1351
|
Pietsch J, Paulick T, Schulz K, Flössel U, Engel A, Schmitter S, Schmidt U. Escalation of methamphetamine-related crime and fatalities in the Dresden region, Germany, between 2005 and 2011. Forensic Sci Int 2013; 233:51-4. [DOI: 10.1016/j.forsciint.2013.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/13/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
|
1352
|
Timme-Laragy AR, Goldstone JV, Imhoff BR, Stegeman JJ, Hahn ME, Hansen JM. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo. Free Radic Biol Med 2013; 65:89-101. [PMID: 23770340 PMCID: PMC3823629 DOI: 10.1016/j.freeradbiomed.2013.06.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023]
Abstract
Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0-5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0-120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12h, and then oscillated around -190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (-220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.
Collapse
Affiliation(s)
- Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Barry R. Imhoff
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Jason M. Hansen
- Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
1353
|
Nicotine effect on inflammatory and growth factor responses in murine cutaneous wound healing. Int Immunopharmacol 2013; 17:1155-64. [PMID: 24201082 DOI: 10.1016/j.intimp.2013.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/03/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022]
Abstract
The aim of the current study was to investigate the effect of nicotine in an experimental mouse model of cutaneous injury and healing responses, during the inflammatory phase of repair. Nicotine injection in full-thickness excisional skin wounds minimally affected inflammatory mediators like TNF, IL-6 and IL-12 while it induced a down-regulation in the expression of growth factors like VEGF, PDGF, TGF-β1 and TGF-β2, and the anti-inflammatory cytokine IL-10. Analysis of wound closure rate indicated no significant differences between nicotine and saline injected controls. In-vitro studies using bone marrow derived macrophages, resident peritoneal macrophages and RAW 264.7 macrophages, indicated that nicotine down-regulates TNF production. Moreover, nicotine was shown to down-regulate VEGF, PDGF and TGF-β1 in both bone marrow derived macrophages and RAW 264.7 cells. Using an NF-κB luciferase reporter RAW 264.7 cell line, we show that nicotine effects are minimally dependent on NF-κB inhibition. Moreover, nicotinic acetylcholine receptor (nAChR) subunit expression analyses indicated that while β2 nAChR subunit is expressed in mouse macrophages, α7 nAChR is not. In conclusion, while skin inflammatory parameters were not significantly affected by nicotine, a down-regulation of growth factor expression in both mouse skin and macrophages was observed. Reduced growth factor expression by nicotine might contribute, at least in part, to the overall detrimental effects of tobacco use in wound healing and skin diseases.
Collapse
|
1354
|
Lv P, Xue P, Dong J, Peng H, Clewell R, Wang A, Wang Y, Peng S, Qu W, Zhang Q, Andersen ME, Pi J. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages. Toxicol Appl Pharmacol 2013; 272:697-702. [DOI: 10.1016/j.taap.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023]
|
1355
|
Williams LM, Timme-Laragy AR, Goldstone JV, McArthur AG, Stegeman JJ, Smolowitz RM, Hahn ME. Developmental expression of the Nfe2-related factor (Nrf) transcription factor family in the zebrafish, Danio rerio. PLoS One 2013; 8:e79574. [PMID: 24298298 PMCID: PMC3840143 DOI: 10.1371/journal.pone.0079574] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022] Open
Abstract
Transcription factors in the CNC-bZIP family (NFE2, NRF1, NRF2 and NRF3) regulate genes with a wide range of functions in response to both physiological and exogenous signals, including those indicating changes in cellular redox status. Given their role in helping to maintain cellular homeostasis, it is imperative to understand the expression, regulation, and function of CNC-bZIP genes during embryonic development. We explored the expression and function of six nrf genes (nfe2, nrf1a, nrf1b, nrf2a, nrf2b, and nrf3) using zebrafish embryos as a model system. Analysis by microarray and quantitative RT-PCR showed that genes in the nrf family were expressed throughout development from oocytes to larvae. The spatial expression of nrf3 suggested a role in regulating the development of the brain, brachia and pectoral fins. Knock-down by morpholino anti-sense oligonucleotides suggested that none of the genes were necessary for embryonic viability, but nfe2 was required for proper cellular organization in the pneumatic duct and subsequent swim bladder function, as well as for proper formation of the otic vesicles. nrf genes were induced by the oxidant tert-butylhydroperoxide, and some of this response was regulated through family members Nrf2a and Nrf2b. Our results provide a foundation for understanding the role of nrf genes in normal development and in regulating the response to oxidative stress in vertebrate embryos.
Collapse
Affiliation(s)
- Larissa M. Williams
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- Biology Department, Bates College, Lewiston, Maine, United States of America
| | - Alicia R. Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | | | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Roxanna M. Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, United States of America
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
1356
|
Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non-Invasive and In Situ Characterization of the Degradation of Biomaterial Scaffolds by Volumetric Photoacoustic Microscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
1357
|
Chen Y, Xue P, Hou Y, Zhang H, Zheng H, Zhou T, Qu W, Teng W, Zhang Q, Andersen ME, Pi J. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol 2013; 273:435-41. [PMID: 24128855 DOI: 10.1016/j.taap.2013.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023]
Abstract
Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications.
Collapse
Affiliation(s)
- Yanyan Chen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA; The First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1358
|
Chen C, Jiang X, Hu Y, Zhang Z. The protective role of resveratrol in the sodium arsenite-induced oxidative damage via modulation of intracellular GSH homeostasis. Biol Trace Elem Res 2013; 155:119-31. [PMID: 23884857 DOI: 10.1007/s12011-013-9757-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022]
Abstract
Sodium arsenite (NaAsO2) is a well-established environmental carcinogen that has been found to cause various human malignant tumors. Thus, how to prevent the deleterious effects caused by NaAsO2 has received widely concerns. Resveratrol (3,4',5-trihydroxystilbene), a polyphenol found in numerous plant species, has recently been known as a natural and powerful antioxidant. However, whether resveratrol could attenuate the toxicity of NaAsO2 and its detailed mechanisms have not been reported. In this study, the protective effects of resveratrol against NaAsO2-induced oxidative and genetic damage as well as apoptosis were evaluated for the first time. We demonstrated that cotreatment of human bronchial epithelial cell with 5 μM resveratrol for 24 h effectively reduced the levels of 30 μM NaAsO2-induced reactive oxygen species, chromosomal and DNA damage, and cell apoptosis. Revseratrol was also showed to significantly elevate the concentration of glutathione (GSH) and the activities of its relevant enzymes as compared with NaAsO2 alone, indicating that resveratrol ameliorates the toxicity of NaAsO2 by modulating the process of GSH biosynthesis, recycling and utilization. Our findings further suggest that GSH homeostasis represents one of the detoxification mechanisms responding to NaAsO2 exposure, and resveratrol plays a protective role in the regulation of oxidative and genetic damage as well as apoptosis through the modulation of GSH homeostasis.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, People's Republic of China
| | | | | | | |
Collapse
|
1359
|
Descalzi F, Ulivi V, Cancedda R, Piscitelli F, Luongo L, Guida F, Gatta L, Maione S, Di Marzo V. Platelet-Rich Plasma Exerts Antinociceptive Activity by a Peripheral Endocannabinoid-Related Mechanism. Tissue Eng Part A 2013; 19:2120-9. [DOI: 10.1089/ten.tea.2012.0557] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Valentina Ulivi
- DIMES, University of Genova, Genova, Italy
- IRCCS A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Ranieri Cancedda
- DIMES, University of Genova, Genova, Italy
- IRCCS A.O.U. San Martino–IST, National Cancer Research Institute, Genova, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - Livio Luongo
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Francesca Guida
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Luisa Gatta
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Sabatino Maione
- Endocannabinoid Research Group at the Department of Experimental Medicine, Division of Pharmacology “L. Donatelli,” The Second University of Naples, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
1360
|
Melis JPM, Kuiper RV, Zwart E, Robinson J, Pennings JLA, van Oostrom CTM, Luijten M, van Steeg H. Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress. DNA Repair (Amst) 2013; 12:1081-6. [PMID: 24084170 DOI: 10.1016/j.dnarep.2013.08.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 11/17/2022]
Abstract
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa(-/-) and Xpc(-/-) exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc(-/-) mice, in contrary to Xpa(-/-) and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc(-/-) mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.
