1351
|
Tang J, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE. The role of subunit hinges and molecular "switches" in the control of viral capsid polymorphism. J Struct Biol 2006; 154:59-67. [PMID: 16495083 DOI: 10.1016/j.jsb.2005.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
The coat protein (CP) of cowpea chlorotic mottle virus assembles exclusively into a T=3 capsid in vivo and, under proper conditions, in vitro. The N-terminal domain of CP has been implicated in proper assembly and was viewed as a required switch for mediating hexamer and pentamer formation in T=3 assembly. We observed that a mutant CP lacking most of the N-terminal domain, NDelta34, assembles, in vitro, into statistically predictable numbers of: native-like T=3 capsids of 90 dimers; "T=2" capsids of 60 dimers; T=1 capsids of 30 dimers. We generated cryo-EM image reconstructions of each form and built pseudo-atomic models based on the subunits from the crystal structure of plant-derived T=3 virus allowing a detailed comparison of stabilizing interactions in the three assemblies. The statistical nature of the distribution of assembly products and the observed structures indicates that the N-terminus of CP is not a switch that is required to form the proper ratio of hexamers and pentamers for T=3 assembly; rather, it biases the direction of assembly to T=3 particles from the possibilities available to NDelta34 through flexible dimer hinges and variations in subunit contacts. Our results are consistent with a pentamer of dimers (PODs) nucleating assembly in all cases but subunit dimers can be added with different trajectories that favor specific T=3 or T=1 global particle geometries. Formation of the "T=2" particles appears to be fundamentally different in that they not only nucleate with PODs, but assembly propagates by the addition of mostly, if not exclusively PODs generating an entirely new subunit interface in the process. These results show that capsid geometry is flexible and may readily adapt to new requirements as the virus evolves.
Collapse
Affiliation(s)
- Jinghua Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
1352
|
Kelly DF, Taylor DW, Bakolitsa C, Bobkov AA, Bankston L, Liddington RC, Taylor KA. Structure of the alpha-actinin-vinculin head domain complex determined by cryo-electron microscopy. J Mol Biol 2006; 357:562-73. [PMID: 16430917 DOI: 10.1016/j.jmb.2005.12.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/21/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
The vinculin binding site on alpha-actinin was determined by cryo-electron microscopy of 2D arrays formed on phospholipid monolayers doped with a nickel chelating lipid. Chicken smooth muscle alpha-actinin was cocrystallized with the beta1-integrin cytoplasmic domain and a vinculin fragment containing residues 1-258 (vinculin(D1)). Vinculin(D1) was located at a single site on alpha-actinin with 60-70% occupancy. In these arrays, alpha-actinin lacks molecular 2-fold symmetry and the two ends of the molecule, which contain the calmodulin-like and actin binding domains, are held in distinctly different environments. The vinculin(D1) difference density has a shape very suggestive of the atomic structure. The atomic model of the complex juxtaposes the alpha-actinin binding site on vinculin(D1) with the N-terminal lobe of the calmodulin-like domain on alpha-actinin. The results show that the interaction between two species with weak affinity can be visualized in a membrane-like environment.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | | | | | | | | | | | |
Collapse
|
1353
|
Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 2006; 440:565-9. [PMID: 16415853 DOI: 10.1038/nature04409] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/09/2005] [Indexed: 11/09/2022]
Abstract
Chromosomes interact through their kinetochores with microtubule plus ends and they are segregated to the spindle poles as the kinetochore microtubules shorten during anaphase A of mitosis. The molecular natures and identities of coupling proteins that allow microtubule depolymerization to pull chromosomes to poles during anaphase have long remained elusive. In budding yeast, the ten-protein Dam1 complex is a critical microtubule-binding component of the kinetochore that oligomerizes into a 50-nm ring around a microtubule in vitro. Here we show, with the use of a real-time, two-colour fluorescence microscopy assay, that the ring complex moves processively for several micrometres at the ends of depolymerizing microtubules without detaching from the lattice. Electron microscopic analysis of 'end-on views' revealed a 16-fold symmetry of the kinetochore rings. This out-of-register arrangement with respect to the 13-fold microtubule symmetry is consistent with a sliding mechanism based on an electrostatically coupled ring-microtubule interface. The Dam1 ring complex is a molecular device that can translate the force generated by microtubule depolymerization into movement along the lattice to facilitate chromosome segregation.
Collapse
Affiliation(s)
- Stefan Westermann
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3202, USA
| | | | | | | | | | | |
Collapse
|
1354
|
Pirani A, Vinogradova MV, Curmi PMG, King WA, Fletterick RJ, Craig R, Tobacman LS, Xu C, Hatch V, Lehman W. An atomic model of the thin filament in the relaxed and Ca2+-activated states. J Mol Biol 2006; 357:707-17. [PMID: 16469331 DOI: 10.1016/j.jmb.2005.12.050] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/13/2005] [Indexed: 11/30/2022]
Abstract
Contraction of striated muscles is regulated by tropomyosin strands that run continuously along actin-containing thin filaments. Tropomyosin blocks myosin-binding sites on actin in resting muscle and unblocks them during Ca2+-activation. This steric effect controls myosin-crossbridge cycling on actin that drives contraction. Troponin, bound to the thin filaments, couples Ca2+-concentration changes to the movement of tropomyosin. Ca2+-free troponin is thought to trap tropomyosin in the myosin-blocking position, while this constraint is released after Ca2+-binding. Although the location and movements of tropomyosin are well known, the structural organization of troponin on thin filaments is not. Its mechanism of action therefore remains uncertain. To determine the organization of troponin on the thin filament, we have constructed atomic models of low and high-Ca2+ states based on crystal structures of actin, tropomyosin and the "core domain" of troponin, and constrained by distances between filament components and by their location in electron microscopy (EM) reconstructions. Alternative models were also built where troponin was systematically repositioned or reoriented on actin. The accuracy of the different models was evaluated by determining how well they corresponded to EM images. While the initial low and high-Ca2+ models fitted the data precisely, the alternatives did not, suggesting that the starting models best represented the correct structures. Thin filament reconstructions were generated from the EM data using these starting models as references. In addition to showing the core domain of troponin, the reconstructions showed additional detail not present in the starting models. We attribute this to an extension of TnI linking the troponin core domain to actin at low (but not at high) Ca2+, thereby trapping tropomyosin in the OFF-state. The bulk of the core domain of troponin appears not to move significantly on actin, regardless of Ca2+ level. Our observations suggest a simple model for muscle regulation in which troponin affects the charge balance on actin and hence tropomyosin position.
Collapse
Affiliation(s)
- Alnoor Pirani
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1355
|
Yonekura K, Yakushi T, Atsumi T, Maki-Yonekura S, Homma M, Namba K. Electron cryomicroscopic visualization of PomA/B stator units of the sodium-driven flagellar motor in liposomes. J Mol Biol 2006; 357:73-81. [PMID: 16426637 DOI: 10.1016/j.jmb.2005.12.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/07/2005] [Accepted: 12/09/2005] [Indexed: 11/21/2022]
Abstract
A motor protein complex of the bacterial flagellum, PomA/B from Vibrio alginolyticus, was reconstituted into liposomes and visualized by electron cryomicroscopy. PomA/B is a sodium channel, composed of two membrane proteins, PomA and PomB, and converts ion flux to the rotation of the flagellar motor. Escherichia coli and Salmonella have a homolog called MotA/B, which utilizes proton instead of sodium ion. PomB and MotB have a peptidoglycan-binding motif in their C-terminal region, and therefore PomA/B and MotA/B are regarded as the stator. Energy filtering electron cryomicroscopy enhanced the image contrast of the proteins reconstituted into liposomes and showed that two extramembrane domains with clearly different sizes stick out of the lipid bilayers on opposite sides. Image analysis combined with gold labeling and deletion of the peptidoglycan-binding motif revealed that the longer one, approximately 70 A long, is likely to correspond to the periplasmic domain, and the other, about half size, to the cytoplasmic domain.
