1351
|
Banach-Orłowska M, Jastrzębski K, Cendrowski J, Maksymowicz M, Wojciechowska K, Korostyński M, Moreau D, Gruenberg J, Miaczynska M. The topology of lymphotoxin β receptor accumulated upon endolysosomal dysfunction dictates the NF-κB signaling outcome. J Cell Sci 2018; 131:jcs.218883. [DOI: 10.1242/jcs.218883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokine receptors, such as tumor necrosis factor receptor I (TNFRI) and lymphotoxin β receptor (LTβR), activate inflammatory NF-κB signaling upon stimulation. We previously demonstrated that depletion of ESCRT components leads to endosomal accumulation of TNFRI and LTβR, and their ligand-independent signaling to NF-κB. Here, we studied if other perturbations of the endolysosomal system could trigger intracellular accumulation and signaling of ligand-free LTβR. While depletion of CORVET had no effect, knockdown of HOPS or Rab7, or pharmacological inhibition of lysosomal degradation, caused endosomal accumulation of LTβR and its increased interactions with TRAF2/TRAF3 signaling adaptors. However, the NF-κB pathway was not activated under these conditions. We found that knockdown of HOPS or Rab7 led to LTβR sequestration in intraluminal vesicles of endosomes, thus precluding NF-κB signaling. This was in contrast to LTβR localization on the outer endosomal membrane after ESCRT depletion that was permissive for signaling. We propose that the inflammatory response induced by intracellular accumulation of endocytosed cytokine receptors critically depends on the precise receptor topology within endosomal compartments.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jarosław Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Karolina Wojciechowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, 31-343, Krakow, Poland
| | - Dimitri Moreau
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
1352
|
Giuliani C, Bucci I, Napolitano G. The Role of the Transcription Factor Nuclear Factor-kappa B in Thyroid Autoimmunity and Cancer. Front Endocrinol (Lausanne) 2018; 9:471. [PMID: 30186235 PMCID: PMC6110821 DOI: 10.3389/fendo.2018.00471] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor that is involved in inflammatory and immune responses, as well as in regulation of expression of many other genes related to cell survival, proliferation, and differentiation. In mammals, NF-κB comprises five subunits that can bind to promoter regions of target genes as homodimers or heterodimers. The most common dimer is the p50/p65 heterodimer. The several combinations of dimers that can be formed contribute to the heterogeneous regulation of NF-κB target genes, and this heterogeneity is further increased by interactions of the NF-κB dimers with other transcription factors, such as steroid hormone receptors, activator protein-1 (AP-1), and cAMP response element binding protein (CREB). In the thyroid, several studies have demonstrated the involvement of NF-κB in thyroid autoimmunity, thyroid cancer, and thyroid-specific gene regulation. The role of NF-κB in thyroid autoimmunity was hypothesized more than 20 years ago, after the finding that the binding of distinct NF-κB heterodimers to the major histocompatibility complex class I gene is hormonally regulated. Further studies have shown increased activity of NF-κB in thyroid autoimmune diseases and in thyroid orbitopathy. Increased activity of NF-κB has also been observed in thyroid cancer, where it correlates with a more aggressive pattern. Of particular interest, mutation of some oncogenes or tumor suppressor genes involved in thyroid carcinogenesis results in constitutive activation of the NF-κB pathway. More recently, it has been shown that NF-κB also has a role in thyroid physiology, as it is fundamental for the expression of the main thyroid-specific genes, such as sodium iodide symporter, thyroid peroxidase, thyroglobulin, Pax8, and TTF-1 (NKX2-1).
Collapse
|
1353
|
Duronio RJ, O'Farrell PH, Sluder G, Su TT. Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. Dis Model Mech 2017; 10:1381-1389. [PMID: 29259023 PMCID: PMC5769611 DOI: 10.1242/dmm.031203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For hundreds of years, biologists have studied accessible organisms such as garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of biologists with the promise of mystery and discovery. Time and time again, what we learn from such simple organisms has emphasized our common biological origins by proving to be applicable to more complex organisms, including humans. Yet, biologists are increasingly being tasked with developing applications from the known, rather than being allowed to follow a path to discovery of the as yet unknown. Here, we provide examples of important lessons learned from research using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that could subsequently be tested for conservation in human cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition.