Collapse
Affiliation(s)
- Joost P M Melis
- National Institute for Public Health and the Environment, Center for Health Protection, Bilthoven 3721 MA, The Netherlands; Leiden University Medical Center, Department of Toxicogenetics, Leiden 2300 RC, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1361
|
Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY. Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 2013; 9:528-33. [PMID: 24045877 DOI: 10.1007/s12024-013-9482-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 02/05/2023]
Abstract
To estimate the age of skeletal muscle contusion, the expression of SNAT2 mRNA in contused skeletal muscle of rats was detected by real-time polymerase chain reaction (PCR). In total, 78 Sprague-Dawley male rats were divided into control and contusion groups. At 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 h (n = 6) after contusion, the rats were sacrificed with a lethal dose of pentobarbital. Another 24 rats received contusion injuries at 6, 12, 18, and 24 h (n = 6) after death. Total RNA was isolated from muscle specimens using the TRIzol reagent and reverse-transcribed into first-strand cDNA. Sequence-specific primers and TaqMan fluorogenic probes for SNAT2 mRNA and RPL13 mRNA were designed using the AlleleID 6 software, and the expression levels of SNAT2 mRNA were determined by real-time PCR. At 4, 16, 20, and 24 h after contusion, expression levels of SNAT2 mRNA normalized to RPL13 mRNA increased by 2.07 (P < 0.05), 2.53 (P < 0.05), 2.68 (P < 0.05), and 2.06 fold (P < 0.05) respectively, versus that in the control group. However, there was no significant change in the expression level of SNAT2 mRNA from 24 to 48 h (P > 0.05) after contusion, when normalized to RPL13 mRNA. There was no change in the expression level of SNAT2 mRNA between the normal skeletal muscle from the left limb of the same injured rat and the control. Also, no degradation of SNAT2 mRNA was detected in the postmortem samples (P > 0.05). This result suggests that the determination of SNAT2 mRNA levels by real-time PCR may be useful for estimating wound age.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Department of Forensic Pathology, Shanxi Medical University, 56 South Xinjian Nan Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
1362
|
Zhao H, Liu J, Pan S, Sun Y, Li Q, Li F, Ma L, Guo Q. SOD mRNA and MDA expression in rectus femoris muscle of rats with different eccentric exercise programs and time points. PLoS One 2013; 8:e73634. [PMID: 24058480 PMCID: PMC3772806 DOI: 10.1371/journal.pone.0073634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Purpose Although superoxide dismutase (SOD) and malondialdehyde (MDA) affect Delayed Onset Muscle Soreness (DOMS), their effects are unclear in rectus femoris muscles (RFM) of rats with different eccentric exercise programs and time points. The purpose of this study is to investigate the effects of the various eccentric exercise programs at different time points on the SOD mRNA expression and MDA using rat as the animal model. Methods 248 male rats were randomly divided into 4 groups: control group (CTL, n = 8), once-only exercise group (OEG, n = 80), continuous exercise group (CEG, n = 80), and intermittent exercise group (IEG, n = 80). Each exercise group was divided into 10 subgroups that exercised 0.5 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, 144 h, or 168 h. Rats were sacrificed and their SOD mRNA expression, and MDA concentrations of skeletal muscle tissue were measured. Results The specimen in all eccentric exercise programs showed increased RFM SOD1 mRNA expression levels at 0.5 h (P<0.05), and decreased RFM SOD3 mRNA expression at 0.5 h (P<0.05). The continuous eccentric exercise (CE) significantly enhanced muscle SOD2 mRNA level at 0.5 h (P<0.05). After once-only eccentric exercise (OE), SOD1, SOD2, and SOD3 mRNA expression significantly increased at 96 h, whereas MDA concentrations decreased at 96 h. After CE, the correlation coefficients of SOD1, SOD2, SOD3 mRNA expression levels and MDA concentrations were −0.814, −0.763, −0.845 (all P<0.05) at 12 h. Conclusion Regular eccentric exercise, especially CE could enhance SOD1 and SOD2 mRNA expression in acute stage and the SOD2 mRNA expression correlates to MDA concentration in vivo, which may improve the oxidative adaption ability of skeletal muscles.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiani Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shinong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
- * E-mail:
| | - Yingwei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Ma
- Central Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
1363
|
More VR, Xu J, Shimpi PC, Belgrave C, Luyendyk JP, Yamamoto M, Slitt AL. Keap1 knockdown increases markers of metabolic syndrome after long-term high fat diet feeding. Free Radic Biol Med 2013; 61:85-94. [PMID: 23507082 PMCID: PMC3797262 DOI: 10.1016/j.freeradbiomed.2013.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 02/09/2013] [Accepted: 03/08/2013] [Indexed: 12/23/2022]
Abstract
The nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome.
Collapse
Affiliation(s)
- Vijay R More
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jialin Xu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Prajakta C Shimpi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Clyde Belgrave
- Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI 02908, USA
| | - James P Luyendyk
- Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
1364
|
Lee CH, Wu SB, Hong CH, Chen GS, Wei YH, Yu HS. Involvement of mtDNA Damage Elicited by Oxidative Stress in the Arsenical Skin Cancers. J Invest Dermatol 2013; 133:1890-900. [DOI: 10.1038/jid.2013.55] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
1365
|
The modest impact of transcription factor Nrf2 on the course of disease in an ALS animal model. J Transl Med 2013; 93:825-33. [PMID: 23711824 DOI: 10.1038/labinvest.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is one of the major cellular defense mechanisms against oxidative stress. However, the role of Nrf2-mediated neuroprotection (antioxidant defense) in the disease development of ALS remains unclear. To further investigate the role of Nrf2 in ALS, we genetically eliminate the Nrf2 gene from SOD1-G93A mice, a commonly used ALS mouse model, by generating a double mutant (Nrf2-/- SOD1-G93A mice). We found that it only had a modest impact on the course of disease by knocking out Nrf2 gene in these mice. Further studies demonstrated that, among previously known Nrf2-regulated phase II enzymes, only NAD(P)H: quinone oxidoreductase 1 induction was significantly affected by the elimination of Nrf2 gene in SOD1-G93A mice. Taken together, our data suggested that Nrf2 is not the sole mediator for the induction of antioxidant genes in SOD1-G93A mice, and Nrf2-mediated neuroprotection is not the key protective mechanism against neurodegeneration in those mice.