Collapse
Affiliation(s)
- Koji Yonekura
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
1356
|
Wang WX, Dgany O, Wolf SG, Levy I, Algom R, Pouny Y, Wolf A, Marton I, Altman A, Shoseyov O. Aspen SP1, an exceptional thermal, protease and detergent-resistant self-assembled nano-particle. Biotechnol Bioeng 2006; 95:161-8. [PMID: 16732592 DOI: 10.1002/bit.21010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stable protein 1 (SP1) is a homo-oligomeric protein isolated from aspen (Populus tremula aspen) plants which forms a ring-shape dodecameric particle with a central cavity. The oligomeric form of SP1 is an exceptionally stable structure that is resistant to proteases (e.g., trypsin, V8, and proteinase K), high temperatures, organic solvents, and high levels of ionic detergent. Analytical ultra-centrifugation, chemical cross-linking, matrix-assisted laser-desorption time-of-flight mass spectrometry (MALDI-TOF-MS), and transmission electron microscopy were used to further characterize the SP1 dodecamer. Introduction of a single cysteine at the N-terminus of SP1 enabled the formation of disulfide bridges within the SP1 dodecamer, concurrent with increased melting point. A six-histidine tag was introduced at the N-terminus of SP1 to generate 6HSP1, and the DeltaNSP1 mutant was generated by a deletion of amino acids 2-6 at the N-terminus. Both 6HSP1 and DeltaNSP1 maintained their ability to assemble a stable dodecamer. Remarkably, these SP1 homo-dodecamers were able to re-assemble into stable hetero-dodecamers following co-electro-elution from SDS-PAGE. The exceptional stability of the SP1-nano ring and its ability to self-assemble hetero-complexes paves the way to further research in utilizing this unique protein in nano-biotechnology.
Collapse
Affiliation(s)
- Wang-Xia Wang
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, and the Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1357
|
Nakagawa T, Cheng Y, Sheng M, Walz T. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins. Biol Chem 2006; 387:179-87. [PMID: 16497150 DOI: 10.1515/bc.2006.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Most excitatory synaptic transmissions in the central nervous system are mediated by the neurotransmitter glutamate. Binding of glutamate released from the presynaptic membrane causes glutamate receptors in the postsynaptic membrane to open, which results in a transient depolarization of the postsynaptic membrane. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) subtype of glutamate receptors is responsible for the majority of excitatory postsynaptic currents and is thought to play a central role in synaptic plasticity. Because modulation of glutamate receptors is believed to be involved in the basic mechanism underlying information storage in the brain, the molecular architecture of native AMPA receptors (AMPA-Rs) is of great interest. Previously, we have shown that AMPA-Rs purified from the brain are tightly associated with members of the stargazin/TARP (transmembrane AMPA receptor regulatory protein) family of membrane proteins [Nakagawa et al., Nature 433 (2005), pp. 545-549]. Here, we present a three-dimensional (3D) density map of the hetero-tetrameric AMPA-R without associated stargazin/TARP proteins as determined by cryo-negative stain single-particle electron microscopy. In the absence of stargazin/TARP proteins, the density representing the transmembrane region of the AMPA-R particles is substantially smaller, corroborating our previous analysis that was based solely on projection images.
Collapse
Affiliation(s)
- Terunaga Nakagawa
- The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
1358
|
Yu X, Wang L, Acehan D, Wang X, Akey CW. Three-dimensional Structure of a Double Apoptosome Formed by the Drosophila Apaf-1 Related Killer. J Mol Biol 2006; 355:577-89. [PMID: 16310803 DOI: 10.1016/j.jmb.2005.10.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/29/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
The Drosophila Apaf-1 related killer (Dark) forms an apoptosome that activates Dronc, an apical procaspase in the intrinsic cell death pathway. To study this process, we assembled a large Dark complex in the presence of dATP. Remarkably, we found that cytochrome c was not required for assembly and when added, cytochrome c did not bind to the Dark complex. We then determined a 3D structure of the Dark complex at 18.8A resolution using electron cryo-microscopy and single particle methods. In the structure, eight Dark subunits form a wheel-like particle and two of these rings associate face-to-face. In contrast, Apaf-1 forms a single ring that is comprised of seven subunits and each Apaf-1 binds a molecule of cytochrome c. We then used relevant crystal structures to model the Dark complex. This analysis shows that a single Dark ring and the Apaf-1 apoptosome share many key features. When taken together, the data suggest that a single ring in the Dark complex may represent the Drosophila apoptosome. Thus, our analysis provides a domain model of this complex and gives insights into its function.
Collapse
Affiliation(s)
- Xinchao Yu
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
1359
|
Takvorian PM, Buttle KF, Mannella CA, Weiss LM, Cali A. High-voltage electron microscopy and computerized tomography: new approaches to study microsporidian spore internal organization. J Eukaryot Microbiol 2006; 53 Suppl 1:S55-7. [PMID: 17169067 DOI: 10.1111/j.1550-7408.2006.00172.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Peter M Takvorian
- Department of Biological Sciences, Rutgers University, 195 University Avenue, Newark, New Jersey 07102, USA.
| | | | | | | | | |
Collapse
|
1360
|
Hsieh CE, Leith A, Mannella CA, Frank J, Marko M. Towards high-resolution three-dimensional imaging of native mammalian tissue: Electron tomography of frozen-hydrated rat liver sections. J Struct Biol 2006; 153:1-13. [PMID: 16343943 DOI: 10.1016/j.jsb.2005.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 10/07/2005] [Accepted: 10/08/2005] [Indexed: 11/29/2022]
Abstract
Cryo-electron tomography of frozen-hydrated specimens holds considerable promise for high-resolution three-dimensional imaging of organelles and macromolecular complexes in their native cellular environment. While the technique has been successfully used with small, plunge-frozen cells and organelles, application to bulk mammalian tissue has proven to be difficult. We report progress with cryo-electron tomography of frozen-hydrated sections of rat liver prepared by high-pressure freezing and cryo-ultramicrotomy. Improvements include identification of suitable grids for mounting sections for tomography, reduction of surface artifacts on the sections, improved image quality by the use of energy filtering, and more rapid tissue excision using a biopsy needle. Tomographic reconstructions of frozen-hydrated liver sections reveal the native structure of such cellular components as mitochondria, endoplasmic reticulum, and ribosomes, without the selective attenuation or enhancement of ultrastructural details associated with the osmication and post-staining used with freeze-substitution.
Collapse
Affiliation(s)
- Chyong-Ere Hsieh
- Resource for Visualization of Biological Complexity, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, 12201, USA
| | | | | | | | | |
Collapse
|
1361
|
Khayat R, Tang L, Larson ET, Lawrence CM, Young M, Johnson JE. Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proc Natl Acad Sci U S A 2005; 102:18944-9. [PMID: 16357204 PMCID: PMC1323162 DOI: 10.1073/pnas.0506383102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Indexed: 11/18/2022] Open
Abstract
Archaea and their viruses are poorly understood when compared with the Eukarya and Bacteria domains of life. We report here the crystal structure of the major capsid protein (MCP) of the Sulfolobus turreted icosahedral virus, an archaeal virus isolated from an acidic hot spring (pH 2-4, 72-92 degrees C) in Yellowstone National Park. The structure is nearly identical to the MCP structures of the eukaryotic Paramecium bursaria Chlorella virus, and the bacteriophage PRD1, and shows a common fold with the mammalian adenovirus. Structural analysis of the capsid architecture, determined by fitting the subunit into the electron cryomicroscopy reconstruction of the virus, identified a number of key interactions that are akin to those observed in adenovirus and PRD1. The similar capsid proteins and capsid architectures strongly suggest that these viral capsids originated and evolved from a common ancestor. Hence, this work provides a previously undescribed example of a viral relationship spanning the three domains of life (Eukarya, Bacteria, and Archaea). The MCP structure also provides insights into the stabilizing forces required for extracellular hyperthermophilic proteins to tolerate high-temperature hot springs.
Collapse
Affiliation(s)
- Reza Khayat
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
1362
|
Passmore LA, Booth CR, Vénien-Bryan C, Ludtke SJ, Fioretto C, Johnson LN, Chiu W, Barford D. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol Cell 2005; 20:855-66. [PMID: 16364911 DOI: 10.1016/j.molcel.2005.11.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/17/2005] [Accepted: 11/02/2005] [Indexed: 11/24/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (cryo-EM). Docking of tetratricopeptide repeat (TPR)-containing subunits indicates that they likely form a scaffold-like outer shell, mediating assembly of the complex and providing potential binding sites for regulators and substrates. Quantitative determination of subunit stoichiometry indicates multiple copies of specific subunits, consistent with a total APC/C mass of approximately 1.7 MDa. Moreover, yeast APC/C forms both monomeric and dimeric species. Dimeric APC/C is a more active E3 ligase than the monomer, with greatly enhanced processivity. Our data suggest that multimerisation and/or the presence of multiple active sites facilitates the APC/C's ability to elongate polyubiquitin chains.