Collapse
Affiliation(s)
- Robert J Duronio
- Departments of Biology and Genetics, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599-3280, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Greenfield Sluder
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tin Tin Su
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
1354
|
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2017; 175:3239-3250. [PMID: 29105727 DOI: 10.1111/bph.14083] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Melatonin is well known for its circadian production by the pineal gland, and there is a growing body of data showing that it is also produced by many other cells and organs, including immune cells. The chronobiotic role of pineal melatonin, as well as its protective effects in vitro and in vivo, have been extensively explored. However, the interaction between the chronobiotic and defence functions of endogenous melatonin has been little investigated. This review details the current knowledge regarding the coordinated shift in melatonin synthesis from the pineal gland (circadian and monitoring roles) to the regulation of acute immune responses via immune cell production and autocrine effects, producing systemic interactions termed the immune-pineal axis. An acute inflammatory response drives the transcription factor, NFκB, to switch melatonin synthesis from pinealocytes to macrophages/microglia and, upon acute inflammatory resolution, back to pinealocytes. The potential pathophysiological relevance of immune-pineal axis dysregulation is highlighted, with both research and clinical implications, across several medical conditions, including host/parasite interaction, neurodegenerative diseases and cancer. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Pedro A Fernandes
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Marina Marçola
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
1355
|
Zhang XJ, Cheng X, Yan ZZ, Fang J, Wang X, Wang W, Liu ZY, Shen LJ, Zhang P, Wang PX, Liao R, Ji YX, Wang JY, Tian S, Zhu XY, Zhang Y, Tian RF, Wang L, Ma XL, Huang Z, She ZG, Li H. An ALOX12–12-HETE–GPR31 signaling axis is a key mediator of hepatic ischemia–reperfusion injury. Nat Med 2017; 24:73-83. [DOI: 10.1038/nm.4451] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
|
1356
|
Hauenstein AV, Xu G, Kabaleeswaran V, Wu H. Evidence for M1-Linked Polyubiquitin-Mediated Conformational Change in NEMO. J Mol Biol 2017; 429:3793-3800. [PMID: 29111346 PMCID: PMC5705538 DOI: 10.1016/j.jmb.2017.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
Abstract
The NF-κB essential modulator (NEMO) is the scaffolding subunit of the inhibitor of κB kinase (IKK) holocomplex and is required for the activation of the catalytic IKK subunits, IKKα and IKKβ, during the canonical inflammatory response. Although structures of shorter constructs of NEMO have been solved, efforts to elucidate the full-length structure of NEMO have proved difficult due to its apparent high conformational plasticity. To better characterize the gross dimensions of full-length NEMO, we employed in-line size exclusion chromatography-small-angle X-ray scattering. We show that NEMO adopts a more compact conformation (Dmax=320Å) than predicted for a fully extended coiled-coil structure (>500Å). In addition, we map a region of NEMO (residues 112-150) in its coiled-coil 1 domain that impedes the binding of linear (M1-linked) di-ubiquitin to its coiled-coil 2-leucine zipper ubiquitin binding domain. This ubiquitin binding inhibition can be overcome by a longer chain of linear, but not K63-linked polyubiquitin. Collectively, these observations suggest that NEMO may be auto-inhibited in the resting state by intramolecular interactions and that during signaling, NEMO may be allosterically activated by binding to long M1-linked polyubiquitin chains.
Collapse
Affiliation(s)
- Arthur V Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Guozhou Xu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Venkataraman Kabaleeswaran
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
1357
|
Akaishi T, Abe K. CNB-001, a synthetic pyrazole derivative of curcumin, suppresses lipopolysaccharide-induced nitric oxide production through the inhibition of NF-κB and p38 MAPK pathways in microglia. Eur J Pharmacol 2017; 819:190-197. [PMID: 29221948 DOI: 10.1016/j.ejphar.2017.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/26/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
CNB-001, a pyrazole derivative of curcumin, has been found to exert neuroprotective and memory-enhancing effects that may be effective for the treatment of Alzheimer's disease. Since aberrant activation of microglia is involved in the pathogenesis of Alzheimer's disease, the present study was undertaken to investigate the effect of CNB-001 on microglia-mediated inflammatory responses. In primary cultured rat microglia, CNB-001 (1-10µM) suppressed the lipopolysaccharide (LPS)-induced nitric oxide (NO) production and expression of inducible NO synthase (iNOS), and the potency of CNB-001 was stronger than curcumin. CNB-001 also suppressed the LPS-induced nuclear translocation of nuclear factor κB (NF-κB), which is essential for the expression of iNOS. LPS treatment promoted phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). CNB-001 significantly suppressed the LPS-induced phosphorylation of p38 MAPK, but not ERK and JNK. The suppressive effect of CNB-001 on NO production was mimicked by blockade of the p38 MAPK signaling pathway with SB203580. These results suggest that CNB-001 exerts anti-inflammatory effects through inhibition of NF-κB and p38 MAPK pathways in microglia.
Collapse
Affiliation(s)
- Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo 202-8585, Japan.
| |
Collapse
|
1358
|
Seigner J, Basilio J, Resch U, de Martin R. CD40L and TNF both activate the classical NF-κB pathway, which is not required for the CD40L induced alternative pathway in endothelial cells. Biochem Biophys Res Commun 2017; 495:1389-1394. [PMID: 29183724 DOI: 10.1016/j.bbrc.2017.11.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/16/2022]
Abstract
CD40L and TNF signal through engagement of their respective receptors, which are both members of the TNF receptor family. They use partially common signaling molecules leading, among others, to activation of the NF-κB pathway. However, whereas TNF activates the classical, CD40L has been reported to activate the alternative NF-κB pathway, leading to the anticipation that differences in the pattern of inflammatory gene expression would occur. Here, we have compared the gene expression repertoire of CD40L (CD154) and TNF stimulated HUVEC and report that unexpectedly, apart from a stronger response to TNF, no major qualitative differences could be observed. This applies for the period of up to 6 h, a time where the alternative pathway has already been activated. Analysis of the early events after receptor engagement revealed that both TNF and CD40L activate the classical NF-κB pathway, and confirm activation of the alternative by the latter. Furthermore, using genetic and pharmacological inhibition of the classical pathway we show that activation of the alternative occurs independently of the former. This reveals novel insights into NF-κB signaling by CD40L and TNF in endothelial cells.
Collapse
Affiliation(s)
- J Seigner
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - J Basilio
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - U Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria
| | - R de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
1359
|
KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. Int J Mol Sci 2017; 18:ijms18112383. [PMID: 29125549 PMCID: PMC5713352 DOI: 10.3390/ijms18112383] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
KLF2 (Kruppel-like factor 2) is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB) is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.
