1351
|
Lindeman LC, Reiner AH, Mathavan S, Aleström P, Collas P. Tiling histone H3 lysine 4 and 27 methylation in zebrafish using high-density microarrays. PLoS One 2010; 5:e15651. [PMID: 21187971 PMCID: PMC3004928 DOI: 10.1371/journal.pone.0015651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/19/2010] [Indexed: 01/09/2023] Open
Abstract
Background Uncovering epigenetic states by chromatin immunoprecipitation and microarray hybridization (ChIP-chip) has significantly contributed to the understanding of gene regulation at the genome-scale level. Many studies have been carried out in mice and humans; however limited high-resolution information exists to date for non-mammalian vertebrate species. Principal Findings We report a 2.1-million feature high-resolution Nimblegen tiling microarray for ChIP-chip interrogations of epigenetic states in zebrafish (Danio rerio). The array covers 251 megabases of the genome at 92 base-pair resolution. It includes ∼15 kb of upstream regulatory sequences encompassing all RefSeq promoters, and over 5 kb in the 5′ end of coding regions. We identify with high reproducibility, in a fibroblast cell line, promoters enriched in H3K4me3, H3K27me3 or co-enriched in both modifications. ChIP-qPCR and sequential ChIP experiments validate the ChIP-chip data and support the co-enrichment of trimethylated H3K4 and H3K27 on a subset of genes. H3K4me3- and/or H3K27me3-enriched genes are associated with distinct transcriptional status and are linked to distinct functional categories. Conclusions We have designed and validated for the scientific community a comprehensive high-resolution tiling microarray for investigations of epigenetic states in zebrafish, a widely used developmental and disease model organism.
Collapse
Affiliation(s)
- Leif C. Lindeman
- Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, and Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Andrew H. Reiner
- Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, and Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Sinnakaruppan Mathavan
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Biopolis, Singapore, Singapore
| | - Peter Aleström
- BasAM, Norwegian School of Veterinary Science, Oslo, Norway
| | - Philippe Collas
- Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, and Norwegian Center for Stem Cell Research, Oslo, Norway
- * E-mail:
| |
Collapse
|
1352
|
Schliep K, Lopez P, Lapointe FJ, Bapteste E. Harvesting evolutionary signals in a forest of prokaryotic gene trees. Mol Biol Evol 2010; 28:1393-405. [PMID: 21172835 DOI: 10.1093/molbev/msq323] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phylogenomic studies produce increasingly large phylogenetic forests of trees with patchy taxonomical sampling. Typically, prokaryotic data generate thousands of gene trees of all sizes that are difficult, if not impossible, to root. Their topologies do not match the genealogy of lineages, as they are influenced not only by duplication, losses, and vertical descent but also by lateral gene transfer (LGT) and recombination. Because this complexity in part reflects the diversity of evolutionary processes, the study of phylogenetic forests is thus a great opportunity to improve our understanding of prokaryotic evolution. Here, we show how the rich evolutionary content of such novel phylogenetic objects can be exploited through the development of new approaches designed specifically for extracting the multiple evolutionary signals present in the forest of life, that is, by slicing up trees into remarkable bits and pieces: clans, slices, and clips. We harvested a forest of 6,901 unrooted gene trees comprising up to 100 prokaryotic genomes (41 archaea and 59 bacteria) to search for evolutionary events that a species tree would not account for. We identified 1) trees and partitions of trees that reflected the lifestyle of organisms rather than their taxonomy, 2) candidate lifestyle-specific genetic modules, used by distinct unrelated organisms to adapt to the same environment, 3) gene families, nonrandomly distributed in the functional space, that were frequently exchanged between archaea and bacteria, sometimes without major changes in their sequences. Finally, 4) we reconstructed polarized networks of genetic partnerships between archaea and bacteria to describe some of the rules affecting LGT between these two Domains.
Collapse
Affiliation(s)
- Klaus Schliep
- UMR CNRS 7138 Systématique, Adaptation, Evolution, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | |
Collapse
|
1353
|
Huang W, Khatib H. Comparison of transcriptomic landscapes of bovine embryos using RNA-Seq. BMC Genomics 2010; 11:711. [PMID: 21167046 PMCID: PMC3019235 DOI: 10.1186/1471-2164-11-711] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/17/2010] [Indexed: 11/10/2022] Open
Abstract
Background Advances in sequencing technologies have opened a new era of high throughput investigations. Although RNA-seq has been demonstrated in many organisms, no study has provided a comprehensive investigation of the bovine transcriptome using RNA-seq. Results In this study, we provide a deep survey of the bovine embryonic transcriptomes, the first application of RNA-seq in cattle. Embryos cultured in vitro were used as models to study early embryonic development in cattle. RNA amplified from limited amounts of starting total RNA were sequenced and mapped to the reference genome to obtain digital gene expression at single base resolution. In particular, gene expression estimates from more than 1.6 million unannotated bases in 1785 novel transcribed units were obtained. We compared the transcriptomes of embryos showing distinct developmental statuses and found genes that showed differential overall expression as well as alternative splicing. Conclusion Our study demonstrates the power of RNA-seq and provides further understanding of bovine preimplantation embryonic development at a fine scale.
Collapse
Affiliation(s)
- Wen Huang
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
1354
|
Abstract
Background As an obligate intracellular parasite, Apicomplexa interacts with the host in the special living environment, competing for energy and nutrients from the host cells by manipulating the host metabolism. Previous studies of host-parasite interaction mainly focused on using cellular and biochemical methods to investigate molecular functions in metabolic pathways of parasite infected hosts. Computational approaches taking advantage of high-throughput biological data and topology of metabolic pathways have a great potential in revealing the details and mechanism of parasites-to-host interactions. A new analytical method was designed in this work to study host-parasite interactions in human cells infected with Plasmodium falciparum and Cryptosporidium parvum. Results We introduced a new method that analyzes the host metabolic pathways in divided parts: host specific subpathways and host-parasite common subpathways. Upon analysis on gene expression data from cells infected by Plasmodium falciparum or Cryptosporidium parvum, we found: (i) six host-parasite common subpathways and four host specific subpathways were significantly altered in plasmodium infected human cells; (ii) plasmodium utilized fatty acid biosynthesis and elongation, and Pantothenate and CoA biosynthesis to obtain nutrients from host environment; (iii) in Cryptosporidium parvum infected cells, most of the host-parasite common enzymes were down-regulated, whereas the host specific enzymes up-regulated; (iv) the down-regulation of common subpathways in host cells might be caused by competition for the substrates and up-regulation of host specific subpathways may be stimulated by parasite infection. Conclusion Results demonstrated a significantly coordinated expression pattern between the two groups of subpathways. The method helped expose the impact of parasite infection on host cell metabolism, which was previously concealed in the pathway enrichment analysis. Our approach revealed detailed subpathways and metabolic information are important to the symbiosis in two kinds of the apicomplex parasites, and highlighted its significance in research and understanding of parasite-host interactions.
