shoots of infected plants where PR-1 transcript abundance and total SA levels were elevated. We conclude that SA acts via NPR1 to inhibit nematode parasitism which, in turn, is negatively regulated by SNI1. Our results show an inverse correlation between root basal PR-1 expression and plant susceptibility to H. schachtii and suggest that successful cyst nematode parasitism may involve a local suppression of SA signaling in roots.
Collapse
Affiliation(s)
- Martin John Evers Wubben
- United States Department of Agriculture-Agricultural Research Service, Crop Science Research Laboratory, Mississippi State, MS 39762, USA.
| | | | | |
Collapse
|
1312
|
van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. PLANT PHYSIOLOGY 2008; 146:1983-95. [PMID: 18263781 PMCID: PMC2287365 DOI: 10.1104/pp.107.112789] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/31/2008] [Indexed: 05/17/2023]
Abstract
PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of transcription factors in which the WRKY sequence is followed by a GKK rather than a GQK sequence. The binding sequence of NtWRKY12 (WK box TTTTCCAC) deviated significantly from the consensus sequence (W box TTGAC[C/T]) shown to be recognized by WRKY factors with the GQK sequence. Mutation of the GKK sequence in NtWRKY12 into GQK or GEK abolished binding to the WK box. The WK(1) box is in close proximity to binding sites in the PR-1a promoter for transcription factors TGA1a (as-1 box) and Myb1 (MBSII box). Expression studies with PR-1a promoterbeta-glucuronidase (GUS) genes in stably and transiently transformed tobacco indicated that NtWRKY12 and TGA1a act synergistically in PR-1a expression induced by salicylic acid and bacterial elicitors. Cotransfection of Arabidopsis thaliana protoplasts with 35SNtWRKY12 and PR-1aGUS promoter fusions showed that overexpression of NtWRKY12 resulted in a strong increase in GUS expression, which required functional WK boxes in the PR-1a promoter.
Collapse
Affiliation(s)
- Marcel C van Verk
- Institute of Biology, Leiden University, Clusius Laboratory, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
1313
|
Flors V, Ton J, van Doorn R, Jakab G, García-Agustín P, Mauch-Mani B. Interplay between JA, SA and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:81-92. [PMID: 18088307 DOI: 10.1111/j.1365-313x.2007.03397.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have examined the role of the callose synthase PMR4 in basal resistance and beta-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola. Compared to wild-type plants, the pmr4-1 mutant displayed enhanced basal resistance against P. syringae, which correlated with constitutive expression of the PR-1 gene. Treating the pmr4-1 mutant with BABA boosted the already elevated levels of PR-1 gene expression, and further increased the level of resistance. Hence, BABA-IR against P. syringae does not require PMR4-derived callose. Conversely, pmr4-1 plants showed enhanced susceptibility to A. brassicicola, and failed to show BABA-IR. Wild-type plants showing BABA-IR against A. brassicicola produced increased levels of JA. The pmr4-1 mutant produced less JA upon A. brassicicola infection than the wild-type. Blocking SA accumulation in pmr4-1 restored basal resistance, but not BABA-IR against A. brassicicola. This suggests that the mutant's enhanced susceptibility to A. brassicicola is caused by SA-mediated suppression of JA, whereas the lack of BABA-IR is caused by its inability to produce callose. A. brassicicola infection suppressed ABA accumulation. Pre-treatment with BABA antagonized this ABA accumulation, and concurrently potentiated expression of the ABA-responsive ABI1 gene. Hence, BABA prevents pathogen-induced suppression of ABA accumulation, and sensitizes the tissue to ABA, causing augmented deposition of PMR4-derived callose.
Collapse
Affiliation(s)
- Victor Flors
- Laboratory of Molecular and Cellular Biology, Institute of Botany, University of Neuchâtel, Rue Emile-Argand 11, Case Postale 158, 2009 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
1314
|
Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:1293-304. [PMID: 18218967 PMCID: PMC2259080 DOI: 10.1104/pp.107.113829] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/18/2008] [Indexed: 05/18/2023]
Abstract
Colonization of Arabidopsis thaliana roots by nonpathogenic Pseudomonas fluorescens WCS417r bacteria triggers a jasmonate/ethylene-dependent induced systemic resistance (ISR) that is effective against a broad range of pathogens. Microarray analysis revealed that the R2R3-MYB-like transcription factor gene MYB72 is specifically activated in the roots upon colonization by WCS417r. Here, we show that T-DNA knockout mutants myb72-1 and myb72-2 are incapable of mounting ISR against the pathogens Pseudomonas syringae pv tomato, Hyaloperonospora parasitica, Alternaria brassicicola, and Botrytis cinerea, indicating that MYB72 is essential to establish broad-spectrum ISR. Overexpression of MYB72 did not result in enhanced resistance against any of the pathogens tested, demonstrating that MYB72 is not sufficient for the expression of ISR. Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETHYLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72 function to the ethylene response pathway. However, WCS417r activated MYB72 in ISR-deficient, ethylene-insensitive ein2-1 plants. Moreover, exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate induced wild-type levels of resistance in myb72-1, suggesting that MYB72 acts upstream of ethylene in the ISR pathway. Collectively, this study identified the transcriptional regulator MYB72 as a novel ISR signaling component that is required in the roots during early signaling steps of rhizobacteria-mediated ISR.
Collapse
Affiliation(s)
- Sjoerd Van der Ent
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1315
|
Koornneef A, Pieterse CMJ. Cross talk in defense signaling. PLANT PHYSIOLOGY 2008; 146:839-44. [PMID: 18316638 PMCID: PMC2259093 DOI: 10.1104/pp.107.112029] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/19/2007] [Indexed: 05/18/2023]
Affiliation(s)
- Annemart Koornneef
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
1316
|
Runyon JB, Mescher MC, De Moraes CM. Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores. PLANT PHYSIOLOGY 2008; 146:987-95. [PMID: 18165323 PMCID: PMC2259072 DOI: 10.1104/pp.107.112219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/14/2007] [Indexed: 05/18/2023]
Abstract
Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores.