Collapse
|
1360
|
Zhu H, Jia Z, Trush MA, Li YR. In Vivo Bioluminescence Imaging of Nuclear Factor kappaB Activation: A Valuable Model for Studying Inflammatory and Oxidative Stress in Live Mice. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2017; 4:382-388. [PMID: 29732415 PMCID: PMC5931218 DOI: 10.20455/ros.2017.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The nuclear factor kappaB (NF-κB) is a redox-sensitive transcription factor that plays a critical role in inflammation among other biological functions. This ROS Protocol article describes an in vivo bioluminescence imaging assay for assessing NF-κB activation using the commercially available transgenic mice carrying NF-κB response element-luciferase reporter gene (NF-κB-RE-Luc). Using the highly sensitive Berthold NightOwl LB981 in vivo bioluminescence imaging system, we are able to visualize the NF-κB activation in live mice under basal conditions, suggesting constitutive activation of NF-κB as a part of its fundamental biology. Treatment of mice with lipopolysaccharides (LPS) results in a drastic increase in bioluminescence, proving the validity of the model in assessing inflammatory stress. Treatment of mice with 3H-1,2-dithiole-3-thione (D3T), an activator of nuclear factor E-2 related factor 2 (Nrf2), led to a significant reduction in both basal and LPS-induced activation of NF-κB in the live mice, suggesting a value of this model in assessing drug efficacy in suppressing NF-κB activation and inflammatory stress. The protocols of this valuable model are detailed in this article along with a discussion of its potential use in studying disease conditions involving inflammatory and oxidative stress mechanisms and in assessing therapeutic modalities targeting the NF-κB signaling for disease intervention.
Collapse
Affiliation(s)
- Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Zhenquan Jia
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC 27506, USA
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
1361
|
Qin S, Huang K, Fang Z, Yin J, Dai R. The effect of Astragaloside IV on ethanol-induced gastric mucosal injury in rats: Involvement of inflammation. Int Immunopharmacol 2017; 52:211-217. [DOI: 10.1016/j.intimp.2017.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
|
1362
|
Wang P, Xu J, Wang Y, Cao X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science 2017; 358:1051-1055. [PMID: 29074580 DOI: 10.1126/science.aao0409] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Viruses regulate host metabolic networks to improve their survival. The molecules that are responsive to viral infection and regulate such metabolic changes are hardly known, but are essential for understanding viral infection. Here we identify a long noncoding RNA (lncRNA) that is induced by multiple viruses, but not by type I interferon (IFN-I), and facilitates viral replication in mouse and human cells. In vivo deficiency of lncRNA-ACOD1 (a lncRNA identified by its nearest coding gene Acod1, aconitate decarboxylase 1) significantly attenuates viral infection through IFN-I-IRF3 (interferon regulatory factor 3)-independent pathways. Cytoplasmic lncRNA-ACOD1 directly binds the metabolic enzyme glutamic-oxaloacetic transaminase (GOT2) near the substrate niche, enhancing its catalytic activity. Recombinant GOT2 protein and its metabolites could rescue viral replication upon lncRNA-ACOD1 deficiency and increase lethality. This work reveals a feedback mechanism of virus-induced lncRNA-mediated metabolic promotion of viral infection and a potential target for developing broad-acting antiviral therapeutics.
Collapse
Affiliation(s)
- Pin Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Junfang Xu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yujia Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China. .,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Immunology and Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
1363
|
Trahtemberg U, Mevorach D. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Front Immunol 2017; 8:1356. [PMID: 29118755 PMCID: PMC5661053 DOI: 10.3389/fimmu.2017.01356] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022] Open
Abstract
Inefficient and abnormal clearance of apoptotic cells (efferocytosis) contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs), and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer). Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1) or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid-activated nuclear receptors, Tyro3, Axl, and Mertk receptors, as well as induction of signal transducer and activator of transcription 1 and suppressor of cytokine signaling that lead to immune system silencing and DC tolerance. These properties of apoptotic cells are the mechanisms that enable their successful use as therapeutic modalities in mice and humans in various autoimmune diseases, organ transplantation, graft-versus-host disease, and sepsis.
Collapse
Affiliation(s)
- Uriel Trahtemberg
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology Research Center, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
1364
|
Schreihofer DA, Oppong-Gyebi A. Genistein: mechanisms of action for a pleiotropic neuroprotective agent in stroke. Nutr Neurosci 2017; 22:375-391. [PMID: 29063799 DOI: 10.1080/1028415x.2017.1391933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genistein is a plant estrogen promoted as an alternative to post-menopausal hormone therapy because of a good safety profile and its promotion as a natural product. Several preclinical studies of cerebral ischemia and other models of brain injury support a beneficial role for genistein in protecting the brain from injury whether administered chronically or acutely. Like estrogen, genistein is a pleiotropic molecule that engages several different mechanisms to enhance brain health, including reduction of oxidative stress, promotion of growth factor signaling, and immune suppression. These actions occur in endothelial, glial, and neuronal cells to provide a coordinated beneficial action to ischemic challenge. Though many of these protective actions are associated with estrogen-like actions of genistein, additional activities on other receptors and intracellular targets suggest that genistein is more than a mere estrogen-mimic. Importantly, genistein lacks some of the detrimental effects associated with post-menopausal estrogen treatment and may provide an alternative to hormone therapy in those patients at risk for ischemic events.