Collapse
|
1366
|
Gauchotte G, Wissler MP, Casse JM, Pujo J, Minetti C, Gisquet H, Vigouroux C, Plénat F, Vignaud JM, Martrille L. FVIIIra, CD15, and tryptase performance in the diagnosis of skin stab wound vitality in forensic pathology. Int J Legal Med 2013; 127:957-65. [PMID: 23749256 DOI: 10.1007/s00414-013-0880-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/21/2013] [Indexed: 01/10/2023]
Abstract
The timing of skin wounds is one of the most challenging problems in forensic pathology. In the first minutes or hours after infliction, histological examination fails to determine whether a wound was sustained before or after death. The aim of this study was to evaluate the use of three immunohistochemical markers (FVIIIra, CD15, and tryptase) for the interpretation of the timing of cutaneous stab wounds. We evaluated these markers in intravital wounds from autopsy cases (n = 12) and surgical specimens (n = 58). As controls, we used normal skin samples from autopsies (n = 8) and an original ex vivo surgical human model of recent postmortem wounds (n = 24). We found overexpression of FVIIIra in 100 % of vital wounds, but also in 53 % of the controls. The number of CD15-positive cells was higher in wound margins than in internal controls (p < 0.0001) and was significantly correlated with the time interval between incision and devascularization (p = 0.0005; minimal time for positivity, 9 min). Using the anti-tryptase antibody, we found that the mast cell degranulation rate was higher in wound margins (p < 0.0001) and correlated with the time interval (minimal time, 1 min). The sensitivity and specificity for the diagnosis of vitality were respectively 100 and 47 % for FVIIIra, 47 and 100 % for CD15, and 60 and 100 % for tryptase. The inter-observer agreement coefficients were 0.68 for FVIIIra, 0.90 for CD15, and 0.46 for tryptase. Finally, we demonstrated that these markers were not reliable in putrefied or desiccated specimens. In conclusion, CD15 and tryptase, but not FVIIIra, may be useful markers for differentiating recent antemortem from postmortem injuries.
Collapse
|
1367
|
Immunohistochemical detection of intrathrombotic macrophage-derived cytokines and its application to thrombus age estimation in murine deep vein thrombosis model. Int J Legal Med 2013; 127:937-42. [DOI: 10.1007/s00414-013-0873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/13/2013] [Indexed: 01/08/2023]
|
1368
|
Molecular pathology of brain edema after severe burns in forensic autopsy cases with special regard to the importance of reference gene selection. Int J Legal Med 2013; 127:881-9. [DOI: 10.1007/s00414-013-0868-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
|
1369
|
Huang BW, Ray PD, Iwasaki K, Tsuji Y. Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J 2013; 27:3763-74. [PMID: 23699174 DOI: 10.1096/fj.12-226043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antioxidant genes such as ferritin are transcriptionally activated in oxidative stress via the antioxidant responsive element (ARE), to which nuclear factor-E2-related factor 2 (Nrf2) binds and activates transcription. Histone modification plays a cooperative and essential role in transcriptional regulation; however, its role in antioxidant gene transcription remains elusive. Arsenic exposure activated ferritin transcription via the ARE concomitant with increased methylation of histones H4Arg3 (H4R3) and H3Arg17 (H3R17). To test our hypothesis that histone H4R3 and H3R17 methylation regulates ferritin transcription, H4R3 and H3R17 protein arginine (R) methyltransferases 1 and 4 (PRMT1 and PRMT4) were investigated. Arsenic exposure of human HaCaT keratinocytes induced nuclear accumulation of PRMT1 and PRMT4, histone H4R3 and H3R17 methylation proximal to the ARE, but not to the non-ARE regions of ferritin genes. PRMT1 or PRMT4 knockdown did not block Nrf2 nuclear accumulation but inhibited Nrf2 binding to the AREs by ∼40% (P<0.05), thus diminishing ferritin transcription in HaCaT and human primary keratinocytes and fibroblasts, causing enhanced cellular susceptibility to arsenic toxicity as evidenced by 2-fold caspase 3 activation. Focused microarray further characterized several oxidative stress response genes are subject to PRMT1 or PRMT4 regulation. Collectively, PRMT1 and PRMT4 regulate the ARE and cellular antioxidant response to arsenic.
Collapse
Affiliation(s)
- Bo-Wen Huang
- Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
1370
|
Zolotukhin P, Kozlova Y, Dovzhik A, Kovalenko K, Kutsyn K, Aleksandrova A, Shkurat T. Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy. MOLECULAR BIOSYSTEMS 2013; 9:2085-96. [PMID: 23698602 DOI: 10.1039/c3mb70096h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Experimental evidence suggests an immense variety of processes associated with and aimed at producing reactive oxygen and/or nitrogen species. Clinical studies implicate an enormous range of pathologies associated with reactive oxygen/nitrogen species metabolism deregulation, particularly oxidative stress. Recent advances in biochemistry, proteomics and molecular biology/biophysics of cells suggest oxidative stress to be an endpoint of complex dysregulation events of conjugated pathways consolidated under the term, proposed here, "oxidative status". The oxidative status concept, in order to allow for novel diagnostic and therapeutic approaches, requires elaboration of a new logic system comprehending all the features, versatility and complexity of cellular pro- and antioxidative components of different nature. We have developed a curated and regularly updated interactive interactome map of human cellular-level oxidative status allowing for systematization of the related most up-to-date experimental data. A total of more than 600 papers were selected for the initial creation of the map. The map comprises more than 300 individual factors with respective interactions, all subdivided hierarchically for logical analysis purposes. The pilot application of the interactome map suggested several points for further development of oxidative status-based technologies.
Collapse
Affiliation(s)
- Peter Zolotukhin
- Southern Federal University, Stachki av., 194/1, Rostov-on-Don, Russia.