Collapse
Affiliation(s)
- Justin B Runyon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
1317
|
Seo PJ, Lee AK, Xiang F, Park CM. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: insights into their roles in salt response of seed germination. PLANT & CELL PHYSIOLOGY 2008; 49:334-44. [PMID: 18203731 DOI: 10.1093/pcp/pcn011] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pathogenesis-related (PR) proteins are a group of heterogeneous proteins encoded by genes that are rapidly induced by pathogenic infections and by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). They are widely used as molecular markers for resistance response to pathogens and systemic acquired response (SAR). However, recent studies have shown that the PR genes are also regulated by environmental factors, including light and abiotic stresses, and by developmental cues, suggesting that they also play a role in certain stress responses and developmental processes. In this work, we systematically examined the expression patterns of Arabidopsis PR genes. We also investigated the effects of environmental stresses and growth hormones on the expression of PR genes. We found that individual PR genes are temporally and spatially regulated in distinct patterns. In addition, they are differentially regulated by plant growth hormones, including SA, ABA, JA, ET and brassinosteroid (BR), and by diverse abiotic stresses, supporting the contention that the PR proteins play a role in plant developmental processes other than disease resistance response. Interestingly, PR-3 was induced significantly by high salt in an ABA-dependent manner. Consistent with this, a T-DNA insertional knockout plant with disruption of the PR-3 gene showed a significantly reduced rate of seed germination in the presence of high salt. It is thus proposed that PR-3 mediates ABA-dependent salt stress signals that affect seed germination in Arabidopsis. PR-4 and PR-5 also contributed to salt regulation of seed germination, although their effects were not as evident as those of PR-3.
Collapse
Affiliation(s)
- Pil Joon Seo
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
1318
|
Meier S, Bastian R, Donaldson L, Murray S, Bajic V, Gehring C. Co-expression and promoter content analyses assign a role in biotic and abiotic stress responses to plant natriuretic peptides. BMC PLANT BIOLOGY 2008; 8:24. [PMID: 18307823 PMCID: PMC2268938 DOI: 10.1186/1471-2229-8-24] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 02/29/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant natriuretic peptides (PNPs) are a class of systemically mobile molecules distantly related to expansins. While several physiological responses to PNPs have been reported, their biological role has remained elusive. Here we use a combination of expression correlation analysis, meta-analysis of gene expression profiles in response to specific stimuli and in selected mutants, and promoter content analysis to infer the biological role of the Arabidopsis thaliana PNP, AtPNP-A. RESULTS A gene ontology analysis of AtPNP-A and the 25 most expression correlated genes revealed a significant over representation of genes annotated as part of the systemic acquired resistance (SAR) pathway. Transcription of these genes is strongly induced in response to salicylic acid (SA) and its functional synthetic analogue benzothiadiazole S-methylester (BTH), a number of biotic and abiotic stresses including many SA-mediated SAR-inducing conditions, as well as in the constitutive SAR expressing mutants cpr5 and mpk4 which have elevated SA levels. Furthermore, the expression of AtPNP-A was determined to be significantly correlated with the SAR annotated transcription factor, WRKY 70, and the promoters of AtPNP-A and the correlated genes contain an enrichment in the core WRKY binding W-box cis-elements. In constitutively expressing WRKY 70 lines the expression of AtPNP-A and the correlated genes, including the SAR marker genes, PR-2 and PR-5, were determined to be strongly induced. CONCLUSION The co-expression analyses, both in wild type and mutants, provides compelling evidence that suggests AtPNP-A may function as a component of plant defence responses and SAR in particular. The presented evidence also suggests that the expression of AtPNP-A is controlled by WRKY transcription factors and WRKY 70 in particular. AtPNP-A shares many characteristics with PR proteins in that its transcription is strongly induced in response to pathogen challenges, it contains an N-terminal signalling peptide and is secreted into the extracellular space and along with PR-1, PR-2 and PR-5 proteins it has been isolated from the Arabidopsis apoplast. Based on these findings we suggest that AtPNP-A could be classified as a newly identified PR protein.
Collapse
Affiliation(s)
- Stuart Meier
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - René Bastian
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Lara Donaldson
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Shane Murray
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Vladimir Bajic
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| | - Chris Gehring
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Cape Town - Bellville 7535, South Africa
| |
Collapse
|
1319
|
Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 2008; 132:449-62. [PMID: 18267075 PMCID: PMC2267721 DOI: 10.1016/j.cell.2007.12.031] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 10/18/2007] [Accepted: 12/12/2007] [Indexed: 12/29/2022]
Abstract
Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50 kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a prerecognition complex containing the p50 effector and NRIP1.
Collapse
Affiliation(s)
- Jeffrey L Caplan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
1320
|
Low levels of polymorphism in genes that control the activation of defense response in Arabidopsis thaliana. Genetics 2008; 178:2031-43. [PMID: 18245336 DOI: 10.1534/genetics.107.083279] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plants use signaling pathways involving salicylic acid, jasmonic acid, and ethylene to defend against pathogen and herbivore attack. Many defense response genes involved in these signaling pathways have been characterized, but little is known about the selective pressures they experience. A representative set of 27 defense response genes were resequenced in a worldwide set of 96 Arabidopsis thaliana accessions, and patterns of single nucleotide polymorphisms (SNPs) were evaluated in relation to an empirical distribution of SNPs generated from either 876 fragments or 236 fragments with >400 bp coding sequence (this latter set was selected for comparisons with coding sequences) distributed across the genomes of the same set of accessions. Defense response genes have significantly fewer protein variants, display lower levels of nonsynonymous nucleotide diversity, and have fewer nonsynonymous segregating sites. The majority of defense response genes appear to be experiencing purifying selection, given the dearth of protein variation in this set of genes. Eight genes exhibit some evidence of partial selective sweeps or transient balancing selection. These results therefore provide a strong contrast to the high levels of balancing selection exhibited by genes at the upstream positions in these signaling pathways.
Collapse
|
1321
|
Kim YS, Sano H. Pathogen resistance of transgenic tobacco plants producing caffeine. PHYTOCHEMISTRY 2008; 69:882-8. [PMID: 18036626 DOI: 10.1016/j.phytochem.2007.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 05/24/2023]
Abstract
Caffeine (1,3,7-trimethylxanthine) is a typical purine alkaloid, and produced by a variety of plants such as coffee and tea. Its physiological function, however, is not completely understood, but chemical defense against pathogens and herbivores, and allelopathic effects against competing plant species have been proposed. Previously, we constructed transgenic tobacco plants, which produced caffeine up to 5 microg per gram fresh weight of leaves, and showed them to repel caterpillars of tobacco cutworms (Spodoptera litura). In the present study, we found that these transgenic plants constitutively expressed defense-related genes encoding pathogenesis-related (PR)-1a and proteinase inhibitor II under non-stressed conditions. We also found that they were highly resistant against pathogens, tobacco mosaic virus and Pseudomonas syringae. Expression of PR-1a and PR-2 was higher in transgenic plants than in wild-type plants during infection. Exogenously applied caffeine to wild-type tobacco leaves exhibited the similar resistant activity. These results suggested that caffeine stimulated endogenous defense system of host plants through directly or indirectly activating gene expression. This assumption is essentially consistent with the idea of chemical defense, in which caffeine may act as one of signaling molecules to activate defense response. It is thus conceivable that the effect of caffeine is bifunctional; direct interference with pest metabolic pathways, and activation of host defense systems.