Collapse
Affiliation(s)
- Derek A Schreihofer
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| | - Anthony Oppong-Gyebi
- a Center for Neuroscience Discovery and Institute for Healthy Aging , University of North Texas Health Science Center at Fort Worth , 3500 Camp Bowie Boulevard, Fort Worth , TX 76107 , USA
| |
Collapse
|
1365
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
1366
|
Huang Q, Xie D, Mao H, Wang H, Wu Z, Huang K, Wan Y, Xu Q, Hu C. Ctenopharyngodon idella p53 mediates between NF-κB and PKR at the transcriptional level. FISH & SHELLFISH IMMUNOLOGY 2017; 69:258-264. [PMID: 28818618 DOI: 10.1016/j.fsi.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
p53, NF-κB and PKR are well-known to be involved in antiviral response. Although p53 has been reported in fish, its role in the regulation of NF-κB and PKR is not well understood. Here, we cloned and characterized the full length of cDNA sequence of grass carp (Ctenopharyngodon idella) p53 (Cip53) and its promoter sequence. The full length cDNA of Cip53 was 1879 bp with an ORF of 1116 bp encoding a polypeptide of 371 amino acids. Phylogenetic tree analysis revealed that Cip53 shares high homology with Dario rerio p53 (Drp53). Similar to those of Cip65 and CiPKR, the expression of Cip53 in CIK cells was significantly up-regulated after stimulation with poly I:C. To further understand the roles of fish p53 in the transcriptional control of NF-κB and PKR, Cip53 and Cip65 were expressed in E. coli BL21 and purified by affinity chromatography with the Ni-NTA His-Bind resin. In vitro, gel mobility shift assays demonstrated that the high affinity interaction between Cip65 and Cip53 promoter. Similarly, Cip53 bound to CiPKR promoter with high affinity. Dual-luciferase reporter assays showed that Cip65 activated Cip53 promoter and Cip53 activated CiPKR promoter, respectively. In addition, the role of p53 in p65-p53-PKR transcription pathway was explored. When Cip53 was knockdown in CIK cells, the mRNA levels of Cip65 and CiPKR were decreased. Taken together, p53 may play pivotal roles in transcription pathway of NF-κB and PKR in fish.
Collapse
Affiliation(s)
- Qingli Huang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Dingkun Xie
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Haizhou Wang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Keyi Huang
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Yiqi Wan
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Qun Xu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- College of Life Science, Key Laboratory of Poyang Lake Environment and Resource, Ministry of Education, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
1367
|
Kobayashi K, Hiramatsu H, Nakamura S, Kobayashi K, Haraguchi T, Iba H. Tumor suppression via inhibition of SWI/SNF complex-dependent NF-κB activation. Sci Rep 2017; 7:11772. [PMID: 28924147 PMCID: PMC5603518 DOI: 10.1038/s41598-017-11806-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NF-κB is constitutively activated in many epithelial tumors but few NF-κB inhibitors are suitable for cancer therapy because of its broad biological effects. We previously reported that the d4-family proteins (DPF1, DPF2, DPF3a/b) function as adaptor proteins linking NF-κB with the SWI/SNF complex. Here, using epithelial tumor cell lines, A549 and HeLaS3, we demonstrate that exogenous expression of the highly-conserved N-terminal 84-amino acid region (designated "CT1") of either DPF2 or DPF3a/b has stronger inhibitory effects on anchorage-independent growth than the single knockdown of any d4-family protein. This indicates that CT1 can function as an efficient dominant-negative mutant of the entire d4-family proteins. By in situ proximity ligation assay, CT1 was found to retain full adaptor function, indicating that the C-terminal region of d4-family proteins lacking in CT1 would include essential domains for SWI/SNF-dependent NF-κB activation. Microarray analysis revealed that CT1 suppresses only a portion of the NF-κB target genes, including representative SWI/SNF-dependent genes. Among these genes, IL6 was shown to strongly contribute to anchorage-independent growth. Finally, exogenous CT1 expression efficiently suppressed tumor formation in a mouse xenograft model, suggesting that the d4-family proteins are promising cancer therapy targets.
Collapse
Affiliation(s)
- Kazuyoshi Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hiroaki Hiramatsu
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Shinya Nakamura
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kyousuke Kobayashi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takeshi Haraguchi
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Hideo Iba
- Division of Host-Parasite Interaction, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Division of RNA Therapy, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan.
| |
Collapse
|
1368
|
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18:861-869. [PMID: 28722711 DOI: 10.1038/ni.3772] [Citation(s) in RCA: 543] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 11/09/2022]
Abstract
A properly mounted immune response is indispensable for recognizing and eliminating danger arising from foreign invaders and tissue trauma. However, the 'inflammatory fire' kindled by the host response must be tightly controlled to prevent it from spreading and causing irreparable damage. Accordingly, acute inflammation is self-limiting and is normally attenuated after elimination of noxious stimuli, restoration of homeostasis and initiation of tissue repair. However, unresolved inflammation may lead to the development of chronic autoimmune and degenerative diseases and cancer. Here, we discuss the key molecular mechanisms that contribute to the self-limiting nature of inflammatory signaling, with emphasis on the negative regulation of the NF-κB pathway and the NLRP3 inflammasome. Understanding these negative regulatory mechanisms should facilitate the development of much-needed therapeutic strategies for treatment of inflammatory and autoimmune pathologies.