Collapse
Affiliation(s)
- Lori A Passmore
- Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
1363
|
Vinothkumar KR, Raunser S, Jung H, Kühlbrandt W. Oligomeric structure of the carnitine transporter CaiT from Escherichia coli. J Biol Chem 2005; 281:4795-801. [PMID: 16365043 DOI: 10.1074/jbc.m508993200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carnitine transporter CaiT from Escherichia coli belongs to the betaine, choline, and carnitine transporter family of secondary transporters. It acts as an L-carnitine/gamma-butyrobetaine exchanger and is predicted to span the membrane 12 times. Unlike the other members of this transporter family, it does not require an ion gradient and does not respond to osmotic stress (Jung, H., Buchholz, M., Clausen, J., Nietschke, M., Revermann, A., Schmid, R., and Jung, K. (2002) J. Biol. Chem. 277, 39251-39258). The structure and oligomeric state of the protein was examined in detergent and in lipid bilayers. Blue native gel electrophoresis indicated that CaiT was a trimer in detergent solution. This result was further supported by gel filtration and cross-linking studies. Electron microscopy and single particle analysis of the protein showed a triangular structure of three masses or two parallel elongated densities. Reconstitution of CaiT into lipid bilayers yielded two-dimensional crystals that indicated that CaiT was a trimer in the membrane, similar to its homologue BetP. The implications of the trimeric structure on the function of CaiT are discussed.
Collapse
|
1364
|
Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL, Ban N, Frank J. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 2005; 438:318-24. [PMID: 16292303 PMCID: PMC1351281 DOI: 10.1038/nature04133] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/08/2005] [Indexed: 11/09/2022]
Abstract
Secreted and membrane proteins are translocated across or into cell membranes through a protein-conducting channel (PCC). Here we present a cryo-electron microscopy reconstruction of the Escherichia coli PCC, SecYEG, complexed with the ribosome and a nascent chain containing a signal anchor. This reconstruction shows a messenger RNA, three transfer RNAs, the nascent chain, and detailed features of both a translocating PCC and a second, non-translocating PCC bound to mRNA hairpins. The translocating PCC forms connections with ribosomal RNA hairpins on two sides and ribosomal proteins at the back, leaving a frontal opening. Normal mode-based flexible fitting of the archaeal SecYEbeta structure into the PCC electron microscopy densities favours a front-to-front arrangement of two SecYEG complexes in the PCC, and supports channel formation by the opening of two linked SecY halves during polypeptide translocation. On the basis of our observation in the translocating PCC of two segregated pores with different degrees of access to bulk lipid, we propose a model for co-translational protein translocation.
Collapse
Affiliation(s)
- Kakoli Mitra
- Howard Hughes Medical Institute, Health Research Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
1365
|
Cherepanova O, Orlova A, Galkin VE, van der Ven PFM, Fürst DO, Jin JP, Egelman EH. Xin-repeats and nebulin-like repeats bind to F-actin in a similar manner. J Mol Biol 2005; 356:714-23. [PMID: 16384582 DOI: 10.1016/j.jmb.2005.11.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/16/2005] [Accepted: 11/26/2005] [Indexed: 10/25/2022]
Abstract
Xin and nebulette are striated muscle-specific actin-binding proteins that both contain multiple actin-binding repeats. The nature of these repeats is different: nebulette has nebulin-like repeats, while Xin contains its own unique repeats. However, the suggestion was made from biochemical data that the Xin-repeats may bind to multiple sites on the actin molecule as was found for nebulin. We have used electron microscopy and the iterative helical real space reconstruction to visualize complexes of F-actin with Xin fragments containing either three or six Xin-repeats, and with the CN5-nebulette fragment, containing five nebulin-like repeats. Our results indicate that Xin and nebulette fragments bind to F-actin in a similar manner and in two distinct modes: in one mode actin subdomain 1 is bound, while in the second mode the binding bridges between a different site on actin subdomains 1/2 of one protomer and subdomains 3/4 of an adjacent actin protomer. Taken together with published data about nebulin, tropomyosin and ADF/cofilin, our results suggest that the ability to bind in multiple modes to the actin protomer is a general property of many actin-binding proteins.
Collapse
Affiliation(s)
- Olga Cherepanova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | | | |
Collapse
|
1366
|
Gómez-Llorente Y, Fletcher RJ, Chen XS, Carazo JM, San Martín C. Polymorphism and double hexamer structure in the archaeal minichromosome maintenance (MCM) helicase from Methanobacterium thermoautotrophicum. J Biol Chem 2005; 280:40909-15. [PMID: 16221680 DOI: 10.1074/jbc.m509760200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanobacterium thermoautotrophicum minichromosome maintenance complex (mtMCM), a cellular replicative helicase, is a useful model for the more complex eukaryotic MCMs. Biochemical and crystallographic evidence indicates that mtMCM assembles as a double hexamer (dHex), but previous electron microscopy studies reported only the presence of single heptamers or single hexamers (Pape, T., Meka, H., Chen, S., Vicentini, G., Van Heel, M., and Onesti, S. (2003) EMBO Rep. 4, 1079-1083; Yu, X., VanLoock, M. S., Poplawski, A., Kelman, Z., Xiang, T., Tye, B. K., and Egelman, E. H. (2002) EMBO Rep. 3, 792-797). Here we present the first three-dimensional electron microscopy reconstruction of the full-length mtMCM dHex in which two hexamers contact each other via the structurally well defined N-terminal domains. The dHex has obvious side openings that resemble the side channels of LTag (large T antigen). 6-fold and 7-fold rings were observed in the same mtMCM preparation, but we determined that assembly as a double ring favors 6-fold structures. Additionally, open rings were also detected, which suggests a direct mtMCM loading mechanism onto DNA.
Collapse
Affiliation(s)
- Yacob Gómez-Llorente
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
1367
|
El-Bez C, Adrian M, Dubochet J, Cover TL. High resolution structural analysis of Helicobacter pylori VacA toxin oligomers by cryo-negative staining electron microscopy. J Struct Biol 2005; 151:215-28. [PMID: 16125415 DOI: 10.1016/j.jsb.2005.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/05/2005] [Accepted: 07/07/2005] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori secretes a vacuolating toxin (VacA) that can assemble into water-soluble oligomeric complexes and insert into membranes to form anion-selective channels. Previous studies have described multiple types of oligomeric VacA structures, including single-layered astral arrays, bilayered forms, and two-dimensional crystalline arrays. In the current study, vitrified VacA complexes were examined by cryo-negative staining electron microscopy, views of the different oligomeric structures in multiple orientations were classified and analyzed, and three-dimensional models of the bilayered forms of VacA were constructed with a resolution of about 19 angstroms. These bilayered forms of VacA have a "flower"-like structure, consisting of a central ring surrounded by symmetrically arranged peripheral "petals." Further structural insights were obtained by analyzing a mutant form of VacA (VacADelta6-27), which lacks a unique amino-terminal hydrophobic segment and is defective in the capacity to form membrane channels. Bilayered oligomeric complexes formed by wild-type VacA contained a visible density within the central ring, whereas bilayered complexes formed by VacADelta6-27 lacked this density. These results indicate that deletion of the VacA amino-terminal hydrophobic region causes a structural alteration in the central ring within VacA oligomers, and suggest that the central ring plays an important role in the process by which VacA forms membrane channels.
Collapse
Affiliation(s)
- Catherine El-Bez
- Laboratoire d'Analyse Ultrastructurale, Bâtiment de Biologie, Université de Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
1368
|
Datta PP, Sharma MR, Qi L, Frank J, Agrawal RK. Interaction of the G′ Domain of Elongation Factor G and the C-Terminal Domain of Ribosomal Protein L7/L12 during Translocation as Revealed by Cryo-EM. Mol Cell 2005; 20:723-31. [PMID: 16337596 DOI: 10.1016/j.molcel.2005.10.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 09/30/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
During tRNA translocation on the ribosome, an arc-like connection (ALC) is formed between the G' domain of elongation factor G (EF-G) and the L7/L12-stalk base of the large ribosomal subunit in the GDP state. To delineate the boundary of EF-G within the ALC, we tagged an amino acid residue near the tip of the G' domain of EF-G with undecagold, which was then visualized with three-dimensional cryo-electron microscopy (cryo-EM). Two distinct positions for the undecagold, observed in the GTP-state and GDP-state cryo-EM maps of the ribosome bound EF-G, allowed us to determine the movement of the labeled amino acid. Molecular analyses of the cryo-EM maps show: (1) that three structural components, the N-terminal domain of ribosomal protein L11, the C-terminal domain of ribosomal protein L7/L12, and the G' domain of EF-G, participate in formation of the ALC; and (2) that both EF-G and the ribosomal protein L7/L12 undergo large conformational changes to form the ALC.