Collapse
|
1355
|
Huminiecki L, Heldin CH. 2R and remodeling of vertebrate signal transduction engine. BMC Biol 2010; 8:146. [PMID: 21144020 PMCID: PMC3238295 DOI: 10.1186/1741-7007-8-146] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 11/21/2022] Open
Abstract
Background Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed. Results We show that 2R-WGD affected an overwhelming majority (74%) of signalling genes, in particular developmental pathways involving receptor tyrosine kinases, Wnt and transforming growth factor-β ligands, G protein-coupled receptors and the apoptosis pathway. 2R-retained genes, in contrast to tandem duplicates, were enriched in protein interaction domains and multifunctional signalling modules of Ras and mitogen-activated protein kinase cascades. 2R-WGD had a fundamental impact on the cell-cycle machinery, redefined molecular building blocks of the neuronal synapse, and was formative for vertebrate brains. We investigated 2R-associated nodes in the context of the human signalling network, as well as in an inferred ancestral pre-2R (AP2R) network, and found that hubs (particularly involving negative regulation) were preferentially retained, with high connectivity driving retention. Finally, microarrays and proteomics demonstrated a trend for gradual paralog expression divergence independent of the duplication mechanism, but inferred ancestral expression states suggested preferential subfunctionalisation among 2R-ohnologs (2ROs). Conclusions The 2R event left an indelible imprint on vertebrate signalling and the cell cycle. We show that 2R-WGD preferentially retained genes are associated with higher organismal complexity (for example, locomotion, nervous system, morphogenesis), while genes associated with basic cellular functions (for example, translation, replication, splicing, recombination; with the notable exception of cell cycle) tended to be excluded. 2R-WGD set the stage for the emergence of key vertebrate functional novelties (such as complex brains, circulatory system, heart, bone, cartilage, musculature and adipose tissue). A full explanation of the impact of 2R on evolution, function and the flow of information in vertebrate signalling networks is likely to have practical consequences for regenerative medicine, stem cell therapies and cancer treatment.
Collapse
Affiliation(s)
- Lukasz Huminiecki
- Ludwig Institute for Cancer Research, Uppsala University, Box 595, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
1356
|
Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS, Vejnar CE, Attar H, Gagnebin M, Gehrig C, Falconnet E, Dupré Y, Dermitzakis ET, Antonarakis SE. Identification of cis- and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. Genome Res 2010; 21:68-73. [PMID: 21147911 DOI: 10.1101/gr.109371.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are regulatory noncoding RNAs that affect the production of a significant fraction of human mRNAs via post-transcriptional regulation. Interindividual variation of the miRNA expression levels is likely to influence the expression of miRNA target genes and may therefore contribute to phenotypic differences in humans, including susceptibility to common disorders. The extent to which miRNA levels are genetically controlled is largely unknown. In this report, we assayed the expression levels of miRNAs in primary fibroblasts from 180 European newborns of the GenCord project and performed association analysis to identify eQTLs (expression quantitative traits loci). We detected robust expression for 121 miRNAs out of 365 interrogated. We have identified significant cis- (10%) and trans- (11%) eQTLs. Furthermore, we detected one genomic locus (rs1522653) that influences the expression levels of five miRNAs, thus unraveling a novel mechanism for coregulation of miRNA expression.
Collapse
Affiliation(s)
- Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1357
|
Xu B, Gerin I, Miao H, Vu-Phan D, Johnson CN, Xu R, Chen XW, Cawthorn WP, MacDougald OA, Koenig RJ. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One 2010; 5:e14199. [PMID: 21152033 PMCID: PMC2996286 DOI: 10.1371/journal.pone.0014199] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/05/2010] [Indexed: 01/22/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways.
Collapse
Affiliation(s)
- Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1358
|
Galindo RC, Ayllón N, Carta T, Vicente J, Kocan KM, Gortazar C, de la Fuente J. Characterization of pathogen-specific expression of host immune response genes in Anaplasma and Mycobacterium species infected ruminants. Comp Immunol Microbiol Infect Dis 2010; 33:e133-42. [DOI: 10.1016/j.cimid.2010.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022]
|
1359
|
Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res 2010; 21:447-55. [PMID: 21106904 DOI: 10.1101/gr.112623.110] [Citation(s) in RCA: 401] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate functional annotation of regulatory elements is essential for understanding global gene regulation. Here, we report a genome-wide map of 827,000 transcription factor binding sites in human lymphoblastoid cell lines, which is comprised of sites corresponding to 239 position weight matrices of known transcription factor binding motifs, and 49 novel sequence motifs. To generate this map, we developed a probabilistic framework that integrates cell- or tissue-specific experimental data such as histone modifications and DNase I cleavage patterns with genomic information such as gene annotation and evolutionary conservation. Comparison to empirical ChIP-seq data suggests that our method is highly accurate yet has the advantage of targeting many factors in a single assay. We anticipate that this approach will be a valuable tool for genome-wide studies of gene regulation in a wide variety of cell types or tissues under diverse conditions.
Collapse
Affiliation(s)
- Roger Pique-Regi
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
1360
|
Chen HW, Bandyopadhyay S, Shasha DE, Birnbaum KD. Predicting genome-wide redundancy using machine learning. BMC Evol Biol 2010; 10:357. [PMID: 21087504 PMCID: PMC2998534 DOI: 10.1186/1471-2148-10-357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case used here. RESULTS Machine learning techniques that combine multiple attributes led to a dramatic improvement in predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis showed the signature of predicted redundancy with at least one but typically less than three other family members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g., Ks > 1), suggesting that redundancy is stable over long evolutionary periods. CONCLUSIONS Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis provide a new resource for research in genetics and genome evolution. These techniques can now be applied to other organisms.
Collapse
Affiliation(s)
- Huang-Wen Chen
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
1361
|
Borgan E, Sitter B, Lingjærde OC, Johnsen H, Lundgren S, Bathen TF, Sørlie T, Børresen-Dale AL, Gribbestad IS. Merging transcriptomics and metabolomics--advances in breast cancer profiling. BMC Cancer 2010; 10:628. [PMID: 21080935 PMCID: PMC2996395 DOI: 10.1186/1471-2407-10-628] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/16/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. METHODS Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. RESULTS In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO) terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most to choline. Additionally, a subset of transcripts was identified to have slightly altered expression after HR MAS MRS and was therefore removed from all other analyses. CONCLUSIONS Combining transcriptional and metabolic data from the same breast carcinoma sample is feasible and may contribute to a more refined subclassification of breast cancers as well as reveal relations between metabolic and transcriptional levels. See Commentary: http://www.biomedcentral.com/1741-7015/8/73.
Collapse
Affiliation(s)
- Eldrid Borgan
- Department of Genetics, Institute for Cancer Research, Division of Surgery and Cancer, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
1362
|
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 2010; 5:e13984. [PMID: 21085593 PMCID: PMC2981572 DOI: 10.1371/journal.pone.0013984] [Citation(s) in RCA: 1661] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 10/20/2010] [Indexed: 12/13/2022] Open
Abstract
Background Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal. Principal Findings To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed “Enrichment Map”, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results. Conclusions Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/EnrichmentMap/).
Collapse
Affiliation(s)
- Daniele Merico
- Department of Molecular Genetics, Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (GDB); (DM)
| | - Ruth Isserlin
- Department of Molecular Genetics, Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Stueker
- Department of Molecular Genetics, Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Department of Molecular Genetics, Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (GDB); (DM)
| |
Collapse
|
1363
|
Jørgensen KM, Hjelle SM, Øye OK, Puntervoll P, Reikvam H, Skavland J, Anderssen E, Bruserud Ø, Gjertsen BT. Untangling the intracellular signalling network in cancer--a strategy for data integration in acute myeloid leukaemia. J Proteomics 2010; 74:269-81. [PMID: 21075225 DOI: 10.1016/j.jprot.2010.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/31/2010] [Accepted: 11/03/2010] [Indexed: 01/10/2023]
Abstract
Protein and gene networks centred on the regulatory tumour suppressor proteins may be of crucial importance both in carcinogenesis and in the response to chemotherapy. Tumour suppressor protein p53 integrates intracellular data in stress responses, receiving signals and translating these into differential gene expression. Interpretation of the data integrated on p53 may therefore reveal the response to therapy in cancer. Proteomics offers more specific data - closer to "the real action" - than the hitherto more frequently used gene expression profiling. Integrated data analysis may reveal pathways disrupted at several regulatory levels. Ultimately, integrated data analysis may also contribute to finding key underlying cancer genes. We here proposes a Partial Least Squares Regression (PLSR)-based data integration strategy, which allows simultaneous analysis of proteomic data, gene expression data and classical clinical parameters. PLSR collapses multidimensional data into fewer relevant dimensions for data interpretation. PLSR can also aid identification of functionally important modules by also performing comparison to databases on known biological interactions. Further, PLSR allows meaningful visualization of complex datasets, aiding interpretation of the underlying biology. Extracting the true biological causal mechanisms from heterogeneous patient populations is the key to discovery of new therapeutic options in cancer.
Collapse
|
1364
|
Louie B, Higdon R, Kolker E. The necessity of adjusting tests of protein category enrichment in discovery proteomics. ACTA ACUST UNITED AC 2010; 26:3007-11. [PMID: 21068002 DOI: 10.1093/bioinformatics/btq541] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Enrichment tests are used in high-throughput experimentation to measure the association between gene or protein expression and membership in groups or pathways. The Fisher's exact test is commonly used. We specifically examined the associations produced by the Fisher test between protein identification by mass spectrometry discovery proteomics, and their Gene Ontology (GO) term assignments in a large yeast dataset. We found that direct application of the Fisher test is misleading in proteomics due to the bias in mass spectrometry to preferentially identify proteins based on their biochemical properties. False inference about associations can be made if this bias is not corrected. Our method adjusts Fisher tests for these biases and produces associations more directly attributable to protein expression rather than experimental bias. RESULTS Using logistic regression, we modeled the association between protein identification and GO term assignments while adjusting for identification bias in mass spectrometry. The model accounts for five biochemical properties of peptides: (i) hydrophobicity, (ii) molecular weight, (iii) transfer energy, (iv) beta turn frequency and (v) isoelectric point. The model was fit on 181 060 peptides from 2678 proteins identified in 24 yeast proteomics datasets with a 1% false discovery rate. In analyzing the association between protein identification and their GO term assignments, we found that 25% (134 out of 544) of Fisher tests that showed significant association (q-value ≤0.05) were non-significant after adjustment using our model. Simulations generating yeast protein sets enriched for identification propensity show that unadjusted enrichment tests were biased while our approach worked well.
Collapse
Affiliation(s)
- Brenton Louie
- Bioinformatics and High-throughput Analysis Laboratory, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | | |
Collapse
|
1365
|
Yang X, Lee Y, Fan H, Sun X, Lussier YA. Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancers. CHINESE SCIENCE BULLETIN-CHINESE 2010; 55:3576-3589. [PMID: 21340045 PMCID: PMC3039912 DOI: 10.1007/s11434-010-4051-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The complex regulatory network between microRNAs and gene expression remains unclear domain of active research. We proposed to address in part this complex regulation with a novel approach for the genome-wide identification of biomodules derived from paired microRNA and mRNA profiles, which could reveal correlations associated with a complex network of de-regulation in human cancer. Two published expression datasets for 68 samples with 11 distinct types of epithelial cancers and 21 samples of normal tissues were used, containing microRNA expression (Lu et al. Nature Letters 2005) and gene expression (Ramaswarmy et al. PNAS 2001) profiles, respectively. As results, the microRNA expression used jointly with mRNA expression can provide better classifiers of epithelial cancers against normal epithelial tissue than either dataset alone (p=1×10(-10), F-Test). We identified a combination of six microRNA-mRNA biomodules that optimally classified epithelial cancers from normal epithelial tissue (total accuracy = 93.3%; 95% confidence intervals: 86% - 97%), using penalized logistic regression (PLR) algorithm and three-fold cross-validation. Three of these biomodules are individually sufficient to cluster epithelial cancers from normal tissue using mutual information distance. The biomodules contain 10 distinct microRNAs and 98 distinct genes, including well known tumor markers such as miR-15a, miR-30e, IRAK1, TGFBR2, DUSP16, CDC25B and PDCD2. In addition, there is a significant enrichment (Fisher's exact test p=3×10(-10)) between putative microRNA-target gene pairs reported in five microRNA target databases and the inversely correlated micro-RNA-mRNA pairs in the biomodules. Further, microRNAs and genes in the biomodules were found in abstracts mentioning epithelial cancers (Fisher Exact Test, unadjusted p<0.05). Taken together, these results strongly suggest that the discovered microRNA-mRNA biomodules correspond to regulatory mechanisms common to human epithelial cancer samples. In conclusion, we developed and evaluated a novel comprehensive method to systematically identify, on a genome scale, microRNA-mRNA expression biomodules common to distinct cancers of the same tissue. These biomodules also comprise novel microRNA and genes as well as an imputed regulatory network, which may accelerate the work of cancer biologists as large regulatory maps of cancers can be drawn efficiently for hypothesis generation.