Collapse
Affiliation(s)
- Yun-Soo Kim
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | |
Collapse
|
1322
|
March-Díaz R, García-Domínguez M, Lozano-Juste J, León J, Florencio FJ, Reyes JC. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:475-87. [PMID: 17988222 DOI: 10.1111/j.1365-313x.2007.03361.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of the mechanisms involved in chromatin remodelling is so-called 'histone replacement'. An example of such a mechanism is the substitution of canonical H2A histone by the histone variant H2A.Z. The ATP-dependent chromatin remodelling complex SWR1 is responsible for this action in yeast. We have previously proposed the existence of an SWR1-like complex in Arabidopsis by demonstrating genetic and physical interaction of the components SEF, ARP6 and PIE1, which are homologues of the yeast Swc6 and Arp6 proteins and the core ATPase Swr1, respectively. Here we show that histone variant H2A.Z, but not canonical H2A histone, interacts with PIE1. Plants mutated at loci HTA9 and HTA11 (two of the three Arabidopsis H2A.Z-coding genes) displayed developmental abnormalities similar to those found in pie1, sef and arp6 plants, exemplified by an early-flowering phenotype. Comparison of gene expression profiles revealed that 65% of the genes differentially regulated in hta9 hta11 plants were also mis-regulated in pie1 plants. Detailed examination of the expression data indicated that the majority of mis-regulated genes were related to salicylic acid-dependent immunity. RT-PCR and immunoblotting experiments confirmed constitutive expression of systemic acquired resistance (SAR) marker genes in pie1, hta9 hta11 and sef plants. Variations observed at the molecular level resulted in phenotypic alterations such as spontaneous cell death and enhanced resistance to the phytopathogenic bacteria Pseudomonas syringae pv. tomato. Thus, our results support the existence in Arabidopsis of an SWR1-like chromatin remodelling complex that is functionally related to that described in yeast and human, and attribute to this complex a role in maintaining a repressive state of the SAR response.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-USE), Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
1323
|
Conn VM, Walker AR, Franco CMM. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:208-18. [PMID: 18184065 DOI: 10.1094/mpmi-21-2-0208] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent.
Collapse
Affiliation(s)
- V M Conn
- Department of Medical Biotechnology, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
1324
|
Ongena M, Jourdan E, Adam A, Schäfer M, Budzikiewicz H, Thonart P. Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. MICROBIAL ECOLOGY 2008; 55:280-92. [PMID: 17597337 DOI: 10.1007/s00248-007-9275-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 05/10/2007] [Indexed: 05/16/2023]
Abstract
The biological control bacterium Pseudomonas putida BTP1 exerts its protective effect mostly by inducing an enhanced state of resistance in the host plant against pathogen attack [induced systemic resistance (ISR)]. We previously reported that a specific compound derived from benzylamine may be involved in the elicitation of the ISR phenomenon by this Pseudomonas strain. In this article, we provide further information about the N,N-dimethyl-N-tetradecyl-N-benzylammonium structure of this determinant for ISR and show that the benzylamine moiety may be important for perception of the molecule by root cells of different plant species. We also investigated some regulatory aspects of elicitor production with the global aim to better understand how in situ expression of these ISR elicitors can be modulated by physiological and environmental factors. The biosynthesis is clearly related to secondary metabolism, and chemostat experiments showed that the molecule is more efficiently produced at low cell growth rate. Interestingly, the presence of free amino acids in the environment is necessary for optimal production, and a specific positive effect of phenylalanine was evidenced in pulsed continuous cultures. The influence of other abiotic factors, such as mineral content, oxygen concentration, or pH, on elicitor production is also reported and discussed with respect to the specific conditions that the producing strain undergoes in the rhizosphere environment.
Collapse
Affiliation(s)
- Marc Ongena
- Centre Wallon de Biologie Industrielle, Service de Technologie Microbienne, University of Liège, Boulevard du Rectorat 29, Bâtiment B40, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
1325
|
Zhao CJ, Wang AR, Shi YJ, Wang LQ, Liu WD, Wang ZH, Lu GD. Identification of defense-related genes in rice responding to challenge by Rhizoctonia solani. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:501-16. [PMID: 18075727 DOI: 10.1007/s00122-007-0686-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 11/23/2007] [Indexed: 05/04/2023]
Abstract
Rice sheath blight, caused by Rhizoctonia solani is one of the major diseases of rice. The pathogen infects rice plants directly through stomata or using lobate appressoria and hyphal masses called infection cushions. The infection structures were normally found at 36 h post-inoculation. During infection, the pathogenesis-related genes, PR1b and PBZ1 were induced in rice plants. To identify rice genes induced early in the defense response, suppression subtractive hybridization (SSH) was used to generate a cDNA library enriched for transcripts differentially expressed during infection by R. solani. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced. Fifty unique cDNA clones were found and assigned to five different functional categories. Most of the genes were not previously identified as being induced in response to pathogens. We examined expression of 100 rice genes induced by infection with Magnaporthe grisea, Xanthomonas oryzae pv. oryze (Xoo) and X. oryzae pv. oryzicola (Xooc). Twenty-five of them were found to be differentially expressed after the sheath blight infection, suggesting overlap of defense responses to different fungal and bacterial pathogens infection.
Collapse
Affiliation(s)
- Chang-Jiang Zhao
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | | | | | | | | | |
Collapse
|
1326
|
Kang HG, Kuhl JC, Kachroo P, Klessig DF. CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe 2008; 3:48-57. [PMID: 18191794 DOI: 10.1016/j.chom.2007.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/12/2007] [Accepted: 11/26/2007] [Indexed: 01/30/2023]
Abstract
Plant immunity frequently involves the recognition of pathogen-encoded avirulence (avr) factors by their corresponding plant resistance (R) proteins. This triggers the hypersensitive response (HR) where necrotic lesions formed at the site(s) of infection help restrict pathogen spread. HRT is an Arabidopsis R protein required for resistance to turnip crinkle virus (TCV). In a genetic screen for mutants compromised in the recognition of TCV's avr factor, we identified crt1 (compromised recognition of TCV), a mutant that prematurely terminates an ATPase protein. Following TCV infection, crt1 developed a spreading HR and failed to control viral replication and spread. crt1 also suppressed HR-like cell death induced by ssi4, a constitutively active R protein, and by Pseudomonas syringae carrying avrRpt2. Furthermore, CRT1 interacts with HRT, SSI4, and two other R proteins, RPS2 and Rx. These data identify CRT1 as an important mediator of defense signaling triggered by distinct classes of R proteins.