Collapse
Affiliation(s)
- Partha P Datta
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
1369
|
Cheng Y, Wolf E, Larvie M, Zak O, Aisen P, Grigorieff N, Harrison SC, Walz T. Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J Mol Biol 2005; 355:1048-65. [PMID: 16343539 DOI: 10.1016/j.jmb.2005.11.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
The outcome of three-dimensional (3D) reconstructions in single particle electron microscopy (EM) depends on a number of parameters. We have used the well-characterized structure of the transferrin (Tf)-transferrin receptor (TfR) complex to study how specimen preparation techniques influence the outcome of single particle EM reconstructions. The Tf-TfR complex is small (290kDa) and of low symmetry (2-fold). Angular reconstitution from images of vitrified specimens does not reliably converge on the correct structure. Random conical tilt reconstructions from negatively stained specimens are reliable, but show variable degrees of artifacts depending on the negative staining protocol. Alignment of class averages from vitrified specimens to a 3D negative stain reference model using FREALIGN largely eliminated artifacts in the resulting 3D maps, but not completely. Our results stress the need for critical evaluation of structures determined by single particle EM.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
1370
|
Cordes FS, Daniell S, Kenjale R, Saurya S, Picking WL, Picking WD, Booy F, Lea SM, Blocker A. Helical packing of needles from functionally altered Shigella type III secretion systems. J Mol Biol 2005; 354:206-11. [PMID: 16243352 DOI: 10.1016/j.jmb.2005.09.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 12/29/2022]
Abstract
Gram-negative bacteria commonly interact with eukaryotic host cells using type III secretion systems (TTSSs or secretons), which comprise cytoplasmic, transmembrane and extracellular domains. The extracellular domain is a hollow needle-like structure protruding 60 nm beyond the bacterial surface. The TTSS is activated to transfer bacterial proteins directly into a host cell only upon physical contact with the target cell. We showed previously that the monomer of the Shigella flexneri needle, MxiH, assembles into a helical structure with parameters similar to those defining the architecture of the extracellular components of bacterial flagella. By analogy with flagella, which are known to exist in different helical states, we proposed that changes in the helical packing of the needle might be used to sense host cell contact. Here, we show that, on the contrary, mutations within MxiH that lock the TTSS into altered secretion states do not detectably alter the helical packing of needles. This implies that either: (1) host cell contact is signalled through the TTSS via helical changes in the needle that are significantly smaller than those linked to structural changes in the flagellar filament and therefore too small to be detected by our analysis methods or (2) that signal transduction in this system occurs via a novel molecular mechanism.
Collapse
Affiliation(s)
- Frank S Cordes
- Laboratory of Molecular Biophysics, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
1371
|
Arluison V, Mura C, Guzmán MR, Liquier J, Pellegrini O, Gingery M, Régnier P, Marco S. Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins. J Mol Biol 2005; 356:86-96. [PMID: 16337963 DOI: 10.1016/j.jmb.2005.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/02/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
Hfq is a nucleic acid-binding protein that functions as a global regulator of gene expression by virtue of its interactions with several small, non-coding RNA species. Originally identified as an Escherichia coli host factor required for RNA phage Qbeta replication, Hfq is now known to post-transcriptionally regulate bacterial gene expression by modulating both mRNA stability and translational activity. Recently shown to be a member of the diverse Sm protein family, Hfq adopts the OB-like fold typical of other Sm and Sm-like (Lsm) proteins, and also assembles into toroidal homo-oligomers that bind single-stranded RNA. Similarities between the structures, functions, and evolution of Sm/Lsm proteins and Hfq are continually being discovered, and we now report an additional, unexpected biophysical property that is shared by Hfq and other Sm proteins: E.coli Hfq polymerizes into well-ordered fibres whose morphologies closely resemble those found for Sm-like archaeal proteins (SmAPs). However, the hierarchical assembly of these fibres is dissimilar: whereas SmAPs polymerize into polar tubes (and striated bundles of such tubes) by head-to-tail stacking of individual homo-heptamers, helical Hfq fibres are formed by cylindrical slab-like layers that consist of 36 subunits arranged as a hexamer of Hfq homo-hexamers (i.e. protofilaments in a 6 x 6 arrangement). The different fibrillar ultrastructures formed by Hfq and SmAP are presented and examined herein, with the overall goal of elucidating another similarity amongst the diverse members of the Sm protein family.
Collapse
Affiliation(s)
- Véronique Arluison
- Institut de Biologie Physico-Chimique, CNRS UPR 9073 conventionnée avec l'université Paris 7, 13 rue P. et M. Curie, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
1372
|
Egile C, Rouiller I, Xu XP, Volkmann N, Li R, Hanein D. Mechanism of filament nucleation and branch stability revealed by the structure of the Arp2/3 complex at actin branch junctions. PLoS Biol 2005; 3:e383. [PMID: 16262445 PMCID: PMC1278936 DOI: 10.1371/journal.pbio.0030383] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions. Genetic labeling and electron microscopy were used to examine actin branch junctions assembled in vitro. The subunit map obtained offers insights into the assembly of these conserved cytoskeletal elements.
Collapse
Affiliation(s)
- Coumaran Egile
- 1Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isabelle Rouiller
- 2Cell Adhesion Program, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Xiao-Ping Xu
- 2Cell Adhesion Program, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Niels Volkmann
- 2Cell Adhesion Program, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Rong Li
- 1Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- 3The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Dorit Hanein
- 2Cell Adhesion Program, Burnham Institute for Medical Research, La Jolla, California, United States of America
| |
Collapse
|
1373
|
Hartley CJ, Greenwood DR, Gilbert RJC, Masoumi A, Gordon KHJ, Hanzlik TN, Fry EE, Stuart DI, Scotti PD. Kelp fly virus: a novel group of insect picorna-like viruses as defined by genome sequence analysis and a distinctive virion structure. J Virol 2005; 79:13385-98. [PMID: 16227260 PMCID: PMC1262566 DOI: 10.1128/jvi.79.21.13385-13398.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 08/05/2005] [Indexed: 11/20/2022] Open
Abstract
The complete genomic sequence of kelp fly virus (KFV), originally isolated from the kelp fly, Chaetocoelopa sydneyensis, has been determined. Analyses of its genomic and structural organization and phylogeny show that it belongs to a hitherto undescribed group within the picorna-like virus superfamily. The single-stranded genomic RNA of KFV is 11,035 nucleotides in length and contains a single large open reading frame encoding a polypeptide of 3,436 amino acids with 5' and 3' untranslated regions of 384 and 343 nucleotides, respectively. The predicted amino acid sequence of the polypeptide shows that it has three regions. The N-terminal region contains sequences homologous to the baculoviral inhibitor of apoptosis repeat domain, an inhibitor of apoptosis commonly found in animals and in viruses with double-stranded DNA genomes. The second region contains at least two capsid proteins. The third region has three sequence motifs characteristic of replicase proteins of many plant and animal viruses, including a helicase, a 3C chymotrypsin-like protease, and an RNA-dependent RNA polymerase. Phylogenetic analysis of the replicase motifs shows that KFV forms a distinct and distant taxon within the picorna-like virus superfamily. Cryoelectron microscopy and image reconstruction of KFV to a resolution of 15 A reveals an icosahedral structure, with each of its 12 fivefold vertices forming a turret from the otherwise smooth surface of the 20-A-thick capsid. The architecture of the KFV capsid is unique among the members of the picornavirus superfamily for which structures have previously been determined.
Collapse
Affiliation(s)
- C J Hartley
- CSIRO Entomology, GPO Box 1700, Acton, ACT 2601, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
1374
|
Raunser S, Haase W, Bostina M, Parcej DN, Kühlbrandt W. High-yield expression, reconstitution and structure of the recombinant, fully functional glutamate transporter GLT-1 from Rattus norvegicus. J Mol Biol 2005; 351:598-613. [PMID: 16024041 DOI: 10.1016/j.jmb.2005.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
The glutamate transporter GLT-1 from Rattus norvegicus was expressed at high level in BHK cells using the Semliki Forest virus expression system. BHK cells infected with viral particles carrying the GLT-1 gene exhibited 30-fold increased aspartate uptake compared to control cells. The expression level of GLT-1 as determined by binding of labelled substrate to membrane preparations was about 3.5 x 10(6) functional transporters per cell, or 61 pmol GLT-1 per milligram of membrane protein. Purification of the His-tagged protein by Ni2+-NTA affinity chromatography enabled the routine production and purification of milligram quantities of fully functional transporter. Transport activity required reducing conditions and the addition of extra lipid throughout the purification. The apparent molecular mass of the recombinant transporter was 73 kDa or 55 kDa, corresponding to the glycosylated and non-glycosylated form, respectively. Both forms were active upon separation on a lectin column and reconstitution into liposomes. Glycosylated and non-glycosylated GLT-1 were transported to the plasma membrane with equal efficiency. Our results show that N-glycosylation does not affect the trafficking or the transport activity of GLT-1. The low-resolution structure of GLT-1 was determined by electron microscopy and single particle reconstruction.