Collapse
Affiliation(s)
- Xinan Yang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096,China
| | | | | | | | | |
Collapse
|
1366
|
Mittal P, Romero R, Tarca AL, Gonzalez J, Draghici S, Xu Y, Dong Z, Nhan-Chang CL, Chaiworapongsa T, Lye S, Kusanovic JP, Lipovich L, Mazaki-Tovi S, Hassan SS, Mesiano S, Kim CJ. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med 2010; 38:617-43. [PMID: 20629487 PMCID: PMC3097097 DOI: 10.1515/jpm.2010.097] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS to characterize the transcriptome of human myometrium during spontaneous labor at term. METHODS myometrium was obtained from women with (n=19) and without labor (n=20). Illumina HumanHT-12 microarrays were utilized. Moderated t-tests and false discovery rate adjustment of P-values were applied. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for a select set of differentially expressed genes in a separate set of samples. Enzyme-linked immunosorbent assay and Western blot were utilized to confirm differential protein production in a third sample set. RESULTS 1) Four hundred and seventy-one genes were differentially expressed; 2) gene ontology analysis indicated enrichment of 103 biological processes and 18 molecular functions including: a) inflammatory response; b) cytokine activity; and c) chemokine activity; 3) systems biology pathway analysis using signaling pathway impact analysis indicated six significant pathways: a) cytokine-cytokine receptor interaction; b) Jak-STAT signaling; and c) complement and coagulation cascades; d) NOD-like receptor signaling pathway; e) systemic lupus erythematosus; and f) chemokine signaling pathway; 4) qRT-PCR confirmed over-expression of prostaglandin-endoperoxide synthase-2, heparin binding epidermal growth factor (EGF)-like growth factor, chemokine C-C motif ligand 2 (CCL2/MCP1), leukocyte immunoglobulin-like receptor, subfamily A member 5, interleukin (IL)-8, IL-6, chemokine C-X-C motif ligand 6 (CXCL6/GCP2), nuclear factor of kappa light chain gene enhancer in B-cells inhibitor zeta, suppressor of cytokine signaling 3 (SOCS3) and decreased expression of FK506 binding-protein 5 and aldehyde dehydrogenase in labor; 5) IL-6, CXCL6, CCL2 and SOCS3 protein expression was significantly higher in the term labor group compared to the term not in labor group. CONCLUSIONS myometrium of women in spontaneous labor at term is characterized by a stereotypic gene expression pattern consistent with over-expression of the inflammatory response and leukocyte chemotaxis. Differential gene expression identified with microarray was confirmed with qRT-PCR using an independent set of samples. This study represents an unbiased description of the biological processes involved in spontaneous labor at term based on transcriptomics.
Collapse
Affiliation(s)
- Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Gonzalez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sorin Draghici
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Computer Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Chia-Ling Nhan-Chang
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Stephen Lye
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
1367
|
The molecular basis for sonographic cervical shortening at term: identification of differentially expressed genes and the epithelial-mesenchymal transition as a function of cervical length. Am J Obstet Gynecol 2010; 203:472.e1-472.e14. [PMID: 20817141 DOI: 10.1016/j.ajog.2010.06.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/13/2010] [Accepted: 06/30/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether cervical shortening of a ripe cervix at term is associated with changes in the cervical transcriptome. STUDY DESIGN Sonographically measured cervical lengths and biopsy specimens were obtained from 19 women at term who were not in labor with a ripe cervix. Affymetrix HG-U133 Plus 2.0 arrays (Affymetrix Inc, Santa Clara, CA) were used. Gene expression was analyzed as a function of cervical length. Gene Ontology, pathway analyses, quantitative real-time reverse transcription-polymerase chain reaction, and immunohistochemistry were performed. RESULTS Cervical length shortening was associated with differential expression of 687 genes. Fifty-four biologic processes, 22 molecular functions, and 9 pathways were enriched. Quantitative real-time reverse transcription-polymerase chain reaction analysis confirmed differential expression of 13 genes. Bone morphogenetic protein-7, claudin-1, integrin beta-6, and endometrial progesterone-induced protein messenger RNA, and protein expressions were down-regulated with cervical shortening. CONCLUSION Sonographic cervical shortening in patients at term who are not in labor with a ripe cervix is associated with changes in the uterine cervix transcriptome. The epithelial-mesenchymal transition may participate in the mechanism of cervical shortening at term.
Collapse
|
1368
|
Hageman RS, Leduc MS, Caputo CR, Tsaih SW, Churchill GA, Korstanje R. Uncovering genes and regulatory pathways related to urinary albumin excretion. J Am Soc Nephrol 2010; 22:73-81. [PMID: 21030601 DOI: 10.1681/asn.2010050561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Identifying the genes underlying quantitative trait loci (QTL) for disease is difficult, mainly because of the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals, test candidate genes, and define pathways affected by these QTL. In this study, we mapped three significant QTL and one suggestive QTL for an increased albumin-to-creatinine ratio on chromosomes (Chrs) 1, 4, 15, and 17, respectively, in a cross between the inbred MRL/MpJ and SM/J strains of mice. By combining data from several sources and by utilizing gene expression data, we identified Tlr12 as a likely candidate for the Chr 4 QTL. Through the mapping of 33,881 transcripts measured by microarray on kidney RNA from each of the 173 male F2 animals, we identified several downstream pathways associated with these QTL, including the glycan degradation, leukocyte migration, and antigen-presenting pathways. We demonstrate that by combining data from multiple sources, we can identify not only genes that are likely to be causal candidates for QTL but also the pathways through which these genes act to alter phenotypes. This combined approach provides valuable insights into the causes and consequences of renal disease.
Collapse
|
1369
|
Yang X, Lee Y, Huang Y, Chen JL, Xing RH, Lussier YA. Stromal microenvironment processes unveiled by biological component analysis of gene expression in xenograft tumor models. BMC Bioinformatics 2010; 11 Suppl 9:S11. [PMID: 21044358 PMCID: PMC2967741 DOI: 10.1186/1471-2105-11-s9-s11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Mouse xenograft models, in which human cancer cells are implanted in immune-suppressed mice, have been popular for studying the mechanisms of novel therapeutic targets, tumor progression and metastasis. We hypothesized that we could exploit the interspecies genetic differences in these experiments. Our purpose is to elucidate stromal microenvironment signals from probes on human arrays unintentionally cross-hybridizing with mouse homologous genes in xenograft tumor models. Results By identifying cross-species hybridizing probes from sequence alignment and cross-species hybridization experiment for the human whole-genome arrays, deregulated stromal genes can be identified and then their biological significance were predicted from enrichment studies. Comparing these results with those found by the laser capture microdissection of stromal cells from tumor specimens resulted in the discovery of significantly enriched stromal biological processes. Conclusions Using this method, in addition to their primary endpoints, researchers can leverage xenograft experiments to better characterize the tumor microenvironment without additional costs. The Xhyb probes and R script are available at http://www.lussierlab.org/publications/Stroma
Collapse
Affiliation(s)
- Xinan Yang
- Section of Genetic Medicine, Dept, of Medicine, University of Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
1370
|
Savage RS, Ghahramani Z, Griffin JE, de la Cruz BJ, Wild DL. Discovering transcriptional modules by Bayesian data integration. ACTA ACUST UNITED AC 2010; 26:i158-67. [PMID: 20529901 PMCID: PMC2881394 DOI: 10.1093/bioinformatics/btq210] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs. Availability: If interested in the code for the work presented in this article, please contact the authors. Contact:d.l.wild@warwick.ac.uk Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Richard S Savage
- Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | |
Collapse
|
1371
|
Iancu OD, Darakjian P, Walter NAR, Malmanger B, Oberbeck D, Belknap J, McWeeney S, Hitzemann R. Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse. BMC Genomics 2010; 11:585. [PMID: 20959017 PMCID: PMC3091732 DOI: 10.1186/1471-2164-11-585] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 10/19/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA). RESULTS Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented. CONCLUSIONS Despite the marked differences in genetic diversity, the transcriptome structure was remarkably similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1372
|
Hecker M, Goertsches RH, Fatum C, Koczan D, Thiesen HJ, Guthke R, Zettl UK. Network analysis of transcriptional regulation in response to intramuscular interferon-β-1a multiple sclerosis treatment. THE PHARMACOGENOMICS JOURNAL 2010; 12:134-46. [PMID: 20956993 DOI: 10.1038/tpj.2010.77] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon-β (IFN-β) is one of the major drugs for multiple sclerosis (MS) treatment. The purpose of this study was to characterize the transcriptional effects induced by intramuscular IFN-β-1a therapy in patients with relapsing-remitting form of MS. By using Affymetrix DNA microarrays, we obtained genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-β administration. We identified 121 genes that were significantly up- or downregulated compared with baseline, with stronger changed expression at 1 week after start of therapy. Eleven transcription factor-binding sites (TFBS) are overrepresented in the regulatory regions of these genes, including those of IFN regulatory factors and NF-κB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene expression data and TFBS information, to reconstruct the underlying network of molecular interactions. An NF-κB-centered sub-network of genes was highly expressed in patients with IFN-β-related side effects. Expression alterations were confirmed by real-time PCR and literature mining was applied to evaluate network inference accuracy.
Collapse
Affiliation(s)
- M Hecker
- Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
1373
|
Liechti R, Csárdi G, Bergmann S, Schütz F, Sengstag T, Boj SF, Servitja JM, Ferrer J, Van Lommel L, Schuit F, Klinger S, Thorens B, Naamane N, Eizirik DL, Marselli L, Bugliani M, Marchetti P, Lucas S, Holm C, Jongeneel CV, Xenarios I. EuroDia: a beta-cell gene expression resource. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq024. [PMID: 20940178 PMCID: PMC2963318 DOI: 10.1093/database/baq024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a major disease affecting nearly 280 million people worldwide. Whilst the pathophysiological mechanisms leading to disease are poorly understood, dysfunction of the insulin-producing pancreatic beta-cells is key event for disease development. Monitoring the gene expression profiles of pancreatic beta-cells under several genetic or chemical perturbations has shed light on genes and pathways involved in T2DM. The EuroDia database has been established to build a unique collection of gene expression measurements performed on beta-cells of three organisms, namely human, mouse and rat. The Gene Expression Data Analysis Interface (GEDAI) has been developed to support this database. The quality of each dataset is assessed by a series of quality control procedures to detect putative hybridization outliers. The system integrates a web interface to several standard analysis functions from R/Bioconductor to identify differentially expressed genes and pathways. It also allows the combination of multiple experiments performed on different array platforms of the same technology. The design of this system enables each user to rapidly design a custom analysis pipeline and thus produce their own list of genes and pathways. Raw and normalized data can be downloaded for each experiment. The flexible engine of this database (GEDAI) is currently used to handle gene expression data from several laboratory-run projects dealing with different organisms and platforms. Database URL: http://eurodia.vital-it.ch
Collapse
Affiliation(s)
- Robin Liechti
- Vital-IT, SIB Swiss Institute of Bioinformatics, Genopode Building, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1374
|
Morine MJ, McMonagle J, Toomey S, Reynolds CM, Moloney AP, Gormley IC, Gaora PO, Roche HM. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome. BMC Bioinformatics 2010; 11:499. [PMID: 20929581 PMCID: PMC3098081 DOI: 10.1186/1471-2105-11-499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 10/07/2010] [Indexed: 11/25/2022] Open
Abstract
Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.
Collapse
Affiliation(s)
- Melissa J Morine
- Nutrigenomics Research Group, School of Public Health, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
1375
|
Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Gudnason V, Fallin MD. Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2010; 2:49ra67. [PMID: 20844285 PMCID: PMC3137242 DOI: 10.1126/scitranslmed.3001262] [Citation(s) in RCA: 246] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenome consists of non-sequence-based modifications, such as DNA methylation, that are heritable during cell division and that may affect normal phenotypes and predisposition to disease. Here, we have performed an unbiased genome-scale analysis of ~4 million CpG sites in 74 individuals with comprehensive array-based relative methylation (CHARM) analysis. We found 227 regions that showed extreme interindividual variability [variably methylated regions (VMRs)] across the genome, which are enriched for developmental genes based on Gene Ontology analysis. Furthermore, half of these VMRs were stable within individuals over an average of 11 years, and these VMRs defined a personalized epigenomic signature. Four of these VMRs showed covariation with body mass index consistently at two study visits and were located in or near genes previously implicated in regulating body weight or diabetes. This work suggests an epigenetic strategy for identifying patients at risk of common disease.
Collapse
Affiliation(s)
- Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rafael A. Irizarry
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Delphine Fradin
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin J. Aryee
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter Murakami
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur 201, Iceland
- University of Iceland, Reykjavik, Iceland
| | | | - Tamara B. Harris
- Intramural Research Program, National Institute of Aging, Bethesda, MD 21205, USA
| | - Lenore Launer
- Intramural Research Program, National Institute of Aging, Bethesda, MD 21205, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur 201, Iceland
- University of Iceland, Reykjavik, Iceland
| | - M. Daniele Fallin
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
1376
|
Behnke K, Kaiser A, Zimmer I, Brüggemann N, Janz D, Polle A, Hampp R, Hänsch R, Popko J, Schmitt-Kopplin P, Ehlting B, Rennenberg H, Barta C, Loreto F, Schnitzler JP. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis. PLANT MOLECULAR BIOLOGY 2010; 74:61-75. [PMID: 20526857 PMCID: PMC3128716 DOI: 10.1007/s11103-010-9654-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/21/2010] [Indexed: 05/04/2023]
Abstract
In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populus x canescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H(2)O(2)), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress.
Collapse
Affiliation(s)
- Katja Behnke
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Andreas Kaiser
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ina Zimmer
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Nicolas Brüggemann
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Rüdiger Hampp
- Physiological Ecology of Plants, Botanical Institute, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Robert Hänsch
- Institute for Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38206 Braunschweig, Germany
| | - Jennifer Popko
- Institute for Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38206 Braunschweig, Germany
| | - Philippe Schmitt-Kopplin
- Institute for Ecological Chemistry, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Barbara Ehlting
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 053/054, 79110 Freiburg, Germany
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 Canada
| | - Heinz Rennenberg
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 053/054, 79110 Freiburg, Germany
| | - Csengele Barta
- Istituto di Biologia Agroambientale e Forestale (IBAF)—Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015, Monterotondo, Roma, Italy
| | - Francesco Loreto
- Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca del CNR di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino Firenze, Italy
| | - Jörg-Peter Schnitzler
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
1377
|
Gubin MM, Calaluce R, Davis JW, Magee JD, Strouse CS, Shaw DP, Ma L, Brown A, Hoffman T, Rold TL, Atasoy U. Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis. Cell Cycle 2010; 9:3337-46. [PMID: 20724828 DOI: 10.4161/cc.9.16.12711] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interactions between RNA binding proteins (RBPs) and genes are not well understood, especially in regulation of angiogenesis. The RBP HuR binds to the AU-rich (ARE) regions of labile mRNAs, facilitating their translation into protein and has been hypothesized to be a tumor-maintenance gene. Elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR controls the expression of multiple genes involved in angiogenesis including VEGFα, HIF1α and thrombospondin 1 (TSP1). We investigated the role of HuR in estrogen receptor negative (ER(-)) breast cancer. MDA-MB-231 cells with higher levels of HuR have alterations in cell cycle kinetics and faster growth. Unexpectedly, HuR overexpression significantly interfered with tumor growth in orthotopic mouse models. The putative mechanism seems to be an anti-angiogenetic effect by increasing expression of TSP1 but also surprisingly, downregulating VEGF, a target which HuR normally increases. Our findings reveal that HuR may be regulating a cluster of genes involved in blood vessel formation which controls tumor angiogenesis. An approach of modulating HuR levels may overcome limitations associated with monotherapies targeting tumor vessel formation.
Collapse
Affiliation(s)
- Matthew M Gubin
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1378
|
Abstract
We have earlier shown that the 9.2.27 Pseudomonas Exotoxin A (PE) immunotoxin (IT) efficiently kills melanoma cells through inhibition of protein synthesis followed by some morphologic and biochemical features of apoptosis, a different cell killing mechanism than the one caused by Dacarbazine (DTIC), a chemotherapeutic drug used to treat malignant melanoma. To examine whether induced DTIC resistance also is a determining factor for the effectiveness of 9.2.27PE IT, we developed a DTIC resistant subline, FEMX-200DR, from the DTIC sensitive cell line FEMX. The cell variants were treated with 9.2.27PE, an IT binding to the high molecular weight-melanoma associated antigen (HMW-MAA) expressed on most malignant melanoma cells. The IT was equally effective in killing the FEMX-200DR and the FEMX cells, and the cell death was primarily caused by inhibition of protein synthesis. The DNA repair enzyme and apoptotic marker PARP, a substrate of caspase-3, was inactivated, although we observed only a minor activation of caspase-3 and caspase-8, intracellular proteases involved in apoptosis. In addition to being DTIC resistant, the FEMX-200DR cells were also more resistant to apoptosis than the parent cells as a 3 times higher concentration of the apoptotic inducer Staurosporine was needed to obtain IC50. Furthermore, in early passage malignant melanoma cell lines established from lymph node metastases, the 9.2.27PE caused a time-dependent and dose-dependent decrease in cell viability independent of their DTIC sensitivity. These findings show that the 9.2.27PE IT efficiently can cause cell death in malignant melanoma cells independent of their level of resistance to apoptosis and DTIC.
Collapse
|
1379
|
Nie H, Crooijmans RPMA, Lammers A, van Schothorst EM, Keijer J, Neerincx PBT, Leunissen JAM, Megens HJ, Groenen MAM. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates. PLoS One 2010; 5:e11990. [PMID: 20700537 PMCID: PMC2916831 DOI: 10.1371/journal.pone.0011990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022] Open
Abstract
Background The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. Methodology/Principal Findings We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. Conclusions The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.
Collapse
Affiliation(s)
- Haisheng Nie
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
1380
|
Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 2010; 38:e169. [PMID: 20660011 PMCID: PMC2943622 DOI: 10.1093/nar/gkq636] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Comparing independent high-throughput gene-expression experiments can generate hypotheses about which gene-expression programs are shared between particular biological processes. Current techniques to compare expression profiles typically involve choosing a fixed differential expression threshold to summarize results, potentially reducing sensitivity to small but concordant changes. We present a threshold-free algorithm called Rank–rank Hypergeometric Overlap (RRHO). This algorithm steps through two gene lists ranked by the degree of differential expression observed in two profiling experiments, successively measuring the statistical significance of the number of overlapping genes. The output is a graphical map that shows the strength, pattern and bounds of correlation between two expression profiles. To demonstrate RRHO sensitivity and dynamic range, we identified shared expression networks in cancer microarray profiles driving tumor progression, stem cell properties and response to targeted kinase inhibition. We demonstrate how RRHO can be used to determine which model system or drug treatment best reflects a particular biological or disease response. The threshold-free and graphical aspects of RRHO complement other rank-based approaches such as Gene Set Enrichment Analysis (GSEA), for which RRHO is a 2D analog. Rank–rank overlap analysis is a sensitive, robust and web-accessible method for detecting and visualizing overlap trends between two complete, continuous gene-expression profiles. A web-based implementation of RRHO can be accessed at http://systems.crump.ucla.edu/rankrank/.
Collapse
Affiliation(s)
- Seema B Plaisier
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
1381
|
Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A. Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC PLANT BIOLOGY 2010; 10:150. [PMID: 20637123 PMCID: PMC3095294 DOI: 10.1186/1471-2229-10-150] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 07/17/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Populus euphratica is a salt tolerant and Populus x canescens a salt sensitive poplar species. Because of low transcriptional responsiveness of P. euphratica to salinity we hypothesized that this species exhibits an innate activation of stress protective genes compared with salt sensitive poplars. To test this hypothesis, the transcriptome and metabolome of mature unstressed leaves of P. euphratica and P. x canescens were compared by whole genome microarray analyses and FT-ICR-MS metabolite profiling. RESULTS Direct cross-species comparison of the transcriptomes of the two poplar species from phylogenetically different sections required filtering of the data set. Genes assigned to the GO slim categories 'mitochondria', 'cell wall', 'transport', 'energy metabolism' and 'secondary metabolism' were significantly enriched, whereas genes in the categories 'nucleus', 'RNA or DNA binding', 'kinase activity' and 'transcription factor activity' were significantly depleted in P. euphratica compared with P. x canescens. Evidence for a general activation of stress relevant genes in P. euphratica was not detected. Pathway analyses of metabolome and transcriptome data indicated stronger accumulation of primary sugars, activation of pathways for sugar alcohol production, and faster consumption of secondary metabolites in P. euphratica compared to P. x canescens. Physiological measurements showing higher respiration, higher tannin and soluble phenolic contents as well as enrichment of glucose and fructose in P. euphratica compared to P. x canescens corroborated the results of pathway analyses. CONCLUSION P. euphratica does not rely on general over-expression of stress pathways to tolerate salt stress. Instead, it exhibits permanent activation of control mechanisms for osmotic adjustment (sugar and sugar alcohols), ion compartmentalization (sodium, potassium and other metabolite transporters) and detoxification of reactive oxygen species (phenolic compounds). The evolutionary adaptation of P. euphratica to saline environments is apparently linked with higher energy requirement of cellular metabolism and a loss of transcriptional regulation.
Collapse
Affiliation(s)
- Dennis Janz
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August-Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Katja Behnke
- Institut für Meteorologie und Klimaforschung, Bereich Atmosphärische Umweltforschung, Karlsruher Institut für Technologie (KIT), Kreuzeckbahnstraße 19 82467 Garmisch-Partenkirchen, Germany
| | - Jörg-Peter Schnitzler
- Institut für Meteorologie und Klimaforschung, Bereich Atmosphärische Umweltforschung, Karlsruher Institut für Technologie (KIT), Kreuzeckbahnstraße 19 82467 Garmisch-Partenkirchen, Germany
| | - Basem Kanawati
- Institut für Ökologische Chemie, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Institut für Ökologische Chemie, Deutsches Forschungszentrum für Gesundheit und Umwelt, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Büsgen-Institut, Georg-August-Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| |
Collapse
|
1382
|
Lindberg J, Wijbrandts CA, van Baarsen LG, Nader G, Klareskog L, Catrina A, Thurlings R, Vervoordeldonk M, Lundeberg J, Tak PP. The gene expression profile in the synovium as a predictor of the clinical response to infliximab treatment in rheumatoid arthritis. PLoS One 2010; 5:e11310. [PMID: 20593016 PMCID: PMC2892481 DOI: 10.1371/journal.pone.0011310] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022] Open
Abstract
Background Although the use of TNF inhibitors has fundamentally changed the way rheumatoid arthritis (RA) is treated, not all patients respond well. It is desirable to facilitate the identification of responding and non-responding patients prior to treatment, not only to avoid unnecessary treatment but also for financial reasons. In this work we have investigated the transcriptional profile of synovial tissue sampled from RA patients before anti-TNF treatment with the aim to identify biomarkers predictive of response. Methodology/Principal Findings Synovial tissue samples were obtained by arthroscopy from 62 RA patients before the initiation of infliximab treatment. RNA was extracted and gene expression profiling was performed using an in-house spotted long oligonucleotide array covering 17972 unique genes. Tissue sections were also analyzed by immunohistochemistry to evaluate cell infiltrates. Response to infliximab treatment was assessed according to the EULAR response criteria. The presence of lymphocyte aggregates dominated the expression profiles and a significant overrepresentation of lymphocyte aggregates in good responding patients confounded the analyses. A statistical model was set up to control for the effect of aggregates, but no differences could be identified between responders and non-responders. Subsequently, the patients were split into lymphocyte aggregate positive- and negative patients. No statistically significant differences could be identified except for 38 transcripts associated with differences between good- and non-responders in aggregate positive patients. A profile was identified in these genes that indicated a higher level of metabolism in good responding patients, which indirectly can be connected to increased inflammation. Conclusions/Significance It is pivotal to account for the presence of lymphoid aggregates when studying gene expression patterns in rheumatoid synovial tissue. In spite of our original hypothesis, the data do not support the notion that microarray analysis of whole synovial biopsy specimens can be used in the context of personalized medicine to identify non-responders to anti-TNF therapy before the initiation of treatment.
Collapse
Affiliation(s)
- Johan Lindberg
- Department of Gene Technology, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Carla A. Wijbrandts
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa G. van Baarsen
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Gustavo Nader
- Rheumatology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Rogier Thurlings
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Margriet Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Joakim Lundeberg
- Department of Gene Technology, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Paul P. Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
1383
|
Abstract
Elevated levels of fibrinogen are associated with increased risk of cardiovascular disease, whereas low fibrinogen can lead to a bleeding disorder. We investigated whether microRNAs (miRNAs), known to act as post-transcriptional regulators of gene expression, regulate fibrinogen production. Using transfection of a library of 470 annotated human miRNA precursor molecules in HuH7 hepatoma cells and quantitative measurements of fibrinogen production, we identified 23 miRNAs with down-regulating (up to 64% decrease) and 4 with up-regulating effects (up to 129% increase) on fibrinogen production. Among the down-regulating miRNAs, we investigated the mechanism of action of 3 hsa-miR-29 family members and hsa-miR-409-3p. Overexpression of hsa-miR-29 members led to decreased steady-state levels of all fibrinogen gene (FGA, FGB, and FGG) transcripts in HuH7 cells. Luciferase reporter gene assays demonstrated that this was independent of miRNA-fibrinogen 3'-untranslated region interactions. In contrast, overexpression of hsa-miR-409-3p specifically lowered fibrinogen Bβ mRNA levels, and this effect was dependent on a target site in the fibrinogen Bβ mRNA 3'-untranslated region. This study adds to the known mechanisms that control fibrinogen production, points toward a potential cause of variable circulating fibrinogen levels, and demonstrates that a screening approach can identify miRNAs that regulate clinically important proteins.
Collapse
|
1384
|
Wittwer M, Grandgirard D, Rohrbach J, Leib SL. Tracking the transcriptional host response from the acute to the regenerative phase of experimental pneumococcal meningitis. BMC Infect Dis 2010; 10:176. [PMID: 20565785 PMCID: PMC2915993 DOI: 10.1186/1471-2334-10-176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 06/17/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite the availability of effective antibiotic therapies, pneumococcal meningitis (PM) has a case fatality rate of up to 30% and causes neurological sequelae in up to half of the surviving patients. The underlying brain damage includes apoptosis of neurons in the hippocampus and necrosis in the cortex. Therapeutic options to reduce acute injury and to improve outcome from PM are severely limited.With the aim to develop new therapies a number of pharmacologic interventions have been evaluated. However, the often unpredictable outcome of interventional studies suggests that the current concept of the pathophysiologic events during bacterial meningitis is fragmentary. The aim of this work is to describe the transcriptomic changes underlying the complex mechanisms of the host response to pneumococcal meningitis in a temporal and spatial context using a well characterized infant rat model. METHODS Eleven days old nursing Wistar rats were infected by direct intracisternal injection of 2 x 106 cfu/ml of Streptococcus pneumoniae. Animals were sacrificed at 1, 3, 10 and 26 days after infection, the brain harvested and the cortex and hippocampus were sampled. The first two time points represent the acute and sub-acute phase of bacterial meningitis, whereas the latter represent the recovery phase of the disease. RESULTS The major events in the regulation of the host response on a transcriptional level occur within the first 3 days after infection. Beyond this time, no differences in global gene expression in infected and control animals were detectable by microarray analysis. Whereas in the acute phase of the disease immunoregulatory processes prevail in the hippocampus and the cortex, we observed a strong activation of neurogenic processes in the hippocampal dentate gyrus, both by gene expression and immunohistology starting as early as 3 days after infection. CONCLUSIONS Here we describe the cellular pathways involved in the host response to experimental pneumococcal meningitis in specified disease states and brain regions. With these results we hope to provide the scientific basis for the development of new treatment strategies which take the temporal aspects of the disease into account.
Collapse
Affiliation(s)
- Matthias Wittwer
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
1385
|
Guri AJ, Mohapatra SK, Horne WT, Hontecillas R, Bassaganya-Riera J. The role of T cell PPAR gamma in mice with experimental inflammatory bowel disease. BMC Gastroenterol 2010; 10:60. [PMID: 20537136 PMCID: PMC2891618 DOI: 10.1186/1471-230x-10-60] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 06/10/2010] [Indexed: 01/28/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPAR γ) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR γ in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD. Methods PPAR γ flfl; CD4 Cre+ (CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays. Results The deficiency of PPAR γ in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8+ T cells than WT mice and fewer CD4+FoxP3+ regulatory T cells (Treg) and IL10+CD4+ T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR γ in T cells. Conclusions The expression of PPAR γ in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the mucosal inductive sites.
Collapse
Affiliation(s)
- Amir J Guri
- Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
1386
|
Gu L, Vogiatzi P, Puhr M, Dagvadorj A, Lutz J, Ryder A, Addya S, Fortina P, Cooper C, Leiby B, Dasgupta A, Hyslop T, Bubendorf L, Alanen K, Mirtti T, Nevalainen MT. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer 2010; 17:481-93. [PMID: 20233708 PMCID: PMC6260789 DOI: 10.1677/erc-09-0328] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are no effective therapies for disseminated prostate cancer. Constitutive activation of Stat5 in prostate cancer is associated with cancer lesions of high histological grade. We have shown that Stat5 is activated in 61% of distant metastases of clinical prostate cancer. Active Stat5 increased metastases formation of prostate cancer cells in nude mice by 11-fold in an experimental metastases assay. Active Stat5 promoted migration and invasion of prostate cancer cells, and induced rearrangement of the microtubule network. Active Stat5 expression was associated with decreased cell surface E-cadherin levels, while heterotypic adhesion of prostate cancer cells to endothelial cells was stimulated by active Stat5. Activation of Stat5 and Stat5-induced binding of prostate cancer cells to endothelial cells were decreased by inhibition of Src but not of Jak2. Gene expression profiling indicated that 21% of Stat5-regulated genes in prostate cancer cells were related to metastases, while 7.9% were related to proliferation and 3.9% to apoptosis. The work presented here provides the first evidence of Stat5 involvement in the induction of metastatic behavior of human prostate cancer cells in vitro and in vivo. Stat5 may provide a therapeutic target protein for disseminated prostate cancer.
Collapse
Affiliation(s)
- Lei Gu
- Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1387
|
Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 2010; 29:2147-60. [PMID: 20517297 PMCID: PMC2905244 DOI: 10.1038/emboj.2010.106] [Citation(s) in RCA: 451] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/04/2010] [Indexed: 12/30/2022] Open
Abstract
Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)—yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting remain largely uncharacterized. We report here the DNA-binding profiles for all human and mouse ETS factors, which we generated using two different methods: a high-throughput microwell-based TF DNA-binding specificity assay, and protein-binding microarrays (PBMs). Both approaches reveal that the ETS-binding profiles cluster into four distinct classes, and that all ETS factors linked to cancer, ERG, ETV1, ETV4 and FLI1, fall into just one of these classes. We identify amino-acid residues that are critical for the differences in specificity between all the classes, and confirm the specificities in vivo using chromatin immunoprecipitation followed by sequencing (ChIP-seq) for a member of each class. The results indicate that even relatively small differences in in vitro binding specificity of a TF contribute to site selectivity in vivo.
Collapse
|
1388
|
The effects of globin on microarray-based gene expression analysis of mouse blood. Mamm Genome 2010; 21:268-75. [PMID: 20473674 PMCID: PMC2890980 DOI: 10.1007/s00335-010-9261-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 04/14/2010] [Indexed: 11/28/2022]
Abstract
The use of mouse blood as a model for human blood is often considered in the development of clinically relevant, gene expression-based disease biomarkers. However, the ability to derive biologically meaningful insights from microarray-based gene expression patterns in mouse whole blood, as in human whole blood, is hindered by high levels of globin mRNA. In order to characterize the effects of globin reduction on gene expression of peripheral mouse blood, we performed gene set enrichment analysis on genes identified as expressed in blood via microarray-based genome-wide transcriptome analysis. Depletion of globin mRNA enhanced the quality of microarray data as shown by improved gene expression detection and increased sensitivity. Compared to genes expressed in whole blood, genes detected as expressed in blood following globin reduction were enriched for low abundance transcripts implicated in many biological pathways, including development, g-protein signaling, and immune response. Broadly, globin reduction resulted in improved detection of expressed genes that serve as molecular binding proteins and enzymes in cellular metabolism, intracellular transport/localization, transcription, and translation, as well as genes that potentially could act as biomarkers for diseases such as schizophrenia. These significantly enriched pathways overlap considerably with those identified in globin-reduced human blood suggesting that globin-reduced mouse blood gene expression studies may be useful for identifying genes relevant to human disease. Overall, the results of this investigation provide a better understanding of the impact of reducing globin transcripts in mouse blood and highlight the potential of microarray-based, globin-reduced, mouse blood gene expression studies in biomarker development.
Collapse
|
1389
|
Gora S, Maouche S, Atout R, Wanherdrick K, Lambeau G, Cambien F, Ninio E, Karabina SA. Phospholipolyzed LDL induces an inflammatory response in endothelial cells through endoplasmic reticulum stress signaling. FASEB J 2010; 24:3284-97. [PMID: 20430794 DOI: 10.1096/fj.09-146852] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Secreted phospholipases A2 (sPLA2s) are present in atherosclerotic plaques and are now considered novel attractive therapeutic targets and potential biomarkers as they contribute to the development of atherosclerosis through lipoprotein-dependent and independent mechanisms. We have previously shown that hGX-sPLA2-phospholipolyzed LDL (LDL-X) induces proinflammatory responses in human umbilical endothelial cells (HUVECs); here we explore the molecular mechanisms involved. Global transcriptional gene expression profiling of the response of endothelial cells exposed to either LDL or LDL-X revealed that LDL-X activates multiple distinct cellular pathways including the unfolded protein response (UPR). Mechanistic insight showed that LDL-X activates UPR through calcium depletion of intracellular stores, which in turn disturbs cytoskeleton organization. Treatment of HUVECs and aortic endothelial cells (HAECs) with LDL-X led to activation of all 3 proximal initiators of UPR: eIF-2alpha, IRE1alpha, and ATF6. In parallel, we observed a sustained phosphorylation of the p38 pathway resulting in the phosphorylation of AP-1 downstream targets. This was accompanied by significant production of the proinflammatory cytokines IL-6 and IL-8. Our study demonstrates that phospholipolyzed LDL uses a range of molecular pathways including UPR to initiate endothelial cell perturbation and thus provides an LDL oxidation-independent mechanism for the initiation of vascular inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Sarah Gora
- INSERM UMRS 937, Université Pierre et Marie Curie, UPMC-Paris 6, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
1390
|
Sørensen AL, Jacobsen BM, Reiner AH, Andersen IS, Collas P. Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Mol Biol Cell 2010; 21:2066-77. [PMID: 20410135 PMCID: PMC2883950 DOI: 10.1091/mbc.e10-01-0018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The molecular background for the similarity of mesenchymal progenitor cells from various tissues is unknown. We characterize DNA methylation profiles of RefSeq promoters in relation to gene expression and differentiation in progenitors from adipose tissue, bone marrow, and muscle. Our data support the view of a common origin of mesenchymal progenitors. Mesenchymal stem cells (MSCs) isolated from various tissues share common phenotypic and functional properties. However, intrinsic molecular evidence supporting these observations has been lacking. Here, we unravel overlapping genome-wide promoter DNA methylation patterns between MSCs from adipose tissue, bone marrow, and skeletal muscle, whereas hematopoietic progenitors are more epigenetically distant from MSCs as a whole. Commonly hypermethylated genes are enriched in signaling, metabolic, and developmental functions, whereas genes hypermethylated only in MSCs are associated with early development functions. We find that most lineage-specification promoters are DNA hypomethylated and harbor a combination of trimethylated H3K4 and H3K27, whereas early developmental genes are DNA hypermethylated with or without H3K27 methylation. