1351
|
Chang YJ, Holtzman MJ, Chen CC. Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway. J Biol Chem 2002; 277:7118-26. [PMID: 11751911 DOI: 10.1074/jbc.m109924200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon-gamma (IFN-gamma) induced intercellular adhesion molecule-1 (ICAM-1) expression in human NCI-H292 epithelial cells, as shown by enzyme-linked immunosorbent assay and immunofluorescence staining. The enhanced ICAM-1 expression resulted in increased adhesion of U937 cells to NCI-H292 cells. Tyrosine kinase inhibitors (genistein or herbimycin), Src family inhibitor (PP2), or a phosphatidylinositol-phospholipase C inhibitor (U73122) attenuated the IFN-gamma-induced ICAM-1 expression. Protein kinase C (PKC) inhibitors (staurosporine or Ro 31-8220) also inhibited IFN-gamma-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression; this effect was inhibited by tyrosine kinase or Src inhibitor. ICAM-1 promoter activity was enhanced by IFN-gamma and TPA in cells transfected with pIC339-Luc, containing the downstream NF-kappaB and gamma-activated site (GAS) sites, but not in cells transfected with GAS-deletion mutant, pIC135 (DeltaAP2). Electrophoretic gel mobility shift assay demonstrated that GAS-binding complexes in IFN-gamma-stimulated cells contained STAT1alpha. The IFN-gamma-induced ICAM-1 promoter activity was inhibited by tyrosine kinase inhibitors, a phosphatidylinositol-phospholipase C inhibitor, or PKC inhibitors, and the TPA-induced ICAM-1 promoter activity was also inhibited by tyrosine kinase inhibitors. Cotransfection with a PLC-gamma2 mutant inhibited IFN-gamma- but not TPA-induced ICAM-1 promoter activity. However, cotransfection with dominant negative mutants of PKCalpha or c-Src inhibited both IFN-gamma- and TPA-induced ICAM-1 promoter activity. The ICAM-1 promoter activity was stimulated by cotransfection with wild type PLC-gamma2, PKCalpha, c-Src, JAK1, or STAT1. An immunocomplex kinase assay showed that both IFN-gamma and TPA activated c-Src and Lyn activities and that these effects were inhibited by staurosporine and herbimycin. Thus, in NCI-H292 epithelial cells, IFN-gamma activates PLC-gamma2 via an upstream tyrosine kinase to induce activation of PKC-alpha and c-Src or Lyn, resulting in activation of STAT1alpha, and GAS in the ICAM-1 promoter, followed by initiation of ICAM-1 expression and monocyte adhesion.
Collapse
Affiliation(s)
- Ya-Jen Chang
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, 1st Section, Taipei 10018, Taiwan
| | | | | |
Collapse
|
1352
|
Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J. Kaposi's Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 2002; 277:6438-42. [PMID: 11741976 DOI: 10.1074/jbc.m108289200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an important pathogen in Kaposi's sarcoma and abnormal lymphoproliferation. KSHV open reading frame 50 (ORF50), a homolog of the Epstein-Barr virus immediate-early gene product RTA, activates early and late gene transcription in the KSHV lytic cycle, and its expression is closely correlated with KSHV-related diseases. ORF50 interacts with the cellular proteins CBP and histone deacetylase and represses p53-induced apoptosis through a CBP-related mechanism. We show here that KSHV ORF50 also interacts with STAT3. ORF50 stimulated transcription of STAT-driven reporter genes, and interleukin-6 and v-Src further activated this stimulating effect of ORF50. Physical association of STAT3 and ORF50 required the carboxyl-terminal transactivation domain of ORF50 and multiple regions within STAT3. ORF50 recruited STAT3 to the nucleus and induced the dimerization of STAT3 monomers in the absence of STAT3 phosphorylation. We show here that KSHV ORF50 activates STAT3-mediated transcription through direct interaction without mediating tyrosine phosphorylation.
Collapse
Affiliation(s)
- Yousang Gwack
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
1353
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 785] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
1354
|
Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, Levy DE, Inghirami G. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21:1038-47. [PMID: 11850821 DOI: 10.1038/sj.onc.1205152] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Revised: 10/25/2001] [Accepted: 10/31/2001] [Indexed: 11/08/2022]
Abstract
The anaplastic lymphoma kinase (ALK) gene is characteristically translocated in Anaplastic Large Cell Lymphomas (ALCL) and the juxtaposition of the ALK gene to multiple partners results in its constitutive protein tyrosine kinase activity. We show here that expression of activated ALK induces the constitutive phosphorylation of Stat3 in transfected cells as well as in primary human ALCLs. Furthermore, immunohistochemical studies demonstrate that among distinct human B and T cell lymphomas, activation of Stat3 nuclear translocation is uniquely associated with ALK expression. NPM-ALK also binds and activates Jak3; however, Jak3 is not required for Stat3 activation or for cell transformation in vitro. Moreover, src family kinases are not necessary for NPM-ALK-mediated Stat3 activation or transformation, suggesting that Stat3 may be phosphorylated directly by ALK. To evaluate relevant targets of ALK-activated Stat3, we investigated the regulation of the anti-apoptotic protein Bcl-x(L) and its role in cell survival in NPM-ALK positive cells. NPM-ALK expression caused enhanced Bcl-x(L) transcription, largely mediated by Stat3. Increased expression of Bcl-x(L) provided sufficient anti-apoptotic signals to protect cells from treatment with specific inhibitors of the Jaks/Stat pathway or the Brc-Abl kinase. These studies support a pathogenic mechanism whereby stimulation of anti-apoptotic signals through activation of Stat3 contributes to the successful outgrowth of ALK positive tumor cells.
Collapse
Affiliation(s)
- Alberto Zamo
- Department of Pathology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
1355
|
Elliott BE, Hung WL, Boag AH, Tuck AB. The role of hepatocyte growth factor (scatter factor) in epithelial-mesenchymal transition and breast cancer. Can J Physiol Pharmacol 2002; 80:91-102. [PMID: 11934261 DOI: 10.1139/y02-010] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
North American women have a one in eight lifetime risk of developing breast cancer, and approximately one in three women with breast cancer will die of metastases. We, and others, have recently shown that high levels of expression of hepatocyte growth factor (HGF) and its receptor Met are associated with invasive human breast cancer and may be causally linked to metastasis. This high level of HGF and Met expression has been considered as a possible indicator of earlier recurrence and shortened survival in breast cancer patients. In contrast, HGF expression (but not Met) is strongly suppressed in normal breast epithelial cells. HGF and Met are therefore candidate targets for therapeutic intervention in the treatment of breast cancer. We have recently demonstrated that sustained activation or hyper-activation of c-Src and Stat3, which occurs in invasive breast cancer, can stimulate strong expression of HGF in carcinoma cells. In contrast, transient induction of Stat3 occurs in normal epithelium and promotes mammary tubulogenesis. We hypothesize that increased autocrine HGF-Met signaling is a critical downstream function of c-Src-Stat3 activation in mammary tumorigenesis. Future studies will identify novel Stat3 consensus sites that regulate HGF promoter activity and HGF expression preferentially in carcinoma cells and could lead to novel therapeutic drugs that specifically block HGF expression in mammary carcinoma cells, and which could be used in combined treatments to abrogate metastasis.
Collapse
Affiliation(s)
- Bruce E Elliott
- Cancer Research Laboratories, Department of Pathology, Queen's University, Kingston, Canada.
| | | | | | | |
Collapse
|
1356
|
Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U, Mak TW. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2002; 99:618-26. [PMID: 11781246 DOI: 10.1182/blood.v99.2.618] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unique clinicopathologic features of Hodgkin lymphoma (HL) are due to the multiple cytokines produced by its neoplastic cells, the Hodgkin and Reed-Sternberg (HRS) cells. Cytokine signaling is mediated through the signal transducer and activator of transcription (STAT) family of transcription factors. Immunoblotting and immunohistochemistry were used to examine cell lines and tissue sections derived from patients with HL and non-Hodgkin lymphoma (NHL) for expression of activated STAT proteins. Constitutive phosphorylation of STAT6 and STAT3 was common in HL. STAT6 was constitutively phosphorylated in 5 of 5 HL cell lines and in HRS cells from 25 of 32 (78%) classical HL cases. STAT3 was constitutively phosphorylated in 4 of 5 HL cell lines and in HRS cells from 27 of 31 (87%) classical HL cases. Only 4 of 24 NHL cases demonstrated constitutive STAT6 activation, whereas STAT3 activation was observed in 6 of 13 (46%) cases of B-cell NHL and 8 of 11 (73%) cases of T-cell NHL. Constitutive STAT5 phosphorylation was not a common feature of HL or NHL. STAT6 mediates signaling by interleukin 13 (IL-13), a cytokine frequently expressed by HRS cells. Antibody-mediated neutralization of IL-13 resulted in significant decreases in both cellular proliferation and levels of phosphorylated STAT6 of HL cell lines. In conclusion, constitutive STAT6 phosphorylation is a common and distinctive feature of HRS cells in classical HL, whereas STAT3 activation was regularly present in both HL and NHL. These results suggest that IL-13 signaling is largely responsible for the constitutive STAT6 activation observed in HRS cells and further implicate IL-13 as an important growth factor in classical HL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Autocrine Communication
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cell Division
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytoskeletal Proteins
- DNA-Binding Proteins/metabolism
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/virology
- Humans
- Inflammation
- Interleukin-13/physiology
- Interleukin-13 Receptor alpha1 Subunit
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Male
- Middle Aged
- Milk Proteins
- Neoplasm Proteins/metabolism
- Paracrine Communication
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, Interleukin/physiology
- Receptors, Interleukin-13
- Reed-Sternberg Cells/metabolism
- Reed-Sternberg Cells/pathology
- STAT3 Transcription Factor
- STAT5 Transcription Factor
- STAT6 Transcription Factor
- Signal Transduction
- Trans-Activators/metabolism
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Brian F Skinnider
- Amgen Institute and Department of Oncologic Pathology, Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
1357
|
Zhang YW, Wang LM, Jove R, Vande Woude GF. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 2002; 21:217-26. [PMID: 11803465 DOI: 10.1038/sj.onc.1205004] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2001] [Revised: 09/12/2001] [Accepted: 10/01/2001] [Indexed: 11/09/2022]
Abstract
Hepatocyte Growth Factor/Scatter Factor (HGF/SF) mediates a wide variety of cellular responses by acting through the Met tyrosine kinase receptor. Inappropriate expression of HGF/SF and/or Met has been found in most types of solid tumors and is often associated with poor prognosis. Importantly, constitutional and sporadic activating mutations in Met have been discovered in human papillary renal carcinomas and other cancers, while autocrine and paracrine signaling of this receptor/ligand pair has been shown to contribute to tumorigenesis and metastasis. Numerous downstream signaling molecules have been implicated in HGF/SF-Met mediated tumorigenesis and metastasis. Stat3 is a downstream signaling molecule activated by HGF/SF-Met signaling, and is reported to contribute to cell transformation induced by a diverse set of oncoproteins. Stat3 is constitutively activated in many primary tumors and tumor cell lines, suggesting that signaling by this molecule may be important for cell transformation. To address whether Stat3 is required for HGF/SF-Met mediated tumorigenesis and metastasis, we introduced a dominant-negative form of Stat3, Stat3beta into the human leiomyosarcoma cell line SK-LMS-1. We found that Stat3beta has no effect on the transformed morphology, proliferation, invasion or branching morphogenesis in vitro. By contrast, expression of Stat3beta affected HGF/SF-Met mediated anchorage-independent colony formation and prevented tumorigenic growth in athymic nu/nu mice. Thus, Met signaling through Stat3 provides an essential function for tumorigenic growth, which is manifested in vitro by loss of anchorage-independent growth.
Collapse
Affiliation(s)
- Yu-Wen Zhang
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan, MI 49503, USA
| | | | | | | |
Collapse
|
1358
|
Sotomayor MG, Yu H, Antonia S, Sotomayor EM, Pardoll DM. Advances in gene therapy for malignant melanoma. Cancer Control 2002; 9:39-48. [PMID: 11907465 DOI: 10.1177/107327480200900106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The recent developments in the field of gene transfer have advanced the use of gene therapy as a novel strategy against a variety of human malignancies. Due to its unique set of characteristics, melanoma represents a suitable target for the clinical translation of the different gene transfer approaches recently developed. The goal of gene therapy targeted to melanoma cells is to introduce "suicide" genes, to transfer tumor suppressor genes, to inactivate aberrant oncogene expression, or to introduce genes encoding immunologically relevant molecules. Gene therapy targeted to the host's immune cells has been developed as an additional strategy to redirect immune responses against melanoma. METHODS The authors reviewed the published gene transfer studies in experimental models, as well as the results of gene therapy clinical trials for patients with melanoma. RESULTS Clinical trials have shown the feasibility and safety of gene therapy against malignant melanoma. Although no major successes have been reported, the positive results observed in some patients support the potential for gene therapy in the management of this disease. CONCLUSIONS Gene therapy of melanoma using current gene transfer approaches is feasible and safe. Better vector technology as well as increased understanding of the "bystander effect" triggered by gene transfer approaches would provide the tools to validate gene therapy as an effective modality of treatment for malignant melanoma.
Collapse
Affiliation(s)
- Maria G Sotomayor
- Cutaneous Oncology Program, H. Lee Moffitt Cancer Center & Research Institute at the University of South Florida, Tampa, USA
| | | | | | | | | |
Collapse
|
1359
|
Guasch G, Ollendorff V, Borg JP, Birnbaum D, Pébusque MJ. 8p12 stem cell myeloproliferative disorder: the FOP-fibroblast growth factor receptor 1 fusion protein of the t(6;8) translocation induces cell survival mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt/mTOR pathways. Mol Cell Biol 2001; 21:8129-42. [PMID: 11689702 PMCID: PMC99978 DOI: 10.1128/mcb.21.23.8129-8142.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The FOP-fibroblast growth factor receptor 1 (FGFR1) fusion protein is expressed as a consequence of a t(6;8) (q27;p12) translocation associated with a stem cell myeloproliferative disorder with lymphoma, myeloid hyperplasia and eosinophilia. In the present report, we show that the fusion of the leucine-rich N-terminal region of FOP to the catalytic domain of FGFR1 results in conversion of murine hematopoietic cell line Ba/F3 to factor-independent cell survival via an antiapoptotic effect. This survival effect is dependent upon the constitutive tyrosine phosphorylation of FOP-FGFR1. Phosphorylation of STAT1 and of STAT3, but not STAT5, is observed in cells expressing FOP-FGFR1. The survival function of FOP-FGFR1 is abrogated by mutation of the phospholipase C gamma binding site. Mitogen-activated protein kinase (MAPK) is also activated in FOP-FGFR1-expressing cells and confers cytokine-independent survival to hematopoietic cells. These results demonstrate that FOP-FGFR1 is capable of protecting cells from apoptosis by using the same effectors as the wild-type FGFR1. Furthermore, we show that FOP-FGFR1 phosphorylates phosphatidylinositol 3 (PI3)-kinase and AKT and that specific inhibitors of PI3-kinase impair its ability to promote cell survival. In addition, FOP-FGFR1-expressing cells show constitutive phosphorylation of the positive regulator of translation p70S6 kinase; this phosphorylation is inhibited by PI3-kinase and mTOR (mammalian target of rapamycin) inhibitors. These results indicate that translation control is important to mediate the cell survival effect induced by FOP-FGFR1. Finally, FOP-FGFR1 protects cells from apoptosis by survival signals including BCL2 overexpression and inactivation of caspase-9 activity. Elucidation of signaling events downstream of FOP-FGFR1 constitutive activation provides insight into the mechanism of leukemogenesis mediated by this oncogenic fusion protein.
Collapse
MESH Headings
- Animals
- Caspase 9
- Caspase Inhibitors
- Cell Line
- Cell Survival/drug effects
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 8/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Isoenzymes/metabolism
- Leucine/genetics
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipase C gamma
- Phosphorylation/drug effects
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- STAT1 Transcription Factor
- STAT3 Transcription Factor
- Signal Transduction/physiology
- TOR Serine-Threonine Kinases
- Trans-Activators/metabolism
- Transfection
- Translocation, Genetic/genetics
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- G Guasch
- Laboratoire d'Oncologie Moléculaire, INSERM U 119, IFR 57, Marseille, France
| | | | | | | | | |
Collapse
|
1360
|
Rao L, Puschner B, Prolla TA. Gene expression profiling of low selenium status in the mouse intestine: transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress. J Nutr 2001; 131:3175-81. [PMID: 11739862 DOI: 10.1093/jn/131.12.3175] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The essential trace mineral selenium (Se) has been shown previously to inhibit intestinal, prostate, lung and liver tumor development and associated mortality in both experimental animals and humans. Although Se is likely to be one of the most powerful cancer chemopreventive agents in the human diet, its mechanism of action is unknown. To better understand the biological consequences of alterations in Se status, the gene expression profile associated with low Se status in the intestine of C57Bl/6J mice was analyzed. Mice were fed either a high fat (14%), torula yeast-based, Se-deficient diet (<0.01 mg/kg) or the same diet supplemented with a high level of dietary Se (1 mg/kg, as seleno-L-methionine) for 90 d. Use of high density oligonucleotide arrays representing 6347 genes revealed that low Se status results in a differential gene expression pattern indicative of activation of genes involved in DNA damage, oxidative stress and cell cycle control, and a decrease in the expression of genes involved in detoxification. These results suggest that suboptimal intake of a single trace mineral can have broad effects on gene expression patterns, providing a framework for understanding the multiple beneficial effects of Se in cancer chemoprevention and human health.
Collapse
Affiliation(s)
- L Rao
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
1361
|
Abstract
Epstein-Barr virus (EBV) uses many different strategies to induce lymphocyte proliferation and survival. In the different states of EBV infection and latency, several genes play specific roles in the induction of cell growth and cell survival proteins. EBNA2A, EBNA-LP and EBNA3C all modulate early events in the G1 phase of the cell cycle. Furthermore, interleukin-6 and interleukin-10, which are induced following EBV infection, appear to be important for growth. They activate signalling pathways that have been shown to link directly to proliferation. Latent membrane protein 1 (LMP1) induces a number of anti-apoptotic proteins via NF- kappa B, and LMP2A also appears to contribute to lymphocyte survival. This paper describes some of the many cellular pathways modulated by EBV that interact with the signalling machinery and thus make lymphocytes survive and grow.
Collapse
Affiliation(s)
- P Brennan
- Infection & Immunity, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK. paul.brennanlab.net
| |
Collapse
|
1362
|
Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD, Jove R. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 2001; 276:45443-55. [PMID: 11579100 DOI: 10.1074/jbc.m107527200] [Citation(s) in RCA: 339] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic signaling proteins that participates in normal cellular responses to cytokines and growth factors. Frequently, however, constitutive activation of certain STAT family members, particularly Stat3, has accompanied a wide variety of human malignancies. To identify small molecule inhibitors of Stat3, we investigated the ability of the Stat3 SH2 domain-binding peptide, PY*LKTK (where Y* represents phosphotyrosine), to disrupt Stat3 activity in vitro. The presence of PY*LKTK, but not PYLKTK or PFLKTK, in nuclear extracts results in significant reduction in the levels of DNA binding activities of Stat3, to a lesser extent of Stat1, and with no effect on that of Stat5. Analyses of alanine scanning mutagenesis and deletion derivatives of PY*LKTK reveal that the Leu residue at the Y+1 position and a substituent at the Y-1 position (but not necessarily Pro) are essential for the disruption of active Stat3, thereby mapping the minimum active sequence to the tripeptide, XY*L. Studies involving bead-coupled PY*LKTK peptide demonstrate that this phosphopeptide directly complexes with Stat3 monomers in vitro, suggesting that PY*LKTK disrupts Stat3:Stat3 dimers. As evidence for the functional importance of peptide-directed inhibition of Stat3, PY*LKTK-mts (mts, membrane translocating sequence) selectively inhibits constitutive and ligand-induced Stat3 activation in vivo. Furthermore, PY*LKTK-mts suppresses transformation by the Src oncoprotein, which has been shown previously to require constitutive Stat3 activation. Altogether, we have identified a minimal peptide that inhibits Stat3 signaling and provides the conceptual basis for use of this peptide as a lead for novel peptidomimetic drug design.
Collapse
Affiliation(s)
- J Turkson
- Molecular Oncology and Drug Discovery Programs, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1363
|
Burke WM, Jin X, Lin HJ, Huang M, Liu R, Reynolds RK, Lin J. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001; 20:7925-34. [PMID: 11753675 DOI: 10.1038/sj.onc.1204990] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2001] [Revised: 08/13/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
Signal transducers and activators of transcription (STATs) are transcription factors activated in response to cytokines and growth factors. Constitutively active Stat3 has been shown to mediate oncogenic transformation in cultured cells and induce tumor formation in mice. An increasing number of tumor-derived cell lines as well as samples from human cancer have been reported to express constitutively active Stat3 protein. We previously demonstrated that ovarian cancer cell lines express high levels of constitutively active Stat3. In this study, we show that inhibition of the Stat3 signaling pathway using the Janus Kinase-selective inhibitor, AG490, and a dominant negative Stat3 (Stat3beta) significantly suppresses the growth of ovarian and breast cancer cell lines harboring constitutively active Stat3. In the ovarian cancer cell lines, AG490 also diminished the phosphorylation of Stat3, Stat3 DNA binding activity, and the expression of Bcl-x(L). Further, AG490 induced significant apoptosis in ovarian and breast cancer cell lines expressing high levels of constitutively active Stat3 but had a less profound effect on normal cells lacking constitutively active Stat3. AG490 also enhanced apoptosis induced by cisplatin in ovarian cancer cells. These results suggest that inhibition of Stat3 signaling may provide a potential therapeutic approach for treating ovarian and breast cancers.
Collapse
Affiliation(s)
- W M Burke
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, MI 48109-0936, USA
| | | | | | | | | | | | | |
Collapse
|
1364
|
Zhang Y, Liu G, Dong Z. MSK1 and JNKs mediate phosphorylation of STAT3 in UVA-irradiated mouse epidermal JB6 cells. J Biol Chem 2001; 276:42534-42. [PMID: 11553624 DOI: 10.1074/jbc.m106044200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of Tyr(705) and Ser(727) of signal transducer and activator of transcription 3 (STAT3) are known to be required for maximal activation by diverse stimuli. Tyr(705) phosphorylation is generally accepted to be mediated by the Janus kinase family. But the mechanism for STAT3 (Ser(727)) phosphorylation is not well understood. Here, we provide evidence that UVA-induced phosphorylation of STAT3 at Ser(727) is inhibited by pretreatment of JB6 cells with PD98059 or SB202190. Phosphorylation of STAT3 (Ser(727)) is also markedly prevented by a dominant negative mutant of ERK2, c-Jun N-terminal kinase 1 (JNK1), or p38 kinase and in knockout Jnk1(-/-) or Jnk2(-/-) cells. Furthermore, STAT3 (Ser(727)) phosphorylation is suppressed by C- or N-terminal "kinase-dead" mutants of mitogen- and stress-activated protein kinase 1 (MSK1), a downstream kinase of ERKs and p38 kinase, and H89, a potential MSK1 inhibitor. In vitro experiments showed that active MSK1 and JNKs, but not ERKs or p38 kinase, phosphorylate STAT3 (Ser(727)). Additionally, the role of MAPKs in mediating UVA-stimulated DNA binding activity of STAT3 was investigated. Overall, these results suggest that UVA-induced Ser(727) phosphorylation of STAT3 may occur through MSK1 and JNKs.
Collapse
Affiliation(s)
- Y Zhang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | |
Collapse
|
1365
|
Narimatsu M, Maeda H, Itoh S, Atsumi T, Ohtani T, Nishida K, Itoh M, Kamimura D, Park SJ, Mizuno K, Miyazaki J, Hibi M, Ishihara K, Nakajima K, Hirano T. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol Cell Biol 2001; 21:6615-25. [PMID: 11533249 PMCID: PMC99807 DOI: 10.1128/mcb.21.19.6615-6625.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Accepted: 07/02/2001] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) mediates signals of various growth factors and cytokines, including interleukin-6 (IL-6). In certain IL-6-responsive cell lines, the stat3 gene is autoregulated by STAT3 through a composite IL-6 response element in its promoter that contains a STAT3-binding element (SBE) and a cyclic AMP-responsive element. To reveal the nature and roles of the stat3 autoregulation in vivo, we generated mice that harbor a mutation in the SBE (stat3(mSBE)). The intact SBE was crucial for IL-6-induced stat3 gene activation in the spleen, especially in the red pulp region, the kidney, and both mature and immature T lymphocytes. The SBE was not required, however, for IL-6-induced stat3 gene activation in hepatocytes. T lymphocytes from the stat3(mSBE/mSBE) mice were more susceptible to apoptosis despite the presence of IL-6 than those from wild-type mice. Consistent with this, IL-6-dependent activation of the Pim-1 and junB genes, direct target genes for STAT3, was attenuated in T lymphocytes of the stat3(mSBE/mSBE) mice. Thus, the tissue-specific autoregulation of the stat3 gene operates in vivo and plays a role in IL-6-induced antiapoptotic signaling in T cells.
Collapse
Affiliation(s)
- M Narimatsu
- Department of Molecular Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1366
|
Kim H, Lee YH, Won J, Yun Y. Through induction of juxtaposition and tyrosine kinase activity of Jak1, X-gene product of hepatitis B virus stimulates Ras and the transcriptional activation through AP-1, NF-kappaB, and SRE enhancers. Biochem Biophys Res Commun 2001; 286:886-94. [PMID: 11527382 DOI: 10.1006/bbrc.2001.5496] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here, based on the recent finding of HBx (X-gene product of hepatitis B virus) as the inducer of Jak1, we investigated the mechanism for the HBx-mediated host cell regulation and found that (i) HBx associates specifically with Jak1 in vivo; (ii) HBx itself forms a dimer which leads to juxtaposition of associated Jak1 and subsequent activation of the tyrosine kinase activity of Jak1; (iii) HBx-mediated activation of the promoters containing AP-1-, NF-kappaB-, SRE-, and SIE-sites is dependent on the activation of Jak1; (iv) Jak1, once activated by HBx, induces Ras activity through recruitment of Grb2 and induces tyrosine phosphorylation of Raf1, but not shc. These findings show that previously reported functions of HBx, such as activation of multiple signaling pathways and transcriptional activation are attributable to HBx-mediated Jak1 activation.
Collapse
Affiliation(s)
- H Kim
- Division of Molecular Life Science and Center for Cell Signaling Research, Ewha Woman's University, 11-1 Daehyundong, Seoul, Seodaemoongu, 120-750, Korea
| | | | | | | |
Collapse
|
1367
|
Cetkovic-Cvrlje M, Roers BA, Waurzyniak B, Liu XP, Uckun FM. Targeting Janus kinase 3 to attenuate the severity of acute graft-versus-host disease across the major histocompatibility barrier in mice. Blood 2001; 98:1607-13. [PMID: 11520814 DOI: 10.1182/blood.v98.5.1607] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To prevent the development of acute graft-versus-host disease (GVHD) in lethally irradiated C57BL/6 (H-2b) recipient mice transplanted with bone marrow-splenocyte grafts from major histocompatibility complex (MHC) disparate BALB/c mice (H-2d), recipient mice were treated with the rationally designed JAK3 inhibitor WHI-P131 [4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline] (20 mg/kg, 3 times a day [tid]) daily from the day of bone marrow transplantation (BMT) until the end of the 85-day observation period. Total body irradiation (TBI)-conditioned, vehicle-treated control C57BL/6 mice (n = 38) receiving bone marrow-splenocyte grafts from BALB/c mice survived acute TBI toxicity, but they all developed histologically confirmed severe multi-organ GVHD and died after a median survival time of 37 days. WHI-P131 treatment (20 mg/kg intraperitoneally, tid) prolonged the median survival time of the BMT recipients to 56 days. The probability of survival at 2 months after BMT was 11% +/- 5% for vehicle-treated control mice (n = 38) and 41% +/- 9% for mice treated with WHI-P131 (n = 32) (P <.0001). Notably, the combination regimen WHI-P131 plus the standard anti-GVHD drug methotrexate (MTX) (10 mg/m2 per day) was more effective than WHI-P131 or MTX alone. More than half the C57BL/6 recipients receiving this most effective GVHD prophylaxis remained alive and healthy throughout the 85-day observation period, with a cumulative survival probability of 70% +/- 10%. Taken together, these results indicate that targeting JAK3 in alloreactive donor lymphocytes with a chemical inhibitor such as WHI-P131 may attenuate the severity of GVHD after BMT.
Collapse
Affiliation(s)
- M Cetkovic-Cvrlje
- Experimental BMT Program, Parker Hughes Cancer Center, and the Department of Immunology, Parker Hughes Institute, St Paul, MN 55113, USA
| | | | | | | | | |
Collapse
|
1368
|
Schuringa JJ, Wojtachnio K, Hagens W, Vellenga E, Buys CH, Hofstra R, Kruijer W. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene 2001; 20:5350-8. [PMID: 11536047 DOI: 10.1038/sj.onc.1204715] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2001] [Revised: 05/24/2001] [Accepted: 06/08/2001] [Indexed: 12/31/2022]
Abstract
The MEN2A oncogene encodes for a constitutive active member of the RET receptor tyrosine kinase family. Here, we report that MEN2A-RET activates Signal Transducer and Activator of Transcription 3 (STAT3) via two YxxV/Q STAT3 docking sites, Tyr752 and Tyr928. MEN2A-RET induces both Tyr705 and Ser727 phosphorylation of STAT3, and STAT3 serine phosphorylation is required for its maximal transcriptional activity. Stable NIH3T3 cell lines expressing both MEN2A-RET and STAT3alpha but not STAT3beta, are characterized by enhanced proliferation and cyclin-D1 promoter activity, and enhanced growth in soft agar. These data indicate that malignant cell growth induced by MEN2A-RET involves its activation of STAT3.
Collapse
Affiliation(s)
- J J Schuringa
- Department of Developmental Genetics, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
1369
|
Subramaniam PS, Torres BA, Johnson HM. So many ligands, so few transcription factors: a new paradigm for signaling through the STAT transcription factors. Cytokine 2001; 15:175-87. [PMID: 11563878 DOI: 10.1006/cyto.2001.0905] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- P S Subramaniam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
1370
|
Nicot C, Mulloy JC, Ferrari MG, Johnson JM, Fu K, Fukumoto R, Trovato R, Fullen J, Leonard WJ, Franchini G. HTLV-1 p12(I) protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. Blood 2001; 98:823-9. [PMID: 11468184 DOI: 10.1182/blood.v98.3.823] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p12(I) protein, encoded by the pX open reading frame I of the human T-lymphotropic virus type 1 (HTLV-1), is a hydrophobic protein that localizes to the endoplasmic reticulum and the Golgi. Although p12(I) contains 4 minimal proline-rich, src homology 3-binding motifs (PXXP), a characteristic commonly found in proteins involved in signaling pathways, it has not been known whether p12(I) has a role in modulating intracellular signaling pathways. This study demonstrated that p12(I) binds to the cytoplasmic domain of the interleukin-2 receptor (IL-2R) beta chain that is involved in the recruitment of the Jak1 and Jak3 kinases. As a result of this interaction, p12(I) increases signal transducers and activators of transcription 5 (STAT5) DNA binding and transcriptional activity and this effect depends on the presence of both IL-2R beta and gamma(c) chains and Jak3. Transduction of primary human peripheral blood mononuclear cells (PBMCs) with a human immunodeficiency virus type 1-based retroviral vector expressing p12(I) also resulted in increased STAT5 phosphorylation and DNA binding. However, p12(I) could increase proliferation of human PBMCs only after stimulation of T-cell receptors by treatment of cells with low concentrations of alphaCD3 and alphaCD28 antibodies. In addition, the proliferative advantage of p12(I)-transduced PBMCs was evident mainly at low concentrations of IL-2. Together, these data indicate that p12(I) may confer a proliferative advantage on HTLV-1-infected cells in the presence of suboptimal antigen stimulation and that this event may account for the clonal proliferation of infected T cells in vivo. (Blood. 2001;98:823-829)
Collapse
Affiliation(s)
- C Nicot
- National Cancer Institute, Basic Research Laboratory, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1371
|
Ning ZQ, Li J, McGuinness M, Arceci RJ. STAT3 activation is required for Asp(816) mutant c-Kit induced tumorigenicity. Oncogene 2001; 20:4528-36. [PMID: 11494148 DOI: 10.1038/sj.onc.1204590] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 04/14/2001] [Accepted: 04/27/2001] [Indexed: 12/13/2022]
Abstract
Activating mutations of c-kit at codon 816 (Asp(816)) have been identified in variety of malignancies, including acute myeloid leukemia (AML), mastocytosis and germ cell tumors. The mutant c-Kit receptor confers cytokine independence and induces tumorigenicity. However, the molecular mechanisms, particularly the changes in the signal transduction pathways, responsible for these biological effects induced by mutant c-Kit are largely undefined. Using the human embryonic kidney cell line, 293, we show in the current report that constitutive activation of STAT3 and STAT1 is associated with D816H mutant c-Kit. Transfection of dominant negative STAT3, but not STAT1 inhibits mutant c-Kit mediated anchorage-independent growth in vitro and tumor formation in vivo. Expression of constitutively activated STAT3 restores the mutant c-Kit receptor's transforming ability in 293 cells. These results demonstrate that activation of STAT3 by Asp(816) mutant c-Kit is required for the anchorage-independent growth and tumorigenicity induced by Asp(816) mutant c-Kit.
Collapse
Affiliation(s)
- Z Q Ning
- Division of Hematology/Oncology, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
1372
|
Deb A, Zamanian-Daryoush M, Xu Z, Kadereit S, Williams BR. Protein kinase PKR is required for platelet-derived growth factor signaling of c-fos gene expression via Erks and Stat3. EMBO J 2001; 20:2487-96. [PMID: 11350938 PMCID: PMC125453 DOI: 10.1093/emboj/20.10.2487] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase PKR is an interferon (IFN)-induced enzyme that controls protein synthesis through phosphorylation of eukaryotic initiation factor 2alpha (eIF-2alpha). PKR also regulates signals initiated by diverse stimuli, including dsRNA, IFN-gamma, tumor necrosis factor-alpha, interleukin-1 and lipopolysaccharide, to different transcription factors, resulting in pro-inflammatory gene expression. Stat3 plays an essential role in promoting cell survival and proliferation by different growth factors, including platelet-derived growth factor (PDGF). Here we show that PKR physically interacts with Stat3 and is required for PDGF-induced phosphorylation of Stat3 at Tyr705 and Ser727, resulting in DNA binding and transcriptional activation. PKR-mediated phosphorylation of Stat3 on Ser727 is indirect and channeled through ERKS: Although PKR is pre-associated with the PDGF beta-receptor, treatment with PDGF only modestly activates PKR. However, the induction of c-fos by PDGF is defective in PKR-null cells. Taken together, these results establish PKR as an upstream regulator of activation of Stat3 and as a common mediator of both growth-promoting and growth-inhibitory signals.
Collapse
Affiliation(s)
| | | | | | | | - Bryan R.G. Williams
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
Corresponding author e-mail:
| |
Collapse
|
1373
|
Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 2001; 98:7319-24. [PMID: 11404481 PMCID: PMC34666 DOI: 10.1073/pnas.131568898] [Citation(s) in RCA: 374] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Indexed: 12/30/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins perform key roles in mediating signaling by cytokines and growth factors, including platelet-derived growth factor (PDGF). In addition, Src family kinases activate STAT signaling and are required for PDGF-induced mitogenesis in normal cells. One STAT family member, Stat3, has been shown to have an essential role in cell transformation by the Src oncoprotein. However, the mechanisms by which STAT-signaling pathways contribute to mitogenesis and transformation are not fully defined. We show here that disruption of Stat3 signaling by using dominant-negative Stat3beta protein in NIH 3T3 fibroblasts suppresses c-Myc expression concomitant with inhibition of v-Src-induced transformation. Ectopic expression of c-Myc is able to partially reverse this inhibition, suggesting that c-Myc is a downstream effector of Stat3 signaling in v-Src transformation. Furthermore, c-myc gene knockout fibroblasts are refractory to transformation by v-Src, consistent with a requirement for c-Myc protein in v-Src transformation. In normal NIH 3T3 cells, disruption of Stat3 signaling with dominant-negative Stat3beta protein inhibits PDGF-induced mitogenesis in a manner that is reversed by ectopic c-Myc expression. Moreover, inhibition of Src family kinases with the pharmacologic agent, SU6656, blocks Stat3 activation by PDGF. These findings, combined together, delineate the signaling pathway, PDGF --> Src --> Stat3 --> Myc, that is important in normal PDGF-induced mitogenesis and subverted in Src transformation.
Collapse
Affiliation(s)
- T Bowman
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1374
|
Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp816 mutant c-Kit–mediated cytokine-independent survival and proliferation in human leukemia cells. Blood 2001; 97:3559-67. [PMID: 11369651 DOI: 10.1182/blood.v97.11.3559] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activating mutations of c-kit at codon 816 (Asp816) have been implicated in a variety of malignancies, including acute myeloid leukemia (AML). The mutant c-Kit receptor confers cytokine-independent survival of leukemia cells and induces tumorigenicity. Changes in the signal transduction pathways responsible for Asp816 mutant c-Kit–mediated biologic effects are largely undefined. The results of this study show that Asp816 mutant c-Kit induces constitutive activation of signal transducer and activator of transcription 3 (STAT3) and STAT1, and up-regulates STAT3 downstream targets, Bcl-xL and c-myc. The phosphatidylinositol-3-kinase (PI-3K)/Akt pathway, but not the Ras-mediated mitogen-activated protein (MAP) kinase pathway, is also constitutively activated by Asp816 mutant c-Kit. Suppression of STAT3 activation by a dominant negative molecule in MO7e leukemia cells transduced with mutant c-kit inhibits stem cell factor (SCF)-independent survival and proliferation, accompanied by the down-regulation of Bcl-xL and c-myc. However, activated STAT3 does not appear to be the sole mediator that is responsible for the phenotypic changes induced by Asp816 mutant c-Kit, because expression of constitutively activated STAT3 in MO7e cells does not completely reconstitute cytokine independence. Activation of other signaling components by mutant c-Kit, such as those in the PI-3K/Akt pathway, is demonstrated and may also be needed for the mutant c-Kit–mediated biologic effects. The investigation of altered signal transduction pathways and the resulting functional consequences mediated by Asp816 mutant c-Kit should provide important information for the characterization of subsets of leukemia and potential molecular pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Z Q Ning
- Division of Hematology/Oncology, Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | |
Collapse
|
1375
|
Affiliation(s)
- R L Ilaria
- Department of Medicine, Division of Hematology/Oncology, Simmons Cancer Center and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| |
Collapse
|
1376
|
Abstract
The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
Collapse
Affiliation(s)
- G S Martin
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall #3204, Berkeley, California 94720-3204, USA.
| |
Collapse
|
1377
|
Gadina M, Hilton D, Johnston JA, Morinobu A, Lighvani A, Zhou YJ, Visconti R, O'Shea JJ. Signaling by type I and II cytokine receptors: ten years after. Curr Opin Immunol 2001; 13:363-73. [PMID: 11406370 DOI: 10.1016/s0952-7915(00)00228-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Discovered during the past ten years, Janus kinases and signal transducers and activators of transcription have emerged as critical elements in cytokine signaling and immunoregulation. Recently, knockout mice for all the members of these families have been generated, with remarkably specific outcomes. Equally exciting is the discovery of a new class of inhibitors, the suppressor of cytokine signaling family. The phenotypes of mice deficient in these molecules are also striking, underscoring the importance of negative regulation in cytokine signaling.
Collapse
Affiliation(s)
- M Gadina
- Lymphocyte Cell Biology Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 20892, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
1378
|
Diao J, Garces R, Richardson CD. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev 2001; 12:189-205. [PMID: 11325602 DOI: 10.1016/s1359-6101(00)00034-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus produces chronic infections of the liver leading to cirrhosis and hepatocellular carcinoma. The X protein of hepatitis B virus (HBx) is a multifunctional protein that can interact with p53 but can also influence a variety of signal transduction pathways within the cell. In most instances this small viral protein favors cell survival and probably initiates hepatocarcinogenesis. HBx upregulates the activity of a number of transcription factors including NF-kappa B, AP-1, CREB, and TBP. However, the majority of HBx is localized to the cytoplasm where it interacts with and stimulates protein kinases such as protein kinase C, Janus kinase/STAT, IKK, PI-3-K, stress-activated protein kinase/Jun N-terminal kinase, and protein kinase B/Akt. This small viral protein can localize to the mitochondrion. HBx may act as an adaptor or kinase activator to influence signal transduction pathways. This review will attempt to analyze the involvement of HBx in signal transduction pathways during hepatitis B viral infections and hepatocellular carcinoma development.
Collapse
Affiliation(s)
- J Diao
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | | | |
Collapse
|
1379
|
Bienvenu F, Gascan H, Coqueret O. Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism. J Biol Chem 2001; 276:16840-7. [PMID: 11279133 DOI: 10.1074/jbc.m100795200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT3 transcription factors are cytoplasmic proteins that induce gene activation in response to cytokine receptor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate into the nucleus, and activate specific target genes. Activation is transient, and down-regulation of STAT3 signaling occurs within a few hours. In this study, we show that cyclin D1 inhibits STAT3 activation. In co-immunoprecipitation and pull-down assays, cyclin D1 was found to associate with the activation domain of STAT3 upon interleukin-6 stimulation. Overexpression of cyclin D1 inhibited transcriptional activation by STAT3 proteins. This effect was not shared by cyclin E, was independent of association with Cdk4, and was unaffected by inhibitors of Cdk4. Whereas cyclin D1 had no effect on the steady-state level of STAT3 proteins in the cytoplasm, it was found to reduce the STAT3 nuclear level in HepG2 cells. These results suggest a model by which cyclin D1 is part of a feedback network controlling the down-regulation of STAT3 activity and highlight a new activity for this cell cycle regulatory protein.
Collapse
Affiliation(s)
- F Bienvenu
- INSERM EMI-U 9928, Centre Hospitalier Universitaire Angers, 4 rue Larrey, 49033 Angers Cedex, France
| | | | | |
Collapse
|
1380
|
Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R, Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 2001; 20:2499-513. [PMID: 11420660 DOI: 10.1038/sj.onc.1204349] [Citation(s) in RCA: 573] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2000] [Revised: 02/01/2001] [Accepted: 02/05/2001] [Indexed: 01/13/2023]
Abstract
Constitutive activation of signal transducer and activator of transcription (STAT) proteins has been detected in a wide variety of human primary tumor specimens and tumor cell lines including blood malignancies, head and neck cancer, and breast cancer. We have previously demonstrated a high frequency of Stat3 DNA-binding activity that is constitutively-induced by an unknown mechanism in human breast cancer cell lines possessing elevated EGF receptor (EGF-R) and c-Src kinase activities. Using tyrosine kinase selective inhibitors, we show here that Src and JAK family tyrosine kinases cooperate to mediate constitutive Stat3 activation in the absence of EGF stimulation in model human breast cancer cell lines. Inhibition of Src or JAKs results in dose-dependent suppression of Stat3 DNA-binding activity, which is accompanied by growth inhibition and induction of programmed cell death. In addition, transfection of a dominant-negative form of Stat3 leads to growth inhibition involving apoptosis of breast cancer cells. These results indicate that the biological effects of the Src and JAK tyrosine kinase inhibitors are at least partially mediated by blocking Stat3 signaling. While EGF-R kinase activity is not required for constitutive Stat3 activation in breast cancer cells, EGF stimulation further increases STAT DNA-binding activity, consistent with an important role for EGF-R in STAT signaling and malignant progression. Analysis of primary breast tumor specimens from patients with advanced disease revealed that the majority exhibit elevated STAT DNA-binding activity compared to adjacent non-tumor tissues. Our findings, taken together, suggest that tyrosine kinases transduce signals through Stat3 protein that contribute to the growth and survival of human breast cancer cells in culture and potentially in vivo.
Collapse
Affiliation(s)
- R Garcia
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, Florida, FL 33612 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1381
|
Abstract
Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
Collapse
Affiliation(s)
- P Blume-Jensen
- The Salk Institute, Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
1382
|
Menegazzi M, Tedeschi E, Dussin D, De Prati AC, Cavalieri E, Mariotto S, Suzuki H. Anti-interferon gamma action of epigallocatechin-3-gallate mediated by specific inhibition of STAT1 activation. FASEB J 2001; 15:1309-11. [PMID: 11344123 DOI: 10.1096/fj.00-0519fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M Menegazzi
- Biochemistry Section, Department of Neuroscience and Vision, University of Verona, I-37134 Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
1383
|
Oakley GG, Roe AL, Blouin RA, Twaroski TP, Ganguly TC, Vore M, Lehmler HJ, Robertson LW. 2,4,4'-trichlorobiphenyl increases STAT5 transcriptional activity. Mol Carcinog 2001; 30:199-208. [PMID: 11346882 DOI: 10.1002/mc.1029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The promoting effects of polychlorinated biphenyls (PCBs) have been studied extensively in a variety of two-stage carcinogenesis models. However, the molecular mechanisms responsible for the promotion effects of PCBs have not been elucidated. We measured the effect of PCBs on DNA-binding proteins involved in cell proliferation and transformation. Male Sprague-Dawley rats were injected intraperitoneally with mono-, di-, tri-, tetra-, or hexachlorobiphenyls (300 micromol/kg/d) each day for 4 d and killed 4 h after the last injection. To detect alterations in nuclear proteins that could explain the tumor-promoter activity of PCBs, liver nuclear extracts were analyzed by electrophoretic mobility shift assays. Electrophoretic mobility shift assay analysis of signal transducers and activators of transcription (STAT)-binding activity to a consensus gamma-interferon-activated sequence (GAS) element was compared in liver nuclear extracts from treated rats. STAT-binding activity was eightfold to tenfold higher in nuclear extracts from animals treated with 2,4,4'-trichloro- (PCB 28) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153). Analysis of the protein complex binding to the GAS element, with antibodies specific for STAT3, STAT5, and STAT6, indicated that the protein complex was made up of STAT5 and STAT6 proteins. HepG2 cells transiently transfected with a luciferase reporter gene construct containing many STAT5 binding sites were treated with PCB 28 and PCB 153. PCB 28 stimulated a greater than 25-fold increase in luciferase activity at the highest concentration tested, 1.0 microg/mL. However, enhanced luciferase activity did not occur with PCB 153 treatment. 4-Chlorobiphenyl (PCB 3), PCB 28, and PCB 153 treatment of Sprague-Dawley rats resulted in a large increase in protein binding to a consensus activated protein-1 (AP-1) element. However, 3,4-dichlorobiphenyl (PCB 12) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) treatments did not increase AP-1 transcription activity. Further analysis of the proteins binding to the AP-1 consensus sequence with antibodies specific for c-fos, junD, and junB indicated that the protein composition consists of junD proteins. These data showed functional differences between noncoplanar and coplanar PCBs with respect to STAT activation and AP-1-DNA binding.
Collapse
Affiliation(s)
- G G Oakley
- Graduate Center for Toxicology, University of Kentucky Chandler Medical Center, Lexington 40536-0305, USA
| | | | | | | | | | | | | | | |
Collapse
|
1384
|
Abstract
The Janus family tyrosine kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway is broadly used by interferons and type I cytokines. These cytokines and interferons activate Janus family tyrosine kinases (Jak kinases), which in turn phosphorylate and thereby activate STAT proteins. Before activation, STAT proteins are cytosolic proteins; after activation, however, they are translocated to the nucleus where they function as transcription factors. This review summarizes salient features of the Jak-STAT pathway and focuses on the functional role of the different Jak kinases and STATs in vivo.
Collapse
Affiliation(s)
- W J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA
| |
Collapse
|
1385
|
Abstract
During the past few years studies from several laboratories have utilized gene disruption approaches to define the function of members of the Stat family of transcription factors. The results have demonstrated that each family member has unique, critical, non-redundant functions in signal transduction through members of the cytokine receptor superfamily. Many of the family members mediate functions associated with innate or acquired immunity. With the availability of mice deficient in one or more of the Stats, critical experiments are possible to evaluate the roles of Stat signal transduction pathways in cellular transformation as well as evaluating their specific roles in a range of cellular responses to cytokines.
Collapse
Affiliation(s)
- J N Ihle
- Department of Biochemistry, Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| |
Collapse
|
1386
|
Ram PT, Iyengar R. G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. Oncogene 2001; 20:1601-6. [PMID: 11313907 DOI: 10.1038/sj.onc.1204186] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracellular signals when routed through signaling pathways that use heterotrimeric G proteins can engage multiple signaling pathways leading to diverse biological consequences. One locus at which signal sorting occurs is at the level of G proteins. G protein alpha-subunits appear to be capable of interacting with different effectors leading to engagement of distinct signaling pathways. Regulation of different pathways in turn leads to different biological outcomes. The process of neoplastic transformation is controlled to a large extent through the activation and inhibition of signaling pathways. Signaling pathways such as the Ras-MAPK, v-Src-Stat3 pathways are activated in the process of transformation. Expression of activated Galpha subunits have been shown to cause transformation of cells. While activation of the MAPK 1,2 pathway by various Galpha subunits has been reported for several years, recent studies show the activation and involvement of Src and Stat3 pathways in Galphao and Galphai mediated transformation of cells. Recent studies also suggest that both Galphai and Galphas may be able to interact with and activate Src. The activation of Src and Stat3 by G proteins has also been demonstrated by ligand-induced activation of G protein receptors. So increasingly it is becoming clear that the Src and Stat3 pathways are potential effectors for G proteins and that they may play a role in G protein function.
Collapse
Affiliation(s)
- P T Ram
- Department of Pharmacology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
1387
|
Ivanov VN, Bhoumik A, Krasilnikov M, Raz R, Owen-Schaub LB, Levy D, Horvath CM, Ronai Z. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol Cell 2001; 7:517-28. [PMID: 11463377 DOI: 10.1016/s1097-2765(01)00199-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Decreased Fas expression during tumor progression often results in a loss of Fas-ligand (FasL)-mediated apoptosis. Human and mouse melanoma exhibit an inverse correlation between the degree of Fas cell surface expression, tumorigenicity, and metastatic capacity. The expression of dominant negative Stat3 or c-Jun in melanoma cells efficiently increased Fas expression and sensitized cells to FasL-induced apoptosis. Stat3+/- as well as c-Jun-/- cells exhibited increased Fas cell surface expression and higher sensitivity to FasL-mediated apoptosis. Suppression of Fas expression by Stat3 and c-Jun is uncoupled from Stat3-mediated transcriptional activation. Our findings indicate that Stat3 oncogenic activities could also be mediated through its cooperation with c-Jun, resulting in downregulation of Fas surface expression, which is implicated in the tumor's ability to resist therapy and metastasize.
Collapse
Affiliation(s)
- V N Ivanov
- The Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
1388
|
Chen H, Lee JM, Zong Y, Borowitz M, Ng MH, Ambinder RF, Hayward SD. Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol 2001; 75:2929-37. [PMID: 11222718 PMCID: PMC115919 DOI: 10.1128/jvi.75.6.2929-2937.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2000] [Accepted: 12/22/2000] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) latency gene expression in lymphoblastoid cell lines is regulated by EBNA2. However, the factors regulating viral expression in EBV-associated tumors that do not express EBNA2 are poorly understood. In EBV-associated tumors, EBNA1 and frequently LMP1 are synthesized. We found that an alternative latent membrane protein 1 (LMP1) promoter, L1-TR, located within the terminal repeats is active in both nasopharyngeal carcinoma and Hodgkin's disease tissues. Examination of the L1-TR and the standard ED-L1 LMP1 promoters in electrophoretic mobility shift assays revealed that both promoters contain functional STAT binding sites. Further, both LMP1 promoters responded in reporter assays to activation of JAK-STAT signaling. Cotransfection of JAK1 or v-Src or treatment of cells with the cytokine interleukin-6 upregulated expression from ED-L1 and L1-TR reporter plasmids. Cotransfection of a dominant negative STAT3 beta revealed that STAT3 is likely to be the biologically relevant STAT for EBNA1 Qp and LMP1 L1-TR promoter regulation. In contrast, LMP1 expression from ED-L1 was not abrogated by STAT3 beta, indicating that the two LMP1 promoters are regulated by different STAT family members. Taken together with the previous demonstration of JAK-STAT activation of Qp driven EBNA1 expression, this places two of the EBV genes most commonly expressed in tumors under the control of the same signal transduction pathway. Immunohistochemical analyses of nasopharyngeal carcinoma tumors revealed that STAT3, STAT5, and STAT1 are constitutively activated in these tumors while STAT3 is constitutively activated in the malignant cells of Hodgkin's disease. We hypothesize that chronic or aberrant STAT activation may be both a necessary and predisposing event for EBV-driven tumorigenesis in immunocompetent individuals.
Collapse
Affiliation(s)
- H Chen
- Oncology Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
1389
|
Monni R, Santos SC, Mauchauffe M, Berger R, Ghysdael J, Gouilleux F, Gisselbrecht S, Bernard O, Penard-Lacronique V. The TEL-Jak2 oncoprotein induces Socs1 expression and altered cytokine response in Ba/F3 cells. Oncogene 2001; 20:849-58. [PMID: 11314018 DOI: 10.1038/sj.onc.1204201] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2000] [Revised: 12/05/2000] [Accepted: 12/19/2000] [Indexed: 01/24/2023]
Abstract
The leukemia-associated TEL-Jak2 fusion protein possesses a constitutive tyrosine kinase activity and transforming properties in hematopoietic cell lines and animal models. In the murine pro-B Ba/F3 cell line, this fusion constitutively activates the Signal Transducer and Activator of Transcription 5 (Stat5) factors and, as a consequence, induces the sustained expression of various Stat5-target genes including the Cytokine Inducible SH2-containing protein (Cis) gene, which codes for a member of the Suppressor of Cytokine Signaling (Socs) protein family. In TEL-Jak2-transformed Ba/F3 cells, we also observed the upregulation of the Socs1 gene, whose product has been reported to negatively regulate the Jak kinase activity. In transient transfection experiments, Socs1 physically interacts with TEL-Jak2 and interferes with the TEL-Jak2-induced phosphorylation and activation of Stat5 factors, probably through the Socs1-induced proteasome-mediated degradation of the fusion protein. Interestingly, TEL-Jak2-expressing Ba/F3 cells were found to be resistant to the anti-proliferative activities of gamma interferon (IFN-gamma) seemingly as a consequence of Socs1 constitutive expression. These results indicate that the Socs1-dependent cytokine feedback loop, although active, is bypassed by the TEL-Jak2 fusion, but may play a role in the leukemogenic process by altering the cytokine responses of the leukemic cells. Our results also suggest that Socs1 plays a role in shutting down the signaling from the normally activated Jak2 kinase by inducing its proteasome-dependent degradation.
Collapse
Affiliation(s)
- R Monni
- INSERM U434, Centre d'Etude du Polymorphisme Humain (CEPH), 27 Rue Juliette Dodu, 75010 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1390
|
Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 2001. [PMID: 11171987 PMCID: PMC29293 DOI: 10.1073/pnas.041588198] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFN gamma-induced apoptosis. Me180 cells that express Stat3-C are protected against IFN gamma-mediated apoptosis.
Collapse
|
1391
|
Shen Y, Devgan G, Darnell JE, Bromberg JF. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 2001; 98:1543-8. [PMID: 11171987 PMCID: PMC29293 DOI: 10.1073/pnas.98.4.1543] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stats1 and 3 (signal transducers and activators of transcription) can be activated simultaneously, although not necessarily to the same degree or duration, by the interaction of cells with the same polypeptide ligand (EGF, PDGF, or high concentrations of IL-6, for example). However, these two Stat proteins can mediate opposing effects on cell growth and survival. Stat1 activation slows growth and promotes apoptosis. In contrast, activated Stat3 can protect cells from apoptosis. Furthermore, a constitutively active form of Stat3, Stat3-C (bridged by S-S linkages between cysteines instead of phosphotyrosines) can induce cellular transformation of fibroblasts. We have determined that fibroblasts transformed by Stat3-C are more resistant to proapoptotic stimuli than nontransformed cells. Also, to examine the potential opposing roles in apoptosis of Stat1 and Stat3, we studied the cervical carcinoma-derived cell line, Me180, which undergoes Stat1-dependent, IFN gamma-induced apoptosis. Me180 cells that express Stat3-C are protected against IFN gamma-mediated apoptosis.
Collapse
Affiliation(s)
- Y Shen
- Laboratory of Molecular Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
1392
|
Abstract
This review will discuss how STAT (Signal Transducers and Activators of Transcription) proteins, a group of transcription factors that transmit signals from the extracellular surface of cells to the nucleus, are involved in growth control. I will discuss the anatomy of a STAT protein, how it works as a transcription factor, the molecules that regulate its "activity", the phenotypes of mice that lack individual STAT proteins and their involvement in growth, differentiation, apoptosis, and transformation. Finally, a number of examples will be presented of how dysregulated STAT signaling may be involved in the pathogenesis of cancer.
Collapse
Affiliation(s)
- J F Bromberg
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, NY 10021, USA.
| |
Collapse
|
1393
|
McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, Link DC. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 2001; 14:193-204. [PMID: 11239451 DOI: 10.1016/s1074-7613(01)00101-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To investigate the role of signal transducer and activator of transcription (STAT) proteins in granulocyte colony-stimulating factor (G-CSF)-regulated biological responses, we generated transgenic mice with a targeted mutation of their G-CSF receptor (termed d715F) that abolishes G-CSF-dependent STAT-3 activation and attenuates STAT-5 activation. Homozygous mutant mice are severely neutropenic with an accumulation of immature myeloid precursors in their bone marrow. G-CSF-induced proliferation and granulocytic differentiation of hematopoietic progenitors is severely impaired. Expression of a constitutively active form of STAT-3 in d715F progenitors nearly completely rescued these defects. Conversely, expression of a dominant-negative form of STAT-3 in wild-type progenitors results in impaired G-CSF-induced proliferation and differentiation. These data suggest that STAT-3 activation by the G-CSFR is critical for the transduction of normal proliferative signals and contributes to differentiative signals.
Collapse
Affiliation(s)
- M L McLemore
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
1394
|
Brennan P, Floettmann JE, Mehl A, Jones M, Rowe M. Mechanism of action of a novel latent membrane protein-1 dominant negative. J Biol Chem 2001; 276:1195-203. [PMID: 11031256 DOI: 10.1074/jbc.m005461200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Latent membrane protein-1 (LMP1) is a signaling molecule expressed by Epstein-Barr virus during latency. LMP1 is essential for B-cell immortalization by Epstein-Barr virus and transforms rodent fibroblasts. It activates many distinct signaling pathways including the transcription factors NFkappaB and AP1. We have generated a mutant of LMP1 with four point mutations; amino acids 204, 206, and 208 were mutated to alanine, and amino acid 384 was mutated to glycine. This mutant, termed LMP1(AAAG), is not only unable to activate nuclear signaling pathways, but also inhibits signaling from wild type LMP1. We have demonstrated the effectiveness, selectivity, and mechanism of this inhibitory molecule. It inhibits LMP1-stimulated NFkappaB, STAT, and Jun transcriptional activity. It is selective, as it does not inhibit TNF or interleukin-2 signaling. We have demonstrated that it does not sequester the downstream signaling molecule, TRAF2, but instead binds LMP1 and interferes with its ability to bind TRAF2. This demonstrates the importance of the interplay between the signaling domains of LMP1 and the oligomeric structure of LMP1 for effective signaling. It identifies a tool that will be useful to probe LMP1 function in disease.
Collapse
Affiliation(s)
- P Brennan
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XX, United Kingdom.
| | | | | | | | | |
Collapse
|
1395
|
Abstract
Two members of the Stat family of transcription factors play a vital role in mouse mammary gland development. Stat5a was originally described as a regulator of milk protein gene expression and was subsequently shown to be essential for mammary development and lactogenesis. In contrast, Stat3 is an essential mediator of apoptosis and post-lactational regression. Other members of the Stat family may have specific, but as yet undemonstrated, functions in mammary development. However, since Stat1 activity is regulated during mammary development in a pattern different from Stats 3 and 5, this factor too may have a functional role. Although both Stat4 and Stat6 are expressed in mammary tissue, it seems unlikely that they will have a significant function as each of these Stats is activated in response to a limited number of cytokines. Given the essential regulatory roles of Stat signaling molecules in mammary development, it was not surprising to discover that constitutively activated Stat factors are a feature of human breast cancers. Sustained Stat activity has also been described in a variety of tumors including leukemias. The cause of this sustained activation is not clear but probably involves mutation of one of the many Stat regulatory proteins or dysregulation of other signaling pathways which modulate Stat activity. It is now important to understand the mechanism of constitutive Stat activity and to develop strategies which will abrogate aberrant Stat signaling in tumors in vivo.
Collapse
Affiliation(s)
- C J Watson
- Department of Pathology, University of Cambridge, United Kingdom.
| |
Collapse
|
1396
|
Abstract
Signal Transducers and Activators of Transcription (STATs) are a family of cytoplasmic proteins with roles as signal messengers and transcription factors that participate in normal cellular responses to cytokines and growth factors. Frequently, however, abnormal activity of certain STAT family members, particularly Stat3 and Stat5, is associated with a wide variety of human malignancies, including hematologic, breast, head and neck, and prostate cancers. Application of molecular biology and pharmacology tools in disease-relevant models has confirmed Stat3 as having a causal role in oncogenesis, and provided validation of Stat3 as a target for cancer drug discovery and therapeutic intervention. Furthermore, a constitutively-active mutant form of Stat3 is sufficient to induce oncogenic transformation of cells, which form tumors in vivo. Constitutive activation of Stat3 signaling is accompanied by upregulation of cyclin D1, c-Myc, and Bcl-x, changes consistent with subversion of normal cellular growth and survival control mechanisms. Block of constitutive Stat3 signaling results in growth inhibition and apoptosis of Stat3-positive tumor cells in vitro and in vivo. The observed dependence of certain tumors on constitutive Stat3 signaling for growth and survival has wide implications for cancer therapy, offering the potential for preferential tumor cell killing. This review evaluates constitutive Stat3 activation as a 'cancer-causing' factor, and proposes a number of molecular strategies for targeting Stat3 signaling for therapeutic intervention.
Collapse
Affiliation(s)
- J Turkson
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
1397
|
Tsumanuma I, Jin L, Zhang S, Bayliss JM, Scheithauer BW, Lloyd RV. Leptin signal transduction in the HP75 human pituitary cell line. Pituitary 2000; 3:211-20. [PMID: 11788008 DOI: 10.1023/a:1012994712851] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leptin is an adipocyte-derived cytokine with many functions including signaling the status of body energy stores through activation of the leptin receptor (OBR). Activation of the long form of OB-R (OB-Rb) results in JAK2 phosphorylation, activation of STATs, and subsequent gene expression. Activated STAT3 induces SOCS-3 expression in some cell types, which in turn down-regulates the JAK/STAT pathway. Although both leptin and OB-R are expressed in pituitary cells, the mechanism of signal transduction and its regulation in this organ has not been studied extensively. In these experiments we show that leptin reduces proliferation in a human pituitary cell line (HP75) and also increased apoptosis in these cells. Leptin also increased SOCS-3 mRNA and protein expression and tyrosine-phosphorylation in the HP75 human pituitary cell line. These findings suggest that SOCS-3 plays an important role in the inhibition of proximal leptin signal transduction in the anterior pituitary.
Collapse
Affiliation(s)
- I Tsumanuma
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
1398
|
Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene 2000; 19:5582-9. [PMID: 11114738 DOI: 10.1038/sj.onc.1203859] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Met receptor tyrosine kinase is the prototypic member of a small subfamily of growth factor receptors that when activated induce mitogenic, motogenic, and morphogenic cellular responses. The ligand for Met is hepatocyte growth factor/scatter factor (HGF/SF) and while normal HGF/SF-Met signaling is required for embryonic development, abnormal Met signaling has been strongly implicated in tumorigenesis, particularly in the development of invasive and metastatic phenotypes. Following ligand binding and autophosphorylation, Met transmits intercellular signals using a unique multisubstrate docking site present within the C-terminal end of the receptor. The multisubstrate docking site mediates the binding of several adapter proteins such as Grb2, SHC, Crk/CRKL, and the large adapter protein Gab1. These adapter proteins in turn recruit several signal transducing proteins to form an intricate signaling complex. Analysis of how these adapter proteins bind to the Met receptor and what signal transducers they recruit have led to more substantial models of HGF/SF-Met signal transduction and have uncovered new potential pathways that may be involved into Met mediated tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- K A Furge
- Van Andel Research Institute, 333 Bostwick, N.E., Grand Rapids, Michigan, MI 49503, USA
| | | | | |
Collapse
|
1399
|
Abstract
Since the original identification of a transmissible agent responsible for the development of tumors in chickens, now known to be a retrovirus encoding the v-src gene, significant progress has been made in defining the potential functions of its human homolog, SRC. The product of the human SRC gene, c-Src, is found to be over-expressed and highly activated in a wide variety of human cancers. The relationship between Src activation and cancer progression appears to be significant. Moreover, Src may have an influence on the development of the metastatic phenotype. This review discusses the data supporting a role for c-Src as a critical component of the signal transduction pathways that control cancer cell development and growth, and provides the rationale for targeting Src in drug discovery efforts.
Collapse
Affiliation(s)
- R B Irby
- Department of Surgery, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, 12902 Magnolia Drive, Tampa, Florida, FL 33612, USA
| | | |
Collapse
|
1400
|
Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 2000; 19:5419-27. [PMID: 11114718 DOI: 10.1038/sj.onc.1203947] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While the activated viral Src oncoprotein, v-Src, induces uncontrolled cell growth, the mechanisms underlying cell cycle deregulation by v-Src have not been fully defined. Previous studies demonstrated that v-Src induces constitutively active STAT3 signaling that is required for cell transformation and recent data have implicated STAT3 in the transcriptional control of critical cell cycle regulators. Here we show in mouse fibroblasts stably transformed by v-Src that mRNA and protein levels of p21 (WAF1/CIP1), cyclin D1, and cyclin E are elevated. Using reporter constructs in transient-transfection assays, the cyclin D1 and p21 promoters were both found to be transcriptionaly induced by v-Src in a STAT3-dependent manner. The kinase activities of cyclin D/CDK4, 6 and cyclin E/CDK2 complexes were only slightly elevated, consistent with the findings that coordinate increases in p21, cyclin D1 and cyclin E resulted in an increase in cyclin/CDK/p21 complexes. Similar results were obtained in NIH3T3 and BALB/c 3T3 cells stably transformed by v-Src, indicating that these regulatory events associated with STAT3 signaling represent common mechanisms independent of cell line or clonal variation. These findings suggest that STAT3 has an essential role in the regulation of critical cell cycle components in v-Src transformed mouse fibroblasts.
Collapse
Affiliation(s)
- D Sinibaldi
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|