| | | | | | | | | | | | | |
Collapse
|
1371
|
Zhao R, Yang B, Wang L, Xue P, Deng B, Zhang G, Jiang S, Zhang M, Liu M, Pi J, Guan D. Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:412576. [PMID: 23710286 PMCID: PMC3654359 DOI: 10.1155/2013/412576] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
Abstract
Human exposure to inorganic arsenic leads to various dermal disorders, including hyperkeratosis and skin cancer. Curcumin is demonstrated to induce remarkable antioxidant activity in a variety of cells and tissues. The present study aimed at identifying curcumin as a potent activator of nuclear factor erythroid 2-related factor 2 (NRF2) and demonstrating its protective effect against inorganic arsenite- (iAs(3+)-) induced cytotoxicity in human keratinocytes. We found that curcumin led to nuclear accumulation of NRF2 protein and increased the expression of antioxidant response element- (ARE-) regulated genes in HaCaT keratinocytes in concentration- and time-dependent manners. High concentration of curcumin (20 μM) also increased protein expression of long isoforms of NRF1. Treatment with low concentrations of curcumin (2.5 or 5 μM) effectively increased the viability and survival of HaCaT cells against iAs(3+)-induced cytotoxicity as assessed by the MTT assay and flow cytometry and also attenuated iAs(3+)-induced expression of cleaved caspase-3 and cleaved PARP protein. Selective knockdown of NRF2 or KEAP1 by lentiviral shRNAs significantly diminished the cytoprotection conferred by curcumin, suggesting that the protection against iAs(3+)-induced cytotoxicity is dependent on the activation of NRF2. Our results provided a proof of the concept of using curcumin to activate the NRF2 pathway to alleviate arsenic-induced dermal damage.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137, USA
| | - Bei Yang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137, USA
- Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Linlin Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Xue
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137, USA
| | - Baocheng Deng
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Shukun Jiang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Miao Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Min Liu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| | - Jingbo Pi
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709-2137, USA
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
1372
|
Divergent effects of sulforaphane on basal and glucose-stimulated insulin secretion in β-cells: role of reactive oxygen species and induction of endogenous antioxidants. Pharm Res 2013; 30:2248-59. [PMID: 23468051 DOI: 10.1007/s11095-013-1013-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/15/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress is implicated in pancreatic β-cell dysfunction, yet clinical outcomes of antioxidant therapies on diabetes are inconclusive. Since reactive oxygen species (ROS) can function as signaling intermediates for glucose-stimulated insulin secretion (GSIS), we hypothesize that exogenously boosting cellular antioxidant capacity dampens signaling ROS and GSIS. METHODS To test the hypothesis, we formulated a mathematical model of redox homeostatic control circuit comprising known feedback and feedforward loops and validated model predictions with plant-derived antioxidant sulforaphane (SFN). RESULTS SFN acutely (30-min treatment) stimulated basal insulin secretion in INS-1(832/13) cells and cultured mouse islets, which could be attributed to SFN-elicited ROS as N-acetylcysteine or glutathione ethyl ester suppressed SFN-stimulated insulin secretion. The mathematical model predicted an adapted redox state characteristic of strong induction of endogenous antioxidants but marginally increased ROS under prolonged SFN exposure, a state that attenuates rather than facilitates glucose-stimulated ROS and GSIS. We validated the prediction by demonstrating that although 24-h treatment of INS-1(832/13) cells with low, non-cytotoxic concentrations of SFN (2-10 μM) protected the cells from cytotoxicity by oxidative insult, it markedly suppressed insulin secretion stimulated by 20 mM glucose. CONCLUSIONS Our study indicates that adaptive induction of endogenous antioxidants by exogenous antioxidants, albeit cytoprotective, inhibits GSIS in β-cells.
Collapse
|
1373
|
Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity. A review. ENVIRONMENT INTERNATIONAL 2013; 53:29-40. [PMID: 23314041 DOI: 10.1016/j.envint.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Exposure to chronic arsenic toxicity is associated with cancer. Although unstable genome is a characteristic feature of cancer cells, the mechanisms leading to genomic instability in arsenic-induced carcinogenesis are poorly understood. While there are excellent reviews relating to genomic instability in general, there is no comprehensive review presenting the mechanisms involved in arsenic-induced genomic instability. This review was undertaken to present the current state of research in this area and to highlight the major mechanisms that may involved in arsenic-induced genomic instability leading to cancer. Genomic instability is broadly classified into chromosomal instability (CIN), primarily associated with mitotic errors; and microsatellite instability (MIN), associated with DNA level instability. Arsenic-induced genomic instability is essentially multi-factorial in nature and involves molecular cross-talk across several cellular pathways, and is modulated by a number of endogenous and exogenous factors. Arsenic and its metabolites generate oxidative stress, which in turn induces genomic instability through DNA damage, irreversible DNA repair, telomere dysfunction, mitotic arrest and apoptosis. In addition to genetic alteration; epigenetic regulation through promoter methylation and miRNA expression alters gene expression profiling leading to genome more vulnerable and unstable towards cancer risk. Moreover, mutations or silencing of pro-apoptotic genes can lead to genomic instability by allowing survival of damaged cells that would otherwise die. Although a large body of information is now generated regarding arsenic-induced carcinogenesis; further studies exploring genome-wide association, role of environment and diet are needed for a better understanding of the arsenic-induced genomic instability.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | | | | |
Collapse
|
1374
|
Bin Abdul Rashid SN, Rahim ASA, Thali MJ, Flach PM. Death by 'ice': fatal methamphetamine intoxication of a body packer case detected by postmortem computed tomography (PMCT) and validated by autopsy. Forensic Sci Med Pathol 2013; 9:82-7. [PMID: 23404531 DOI: 10.1007/s12024-012-9395-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2012] [Indexed: 02/02/2023]
Abstract
Fatal acute methamphetamine (MA) poisoning in cases of internal drug trafficking is rarely described in the literature. This case study reports an MA 'body packer' who died from fatal methamphetamine intoxication due to leaking drug packages in the alimentary tract. The deceased was examined by postmortem computed tomography (PMCT), and the results were correlated to subsequent autopsy and toxicological findings. The deceased was arrested by the police when he was found disoriented in the city of Kuala Lumpur. He was transferred to the emergency department on suspicion of drug abuse. The initial drug screening was reactive for amphetamines. Shortly after admission to the hospital, he died despite rigorous resuscitation attempts. The postmortem plain chest and abdominal radiographs revealed multiple suspicious opacities in the gastrointestinal tract attributable to body packages. An unenhanced whole body PMCT revealed twenty-five drug packages, twenty-four in the stomach and one in the transverse colon. At least two were disintegrating, and therefore leaking. The autopsy findings were consistent with the PMCT results. Toxicology confirmed the diagnosis of fatal methamphetamine intoxication.
Collapse
Affiliation(s)
- Saiful Nizam Bin Abdul Rashid
- Department of Radiology, Faculty of Medicine & Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| | | | | | | |
Collapse
|
1375
|
Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biol 2013; 1:183-9. [PMID: 24024152 PMCID: PMC3757680 DOI: 10.1016/j.redox.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/01/2022] Open
Abstract
Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.
Collapse
Key Words
- Air pollution
- ER, endoplasmic reticulum
- Electrophile response element
- EpRE, electrophile response element
- GCL, glutamate cysteine ligase
- GCLC, catalytic subunit of GCL
- GCLM, modifier subunit of GCL
- Glutamate cysteine ligase
- HBE1, human bronchial epithelial cells
- HO-1, heme oxygenase
- Nrf1
- Nrf1, nuclear factor-erythroid 2 p45 subunit-related factor 1
- Nrf2
- Nrf2, nuclear factor-erythroid 2 p45 subunit-related factor 2
- Phase II genes
- nPM, nanoparticulate air pollution
Collapse
|
1376
|
Abstract
The endocannabinoid (eCB) system is involved in processes as diverse as control of appetite, perception of pain and the limitation of cancer cell growth and invasion. The enzymes responsible for eCB breakdown are attractive pharmacological targets, and fatty acid amide hydrolase inhibitors, which potentiate the levels of the eCB anandamide, are now undergoing pharmaceutical development. 'Drugable' selective inhibitors of monoacylglycerol lipase, a key enzyme regulating the levels of the other main eCB, 2-arachidonoylglycerol, were however not identified until very recently. Their availability has resulted in a large expansion of our knowledge concerning the pharmacological consequences of monoacylglycerol lipase inhibition and hence the role(s) played by the enzyme in the body. In this review, the pharmacology of monoacylglycerol lipase will be discussed, together with an analysis of the therapeutic potential of monoacylglycerol lipase inhibitors as analgesics and anticancer agents.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden.