Collapse
Affiliation(s)
- Inna S Afonina
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Zhenyu Zhong
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
1369
|
CDK8/19 Mediator kinases potentiate induction of transcription by NFκB. Proc Natl Acad Sci U S A 2017; 114:10208-10213. [PMID: 28855340 DOI: 10.1073/pnas.1710467114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear factor-κB (NFκB) family of transcription factors has been implicated in inflammatory disorders, viral infections, and cancer. Most of the drugs that inhibit NFκB show significant side effects, possibly due to sustained NFκB suppression. Drugs affecting induced, but not basal, NFκB activity may have the potential to provide therapeutic benefit without associated toxicity. NFκB activation by stress-inducible cell cycle inhibitor p21 was shown to be mediated by a p21-stimulated transcription-regulating kinase CDK8. CDK8 and its paralog CDK19, associated with the transcriptional Mediator complex, act as coregulators of several transcription factors implicated in cancer; CDK8/19 inhibitors are entering clinical development. Here we show that CDK8/19 inhibition by different small-molecule kinase inhibitors or shRNAs suppresses the elongation of NFκB-induced transcription when such transcription is activated by p21-independent canonical inducers, such as TNFα. On NFκB activation, CDK8/19 are corecruited with NFκB to the promoters of the responsive genes. Inhibition of CDK8/19 kinase activity suppresses the RNA polymerase II C-terminal domain phosphorylation required for transcriptional elongation, in a gene-specific manner. Genes coregulated by CDK8/19 and NFκB include IL8, CXCL1, and CXCL2, which encode tumor-promoting proinflammatory cytokines. Although it suppressed newly induced NFκB-driven transcription, CDK8/19 inhibition in most cases had no effect on the basal expression of NFκB-regulated genes or promoters; the same selective regulation of newly induced transcription was observed with other transcription signals potentiated by CDK8/19. This selective role of CDK8/19 identifies these kinases as mediators of transcriptional reprogramming, a key aspect of development and differentiation as well as pathological processes.
Collapse
|
1370
|
Wu Y, Zhang J, Zheng Y, Ma C, Liu XE, Sun X. miR-216a-3p Inhibits the Proliferation, Migration, and Invasion of Human Gastric Cancer Cells via Targeting RUNX1 and Activating the NF-κB Signaling Pathway. Oncol Res 2017; 26:157-171. [PMID: 28835317 PMCID: PMC7844601 DOI: 10.3727/096504017x15031557924150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This work aims to elucidate the effects and the potential underlying mechanisms of microRNA-216a-3p (miR-216a-3p) on the proliferation, migration, and invasion of gastric cancer (GC) cells. In this study, we revealed that the expression of miR-216a-3p was significantly elevated in GC tissues and cell lines. The different expression level of miR-216a-3p was firmly correlated with clinicopathological characteristics of GC patients. We next demonstrated that upregulation of miR-216a-3p could dramatically promote the ability of proliferation, migration, and invasion of GC cells using a series of experiments, whereas downregulation essentially inhibited these properties. Additionally, through bioinformatics analysis and biological approaches, we confirmed that runt-related transcription factor 1 (RUNX1) was a direct target of miR-216a-3p, and overexpression of RUNX1 could reverse the potential effect of miR-216a-3p on GC cells. Furthermore, mechanistic investigation using Western blot analysis showed that downregulation of RUNX1 by miR-216a-3p could stimulate the activation of NF-κB signaling pathway. In summary, this work proved that miR-216a-3p can promote GC cell proliferation, migration, and invasion via targeting RUNX1 and activating the NF-κB signaling pathway. Therefore, miR-216a-3p/RUNX1 could be a possible molecular target for innovative therapeutic agents against GC.
Collapse
Affiliation(s)
- Yinfang Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Jun Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Yu Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Cheng Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Xing-E Liu
- Department of Medical Oncology, Zhejiang Hospital, Hangzhou, Zhejiang Province, P.R. China
| | - Xiaodong Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
1371
|
Begalli F, Bennett J, Capece D, Verzella D, D'Andrea D, Tornatore L, Franzoso G. Unlocking the NF-κB Conundrum: Embracing Complexity to Achieve Specificity. Biomedicines 2017; 5:E50. [PMID: 28829404 PMCID: PMC5618308 DOI: 10.3390/biomedicines5030050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor κB (NF-κB) family are central coordinating regulators of the host defence responses to stress, injury and infection. Aberrant NF-κB activation also contributes to the pathogenesis of some of the most common current threats to global human health, including chronic inflammatory diseases, autoimmune disorders, diabetes, vascular diseases and the majority of cancers. Accordingly, the NF-κB pathway is widely considered an attractive therapeutic target in a broad range of malignant and non-malignant diseases. Yet, despite the aggressive efforts by the pharmaceutical industry to develop a specific NF-κB inhibitor, none has been clinically approved, due to the dose-limiting toxicities associated with the global suppression of NF-κB. In this review, we summarise the main strategies historically adopted to therapeutically target the NF-κB pathway with an emphasis on oncology, and some of the emerging strategies and newer agents being developed to pharmacologically inhibit this pathway.
Collapse
Affiliation(s)
- Federica Begalli
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Jason Bennett
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daria Capece
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Daniel D'Andrea
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Laura Tornatore
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - Guido Franzoso
- Centre for Cell Signalling and Inflammation, Department of Medicine, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
1372
|
Lnc-ing inflammation to disease. Biochem Soc Trans 2017; 45:953-62. [PMID: 28687714 DOI: 10.1042/bst20160377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
Termed 'master gene regulators' long ncRNAs (lncRNAs) have emerged as the true vanguard of the 'noncoding revolution'. Functioning at a molecular level, in most if not all cellular processes, lncRNAs exert their effects systemically. Thus, it is not surprising that lncRNAs have emerged as important players in human pathophysiology. As our body's first line of defense upon infection or injury, inflammation has been implicated in the etiology of several human diseases. At the center of the acute inflammatory response, as well as several pathologies, is the pleiotropic transcription factor NF-κβ. In this review, we attempt to capture a summary of lncRNAs directly involved in regulating innate immunity at various arms of the NF-κβ pathway that have also been validated in human disease. We also highlight the fundamental concepts required as lncRNAs enter a new era of diagnostic and therapeutic significance.