Collapse
Affiliation(s)
- Hong-Gu Kang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
1327
|
Gaupels F, Knauer T, van Bel AJE. A combinatory approach for analysis of protein sets in barley sieve-tube samples using EDTA-facilitated exudation and aphid stylectomy. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:95-103. [PMID: 17997192 DOI: 10.1016/j.jplph.2007.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 05/11/2023]
Abstract
This study investigated advantages and drawbacks of two sieve-tube sap sampling methods for comparison of phloem proteins in powdery mildew-infested vs. non-infested Hordeum vulgare plants. In one approach, sieve tube sap was collected by stylectomy. Aphid stylets were cut and immediately covered with silicon oil to prevent any contamination or modification of exudates. In this way, a maximum of 1muL pure phloem sap could be obtained per hour. Interestingly, after pathogen infection exudation from microcauterized stylets was reduced to less than 40% of control plants, suggesting that powdery mildew induced sieve tube-occlusion mechanisms. In contrast to the laborious stylectomy, facilitated exudation using EDTA to prevent calcium-mediated callose formation is quick and easy with a large volume yield. After two-dimensional (2D) electrophoresis, a digital overlay of the protein sets extracted from EDTA solutions and stylet exudates showed that some major spots were the same with both sampling techniques. However, EDTA exudates also contained large amounts of contaminative proteins of unknown origin. A combinatory approach may be most favourable for studies in which the protein composition of phloem sap is compared between control and pathogen-infected plants. Facilitated exudation may be applied for subtractive identification of differentially expressed proteins by 2D/mass spectrometry, which requires large amounts of protein. A reference gel loaded with pure phloem sap from stylectomy may be useful for confirmation of phloem origin of candidate spots by digital overlay. The method provides a novel opportunity to study differential expression of phloem proteins in monocotyledonous plant species.
Collapse
Affiliation(s)
- Frank Gaupels
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig University, Senckenbergstrasse 17, D-35390 Giessen, Germany
| | | | | |
Collapse
|
1328
|
Pozo MJ, Van Der Ent S, Van Loon LC, Pieterse CMJ. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2008; 180:511-523. [PMID: 18657213 DOI: 10.1111/j.1469-8137.2008.02578.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Upon appropriate stimulation, plants can develop an enhanced capacity to express infection-induced cellular defense responses, a phenomenon known as the primed state. Colonization of the roots of Arabidopsis thaliana by the beneficial rhizobacterial strain Pseudomonas fluorescens WCS417r primes the leaf tissue for enhanced pathogen- and insect-induced expression of jasmonate (JA)-responsive genes, resulting in an induced systemic resistance (ISR) that is effective against different types of pathogens and insect herbivores. Here the molecular mechanism of this rhizobacteria-induced priming response was investigated using a whole-genome transcript profiling approach. Out of the 1879 putative methyl jasmonate (MeJA)-responsive genes, 442 genes displayed a primed expression pattern in ISR-expressing plants. Promoter analysis of ISR-primed, MeJA-responsive genes and ISR-primed, Pseudomonas syringae pv. tomato DC3000 (Pst DC3000)-responsive genes revealed over-representation of the G-box-like motif 5'-CACATG-3'. This motif is a binding site for the transcription factor MYC2, which plays a central role in JA- and abscisic acid-regulated signaling. MYC2 expression was consistently up-regulated in ISR-expressing plants. Moreover, mutants impaired in the JASMONATE-INSENSITIVE1/MYC2 gene (jin1-1 and jin1-2) were unable to mount WCS417r-ISR against Pst DC3000 and the downy mildew pathogen Hyaloperonospora parasitica. Together, these results pinpoint MYC2 as a potential regulator in priming for enhanced JA-responsive gene expression during rhizobacteria-mediated ISR.
Collapse
Affiliation(s)
- Maria J Pozo
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Sjoerd Van Der Ent
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Center for Biosystems Genomics, PO Box 98, 6700 AB Wageningen, the Netherlands
| | - L C Van Loon
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
| | - Corné M J Pieterse
- Graduate School Experimental Plant Sciences, Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.56, 3508 TB, Utrecht, the Netherlands
- Center for Biosystems Genomics, PO Box 98, 6700 AB Wageningen, the Netherlands
| |
Collapse
|
1329
|
Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:60-70. [PMID: 18031866 DOI: 10.1016/j.jplph.2007.05.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 05/07/2023]
Abstract
Piriformospora indica is a fungus of the order Sebacinales (Basidiomycota) infesting roots of mono- and dicotyledonous plants. Endophytic fungal colonization leads to enhanced plant growth while host cell death is required for proliferation in differentiated root tissue to form a mutualistic interaction. Colonization of barley roots by P. indica and related Sebacina vermifera strains also leads to systemic resistance against the leaf pathogenic fungus Blumeria graminis f.sp. hordei due to a yet unknown mechanism of induced resistance. In order to elucidate plant response pathways governed by these root endophytes, we analyzed gene expression in barley plants exhibiting an established symbiosis with P. indica 3 weeks after inoculation. P. indica-colonized roots showed no induction of defence-related genes, while other genes showed a differential regulation pattern indicating a faster P. indica-dependent root development. Gene expression analysis of leaves detected only few systemically induced mRNAs. Among differentially regulated transcripts, we characterized the pathogenesis-related gene HvPr17b and the molecular chaperone HvHsp70 in more detail. HvPr17b shows similarity with TaWCI5, a wheat gene inducible by chemical resistance inducers and salicylate, and was previously proven to exhibit antifungal activity against B. graminis. HvHsp70 is the first gene found to systemically indicate root colonization with endophytic fungi of the order Sebacinales. Both genes are discussed as markers for endophytic colonization and resulting systemic responses.