| |
Collapse
|
1377
|
Kwong EK, Kim KM, Penalosa PJ, Chan JY. Characterization of Nrf1b, a novel isoform of the nuclear factor-erythroid-2 related transcription factor-1 that activates antioxidant response element-regulated genes. PLoS One 2012; 7:e48404. [PMID: 23144760 PMCID: PMC3483171 DOI: 10.1371/journal.pone.0048404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/01/2012] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor E2-related factor 1 (Nrf1) is a basic leucine zipper transcription factor that plays an important role in the activation of cytoprotective genes through the antioxidant response elements. The previously characterized long isoform of Nrf1 (Nrf1a) is targeted to the endoplasmic reticulum and accumulates in the nucleus in response to activating signals. Here we characterized a novel Nrf1 protein isoform (Nrf1b) generated through an alternative promoter and first exon that lacks the ER targeting domain of Nrf1a. The 5′-flanking region of Nrf1b directed high levels of luciferase reporter expression in cells. RT-PCR and Western blotting showed Nrf1b is widely expressed in various cell lines and mouse tissues. Immunoblot analysis of subcellular fractions and imaging of green fluorescence protein (GFP)-tagged Nrf1b demonstrate Nrf1b is constitutively localized to the nucleus. Nrf1b can activate GAL4-dependent transcription when fused to the heterologous GAL4 DNA-binding domain. Gel-shift and coimmunoprecipitation experiments demonstrate that Nrf1b forms a complex with MafG, and expression of Nrf1b activates the expression of antioxidant response element containing reporters and genes in cells. These results suggest Nrf1b is targeted to the nucleus where it activates ARE-driven genes and may play a role in modulating antioxidant response elements.
Collapse
Affiliation(s)
- Eric K. Kwong
- Department of Laboratory Medicine and Pathology, University of California Irvine, Irvine, California, United States of America
| | - Kyung-Mi Kim
- Department of Laboratory Medicine and Pathology, University of California Irvine, Irvine, California, United States of America
| | - Patrick J. Penalosa
- Department of Laboratory Medicine and Pathology, University of California Irvine, Irvine, California, United States of America
| | - Jefferson Y. Chan
- Department of Laboratory Medicine and Pathology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
1378
|
Yadav S, Anbalagan M, Shi Y, Wang F, Wang H. Arsenic inhibits the adipogenic differentiation of mesenchymal stem cells by down-regulating peroxisome proliferator-activated receptor gamma and CCAAT enhancer-binding proteins. Toxicol In Vitro 2012; 27:211-9. [PMID: 23108036 DOI: 10.1016/j.tiv.2012.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022]
Abstract
Arsenic remains a top environmental concern in the United States as well as worldwide because of its global existence and serious health impacts. Apoptotic effect of arsenic in human mesenchymal stem cells (hMSCs) has been identified in our previous study; the effects of arsenic on hMSCs remain largely unknown. Here, we report that arsenic inhibits the adipogenic differentiation of human mesenchymal stem cells (hMSCs). Arsenic reduced the formation of lipid droplets and the expression of adipogenesis-related proteins, such as CCAAT enhancer binding protein-(C/EBPs), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and adipocyte fatty acid-binding protein aP2 (aP2). Arsenic mediates this process by sustaining PPAR-γ activity. In addition, inhibition of PPAR-γ activity with T0070907 and up-regulation with its agonist troglitazone, showed the direct association of PPAR-γ and arsenic-mediated inhibition of differentiating hMSCs. Taken together, these results indicate that arsenic inhibits adipogenic differentiation through PPAR-γ pathway and suggest a novel inhibitory effect of arsenic on adipogenic differentiation in hMSCs.
Collapse
Affiliation(s)
- Santosh Yadav
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
1379
|
García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV. Nuclear glutathione. Biochim Biophys Acta Gen Subj 2012; 1830:3304-16. [PMID: 23069719 DOI: 10.1016/j.bbagen.2012.10.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 10/08/2012] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as "redox sensor" at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
1380
|
Ohtsu Y, Sasao A, Yonemitsu K, Nishitani Y. Postmortem serum tenascin-C (TN-C) concentrations in forensic autopsy cases: A pilot study. Leg Med (Tokyo) 2012; 15:61-5. [PMID: 23043956 DOI: 10.1016/j.legalmed.2012.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 07/31/2012] [Accepted: 08/23/2012] [Indexed: 11/15/2022]
Abstract
In forensic investigations, autopsy findings offer major clues for the diagnosis of the cause of death. Thus, various clinical biochemical markers are now being tested to complement conventional investigation in the field of forensic medicine. In this study, we focused on tenascin-C (TN-C), a glycoprotein present in the extracellular matrix and expressed in pathological states. We reviewed autopsy cases for a 4-year period (2006-2009) using autopsy records, and analyzed the blood serum concentrations of TN-C and C-reactive protein (CRP) in these cases (N=101). The TN-C levels were relatively higher in the postmortem serum samples than in the samples from healthy individuals, and in cases of head injury, both TN-C and CRP levels were high in the postmortem serum sample. Moreover, high TN-C levels were observed particularly in cases with a long survival period. These findings indicate that postmortem serum TN-C levels may represent a useful tool for identifying the cause of specific fatal traumas.
Collapse
Affiliation(s)
- Yuki Ohtsu
- Department of Forensic Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | | | | | | |
Collapse
|
1381
|
Yang B, Fu J, Zheng H, Xue P, Yarborough K, Woods CG, Hou Y, Zhang Q, Andersen ME, Pi J. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage. Toxicol Appl Pharmacol 2012; 264:315-23. [PMID: 23000044 DOI: 10.1016/j.taap.2012.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 01/10/2023]
Abstract
Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs³⁺) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2⁻/⁻) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs³⁺ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2⁻/⁻ islets were more susceptible to iAs³⁺ and monomethylarsonous acid (MMA³⁺)-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs³⁺-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N-acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs³⁺. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure.
Collapse
Affiliation(s)
- Bei Yang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1382
|
Zheng JL, Yu TS, Li XN, Fan YY, Ma WX, Du Y, Zhao R, Guan DW. Cannabinoid receptor type 2 is time-dependently expressed during skin wound healing in mice. Int J Legal Med 2012; 126:807-814. [PMID: 22814434 DOI: 10.1007/s00414-012-0741-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Dynamic localization of CB2R and quantitative analysis of CB2R mRNA during skin wound healing in mice were performed. Co-localization of CB2R with F4/80 or α-SMA was detected by double-color immunofluorescence microscopy. A total of 110 male mice were divided into control, injury, and postmortem groups. Sixty-five mice were sacrificed, followed by sampling at 0.5 h-21 days post-injury. Five mice without incision were used as control. The other 40 mice that received incised wound were sacrificed at 5 days after injury. The samples were collected at 0 h-3 days postmortem. In the uninjured controls, CB2R immunoreactivity was detected in the epidermis, hair follicles, sebaceous glands, dermomuscular layer, and vascular smooth muscle. In the incision groups, polymorphonulcear cells, macrophages, and myofibroblasts showed positive staining for CB2R. Morphometrically, the average ratios of CB2R-positive cells were more than 50 % at 5 days post-wounding, whereas it was <50 % at the other posttraumatic intervals. The average ratios of CB2R-positive macrophages maximized at 3 days post-wounding, and the average ratios of CB2R-positive myofibroblasts peaked at 5 days post-wounding. The relative quantity of CB2R mRNA expression maximized at posttraumatic 5 days in comparison with control as detected by real-time PCR, with an average ratio of >4.10, which was also confirmed by Western blotting. There was no significant change for CB2R protein within 6 h postmortem and for mRNA within 3 h postmortem as compared with the control group. In conclusion, dynamic distribution and expression of CB2R suggest that CB2R is involved in modulating macrophages and myofibroblasts in response to inflammatory event and repair process in mouse skin wound healing, and CB2R is available as a marker for wound age determination.