Collapse
|
1373
|
Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood 2017; 130:1456-1467. [PMID: 28679735 DOI: 10.1182/blood-2017-03-771600] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked recessive ectodermal dysplasia with immunodeficiency is a rare primary immunodeficiency caused by hypomorphic mutations of the IKBKG gene encoding the nuclear factor κB essential modulator (NEMO) protein. This condition displays enormous allelic, immunological, and clinical heterogeneity, and therapeutic decisions are difficult because NEMO operates in both hematopoietic and nonhematopoietic cells. Hematopoietic stem cell transplantation (HSCT) is potentially life-saving, but the small number of case reports available suggests it has been reserved for only the most severe cases. Here, we report the health status before HSCT, transplantation outcome, and clinical follow-up for a series of 29 patients from unrelated kindreds from 11 countries. Between them, these patients carry 23 different hypomorphic IKBKG mutations. HSCT was performed from HLA-identical related donors (n = 7), HLA-matched unrelated donors (n = 12), HLA-mismatched unrelated donors (n = 8), and HLA-haploidentical related donors (n = 2). Engraftment was documented in 24 patients, and graft-versus-host disease in 13 patients. Up to 7 patients died 0.2 to 12 months after HSCT. The global survival rate after HSCT among NEMO-deficient children was 74% at a median follow-up after HSCT of 57 months (range, 4-108 months). Preexisting mycobacterial infection and colitis were associated with poor HSCT outcome. The underlying mutation does not appear to have any influence, as patients with the same mutation had different outcomes. Transplantation did not appear to cure colitis, possibly as a result of cell-intrinsic disorders of the epithelial barrier. Overall, HSCT can cure most clinical features of patients with a variety of IKBKG mutations.
Collapse
|
1374
|
Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun 2017; 85:20-31. [PMID: 28676205 DOI: 10.1016/j.jaut.2017.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022]
Abstract
Cytokines are small, secreted proteins associated with the maintenance of immune homeostasis but also implicated with the pathogenesis of several autoimmune and inflammatory diseases. Biologic agents blocking cytokines or their receptors have revolutionized the treatment of such pathologies. Nonetheless, some patients fail to respond to these drugs or do not achieve complete remission. The signal transduction originating from membrane-bound cytokine receptors is an intricate network of events that lead to gene expression and ultimately regulate cellular functionality. Our understanding of the intracellular actions that molecules such as interleukins, interferons (IFNs) and tumor necrosis factor (TNF) set into motion has greatly increased in the past few years, making it possible to interfere with cytokines' signaling cascades. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), the mitogen activated protein kinase (MAPK) and the Phosphatidylinositol-3'-kinases (PI3K) pathways have all been intensively studied and key steps as well as molecules have been identified. These research efforts have led to the development of a new generation of small molecule inhibitors. Drugs capable of blocking JAK enzymatic activity or interfering with the proteasome-mediated degradation of intermediates in the NF-kB pathway have already entered the clinical arena confirming the validity of this approach. In this review, we have recapitulated the biochemical events downstream of cytokine receptors and discussed some of the drugs which have already been successfully utilized in the clinic. Moreover, we have highlighted some of the new molecules that are currently being developed for the treatment of immune-mediated pathologies and malignancies.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA.
| | - Nathalia Gazaniga
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Laura Vian
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Yasuko Furumoto
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| |
Collapse
|
1375
|
Hu L, Chang L, Zhang Y, Zhai L, Zhang S, Qi Z, Yan H, Yan Y, Luo X, Zhang S, Wang Y, Kunapuli SP, Ye H, Ding Z. Platelets Express Activated P2Y 12 Receptor in Patients With Diabetes Mellitus. Circulation 2017. [PMID: 28637879 DOI: 10.1161/circulationaha.116.026995] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Platelets from patients with diabetes mellitus are hyperactive. Hyperactivated platelets may contribute to cardiovascular complications and inadequate responses to antiplatelet agents in the setting of diabetes mellitus. However, the underlying mechanism of hyperactivated platelets is not completely understood. METHODS We measured P2Y12 expression on platelets from patients with type 2 diabetes mellitus and on platelets from rats with diabetes mellitus. We also assayed platelet P2Y12 activation by measuring cAMP and VASP phosphorylation. The antiplatelet and antithrombotic effects of AR-C78511 and cangrelor were compared in rats. Finally, we explored the role of the nuclear factor-κB pathway in regulating P2Y12 receptor expression in megakaryocytes. RESULTS Platelet P2Y12 levels are 4-fold higher in patients with type 2 diabetes mellitus compared with healthy subjects. P2Y12 expression correlates with ADP-induced platelet aggregation (r=0.89, P<0.01). P2Y12 in platelets from patients with diabetes mellitus is constitutively activated. Although both AR-C78511, a potent P2Y12 inverse agonist, and cangrelor have similar antiplatelet efficacy on platelets from healthy subjects, AR-C78511 exhibits more powerful antiplatelet effects on diabetic platelets than cangrelor (aggregation ratio 36±3% versus 49±5%, respectively, P<0.05). Using a FeCl3-injury mesenteric arteriole thrombosis model in rats and an arteriovenous shunt thrombosis model in rats, we found that the inverse agonist AR-C78511 has greater antithrombotic effects on GK rats with diabetes mellitus than cangrelor (thrombus weight 4.9±0.3 mg versus 8.3±0.4 mg, respectively, P<0.01). We also found that a pathway involving high glucose-reactive oxygen species-nuclear factor-κB increases platelet P2Y12 receptor expression in diabetes mellitus. CONCLUSIONS Platelet P2Y12 receptor expression is significantly increased and the receptor is constitutively activated in patients with type 2 diabetes mellitus, which contributes to platelet hyperactivity and limits antiplatelet drug efficacy in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Liang Hu
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Chang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Zhai
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyong Qi
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongmei Yan
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Yan
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinping Luo
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si Zhang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiping Wang
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Satya P Kunapuli
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongying Ye
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongren Ding
- From Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China (L.H., L.C., Y.Z., L.Z., Shenghui Z., Si Z., Z.D.); Division of Cardiovascular Disease (Z.Q.), Division of Endocrinology and Metabolism (H.Y.), Huashan Hospital, Fudan University, Shanghai, China; Department of Endocrinology and Metabolism (H.Y.), Division of Cardiovascular Disease (Y.Y.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Pharmacology I, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (L.H., Y.W.); Department of Physiology and Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA (S.P.K.). Dr Shenghui Zhang is presently at Department of Hematology, Wenzhou Key Laboratory of Hematology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
1376
|
Molecular mechanisms of human papillomavirus-related carcinogenesis in head and neck cancer. Microbes Infect 2017; 19:464-475. [PMID: 28619685 DOI: 10.1016/j.micinf.2017.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/04/2023]
Abstract
This review examines the general cellular and molecular underpinnings of human papillomavirus (HPV)-related carcinogenesis in the context of head and neck squamous cell carcinoma (HNSCC) and focuses on HPV-positive oropharyngeal squamous cell carcinoma in areas for which specific data is available. It covers the major pathways dysregulated in HPV-positive HNSCC and the genome-wide changes associated with this disease.