Collapse
Affiliation(s)
- Stefan Raunser
- Department of Structural Biology, Max-Planck-Institute of Biophysics, 60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
1375
|
Kitmitto A, Myronova N, Basu P, Dalton H. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath). Biochemistry 2005; 44:10954-65. [PMID: 16101279 DOI: 10.1021/bi050820u] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of methane to methanol in methanotrophs is catalyzed by the enzyme methane monooxygenase (MMO). Two distinct forms of this enzyme exist, a soluble cytoplasmic MMO (sMMO) and a membrane-bound particulate form (pMMO). We describe here the biochemical characterization of a stable and active purified pMMO hydroxylase (pMMO-H) and report a three-dimensional (3D) structure, determined by electron microscopy and single-particle analysis at 23 A resolution. Both biochemical and structural data indicate that pMMO hydroxylase is trimeric, with each monomer unit comprised of three polypeptides of 47, 26, and 23 kDa. Comparison of the recent crystal structure [Lieberman, R. L., and Rosenzweig, A. C. (2005) Nature 434, 177] of an uncharacterized pMMO-H complex with the three-dimensional (3D) structure determined here yielded a good match between the principal features and the organization of the enzyme monomers into trimers. The data presented here advance our current understanding of particulate methane monooxygenase function by the characterization of an active form of the enzyme and the corresponding 3D structure.
Collapse
|
1376
|
Scheres SHW, Marabini R, Lanzavecchia S, Cantele F, Rutten T, Fuller SD, Carazo JM, Burnett RM, San Martín C. Classification of single-projection reconstructions for cryo-electron microscopy data of icosahedral viruses. J Struct Biol 2005; 151:79-91. [PMID: 15923127 DOI: 10.1016/j.jsb.2005.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/15/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
We present a novel strategy for classification of heterogeneous electron microscopy data of icosahedral virus particles. The effectiveness of the procedure, which is based on classification of single-projection reconstructions (SPRs), is first investigated using simulated data. Of several reconstruction approaches examined, best results were obtained with algebraic reconstruction techniques (ART) when providing prior information about the reconstruction in the form of a starting volume. The results presented indicate that SPR-classification is sufficiently sensitive to classify assemblies with differences of only a few percent of the total mass. The usefulness of this procedure is illustrated by application to a heterogeneous cryo-electron microscopy dataset of adenovirus mutant dl313, lacking minor coat protein IX. These data were successfully divided into two distinct classes, in agreement with gel analysis and immuno-electron microscopy results. The classes yielded a wildtype-like reconstruction and a reconstruction representing the polypeptide IX-deficient dl313 virion. As the largest difference between these volumes is found at the location previously assigned to the external portion of minor coat protein polypeptide IIIa, questions arise concerning the current adenovirus model.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Biocomputing Unit, Centro Nacional de Biotecnología, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
1377
|
Gilbert RJC, Beales L, Blond D, Simon MN, Lin BY, Chisari FV, Stuart DI, Rowlands DJ. Hepatitis B small surface antigen particles are octahedral. Proc Natl Acad Sci U S A 2005; 102:14783-8. [PMID: 16203986 PMCID: PMC1253561 DOI: 10.1073/pnas.0505062102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Indexed: 12/16/2022] Open
Abstract
The infectious component of hepatitis B (HB) virus (HBV), the Dane particle, has a diameter of approximately 44 nm and consists of a double-layered capsid particle enclosing a circular, incomplete double-stranded DNA genome. The outer capsid layer is formed from the HB surface antigen (HBsAg) and lipid, whereas the inner layer is formed from the HB core Ag assembled into an icosahedral structure. During chronic infection HBsAg is expressed in large excess as noninfectious quasispherical particles and tubules with approximately 22-nm diameter. Here, we report cryo-EM reconstructions of spherical HBsAg particles at approximately 12-A resolution. We show that the particles possess different diameters and have separated them into two predominant populations, both of which have octahedral symmetry. Despite their differing diameters, the two forms of the particle have the same mass and are built through conformational switching of the same building block, a dimer of HBsAg. We propose that this conformational switching, combined with interactions with the underlying core, leads to the formation of HBV Dane particles of different sizes, dictated by the symmetry of the icosahedral core.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1378
|
Sharma MR, Jeyakumar LH, Fleischer S, Wagenknecht T. Three-dimensional visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine receptor. Biophys J 2005; 90:164-72. [PMID: 16214874 PMCID: PMC1367015 DOI: 10.1529/biophysj.105.063503] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiac isoform of the ryanodine receptor (RyR2) from dog binds predominantly a 12.6-kDa isoform of the FK506-binding protein (FKBP12.6), whereas RyR2 from other species binds both FKBP12.6 and the closely related isoform FKBP12. The role played by FKBP12.6 in modulating calcium release by RyR2 is unclear at present. We have used cryoelectron microscopy and three-dimensional (3D) reconstruction techniques to determine the binding position of FKBP12.6 on the surface of canine RyR2. Buffer conditions that should favor the "open" state of RyR2 were used. Quantitative comparison of 3D reconstructions of RyR2 in the presence and absence of FKBP12.6 reveals that FKBP12.6 binds along the sides of the square-shaped cytoplasmic region of the receptor, adjacent to domain 9, which forms part of the four clamp (corner-forming) structures. The location of the FKBP12.6 binding site on "open" RyR2 appears similar, but slightly displaced (by 1-2 nm) from that found previously for FKBP12 binding to the skeletal muscle ryanodine receptor that was in the buffer that favors the "closed" state. The conformation of RyR2 containing bound FKBP12.6 differs considerably from that depleted of FKBP12.6, particularly in the transmembrane region and in the clamp structures. The x-ray structure of FKBP12.6 was docked into the region of the 3D reconstruction that is attributable to bound FKBP12.6, to show the relative orientations of amino acid residues (Gln-31, Asn-32, Phe-59) that have been implicated as being critical in interactions with RyR2. A thorough understanding of the structural basis of RyR2-FKBP12.6 interaction should aid in understanding the roles that have been proposed for FKBP12.6 in heart failure and in certain forms of sudden cardiac death.
Collapse
Affiliation(s)
- Manjuli Rani Sharma
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
1379
|
Agirrezabala X, Martín-Benito J, Castón JR, Miranda R, Valpuesta JM, Carrascosa JL. Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 2005; 24:3820-9. [PMID: 16211007 PMCID: PMC1276722 DOI: 10.1038/sj.emboj.7600840] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 09/16/2005] [Indexed: 12/22/2022] Open
Abstract
The double-stranded DNA bacteriophages are good model systems to understand basic biological processes such as the macromolecular interactions that take place during the virus assembly and maturation, or the behavior of molecular motors that function during the DNA packaging process. Using cryoelectron microscopy and single-particle methodology, we have determined the structures of two phage T7 assemblies produced during its morphogenetic process, the DNA-free prohead and the mature virion. The first structure reveals a complex assembly in the interior of the capsid, which involves the scaffolding, and the core complex, which plays an important role in DNA packaging and is located in one of the phage vertices. The reconstruction of the mature virion reveals important changes in the shell, now much larger and thinner, the disappearance of the scaffolding structure, and important rearrangements of the core complex, which now protrudes the shell and interacts with the tail. Some of these changes must originate by the pressure exerted by the DNA in the interior of the head.
Collapse
Affiliation(s)
- Xabier Agirrezabala
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Jaime Martín-Benito
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - José R Castón
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Roberto Miranda
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - José María Valpuesta
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Tel.: +34 91 5854509; Fax: +34 91 5854506; E-mail:
| |
Collapse
|
1380
|
Jiang S, Wolfe CL, Warrington JA, Norcum MT. Three-dimensional reconstruction of the valyl-tRNA synthetase/elongation factor-1H complex and localization of the delta subunit. FEBS Lett 2005; 579:6049-54. [PMID: 16229838 DOI: 10.1016/j.febslet.2005.09.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 01/06/2023]
Abstract
Eukaryotic valyl-tRNA synthetase (ValRS) and the heavy form of elongation factor 1 (EF-1H) are isolated as a stable high molecular mass complex that catalyzes consecutive steps in protein biosynthesis--aminoacylation of tRNA and its transfer to elongation factor. Herein is the first three-dimensional structure of the particle as calculated from electron microscopic images of negatively stained samples of the human ValRS/EF-1H complex. The ca. 12 x 8 nm particle has two distinct domains and each appears to have twofold symmetry. Bound antibodies place two delta subunits near the particle's center. These data support a dimeric head-to-head arrangement of particle components.
Collapse
Affiliation(s)
- Shoulei Jiang
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | |
Collapse
|
1381
|
Fokine A, Kostyuchenko VA, Efimov AV, Kurochkina LP, Sykilinda NN, Robben J, Volckaert G, Hoenger A, Chipman PR, Battisti AJ, Rossmann MG, Mesyanzhinov VV. A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head. J Mol Biol 2005; 352:117-24. [PMID: 16081102 DOI: 10.1016/j.jmb.2005.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 06/17/2005] [Accepted: 07/07/2005] [Indexed: 11/29/2022]
Abstract
The three-dimensional structure of the Pseudomonas aeruginosa bacteriophage phiKZ head has been determined by cryo-electron microscopy and image reconstruction to 18A resolution. The head has icosahedral symmetry measuring 1455 A in diameter along 5-fold axes and a unique portal vertex to which is attached an approximately 1800 A-long contractile tail. The 65 kDa major capsid protein, gp120, is organized into a surface lattice of hexamers, with T = 27 triangulation. The shape and size of the hexamers is similar to the hexameric building blocks of the bacteriophages T4, phi29, P22, and HK97. Pentameric vertices of the capsid are occupied by complexes composed of several special vertex proteins. The double-stranded genomic DNA is packaged into a highly condensed series of layers, separated by 24 A, that follow the contour of the inner wall of the capsid.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1382
|
Hong SS, Szolajska E, Schoehn G, Franqueville L, Myhre S, Lindholm L, Ruigrok RWH, Boulanger P, Chroboczek J. The 100K-chaperone protein from adenovirus serotype 2 (Subgroup C) assists in trimerization and nuclear localization of hexons from subgroups C and B adenoviruses. J Mol Biol 2005; 352:125-38. [PMID: 16081097 DOI: 10.1016/j.jmb.2005.06.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Recombinant hexons from subgroup C adenoviruses (Ad2 and Ad5) and from a member of subgroup B (Ad3) adenoviruses have been expressed in insect cells. When expressed alone, all three hexons were found to be insoluble and accumulated as inclusion bodies in the cytoplasm. However, co-expression of recombinant Ad2, Ad5 or Ad3 hexon with Ad2 L4-100K protein resulted in the formation of soluble trimeric hexons. EM analysis of hexons revealed that they were indistinguishable from native hexon capsomers isolated from Ad2-infected human cells, or released from partially disrupted adenovirions. This suggests that 100K acts as a chaperone for hexon folding and self-assembly into capsomer in insect cells. Since 100K protein assists in the trimerization of subgroup C hexon, and of subgroup B hexon protein, it implies that it functions in a manner that is both homo- and heterotypic. During the course of recombinant protein expression, the 100K protein was found in association with hexon monomers and trimers within the cytoplasm. In the nucleus, however, 100K was found in complexes with hexon trimers exclusively. EM observation of purified 100K protein samples showed a dumb-bell-shaped molecule compatible with a monomeric protein. EM analysis of hexon-100K protein complexes showed that interaction of hexon with the 100K protein occurred via one of the globular domains of the 100K protein molecule. Our data confirm the role of the 100K protein as a scaffold protein for hexon, and provide evidence suggesting its function in hexon nuclear import in insect cells.
Collapse
Affiliation(s)
- Saw See Hong
- Laboratoire de Virologie et Pathogénèse Virale, CNRS UMR 5537, Faculté de Médecine RTH Laennec, Institut Fédératif de Recherche IFR-62, 69372 Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
1383
|
Bumba L, Tichy M, Dobakova M, Komenda J, Vacha F. Localization of the PsbH subunit in photosystem II from the Synechocystis 6803 using the His-tagged Ni–NTA Nanogold labeling. J Struct Biol 2005; 152:28-35. [PMID: 16181791 DOI: 10.1016/j.jsb.2005.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/27/2005] [Accepted: 08/03/2005] [Indexed: 11/17/2022]
Abstract
The PsbH protein belongs to a group of small protein subunits of photosystem II (PSII) complex. This protein is predicted to have a single transmembrane helix and it is important for the assembly of the PSII complex as well as for the proper function at the acceptor side of PSII. To identify the location of the PsbH subunit, the PSII complex with His-tagged PsbH protein was isolated from the cyanobacterium Synechocystis sp. PCC 6803 and labeled by Ni(2+)-nitrilo triacetic acid Nanogold. Electron microscopy followed by single particle image analysis identified the location of the labeled His-tagged PsbH protein at the periphery of the dimeric PSII complex. These results indicate that the N terminus of the PsbH protein is located at the stromal surface of the PSII complex and close to the CP47 protein.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Plant and Molecular Biology, Czech Academy of Sciences, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic.
| | | | | | | | | |
Collapse
|
1384
|
Kuo A, Domene C, Johnson LN, Doyle DA, Vénien-Bryan C. Two Different Conformational States of the KirBac3.1 Potassium Channel Revealed by Electron Crystallography. Structure 2005; 13:1463-72. [PMID: 16216578 DOI: 10.1016/j.str.2005.07.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 11/24/2022]
Abstract
Potassium channels allow the selective flow of K(+) ions across membranes. In response to external gating signals, the potassium channel can move reversibly through a series of structural conformations from a closed to an open state. 2D crystals of the inwardly rectifying K(+) channel KirBac3.1 from Magnetospirillum magnetotacticum have been captured in two distinct conformations, providing "snap shots" of the gating process. Analysis by electron cryomicroscopy of these KirBac3.1 crystals has resulted in reconstructed images in projection at 9 A resolution. Kir channels are tetramers of four subunits arranged as dimers of dimers. Each subunit has two transmembrane helices (inner and outer). In one crystal form, the pore is blocked; in the other crystal form, the pore appears open. Modeling based on the KirBac1.1 (closed) crystal structure shows that opening of the ion conduction pathway could be achieved by bending of the inner helices and significant movements of the outer helices.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acids, Aromatic
- Cloning, Molecular
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA, Bacterial
- Dimerization
- Lipid Bilayers/chemistry
- Magnetospirillum/genetics
- Models, Molecular
- Molecular Sequence Data
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/ultrastructure
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Anling Kuo
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
1385
|
Abstract
Single-particle electron microscopy has now reached maturity, becoming a commonly used method in the examination of macromolecular structure. Using a small amount of purified protein, isolated molecules are observed under the electron microscope and the data collected can be averaged into a 3D reconstruction. Single-particle electron microscopy is an appropriate tool for the analysis of proteins that can only be obtained in modest quantities, like many of the large complexes currently of interest in biomedicine. Whilst the use of electron microscopy expands, new methods are being developed and improved to deal with further challenges, such as reaching higher resolutions and the combination of information at different levels of structural detail. More importantly, present methodology is still not robust enough when studying certain tricky proteins like those displaying extensive conformational flexibility and a great deal of user expertise is required, posing a threat to the consistency of the final structure. This mini review describes a brief outline of the methods currently used in the 3D analysis of macromolecules using single-particle electron microscopy, intended for those first approaching this field. A summary of methods, techniques, software, and some recent work is presented. The spectacular improvements to the technique in recent years, its advantages and limitations compared to other structural methods, and its future developments are discussed.
Collapse
Affiliation(s)
- Oscar Llorca
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu, 9 Campus Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
1386
|
Cong Y, Jiang W, Birmanns S, Zhou ZH, Chiu W, Wriggers W. Fast rotational matching of single-particle images. J Struct Biol 2005; 152:104-12. [PMID: 16236526 DOI: 10.1016/j.jsb.2005.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
The presence of noise and absence of contrast in electron micrographs lead to a reduced resolution of the final 3D reconstruction, due to the inherent limitations of single-particle image alignment. The fast rotational matching (FRM) algorithm was introduced recently for an accurate alignment of 2D images under such challenging conditions. Here, we implemented this algorithm for the first time in a standard 3D reconstruction package used in electron microscopy. This allowed us to carry out exhaustive tests of the robustness and reliability in iterative orientation determination, classification, and 3D reconstruction on simulated and experimental image data. A classification test on GroEL chaperonin images demonstrates that FRM assigns up to 13% more images to their correct reference orientation, compared to the classical self-correlation function method. Moreover, at sub-nanometer resolution, GroEL and rice dwarf virus reconstructions exhibit a remarkable resolution gain of 10-20% that is attributed to the novel image alignment kernel.