Collapse
Affiliation(s)
- Ji-Long Zheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No.92, Beier Road, Heping District, Shenyang, Liaoning Province, 110001, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
1383
|
Fan YY, Ye GH, Lin KZ, Yu LS, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. Time-dependent expression and distribution of Egr-1 during skeletal muscle wound healing in rats. J Mol Histol 2012; 44:75-81. [PMID: 22918836 DOI: 10.1007/s10735-012-9445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 12/26/2022]
Abstract
Recent studies have shown that early growth response factor-1 (Egr-1) plays an important role in regulation of inflammation and tissue repair, but little is known about its expression after trauma to skeletal muscles. A preliminary study on time-dependent expression and distribution of Egr-1 was performed by immunohistochemistry, immunofluorescence and Western blotting during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 45 Sprague-Dawley male rats. Samples were taken at 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, 14 days and 21 days post-injury, respectively (5 rats in each posttraumatic interval). 5 rats were employed as control. In the uninjured controls, Egr-1 positive staining was observed in the sarcoplasm and nuclei of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells (PMNs), a number of mononuclear cells (MNCs), fibroblastic cells (FBCs) and regenerated multinucleated myotubes showed positive reaction for Egr-1 in contused zones. By morphometric analysis, an increase in Egr-1 expression was verified at inflammatory phase after contusion, which reached a peak in the regenerated phase overlapping with the fibrotic phase during skeletal muscle wound healing. The expression tendency was further confirmed by Western blotting assay. By immunofluorescent staining for co-localization, the Egr-1-positive MNCs and FBCs in wounds were identified as macrophages and myofibroblasts. The results demonstrate that the expression of Egr-1 is up-regulated and temporally distributed in certain cell types after trauma to skeletal muscles, which may be closely involved in inflammatory response, fibrotic repair and muscle regeneration during skeletal muscle wound healing.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical College, Higher Education District, Wenzhou, Zhejiang Province, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
1384
|
Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Arch Toxicol 2012; 87:383-96. [PMID: 22914984 DOI: 10.1007/s00204-012-0920-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Arsenic is a ubiquitous toxic metalloid whose natural leaching from geogenic resources of earths crust into groundwater has become a dreadful health hazard to millions of people across the globe. Arsenic has been documented as a top most potent human carcinogen by Agency of Toxic Substances and Disease Registry. There have been a number of schools of opinions regarding the underlying mechanism of arsenic-induced carcinogenicity, but the theory of oxidative stress generated by arsenic has gained much importance. Imbalance in the cellular redox state and its associated complications have been closely associated with nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic-leucine zipper transcription factor that activates the antioxidant responsive element and electrophilic responsive element, thereby upregulating the expression of a variety of downstream genes. This review has been framed on the lines of differential molecular responses of Nrf2 on arsenic exposure as well as the chemopreventive strategy which may be improvised to regulate Nrf2 in order to combat arsenic-induced oxidative stress and its long-term carcinogenic effect.
Collapse
|
1385
|
Zhan L, Zhang H, Zhang Q, Woods CG, Chen Y, Xue P, Dong J, Tokar EJ, Xu Y, Hou Y, Fu J, Yarborough K, Wang A, Qu W, Waalkes MP, Andersen ME, Pi J. Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radic Biol Med 2012; 53:758-68. [PMID: 22684020 PMCID: PMC3418425 DOI: 10.1016/j.freeradbiomed.2012.05.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/17/2012] [Accepted: 05/27/2012] [Indexed: 12/21/2022]
Abstract
The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations in NRF2 and/or downregulation of or mutations in its suppressor, Kelch-like ECH-associated protein 1 (KEAP1), is associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting the NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178, and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As(2)O(3)), etoposide, and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-cadherin and gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of the proto-oncogene cyclin D1 and markers for cancer stem cells (CSCs) and reduced nonadherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As(2)O(3). Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As(2)O(3). A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemosensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance.
Collapse
Affiliation(s)
- Lijuan Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Hao Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
- School of Public Health, Fudan University, Shanghai, China
| | - Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Courtney G. Woods
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Yanyan Chen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
- School of First Clinical Sciences andc College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Peng Xue
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Jian Dong
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Erik J. Tokar
- National Toxicology Program Laboratories, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yuanyuan Xu
- National Toxicology Program Laboratories, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yongyong Hou
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Jingqi Fu
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Kathy Yarborough
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weidong Qu
- School of Public Health, Fudan University, Shanghai, China
| | - Michael P. Waalkes
- National Toxicology Program Laboratories, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Melvin E. Andersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| | - Jingbo Pi
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
1386
|
Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H. Molecular pathology of pulmonary edema after injury in forensic autopsy cases. Int J Legal Med 2012; 126:875-82. [DOI: 10.1007/s00414-012-0758-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
|
1387
|
Han W, Ming M, Zhao R, Pi J, Wu C, He YY. Nrf1 CNC-bZIP protein promotes cell survival and nucleotide excision repair through maintaining glutathione homeostasis. J Biol Chem 2012; 287:18788-18795. [PMID: 22500024 PMCID: PMC3365774 DOI: 10.1074/jbc.m112.363614] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 04/11/2012] [Indexed: 12/30/2022] Open
Abstract
Skin cancer is the most common cancer in the United States. Its major environmental risk factor is UVB radiation in sunlight. In response to UVB damage, epidermal keratinocytes activate a specific repair pathway, i.e. nucleotide excision repair, to remove UVB-induced DNA lesions. However, the regulation of UVB response is not fully understood. Here we show that the long isoform of the nuclear factor erythroid 2-related factor 1 (Nrf1, also called NFE2L1), a cytoprotective transcription factor critical for the expression of multiple antioxidant response element-dependent genes, plays an important role in the response of keratinocytes to UVB. Nrf1 loss sensitized keratinocytes to UVB-induced apoptosis by up-regulating the expression of the proapoptotic Bcl-2 family member Bik through reducing glutathione levels. Knocking down Bik reduced UVB-induced apoptosis in Nrf1-inhibited cells. In UVB-irradiated surviving cells, however, disruption of Nrf1 impaired nucleotide excision repair through suppressing the transcription of xeroderma pigmentosum C (XPC), a factor essential for initiating the global genome nucleotide excision repair by recognizing the DNA lesion and recruiting downstream factors. Nrf1 enhanced XPC expression by increasing glutathione availability but was independent of the transcription repressor of XPC. Adding XPC or glutathione restored the DNA repair capacity in Nrf1-inhibited cells. Finally, we demonstrate that Nrf1 levels are significantly reduced by UVB radiation in mouse skin and are lower in human skin tumors than in normal skin. These results indicate a novel role of Nrf1 in UVB-induced DNA damage repair and suggest Nrf1 as a tumor suppressor in the skin.
Collapse
Affiliation(s)
- Weinong Han
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Mei Ming
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Rui Zhao
- the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
- the School of Forensic Medicine, China Medical University, Shenyang 110001, China, and
| | - Jingbo Pi
- the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Chunli Wu
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
- the Department of Radiation Oncology, the Fourth Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yu-Ying He
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
1388
|
Nassar D, Letavernier E, Baud L, Aractingi S, Khosrotehrani K. Calpain activity is essential in skin wound healing and contributes to scar formation. PLoS One 2012; 7:e37084. [PMID: 22615899 PMCID: PMC3353912 DOI: 10.1371/journal.pone.0037084] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/18/2012] [Indexed: 12/23/2022] Open
Abstract
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.
Collapse
Affiliation(s)
- Dany Nassar
- Université Pierre et Marie Curie-Paris 6, UMRS938, Paris, France.
| | | | | | | | | |
Collapse
|
1389
|
Validation of differential gene expression in muscle engineered from rat groin adipose tissue by quantitative real-time PCR. Biochem Biophys Res Commun 2012; 421:736-42. [DOI: 10.1016/j.bbrc.2012.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
|
1390
|
Zhao R, Hou Y, Zhang Q, Woods CG, Xue P, Fu J, Yarborough K, Guan D, Andersen ME, Pi J. Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:583-589. [PMID: 22476201 PMCID: PMC3339469 DOI: 10.1289/ehp.1104580] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 05/22/2023]
Abstract
BACKGROUND Nuclear factor E2-related factors (NRFs), including NRF2 and NRF1, play critical roles in mediating the cellular adaptive response to oxidative stress. Human exposure to inorganic arsenic, a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. OBJECTIVE We investigated the cross-regulations among NRF2, NRF1, and KEAP1, a cullin-3-adapter protein that allows NRF2 to be ubiquinated and degraded by the proteasome complex, in arsenic-induced antioxidant responses. RESULTS In human keratinocyte HaCaT cells, selective knockdown (KD) of NRF2 by lentiviral short hairpin RNAs (shRNAs) significantly reduced the expression of many antioxidant enzymes and sensitized the cells to acute cytotoxicity of inorganic arsenite (iAs(3+)). In contrast, silencing KEAP1 led to a dramatic resistance to iAs(3+)-induced apoptosis. Pretreatment of HaCaT cells with NRF2 activators, such as tert-butylhydroquinone, protects the cells against acute iAs(3+) toxicity in an NRF2-dependent fashion. Consistent with the negative regulatory role of KEAP1 in NRF2 activation, KEAP1-KD cells exhibited enhanced transcriptional activity of NRF2 under nonstressed conditions. However, deficiency in KEAP1 did not facilitate induction of NRF2-target genes by iAs(3+). In addition, NRF2 silencing reduced the expression of KEAP1 at transcription and protein levels but increased the protein expression of NRF1 under the iAs(3+)-exposed condition. In contrast, silencing KEAP1 augmented protein accumulation of NRF2 under basal and iAs3+-exposed conditions, whereas the iAs(3+)-induced protein accumulation of NRF1 was attenuated in KEAP1-KD cells. CONCLUSIONS Our studies suggest that NRF2, KEAP1, and NRF1 are coordinately involved in the regulation of the cellular adaptive response to iAs(3+)-induced oxidative stress.
Collapse
Affiliation(s)
- Rui Zhao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1391
|
Hübner S, Efthymiadis A. Recent progress in histochemistry and cell biology. Histochem Cell Biol 2012; 137:403-57. [PMID: 22366957 DOI: 10.1007/s00418-012-0933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
1392
|
Presence of ChAT mRNA and a very marked α7nAChR immunoreaction in the synovial lining layer of the knee joint. Life Sci 2012; 91:1043-7. [PMID: 22483691 DOI: 10.1016/j.lfs.2012.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/13/2012] [Accepted: 03/06/2012] [Indexed: 12/22/2022]
Abstract
AIMS The aim was to examine if there is evidence of acetylcholine (ACh) production within the synovial lining layer and to examine the pattern of α7nAChR expression in the layer. This layer is of relevance clinically as it becomes thickened in response to both rheumatoid arthritis (RA) and osteoarthritis (OA) and as it has been shown to produce proteases that are involved in the cartilage destruction. MAIN METHODS Synovial tissue specimens from the knee joint of patients with RA and OA undergoing prosthetic surgery were examined. In situ hybridization and immunohistochemistry were used for the evaluation of ChAT reaction patterns. Immunohistochemistry was utilized for demonstration of activity of α7nAChR. KEY FINDINGS There were ChAT mRNA reactions in the synovial lining layer of both patient categories. On the other hand, no ChAT immunoreactions were detected in the layer. There was a very marked α7nAChR immunoreaction. SIGNIFICANCE There is a potential for ACh production within the synovial lining layer as there are ChAT mRNA reactions. However, the level of ACh production is apparently very low. It is thus possible that there is a down-regulation of ACh production but an apparent upregulation in expression level of α7nAChR. Based on the knowledge that the non-neuronal cholinergic system can have anti-inflammatory effects, the low level of ACh production in the synovial lining layer can be a drawback for the arthritic joints.
Collapse
|
1393
|
Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Takayasu T, Eisenmenger W, Kondo T. Immunohistochemical analysis on cyclooxygenase-2 for wound age determination. Int J Legal Med 2012; 126:435-40. [DOI: 10.1007/s00414-012-0685-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/21/2012] [Indexed: 12/16/2022]
|
1394
|
Bennani-Baiti B, Bennani-Baiti IM. Gene symbol precision. Gene 2012; 491:103-9. [DOI: 10.1016/j.gene.2011.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 11/26/2022]
|
1395
|
Chepelev NL, Bennitz JD, Huang T, McBride S, Willmore WG. The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia. PLoS One 2011; 6:e29167. [PMID: 22216197 PMCID: PMC3244438 DOI: 10.1371/journal.pone.0029167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022] Open
Abstract
Background Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. Principal Findings We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O2) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. Conclusions Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status.
Collapse
Affiliation(s)
| | | | - Ting Huang
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Skye McBride
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - William G. Willmore
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
1396
|
Seto T, Nagata N, Yoshikawa K, Ichii O, Sanada T, Saasa N, Ozaki Y, Kon Y, Yoshii K, Takashima I, Kariwa H. Infection of Hantaan virus strain AA57 leading to pulmonary disease in laboratory mice. Virus Res 2011; 163:284-90. [PMID: 22044619 DOI: 10.1016/j.virusres.2011.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022]
Abstract
Hantaan virus (HTNV) is a causative agent of hemorrhagic fever with renal syndrome (HFRS). The pathogenesis of HFRS has not been fully elucidated, mainly due to the lack of a suitable animal model. In laboratory mice, HTNV causes encephalitis. However, that symptom is dissimilar to human hantavirus infections. We found that HTNV strain AA57 (isolated from Apodemus agrarius in Far East Russia) caused pulmonary disease in 2-week-old ICR mice. The clinical signs of the infected mice were piloerection, trembling, hunching, labored breathing, and body-weight loss. A large volume of pleural effusion was collected from thoracic cavities of the dead mice. Overall, 45% of the mice inoculated with 3000 focus forming units (FFU) of the virus began to show clinical symptoms at 8 days post-inoculation, and 25% of the inoculated mice died within 3 days of onset of the disease. The morbidity and mortality rates of the mice inoculated with 30-30,000FFU of HTNV strain AA57 were roughly equivalent. The highest rates of virus positivity (11/12) and the highest titers of HTNV strain AA57 were detected in the lungs of the dead mice, while lower detection rates and viral titers were found in the heart, kidneys, spleen, and brain. Interstitial pneumonia, perivascular edema, hemorrhage, inflammatory infiltration and vascular failure were observed in the lungs of the sick mice. Hantaviral antigens were detected in the lung endothelial cells of the sick mice. The symptoms and pathology of this mouse model resemble those of hantavirus pulmonary syndrome (HPS) and, to a certain extent, those of HFRS. This is the first report that, in laboratory mice, the HFRS-related hantavirus causes a HPS-like disease and shares some symptom similarities with HFRS.