Collapse
|
1377
|
Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, Goldsmith JD, Geha RS, Chou J. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 2017; 214:1937-1947. [PMID: 28600438 PMCID: PMC5502421 DOI: 10.1084/jem.20160724] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Badran et al. demonstrate an essential contribution of biallelic RELA expression in protecting stromal and epithelial cells from TNF-mediated cell death in patients with chronic mucocutaneous ulceration. The treatment of chronic mucocutaneous ulceration is challenging, and only some patients respond selectively to inhibitors of tumor necrosis factor-α (TNF). TNF activates opposing pathways leading to caspase-8–mediated apoptosis as well as nuclear factor κB (NF-κB)–dependent cell survival. We investigated the etiology of autosomal-dominant, mucocutaneous ulceration in a family whose proband was dependent on anti-TNF therapy for sustained remission. A heterozygous mutation in RELA, encoding the NF-κB subunit RelA, segregated with the disease phenotype and resulted in RelA haploinsufficiency. The patients’ fibroblasts exhibited increased apoptosis in response to TNF, impaired NF-κB activation, and defective expression of NF-κB–dependent antiapoptotic genes. Rela+/− mice have similarly impaired NF-κB activation, develop cutaneous ulceration from TNF exposure, and exhibit severe dextran sodium sulfate–induced colitis, ameliorated by TNF inhibition. These findings demonstrate an essential contribution of biallelic RELA expression in protecting stromal cells from TNF-mediated cell death, thus delineating the mechanisms driving the effectiveness of TNF inhibition in this disease.
Collapse
Affiliation(s)
- Yousef R Badran
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | | | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
1378
|
Boisson B, Puel A, Picard C, Casanova JL. Human IκBα Gain of Function: a Severe and Syndromic Immunodeficiency. J Clin Immunol 2017; 37:397-412. [PMID: 28597146 DOI: 10.1007/s10875-017-0400-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/01/2017] [Indexed: 02/05/2023]
Abstract
Germline heterozygous gain-of-function (GOF) mutations of NFKBIA, encoding IκBα, cause an autosomal dominant (AD) form of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). Fourteen unrelated patients have been reported since the identification of the first case in 2003. All mutations enhanced the inhibitory activity of IκBα, by preventing its phosphorylation on serine 32 or 36 and its subsequent degradation. The mutation certainly or probably occurred de novo in 13 patients, whereas it was inherited from a parent with somatic mosaicism in one patient. Eleven mutations, belonging to two groups, were identified: (i) missense mutations affecting S32, S36, or neighboring residues (8 mutations, 11 patients) and (ii) nonsense mutations upstream from S32 associated with the reinitiation of translation downstream from S36 (3 mutations, 3 patients). Thirteen patients had developmental features of EDA, the severity and nature of which differed between cases. All patient cells tested displayed impaired NF-κB-mediated responses to the stimulation of various surface receptors involved in cell-intrinsic (fibroblasts), innate (monocytes), and adaptive (B and T cells) immunity, including TLRs, IL-1Rs, TNFRs, TCR, and BCR. All patients had profound B-cell deficiency. Specific immunological features, found in some, but not all patients, included a lack of peripheral lymph nodes, lymphocytosis, dysfunctional α/β T cells, and a lack of circulating γ/δ T cells. The patients had various pyogenic, mycobacterial, fungal, and viral severe infections. Patients with a missense mutation tended to display more severe phenotypes, probably due to higher levels of GOF proteins. In the absence of hematopoietic stem cell transplantation (HSCT), this condition cause death before the age of 1 year (one child). Two survivors have been on prophylaxis (at 9 and 22 years). Six children died after HSCT. Five survived, four of whom have been on prophylaxis (3 to 21 years post HSCT), whereas one has been well with no prophylaxis. Heterozygous GOF mutations in IκBα underlie a severe and syndromic immunodeficiency, the interindividual variability of which might partly be ascribed to the dichotomy of missense and nonsense mutations, and the hematopoietic component of which can be rescued by HSCT.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France.