Collapse
Affiliation(s)
- Yao Cong
- School of Health Information Sciences and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
1387
|
Li J, Liu Z, Li KP, Cui JM, Zhang QF, Li YY, Zhang JQ. Three-dimensional display and arbitrary region interactive segmentation of high-resolution virus capsids from cryo-electron microscopy single particle reconstruction. Microscopy (Oxf) 2005; 54:455-60. [PMID: 16186180 DOI: 10.1093/jmicro/dfi064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) instrumentation and single particle reconstruction have created opportunities for high-throughput and high-resolution three-dimensional (3-D) structure determination of virus. In order to visualize and effectively understand the 3-D structure, we present a display method based on surface rendering, which has the function of 3-D arbitrary region interactive segmentation and quantitative analysis, and integrate them into a software package called CEM-3DVDSS (cryo-EM 3-D virus display and arbitrary region segmentation system). CEM-3DVDSS consists of a complete set of modular programs for 3-D display and segmentation of icosahedral virus, which is organized under a graphical user interface and provides user-friendly options. First, we convert volume data in the MRC format obtained by cryo-EM single particle reconstruction to the format of our own software; in the preprocessing step, the original volume data are compressed and a better vector dimension is found for controlling the speed and detail of display. Then, the new volume data can be displayed and segmented using CEM-3DVDSS. We demonstrate the applicability of CEM-3DVDSS by displaying the 3-D structures of 2.5 nm (resolution) BmCPV (Bombyx mori cytoplasmic polyhedrosis virus), 2.5 nm CSBV (Chinese Sacbrood bee virus) and 1.4 nm C6/36DNV (Densonucleosis virus). As a result, both the 3-D display speed and signal-to-noise ratio of CEM-3DVDSS are improved compared with the original method, and the segmentation results become precise and more intact with additional function of quantitative analysis of 3-D structure.
Collapse
Affiliation(s)
- Jing Li
- Division of Structural Biology, State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
1388
|
Matoba K, Yamazoe M, Mayanagi K, Morikawa K, Hiraga S. Comparison of MukB homodimer versus MukBEF complex molecular architectures by electron microscopy reveals a higher-order multimerization. Biochem Biophys Res Commun 2005; 333:694-702. [PMID: 15979051 DOI: 10.1016/j.bbrc.2005.05.163] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/31/2005] [Indexed: 11/24/2022]
Abstract
The complex of MukF, MukE, and MukB proteins participates in organization of sister chromosomes and partitioning into both daughter cells in Escherichia coli. We purified the MukB homodimer and the MukBEF complex and analyzed them by electron microscopy to compare both structures. A MukB homodimer shows a long rod-hinge-rod v-shape with small globular domains at both ends. The MukBEF complex shows a similar structure having larger globular domains than those of the MukB homodimer. These results suggest that MukF and MukE bind to the globular domains of a MukB homodimer. The globular domains of the MukBEF complex frequently associate with each other in an intramolecular fashion, forming a ring. In addition, MukBEF complex molecules tend to form multimers by the end-to-end joining with other MukBEF molecules in an intermolecular fashion, resulting in fibers and rosette-form structures in the absence of ATP and DNA in vitro.
Collapse
Affiliation(s)
- Kyoko Matoba
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita-city, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
1389
|
Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". J Biol Chem 2005; 280:40375-83. [PMID: 16183634 DOI: 10.1074/jbc.m506785200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Ryo Iizuka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
1390
|
Wolfe CL, Warrington JA, Treadwell L, Norcum MT. A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins. J Biol Chem 2005; 280:38870-8. [PMID: 16169847 DOI: 10.1074/jbc.m502759200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has become evident that the process of protein synthesis is performed by many cellular polypeptides acting in concert within the structural confines of protein complexes. In multicellular eukaryotes, one of these assemblies is a multienzyme complex composed of eight proteins that have aminoacyl-tRNA synthetase activities as well as three non-synthetase proteins (p43, p38, and p18) with diverse functions. This study uses electron microscopy and three-dimensional reconstruction to explore the arrangement of proteins and tRNA substrates within this "core" multisynthetase complex. Binding of unfractionated tRNA establishes that these molecules are widely distributed on the exterior of the structure. Binding of gold-labeled tRNA(Leu) places leucyl-tRNA synthetase and the bifunctional glutamyl-/prolyl-tRNA synthetase at the base of this asymmetric "V"-shaped particle. A stable cell line has been produced that incorporates hexahistidine-labeled p43 into the multisynthetase complex. Using a gold-labeled nickel-nitrilotriacetic acid probe, the polypeptides of the p43 dimer have been located along one face of the particle. The results of this and previous studies are combined into an initial three-dimensional working model of the multisynthetase complex. This is the first conceptualization of how the protein constituents and tRNA substrates are arrayed within the structural confines of this multiprotein assembly.
Collapse
Affiliation(s)
- Cindy L Wolfe
- Department of Biology, Tougaloo College, Tougaloo, Mississippi 39174, USA
| | | | | | | |
Collapse
|
1391
|
Nickell S, Förster F, Linaroudis A, Net WD, Beck F, Hegerl R, Baumeister W, Plitzko JM. TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 2005; 149:227-34. [PMID: 15721576 DOI: 10.1016/j.jsb.2004.10.006] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Automated data acquisition procedures have changed the perspectives of electron tomography (ET) in a profound manner. Elaborate data acquisition schemes with autotuning functions minimize exposure of the specimen to the electron beam and sophisticated image analysis routines retrieve a maximum of information from noisy data sets. "TOM software toolbox" integrates established algorithms and new concepts tailored to the special needs of low dose ET. It provides a user-friendly unified platform for all processing steps: acquisition, alignment, reconstruction, and analysis. Designed as a collection of computational procedures it is a complete software solution within a highly flexible framework. TOM represents a new way of working with the electron microscope and can serve as the basis for future high-throughput applications.
Collapse
Affiliation(s)
- Stephan Nickell
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
1392
|
Kelly DF, Taylor KA. Identification of the beta1-integrin binding site on alpha-actinin by cryoelectron microscopy. J Struct Biol 2005; 149:290-302. [PMID: 15721583 DOI: 10.1016/j.jsb.2004.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/16/2004] [Indexed: 11/29/2022]
Abstract
Cell-matrix adhesions in migrating cells are usually mediated by integrins, alpha-beta heterodimeric transmembrane proteins that link extracellular matrix molecules such as fibronectin to the cytoskeleton. We have synthesized the cytoplasmic domain of the beta1-integrin (residues H738-K778) with a histidine tag at its N-terminus. The binding of this peptide to a lipid monolayer containing a chelated-nickel group (dimyristoylphosphatidyl choline-suberimide-nitriloacetic acid:nickel salt) mimics the native environment at the cytoplasmic leaflet of the plasma membrane. A Nanogold particle was covalently linked to cysteines introduced at the C-terminus and after residue T757 on the integrin peptide, and co-crystallized with chicken smooth muscle alpha-actinin. The 2-D arrays of the beta1-integrin-alpha-actinin complex were examined by cryoelectron microscopy, with and without the gold label. Averaged projections were calculated for each specimen along with a difference map to determine the relative position of the gold-labeled beta1-integrin peptide. The difference maps indicate that the beta1-integrin cytoplasmic domain binds alpha-actinin between the first and second, 3-helix motifs in the central rod domain.
Collapse
Affiliation(s)
- Deborah F Kelly
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | | |
Collapse
|
1393
|
Liu Z, Wang R, Zhang J, Chen SRW, Wagenknecht T. Localization of a disease-associated mutation site in the three-dimensional structure of the cardiac muscle ryanodine receptor. J Biol Chem 2005; 280:37941-7. [PMID: 16157601 PMCID: PMC1470666 DOI: 10.1074/jbc.m505714200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac muscle ryanodine receptor (RyR2) functions as a calcium release channel in the heart. Up to 40 mutations in RyR2 have been linked to genetic forms of sudden cardiac death. These mutations are largely clustered in three regions of the sequence of the polypeptide: one near the N terminus, one in the central region, and the third in the C-terminal region. The central region includes 11 mutations, and an isoleucine-proline motif (positions 2427 and 2428) in the same region is predicted to contribute to the binding of FKBP12.6 protein. We have mapped the central mutation site in the three-dimensional structure of RyR2 by green fluorescent protein insertion, cryoelectron microscopy, and single-particle image processing. The central mutation site was mapped to a "bridge" of density that connects cytoplasmic domains 5 and 6, which have been suggested to undergo conformational changes during channel gating. Moreover, the location of this central mutation site is not close to that of the FKBP12.6-binding site mapped previously by cryoelectron microscopy.
Collapse
Affiliation(s)
- Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA.
| | | | | | | | | |
Collapse
|
1394
|
Chami M, Guilvout I, Gregorini M, Rémigy HW, Müller SA, Valerio M, Engel A, Pugsley AP, Bayan N. Structural insights into the secretin PulD and its trypsin-resistant core. J Biol Chem 2005; 280:37732-41. [PMID: 16129681 DOI: 10.1074/jbc.m504463200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Limited proteolysis, secondary structure and biochemical analyses, mass spectrometry, and mass measurements by scanning transmission electron microscopy were combined with cryo-electron microscopy to generate a three-dimensional model of the homomultimeric complex formed by the outer membrane secretin PulD, an essential channel-forming component of the type II secretion system from Klebsiella oxytoca. The complex is a dodecameric structure composed of two rings that sandwich a closed disc. The two rings form chambers on either side of a central plug that is part of the middle disc. The PulD polypeptide comprises two major, structurally quite distinct domains; an N domain, which forms the walls of one of the chambers, and a trypsin-resistant C domain, which contributes to the outer chamber, the central disc, and the plug. The C domain contains a lower proportion of potentially transmembrane beta-structure than classical outer membrane proteins, suggesting that only a small part of it is embedded within the outer membrane. Indeed, the C domain probably extends well beyond the confines of the outer membrane bilayer, forming a centrally plugged channel that penetrates both the peptidoglycan on the periplasmic side and the lipopolysaccharide and capsule layers on the cell surface. The inner chamber is proposed to constitute a docking site for the secreted exoprotein pullulanase, whereas the outer chamber could allow displacement of the plug to open the channel and permit the exoprotein to escape.