Collapse
Affiliation(s)
- Frank Waller
- Research Center for BioSystems, Land Use and Nutrition, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
1330
|
Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel KH, van Bel AJE. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. THE NEW PHYTOLOGIST 2008; 178:634-46. [PMID: 18312539 DOI: 10.1111/j.1469-8137.2008.02388.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vascular tissue was recently shown to be capable of producing nitric oxide (NO), but the production sites and sources were not precisely determined. Here, NO synthesis was analysed in the phloem of Vicia faba in response to stress- and pathogen defence-related compounds. The chemical stimuli were added to shallow paradermal cortical cuts in the main veins of leaves attached to intact plants. NO production in the bare-lying phloem area was visualized by real-time confocal laser scanning microscopy using the NO-specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2 DA). Abundant NO generation in companion cells was induced by 500 microm salicylic acid (SA) and 10 microm hydrogen peroxide (H(2)O(2)), but the fungal elicitor chitooctaose was much less effective. Phloem NO production was found to be dependent on Ca(2+) and mitochondrial electron transport and pharmacological approaches found evidence for activity of a plant NO synthase but not a nitrate reductase. DAF fluorescence increased most strongly in companion cells and was occasionally observed in phloem parenchyma cells. Significantly, accumulation of NO in sieve elements could be demonstrated. These findings suggest that the phloem perceives and produces stress-related signals and that one mechanism of distal signalling involves the production and transport of NO in the phloem.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Phytopathology and Applied Zoology, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
1331
|
Chen L, Zhang Z, Liang H, Liu H, Du L, Xu H, Xin Z. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4195-204. [PMID: 18953072 PMCID: PMC2639029 DOI: 10.1093/jxb/ern259] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 05/19/2023]
Abstract
Wheat sharp eyespot, primarily caused by a soil-borne fungus Rhizoctonia cerealis, has become one of the most serious diseases of wheat in China. In this study, an ethylene response factor (ERF) gene from a wheat relative Thinopyrum intermedium, TiERF1, was characterized further, transgenic wheat lines expressing TiERF1 were developed, and the resistance of the transgenic wheat lines against R. cerealis was investigated. Southern blotting analysis indicated that at least two copies of the TiERF1 gene exist in the T. intermedium genome. Yeast one-hybrid assay indicated that the activation domain of TiERF1 is essential for activating the transcript of the reporter gene with the GCC-box cis-element. The TiERF1 gene was introduced into a Chinese wheat cultivar, Yangmai12, by biolistic bombardment. Results of PCR and Southern blotting analyses indicated that TiERF1 was successfully integrated into the genome of the transgenic wheat, where it can be passed down from the T0 to T4 generations. Quantitative reverse transcription-PCR analysis demonstrated that TiERF1 could be overexpressed in the stable transgenic plants, in which the expression levels of wheat pathogenesis-related (PR) genes primarily in the ethylene-dependent signal pathway, such as a chitinase gene and a beta-1,3-glucanase gene, were increased dramatically. Disease tests indicated that the overexpression of TiERF1 conferred enhanced resistance to sharp eyespot in the transgenic wheat lines compared with the wild-type and silenced TiERF1 plants. These results suggested that the overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat lines by activating PR genes primarily in the ethylene-dependent pathway.
Collapse
|
1332
|
Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. THE PLANT CELL 2008; 20:228-40. [PMID: 18192436 PMCID: PMC2254934 DOI: 10.1105/tpc.107.055657] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 05/18/2023]
Abstract
New evidence suggests a role for the plant growth hormone auxin in pathogenesis and disease resistance. Bacterial infection induces the accumulation of indole-3-acetic acid (IAA), the major type of auxin, in rice (Oryza sativa). IAA induces the expression of expansins, proteins that loosen the cell wall. Loosening the cell wall is key for plant growth but may also make the plant vulnerable to biotic intruders. Here, we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid signaling- and jasmonic acid signaling-independent pathway. GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation. Overexpression of GH3-8 results in enhanced disease resistance to the rice pathogen Xanthomonas oryzae pv oryzae. This resistance is independent of jasmonic acid and salicylic acid signaling. Overexpression of GH3-8 also causes abnormal plant morphology and retarded growth and development. Both enhanced resistance and abnormal development may be caused by inhibition of the expression of expansins via suppressed auxin signaling.
Collapse
Affiliation(s)
- Xinhua Ding
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
1333
|
|
1334
|
Shao M, Wang J, Dean RA, Lin Y, Gao X, Hu S. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:73-81. [PMID: 18005094 DOI: 10.1111/j.1467-7652.2007.00304.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. In this study, we show that the expression of a harpin-encoding gene (hrf1), derived from Xanthomonas oryzae pv. oryzae, confers nonspecific resistance in rice to the blast fungus Magnaporthe grisea. Transgenic plants and their T1-T7 progenies were highly resistant to all major M. grisea races in rice-growing areas along the Yangtze River, China. The expression of defence-related genes was activated in resistant transgenic plants, and the formation of melanized appressoria, which is essential for foliar infection, was inhibited on plant leaves. These results suggest that harpins may offer new opportunities for generating broad-spectrum disease resistance in other crops.
Collapse
Affiliation(s)
- Min Shao
- Key Laboratory of Monitoring and Management of Plant Diseases and Pests, Ministry of Agriculture of China, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
1335
|
Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S. The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:144-156. [PMID: 18047473 DOI: 10.1111/j.1365-313x.2007.03343.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The non-protein amino acid beta-aminobutyric acid (BABA) primes Arabidopsis to respond more quickly and strongly to pathogen and osmotic stress. Here, we report that BABA also significantly enhances acquired thermotolerance in Arabidopsis. This thermotolerance was dependent on heat shock protein 101, a critical component of the normal heat-shock response. BABA did not enhance basal thermotolerance under a severe heat-shock treatment. No roles for the hormones ethylene and salicylic acid in BABA-induced acquired thermotolerance were identified by mutant analysis. Using global gene expression analysis, transcript levels for several transcription factors and DNA binding proteins regulating responses to the stress hormone abscisic acid (ABA) were found to be elevated in BABA-treated plants compared with water-treated plants. The role of ABA in BABA-induced thermotolerance was complex. BABA-enhanced thermotolerance was partially compromised in the ABA-insensitive mutant, abi1-1, but was augmented in abi2-1. In an unrelated process, BABA, like ABA, inhibited root growth, and the level of inhibition was roughly additive in roots treated with both compounds. Root growth of both abi1-1 and abi2-1 was also inhibited by BABA. Unexpectedly, abi1-1 and abi2-1 root growth was inhibited more strongly by combined ABA and BABA treatments than by BABA alone. Our results, together with previously published data, suggest that BABA is a general enhancer of plant stress resistance, and that cross-talk occurs between BABA and ABA signalling cascades. Specifically, the BABA-mediated accumulation of ABA transcription factors without concomitant activation of a downstream ABA response could represent one component of the BABA-primed state in Arabidopsis.
Collapse
Affiliation(s)
- Laurent Zimmerli
- Department of Plant Biology, Carnegie Institute, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
1336
|
Walters DR, McRoberts N, Fitt BDL. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol Rev Camb Philos Soc 2007; 83:79-102. [PMID: 18093233 DOI: 10.1111/j.1469-185x.2007.00033.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The term green island was first used to describe an area of living, green tissue surrounding a site of infection by an obligately biotrophic fungal pathogen, differentiated from neighbouring yellowing, senescent tissue. However, it has now been used to describe symptoms formed in response to necrotrophic fungal pathogens, virus infection and infestation by certain insects. In leaves infected by obligate biotrophs such as rust and powdery mildew pathogens, green islands are areas where senescence is retarded, photosynthetic activity is maintained and polyamines accumulate. We propose such areas, in which both host and pathogen cells are alive, be termed green bionissia. By contrast, we propose that green areas associated with leaf damage caused by toxins produced by necrotrophic fungal pathogens be termed green necronissia. A range of biotrophic/hemibiotrophic fungi and leaf-mining insects produce cytokinins and it has been suggested that this cytokinin secretion may be responsible for the green island formation. Indeed, localised cytokinin accumulation may be a common mechanism responsible for green island formation in interactions of plants with biotrophic fungi, viruses and insects. Models have been developed to study if green island formation is pathogen-mediated or host-mediated. They suggest that green bionissia on leaves infected by biotrophic fungal pathogens represent zones of host tissue, altered physiologically to allow the pathogen maximum access to nutrients early in the interaction, thus supporting early sporulation and increasing pathogen fitness. They lead to the suggestion that green islands are 'red herrings', representing no more than the consequence of the infection process and discrete changes in leaf senescence.
Collapse
Affiliation(s)
- Dale R Walters
- Crop & Soil Systems Research Group, Scottish Agricultural College, West Mains Road, Edinburgh EH9 3JG, UK.
| | | | | |
Collapse
|
1337
|
Luzzatto T, Golan A, Yishay M, Bilkis I, Ben-Ari J, Yedidia I. Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:10315-22. [PMID: 17994692 DOI: 10.1021/jf072037+] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Calla lilies are herbaceous monocotyledonous plants that are highly sensitive to Pectobacterium carotovorum, the causal agent of soft-rot disease. Results demonstrate that, in response to elicitation using plant defense activators, the calla lily produces elevated levels of antimicrobial phenolics and that these compounds contribute to increased resistance against P. carotovorum, as shown by reduced bacterial proliferation in elicited leaves. The polyphenolic nature of the induced compounds was supported by autofluorescence, absorbance spectra, and reaction with Folin-Ciocalteu reagent. Two plant defense activators, Bion and methyl jasmonate, differed in both their capacity to induce accumulation of polyphenols and their resistance against the pathogen. Methyl jasmonate elicitation brought about higher accumulation of free phenolics relative to Bion, suggesting priming of bioactive polyphenols as a principal factor in the calla lily defense against P. carotovorum. To further characterize the nature of induced compounds, two major compounds were collected and identified as swertisin and isovitexin by mass and nuclear magnetic resonance spectroscopies.
Collapse
Affiliation(s)
- Tal Luzzatto
- Department of Ornamental Horticulture, ARO, The Volcani Center, Derech Hamacabim 20, P.O. Box 6, Bet-Dagan, 50250, Israel
| | | | | | | | | | | |
Collapse
|
1338
|
Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 2007; 47:289-97. [PMID: 23100680 PMCID: PMC3450033 DOI: 10.1007/s12088-007-0054-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a broader spectrum of pathogens than ISR/SAR alone. Beside Pseudomonas strains, ISR is conducted by Bacillus spp. wherein published results show that several specific strains of species B. amyloliquifaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B.sphaericus elicit significant reduction in the incidence or severity of various diseases on a diversity of hosts.
Collapse
Affiliation(s)
| | - Anil Prakash
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| | - B. N. Johri
- Department of Biotechnology, Barkatullah University, Bhopal, 462 026 India
| |
Collapse
|
1339
|
Flors V, Leyva MDLO, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1027-40. [PMID: 17916112 DOI: 10.1111/j.1365-313x.2007.03299.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cel1 and Cel2 are members of the tomato (Solanum lycopersicum Mill) endo-beta-1,4-glucanase (EGase) family that may play a role in fruit ripening and organ abscission. This work demonstrates that Cel1 protein is present in other vegetative tissues and accumulates during leaf development. We recently reported the downregulation of both the Cel1 mRNA and protein upon fungal infection, suggesting the involvement of EGases in plant-pathogen interactions. This hypothesis was confirmed by assessing the resistance to Botrytis cinerea infection of transgenic plants expressing both genes in an antisense orientation (Anti-Cel1, Anti-Cel2 and Anti-Cel1-Cel2). The Anti-Cel1-Cel2 plants showed enhanced resistance to this fungal necrotroph. Microscopical analysis of infected leaves revealed that tomato plants accumulated pathogen-inducible callose within the expanding lesion. Anti-Cel1-Cel2 plants presented a faster and enhanced callose accumulation against B. cinerea than wild-type plants. The inhibitor 2-deoxy-d-glucose, a callose synthesis inhibitor, showed a direct relationship between faster callose accumulation and enhanced resistance to B. cinerea. EGase activity appears to negatively modulate callose deposition. The absence of both EGase genes was associated with changes in the expression of the pathogen-related genes PR1 and LoxD. Interestingly, Anti-Cel1-Cel2 plants were more susceptible to Pseudomonas syringae, displaying severe disease symptoms and enhanced bacterial growth relative to wild-type plants. Analysis of the involvement of Cel1 and Cel2 in the susceptibility to B. cinerea in fruits was done with the ripening-impaired mutants Never ripe (Nr) and Ripening inhibitor (rin). The data reported in this work support the idea that enzymes involved in cell wall metabolism play a role in susceptibility to pathogens.
Collapse
Affiliation(s)
- Víctor Flors
- Area de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | | | | | | | | | | | | | | |
Collapse
|
1340
|
Perkovska G, Sergienko V, Grodzinsky D, Dmitriev A. Disease resistance in tomato induced by an elicitor derived from cell walls of the fungal pathogen,Botrytis cinerea. ACTA ACUST UNITED AC 2007. [DOI: 10.1556/aphyt.42.2007.2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
1341
|
Sudhakar N, Nagendra-Prasad D, Mohan N, Murugesan K. A bench-scale, cost effective and simple method to elicit Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus attack using ozone-mediated inactivated Cucumber mosaic virus inoculum. J Virol Methods 2007; 146:165-71. [PMID: 17689672 DOI: 10.1016/j.jviromet.2007.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 06/21/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Studies were undertaken to evaluate ozone for inactivation of Cucumber mosaic virus present in the inoculum and to stimulate Lycopersicon esculentum cv. PKM1 (tomato) plants against Cucumber mosaic virus infection by using the inactivated Cucumber mosaic virus inoculum. Application of a T(4) (0.4mg/l) concentration of ozone to the inoculum containing Cucumber mosaic virus resulted in complete inactivation of the virus. The inactivated viral inoculum was mixed with a penetrator (delivery agent), referred to as T(4) preparation, and it was evaluated for the development of systemic acquired resistance in the tomato plants. Application of a T(4) preparation 5 days before inoculation with the Cucumber mosaic virus protected tomato plants from the effects of Cucumber mosaic virus. Among the components of the inactivated virus tested, coat protein subunits and aggregates were responsible for the acquired resistance in tomato plants. In field trials, the results of enzyme-linked immunosorbent assay revealed that, Cucumber mosaic virus accumulation was significantly less for all the test plants (16%) sprayed with the T(4) preparation than untreated control plants (89.5%) at 28 days postinoculation (dpi). A remarkable increase in the activities of the total soluble phenolics (10-fold) and salicylic acid (16-fold) was detected 5 days after the treatment in foliar extracts of test plants relative to untreated control plants. The results showed that treatment of tomato plants with inactivated viral inoculum led to a significant enhancement of protection against Cucumber mosaic virus attack in a manner that mimics a real pathogen and induces systemic acquired resistance.