Collapse
Affiliation(s)
- Takahiro Seto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Sapporo 060-0818, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1397
|
Sugimura T, Wang EL, Kashiwagi M, Hara K, Matsusue A, Waters B, Kubo SI. Renal immunohistochemical investigation for the differentiation of the cause of multiple trauma fatalities. Leg Med (Tokyo) 2011; 14:1-5. [PMID: 22000063 DOI: 10.1016/j.legalmed.2011.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
In fatalities with multiple traumatic injuries, it is important to determine the severity of trauma, the main damaged organ, and the antemortem pathophysiological condition. We examined 63 cases within 48 h of the postmortem interval, which included assaults, slips and falls and falls from heights, traffic accidents, and sharp instrumental injuries. Immunohistochemically, each kidney was stained against hemoglobin (Hb), myoglobin (Mb), superoxide dismutase (SOD), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 150 kDa oxygen regulated protein (ORP150), pulmonary surfactant A (SP-A), and liver-type fatty acid binding protein (L-FABP). Bleeding or circulatory failure induced ORP150, 8-OHdG, and L-FABP in the kidney. Statistical analysis of the immunoreactivity revealed that in battered and/or abused cases, Hb could be considered a specific marker. Hb and Mb were observed in the cases with general severe trauma, such as slips and falls and falls from heights. In traffic accidents, ORP150 could reflect general circulatory failure with bleeding. SP-A was observed in the cases with severe thoracic injuries, such as lung injuries and multiple thoracic fractures. L-FABP appeared in cases with renal circulatory failure as well as renal injury. These findings suggest that immunohistochemical observation of the kidneys could be a useful tool in determining several key factors, such as the severity of injury, the specific damaged organ, and the pathological condition after injury.
Collapse
Affiliation(s)
- Tomoko Sugimura
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, Japan
| | | | | | | | | | | | | |
Collapse
|
1398
|
Biswas M, Phan D, Watanabe M, Chan JY. The Fbw7 tumor suppressor regulates nuclear factor E2-related factor 1 transcription factor turnover through proteasome-mediated proteolysis. J Biol Chem 2011; 286:39282-9. [PMID: 21953459 DOI: 10.1074/jbc.m111.253807] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor E2-related factor 1 (Nrf1) is a basic leucine zipper transcription factor that plays important roles in cellular stress response and development. Currently, the mechanism regulating Nrf1 expression is poorly understood. We report here that Nrf1 is a short-lived protein that is targeted by F-box protein Fbw7, which is the substrate-specifying component of SCF (Skp1-Cul1-Fbox protein-Rbx1)-type ubiquitin ligase for degradation via the ubiquitin-proteasome pathway. We show that Fbw7 directly binds Nrf1 through a Cdc4 phosphodegron and that enforced expression of Fbw7 promotes the ubiquitination and degradation of Nrf1. Conversely, depletion of endogenous Fbw7 leads to decreased Nrf1 ubiquitination and accumulation of Nrf1 protein. Accordingly, expression of Fbw7 leads to down-regulation of antioxidant response element-driven gene activation, whereas disruption of Fbw7-mediated destabilization of Nrf1 leads to increased antioxidant response element-driven gene expression. Together, these data identify Fbw7 as a regulator of Nrf1 expression and reveal a novel function of Fbw7 in cellular stress response.
Collapse
Affiliation(s)
- Madhurima Biswas
- Department of Laboratory Medicine and Pathology, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
1399
|
Du W, Xiong X, Yang W, Wang X, Li T. Dobutamine stress echocardiography assessment of myocardial contusion due to blunt impact in dogs. Cell Biochem Biophys 2011; 62:169-75. [PMID: 21910029 DOI: 10.1007/s12013-011-9278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We sought to investigate the role of two-dimensional stress echocardiography in the early assessment of myocardial contusion. For this purpose, 12 dogs, weighing 11.36 ± 1.50 kg, were selected and the myocardial contusion was experimentally induced. Two-dimensional dobutamine stress echocardiography (DSE) was used to detect abnormal myocardial motions segments at time phases of baseline and 0.5, 2, 4, and 8 h post-wounding. Finally, the above results were compared with pathological findings. The data show that after the dogs were induced to have severe myocardial contusion, 122 segments were found with abnormal myocardial wall motions at 0.5 h post-wounding, 133 segments at 2 h post-wounding, and 142 segments, each, at 4 h and 8 h post-wounding. The wall motion score (WMS) and wall motion score index (WMSI) increased (P < 0.001) as compared with the pre-impaction values. Considering the left ventricular axis view as the standard section, in the 60 segments examined by echocardiography, 54 segments were found to have wall motion abnormalities. Comparing with the results of pathological TTC staining, the sensitivity and specificity were found to be 100 and 66.6%, respectively. It was, therefore, concluded that two-dimensional DSE was a valuable technique in the early diagnosis of myocardial contusion due to its better sensitivity and specificity.
Collapse
Affiliation(s)
- WenHua Du
- Department of Ultrasound, Daping Hospital & Research Institute of Surgery, The Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
1400
|
Dual regulation of the transcriptional activity of Nrf1 by β-TrCP- and Hrd1-dependent degradation mechanisms. Mol Cell Biol 2011; 31:4500-12. [PMID: 21911472 DOI: 10.1128/mcb.05663-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A growing body of evidence suggests that Nrf1 is an inducible transcription factor that maintains cellular homeostasis. Under physiological conditions, Nrf1 is targeted to the endoplasmic reticulum (ER), implying that it translocates into the nucleus in response to an activating signal. However, the molecular mechanisms by which the function of Nrf1 is modulated remain poorly understood. Here, we report that two distinct degradation mechanisms regulate Nrf1 activity and the expression of its target genes. In the nucleus, β-TrCP, an adaptor for the SCF (Skp1-Cul1-F-box protein) ubiquitin ligase, promotes the degradation of Nrf1 by catalyzing its polyubiquitination. This activity requires a DSGLS motif on Nrf1, which is similar to the canonical β-TrCP recognition motif. The short interfering RNA (siRNA)-mediated silencing of β-TrCP markedly augments the expression of Nrf1 target genes, such as the proteasome subunit PSMC4, indicating that β-TrCP represses Nrf1 activation. Meanwhile, in the cytoplasm, Nrf1 is degraded and suppressed by the ER-associated degradation (ERAD) ubiquitin ligase Hrd1 and valosin-containing protein (VCP) under normal conditions. We identified a cytoplasmic degradation motif on Nrf1 between the NHB1 and NHB2 domains that exhibited species conservation. Thus, these results clearly suggest that both β-TrCP- and Hrd1-dependent degradation mechanisms regulate the transcriptional activity of Nrf1 to maintain cellular homeostasis.
Collapse
|