Collapse
Affiliation(s)
- Mohamed Chami
- ME Müller Institute, Biozentrum, University of Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
1395
|
Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov VV, Rossmann MG. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 2005; 12:810-3. [PMID: 16116440 DOI: 10.1038/nsmb975] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/19/2005] [Indexed: 11/08/2022]
Abstract
Bacteriophage T4 and related viruses have a contractile tail that serves as an efficient mechanical device for infecting bacteria. A three-dimensional cryo-EM reconstruction of the mature T4 tail assembly at 15-A resolution shows the hexagonal dome-shaped baseplate, the extended contractile sheath, the long tail fibers attached to the baseplate and the collar formed by six whiskers that interact with the long tail fibers. Comparison with the structure of the contracted tail shows that tail contraction is associated with a substantial rearrangement of the domains within the sheath protein and results in shortening of the sheath to about one-third of its original length. During contraction, the tail tube extends beneath the baseplate by about one-half of its total length and rotates by 345 degrees , allowing it to cross the host's periplasmic space.
Collapse
Affiliation(s)
- Victor A Kostyuchenko
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | |
Collapse
|
1396
|
Aramayo R, Mérigoux C, Larquet E, Bron P, Pérez J, Dumas C, Vachette P, Boisset N. Divalent ion-dependent swelling of Tomato Bushy Stunt Virus: A multi-approach study. Biochim Biophys Acta Gen Subj 2005; 1724:345-54. [PMID: 16023788 DOI: 10.1016/j.bbagen.2005.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/13/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Time-resolved small-angle X-ray and neutron scattering (SAXS and SANS) in solution were used to study the swelling reaction of TBSV upon chelation of its constituent calcium at mildly basic pH. SAXS intensities comprise contribution from the protein capsid and the RNA moiety, while neutron scattering, recorded in 72% D2O, is essentially due to the protein capsid. Cryo-electron micrographs of compact and swollen virus were used to produce 3D reconstructions of the initial and final conformations of the virus at a resolution of 13 A and 19 A, respectively. While compact particles appear to be very homogeneous in size, solutions of swollen particles exhibit some size heterogeneity. A procedure has been developed to compute the SAXS pattern from the 3D reconstruction for comparison with experimental data. Cryo-electron microscopy thereby provides an invaluable starting (and ending) point for the analysis of the time-resolved swelling process using the scattering data.
Collapse
Affiliation(s)
- R Aramayo
- Institut de Minéralogie et de Physique de la Matière Condensée, Université Pierre et Marie Curie UMR7590 CNRS P7 IPGP, Case Postale 115-75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
1397
|
Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R. Atomic model of a myosin filament in the relaxed state. Nature 2005; 436:1195-9. [PMID: 16121187 DOI: 10.1038/nature03920] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 06/13/2005] [Indexed: 11/08/2022]
Abstract
Contraction of muscle involves the cyclic interaction of myosin heads on the thick filaments with actin subunits in the thin filaments. Muscles relax when this interaction is blocked by molecular switches on either or both filaments. Insight into the relaxed (switched OFF) structure of myosin has come from electron microscopic studies of smooth muscle myosin molecules, which are regulated by phosphorylation. These studies suggest that the OFF state is achieved by an asymmetric, intramolecular interaction between the actin-binding region of one head and the converter region of the other, switching both heads off. Although this is a plausible model for relaxation based on isolated myosin molecules, it does not reveal whether this structure is present in native myosin filaments. Here we analyse the structure of a phosphorylation-regulated striated muscle thick filament using cryo-electron microscopy. Three-dimensional reconstruction and atomic fitting studies suggest that the 'interacting-head' structure is also present in the filament, and that it may underlie the relaxed state of thick filaments in both smooth and myosin-regulated striated muscles over a wide range of species.
Collapse
Affiliation(s)
- John L Woodhead
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
1398
|
Keithly JS, Langreth SG, Buttle KF, Mannella CA. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 2005; 52:132-40. [PMID: 15817118 DOI: 10.1111/j.1550-7408.2005.04-3317.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sporozoites of the apicomplexan Cryptosporidium parvum possess a small, membranous organelle sandwiched between the nucleus and crystalloid body. Based upon immunolabelling data, this organelle was identified as a relict mitochondrion. Transmission electron microscopy and tomographic reconstruction reveal the complex arrangement of membranes in the vicinity of this organelle, as well as its internal organization. The mitochondrion is enveloped by multiple segments of rough endoplasmic reticulum that extend from the outer nuclear envelope. In tomographic reconstructions of the mitochondrion, there is either a single, highly-folded inner membrane or multiple internal subcompartments (which might merge outside the reconstructed volume). The infoldings of the inner membrane lack the tubular "crista junctions" found in typical metazoan, fungal, and protist mitochondria. The absence of this highly conserved structural feature is congruent with the loss, through reductive evolution, of the normal oxidative phosphorylation machinery in C. parvum. It is proposed that the retention of a relict mitochondrion in C. parvum is a strategy for compartmentalizing away from the cytosol toxic ferrous iron and sulfide, which are needed for iron sulfur cluster biosynthesis, an essential function of mitochondria in all eukaryotes.
Collapse
Affiliation(s)
- Janet S Keithly
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | | | |
Collapse
|
1399
|
Gohlke U, Pullan L, McDevitt CA, Porcelli I, de Leeuw E, Palmer T, Saibil HR, Berks BC. The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A 2005; 102:10482-6. [PMID: 16027357 PMCID: PMC1180781 DOI: 10.1073/pnas.0503558102] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tat system mediates Sec-independent transport of folded precursor proteins across the bacterial plasma membrane or the chloroplast thylakoid membrane. Tat transport involves distinct high-molecular-weight TatA and TatBC complexes. Here we report the 3D architecture of the TatA complex from Escherichia coli obtained by single-particle electron microscopy and random conical tilt reconstruction. TatA forms ring-shaped structures of variable diameter in which the internal channels are large enough to accommodate known Tat substrate proteins. This morphology strongly supports the proposal that TatA forms the protein-conducting channel of the Tat system. One end of the channel is closed by a lid that might gate access to the channel. On the basis of previous protease accessibility measurements, the lid is likely to be located at the cytoplasmic side of the membrane. The observed variation in TatA diameter suggests a model for Tat transport in which the number of TatA protomers changes to match the size of the channel to the size of the substrate being transported. Such dynamic close packing would provide a mechanism to maintain the membrane permeability barrier during transport.
Collapse
Affiliation(s)
- Ulrich Gohlke
- Institute of Structural Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
1400
|
Vinothkumar KR, Smits SHJ, Kühlbrandt W. pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO J 2005; 24:2720-9. [PMID: 16015376 PMCID: PMC1182236 DOI: 10.1038/sj.emboj.7600727] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 06/02/2005] [Indexed: 11/08/2022] Open
Abstract
Na+/H+ antiporters are pH-dependent membrane transport proteins that maintain the homeostasis of H+ and Na+ in living cells. MjNhaP1 from Methanococcus jannaschii, a hyperthermophilic archaeon that grows optimally at 85 degrees C, was cloned and expressed in Escherichia coli. Two-dimensional crystals were obtained from purified protein at pH 4. Electron cryomicroscopy yielded an 8 A projection map. Like the related E. coli antiporter NhaA, MjNhaP1 is a dimer, but otherwise the structures of the two antiporters differ significantly. The map of MjNhaP1 shows elongated densities in the centre of the dimer and a cluster of density peaks on either side of the dimer core, indicative of a bundle of 4-6 membrane-spanning helices. The effect of pH on the structure of MjNhaP1 was studied in situ. A major change in density distribution within the helix bundle, and an approximately 2 A shift in the position of the helix bundle relative to the dimer core occurred at pH 6 and above. The two conformations at low and high pH most likely represent the closed and open states of the antiporter.
Collapse
Affiliation(s)
- Kutti R Vinothkumar
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Sander H J Smits
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany. Tel.: +49 69 63033001; Fax: +49 69 63033002; E-mail:
| |
Collapse
|