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Study Center for Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
1379
|
Clavel G, Boissier MC, Sigaux J, Semerano L. Developments with experimental and investigational drugs for axial spondyloarthritis. Expert Opin Investig Drugs 2017; 26:833-842. [DOI: 10.1080/13543784.2017.1337744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gaëlle Clavel
- UMR 1125, Inserm, Bobigny, France
- Department of Internal Medicine, Fondation Rothschild, Paris, France
| | - Marie-Christophe Boissier
- UMR 1125, Inserm, Bobigny, France
- Sorbonne Paris Cité - Université Paris 13, Bobigny, France
- Service de Rhumatologie, Assistance Publique–Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, Bobigny, France
| | - Johanna Sigaux
- UMR 1125, Inserm, Bobigny, France
- Department of Rheumatology, Nice University Hospital, Nice, France
| | - Luca Semerano
- UMR 1125, Inserm, Bobigny, France
- Sorbonne Paris Cité - Université Paris 13, Bobigny, France
- Service de Rhumatologie, Assistance Publique–Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, Bobigny, France
| |
Collapse
|
1380
|
NF-κB in Hematological Malignancies. Biomedicines 2017; 5:biomedicines5020027. [PMID: 28561798 PMCID: PMC5489813 DOI: 10.3390/biomedicines5020027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations.
Collapse
|
1381
|
Ghamlouch H, Nguyen-Khac F, Bernard OA. Chronic lymphocytic leukaemia genomics and the precision medicine era. Br J Haematol 2017; 178:852-870. [DOI: 10.1111/bjh.14719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hussein Ghamlouch
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| | - Florence Nguyen-Khac
- INSERM U1138; Université Pierre et Marie Curie-Paris 6; Service d'Hématologie Biologique; Hôpital Pitié-Salpêtrière; APHP; Paris France
| | - Olivier A. Bernard
- Institut National De La Santé Et De La Recherche Médicale (INSERM) U1170; Villejuif France
- Gustave Roussy; Villejuif France
- Université Paris Saclay; Paris France
- Equipe Labellisée Ligue Nationale Contre Le Cancer; Paris France
| |
Collapse
|
1382
|
Kim W, Hendricks GL, Lee K, Mylonakis E. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs. Expert Opin Drug Discov 2017; 12:625-633. [PMID: 28402221 DOI: 10.1080/17460441.2017.1319358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.
Collapse
Affiliation(s)
- Wooseong Kim
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Gabriel Lambert Hendricks
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Kiho Lee
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| | - Eleftherios Mylonakis
- a Division of Infectious Diseases , Rhode Island Hospital, Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
1383
|
New Mechanism by Which Human Cytomegalovirus MicroRNAs Negate the Proinflammatory Response to Infection. mBio 2017; 8:mBio.00505-17. [PMID: 28420741 PMCID: PMC5395671 DOI: 10.1128/mbio.00505-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viruses have evolved many novel mechanisms to promote infection and to mitigate the host cell response to that infection. In the article by M. H. Hancock et al. (mBio 8:e00109-17, 2017, https://doi.org/10.1128/mBio.00109-17), the authors describe a new mechanism by which human cytomegalovirus (HCMV) microRNAs (miRNAs; miR-US5-1 and miR-UL112-3p) negate the proinflammatory response to infection. The authors document that these two viral miRNAs downregulate the NF-κB response through direct targeting of the IKKα and IKKβ mRNAs, which in turn, through diminished IκB kinases (IKKs), block production of proinflammatory cytokines (interleukin-6 [IL-6], CCL5, and tumor necrosis factor alpha [TNF-α]). Because most signaling pathways that promote NF-κB activation and nuclear translocation ultimately converge on the activation of the IKK complex, this new study documents that HCMV can strongly dictate how infected cells respond to internal and/or external stimuli and thus positively influence the outcome of both lytic and latent infection.
Collapse
|
1384
|
Activation of muscarinic receptors prevents TNF-α-mediated intestinal epithelial barrier disruption through p38 MAPK. Cell Signal 2017; 35:188-196. [PMID: 28412413 DOI: 10.1016/j.cellsig.2017.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 02/08/2023]
Abstract
Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.
Collapse
|
1385
|
Hakansson AP, Bergenfelz C. Low NF-κB Activation and Necroptosis in Alveolar Macrophages: A New Virulence Property of Streptococcus pneumoniae. J Infect Dis 2017; 216:402-404. [DOI: 10.1093/infdis/jix161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023] Open
|
1386
|
Goto E, Tokunaga F. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP. Biochem Biophys Res Commun 2017; 485:152-159. [PMID: 28189684 DOI: 10.1016/j.bbrc.2017.02.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023]
Abstract
NF-κB is crucial to regulate immune and inflammatory responses and cell survival. LUBAC generates a linear ubiquitin chain and activates NF-κB through ubiquitin ligase (E3) activity in the HOIP subunit. Here, we show that HOIP is predominantly cleaved by caspase at Asp390 upon apoptosis, and that is subjected to proteasomal degradation. We identified that FADD, as well as NEMO, is a substrate for LUBAC. Although the C-terminal fragment of HOIP retains NF-κB activity, linear ubiquitination of NEMO and FADD decreases upon apoptosis. Moreover, the N-terminal fragment of HOIP binds with deubiquitinases, such as OTULIN and CYLD-SPATA2. These results indicate that caspase-mediated cleavage of HOIP divides critical functional regions of HOIP, and that this regulates linear (de)ubiquitination of substrates upon apoptosis.
Collapse
Affiliation(s)
- Eiji Goto
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| |
Collapse
|