Collapse
Affiliation(s)
- N Sudhakar
- Centre for Advance Studies in Botany, University of Madras, Guindy Campus, Chennai-600 025, India.
| | | | | | | |
Collapse
|
1342
|
Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1066-79. [PMID: 19704652 DOI: 10.1111/j.1365-313x.2007.03294.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a growing body of evidence indicating that mitogen-activated protein kinase (MAPK) cascades are involved in plant defense responses. Analysis of the completed Arabidopsis thaliana genome sequence has revealed the existence of 20 MAPKs, 10 MAPKKs and 60 MAPKKKs, implying a high level of complexity in MAPK signaling pathways, and making the assignment of gene functions difficult. The MAP kinase kinase 7 (MKK7) gene of Arabidopsis has previously been shown to negatively regulate polar auxin transport. Here we provide evidence that MKK7 positively regulates plant basal and systemic acquired resistance (SAR). The activation-tagged bud1 mutant, in which the expression of MKK7 is increased, accumulates elevated levels of salicylic acid (SA), exhibits constitutive pathogenesis-related (PR) gene expression, and displays enhanced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasitica Noco2. Both PR gene expression and disease resistance of the bud1 plants depend on SA, and partially depend on NPR1. We demonstrate that the constitutive defense response in bud1 plants is a result of the increased expression of MKK7, and requires the kinase activity of the MKK7 protein. We found that expression of the MKK7 gene in wild-type plants is induced by pathogen infection. Reducing mRNA levels of MKK7 by antisense RNA expression not only compromises basal resistance, but also blocks the induction of SAR. Intriguingly, ectopic expression of MKK7 in local tissues induces PR gene expression and resistance to Psm ES4326 in systemic tissues, indicating that activation of MKK7 is sufficient for generating the mobile signal of SAR.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
1343
|
Pieterse CMJ, Dicke M. Plant interactions with microbes and insects: from molecular mechanisms to ecology. TRENDS IN PLANT SCIENCE 2007; 12:564-9. [PMID: 17997347 DOI: 10.1016/j.tplants.2007.09.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/10/2007] [Accepted: 09/20/2007] [Indexed: 05/18/2023]
Abstract
Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response. Molecular and genomic tools are now being used to uncover the complexity of the induced defense signaling networks that have evolved during the arms races between plants and their attackers. Molecular biologists and ecologists are joining forces to place molecular mechanisms of plant defense into an ecological perspective. Here, we review our current understanding of the molecular mechanisms of induced plant defense and their potential ecological relevance in nature.
Collapse
Affiliation(s)
- Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Faculty of Science, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands
| | | |
Collapse
|
1344
|
Kourtchenko O, Andersson MX, Hamberg M, Brunnström A, Göbel C, McPhail KL, Gerwick WH, Feussner I, Ellerström M. Oxo-phytodienoic acid-containing galactolipids in Arabidopsis: jasmonate signaling dependence. PLANT PHYSIOLOGY 2007; 145:1658-69. [PMID: 17951463 PMCID: PMC2151682 DOI: 10.1104/pp.107.104752] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 10/09/2007] [Indexed: 05/17/2023]
Abstract
The jasmonate family of phytohormones, as represented by 12-oxo-phytodienoic acid (OPDA), dinor-phytodienoic acid (dn-OPDA), and jasmonic acid in Arabidopsis (Arabidopsis thaliana), has been implicated in a vast array of different developmental processes and stress responses. Recent reports indicate that OPDA and dn-OPDA occur not only as free acids in Arabidopsis, but also as esters with complex lipids, so-called arabidopsides. Recently, we showed that recognition of the two bacterial effector proteins AvrRpm1 and AvrRpt2 induced high levels of a molecule consisting of two OPDAs and one dn-OPDA esterified to a monogalactosyl diacylglycerol moiety, named arabidopside E. In this study, we demonstrate that the synthesis of arabidopsides is mainly independent of the prokaryotic lipid biosynthesis pathway in the chloroplast, and, in addition to what previously has been reported, arabidopside E as well as an all-OPDA analog, arabidopside G, described here accumulated during the hypersensitive response and in response to wounding. We also show that different signaling pathways lead to the formation of arabidopsides during the hypersensitive response and the wounding response, respectively. However, the formation of arabidopsides during both responses is dependent on an intact jasmonate signaling pathway. Additionally, we report inhibition of growth of the fungal necrotrophic pathogen Botrytis cinerea and in planta release of free jasmonates in a time frame that overlaps with the observed reduction of arabidopside levels. Thus, arabidopsides may have a dual function: as antipathogenic substances and as storage compounds that allow the slow release of free jasmonates.
Collapse
Affiliation(s)
- Olga Kourtchenko
- Department of Plant and Environmental Sciences, Göteborg University, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
1345
|
Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1568-80. [PMID: 17990964 DOI: 10.1094/mpmi-20-12-1568] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The NPR1 gene plays a pivotal role in systemic acquired resistance in plants. Its overexpression in Arabidopsis and rice results in increased disease resistance and elevated expression of pathogenesis-related (PR) genes. An NPR1 homolog, MpNPR1-1, was cloned from apple (Malus x domestica) and overexpressed in two important apple cultivars, Galaxy and M26. Apple leaf pieces were transformed with the MpNPR1 cDNA under the control of the inducible Pin2 or constitutive Cauliflower mosaic virus (CaMV)35S promoter using Agrobacterium tumefaciens. Overexpression of MpNPR1 mRNA was shown by reverse transcriptase-polymerase chain reaction. Activation of some PR genes (PR2, PR5, and PR8) was observed. Resistance to fire blight was evaluated in a growth chamber by inoculation of the shoot tips of our own rooted 30-cm-tall plants with virulent strain Ea273 of Erwinia amylovora. Transformed Galaxy lines overexpressing MpNPR1 had 32 to 40% of shoot length infected, compared with 80% in control Galaxy plants. Transformed M26 lines overexpressing MpNPR1 under the control of the CaMV35S promoter also showed a significant reduction of disease compared with control M26 plants. Some MpNPR-overexpressing Galaxy lines also exhibited increased resistance to two important fungal pathogens of apple, Venturia inaequalis and Gymnosporangium juniperi-virginianae. Selected transformed lines have been propagated for field trials for disease resistance and fruit quality.
Collapse
Affiliation(s)
- M Malnoy
- Department of Plant Pathology, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | |
Collapse
|
1346
|
Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. THE NEW PHYTOLOGIST 2007; 177:301-318. [PMID: 18042205 DOI: 10.1111/j.1469-8137.2007.02292.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant development and stress responses are regulated by complex signalling networks that mediate specific and dynamic plant responses upon activation by various types of exogenous and endogenous signal. In this review, we focus on the latest published work on jasmonate (JA) signalling components and new regulatory nodes in the transcriptional network that regulates a number of diverse plant responses to developmental and environmental cues. Not surprisingly, the majority of the key revelations in the field have been made in Arabidopsis thaliana. However, for comparative reasons, we integrate information on Arabidopsis with recent reports for other plant species (when available). Recent findings on the regulation of plant responses to pathogens by JAs, as well as new evidence implicating JAs in the regulation of senescence, suggest a common mechanism of JA action in these responses via distinct groups of transcription factors. Moreover, a significant increase in the amount of evidence has allowed placing of specific mitogen-activated protein kinases (MAPKs) as crucial regulatory nodes in the defence signalling network. In addition, we report on new physiological scenarios for JA signalling, such as organogenesis of nitrogen-fixing nodules and anticancer therapy.
Collapse
Affiliation(s)
- Virginia Balbi
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Alessandra Devoto
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
1347
|
Watanabe N, Lam E. BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 2007; 283:3200-3210. [PMID: 18039663 DOI: 10.1074/jbc.m706659200] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The components and pathways that regulate programmed cell death (PCD) in plants remain poorly understood. Here we describe the impact of drug-induced endoplasmic reticulum (ER) stress on Arabidopsis seedlings and present evidence for the role of Arabidopsis BAX inhibitor-1 (AtBI1) as a modulator of ER stress-mediated PCD. We found that treatment of Arabidopsis seedlings with tunicamycin (TM), an inhibitor of N-linked glycosylation and an inducer of ER stress by triggering accumulation of unfolded proteins in the ER, results in strong inhibition of root growth and loss of survival accompanied by typical hallmarks of PCD such as accumulation of H(2)O(2), chromatin condensation, and oligonucleosomal fragmentation of nuclear DNA. These phenotypes are alleviated by co-treatment with either of two different chemical chaperones, sodium 4-phenylbutyrate and tauroursodeoxycholic acid, both with chaperone properties that can reduce the load of misfolded protein in the ER. Expression of AtBI1 mRNA and its promoter activity are increased dramatically prior to initiation of TM-induced PCD. Compared with wild-type plants, two AtBI1 mutants (atbi1-1 and atbi1-2) exhibit hypersensitivity to TM with accelerated PCD progression. Conversely, overexpressing AtBI1 markedly reduces the sensitivity of Arabidopsis seedlings to TM. However, alterations in AtBI1 gene expression levels do not cause a significant effect on the expression patterns of typical ER stress-inducible genes (AtBip2, AtPDI, AtCRT1, and AtCNX1). We propose that AtBI1 plays a pivotal role as a highly conserved survival factor during ER stress that acts in parallel to the unfolded protein response pathway.
Collapse
Affiliation(s)
- Naohide Watanabe
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8550
| | - Eric Lam
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8550.
| |
Collapse
|
1348
|
Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 2007; 104:18842-7. [PMID: 17998535 PMCID: PMC2141864 DOI: 10.1073/pnas.0708139104] [Citation(s) in RCA: 419] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Indexed: 12/24/2022] Open
Abstract
Plants activate distinct defense responses depending on the lifestyle of the attacker encountered. In these responses, salicylic acid (SA) and jasmonic acid (JA) play important signaling roles. SA induces defense against biotrophic pathogens that feed and reproduce on live host cells, whereas JA activates defense against necrotrophic pathogens that kill host cells for nutrition and reproduction. Cross-talk between these defense signaling pathways has been shown to optimize the response against a single attacker. However, its role in defense against multiple pathogens with distinct lifestyles is unknown. Here we show that infection with biotrophic Pseudomonas syringae, which induces SA-mediated defense, rendered plants more susceptible to the necrotrophic pathogen Alternaria brassicicola by suppression of the JA signaling pathway. This process was partly dependent on the cross-talk modulator NPR1. Surprisingly, this tradeoff was restricted to tissues adjacent to the site of initial infection; A. brassicicola infection in systemic tissue was not affected. Even more surprisingly, tradeoff occurred only with the virulent Pseudomonas strain. Avirulent strains that induced programmed cell death (PCD), an effective plant-resistance mechanism against biotrophs, did not cause suppression of JA-dependent defense. This result might be advantageous to the plant by preventing necrotrophic pathogen growth in tissues undergoing PCD. Our findings show that plants tightly control cross-talk between SA- and JA-dependent defenses in a previously unrecognized spatial and pathogen type-specific fashion. This process allows them to prevent unfavorable signal interactions and maximize their ability to concomitantly fend off multiple pathogens.
Collapse
Affiliation(s)
| | | | - Xinnian Dong
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
1349
|
Murray SL, Ingle RA, Petersen LN, Denby KJ. Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1431-8. [PMID: 17977154 DOI: 10.1094/mpmi-20-11-1431] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Basal resistance is the ultimately unsuccessful plant defense response to infection with a virulent pathogen. It is thought to be triggered by host recognition of pathogen-associated molecular patterns, with subsequent suppression of particular components by pathogen effectors. To identify novel components of Arabidopsis basal resistance against the bacterial pathogen Pseudomonas syringae pv. tomato, microarray expression profiling was carried out on the cirl mutant, which displays enhanced resistance against P. syringae pv. tomato. This identified two genes, At4g23810 and At2g40000, encoding the transcription factor WRKY53 and the nematode resistance protein-like HSPRO2, whose expression was upregulated in cir1 prior to pathogen infection and in wild-type plants after P. syringae pv. tomato infection. WRKY53 and HSPRO2 are positive regulators of basal resistance. Knockout mutants of both genes were more susceptible to P. syringae pv. tomato infection than complemented lines, with increased growth of the pathogen in planta. WRKY53 and HSPRO2 appear to function downstream of salicylic acid and to be negatively regulated by signaling through jasmonic acid and ethylene.
Collapse
Affiliation(s)
- Shane L Murray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa 7701
| | | | | | | |
Collapse
|
1350
|
Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S. Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1346-52. [PMID: 17977146 DOI: 10.1094/mpmi-20-11-1346] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The importance of the signaling compound salicylic acid for basal defense of potato (Solanum tuberosum L. cv. Désirée) against Phytophthora infestans, the causal agent of late blight disease, was assessed using transgenic NahG potato plants which are unable to accumulate salicylic acid. Although the size of lesions caused by P. infestans was not significantly different in wild-type and transgenic NahG plants, real-time polymerase chain reaction analyses revealed a drastic enhancement of pathogen growth in potato plants depleted of salicylic acid. Increased susceptibility of NahG plants correlated with compromised callose formation and reduced early defense gene expression. NahG plants pretreated with the salicylic acid analog 2,6-dichloro-isonicotinic acid allowed pathogen growth to a similar extent as did wild-type plants, indicating that salicylic acid is an important compound required for basal defense of potato against P. infestans.
Collapse
Affiliation(s)
- Vincentius A Halim
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|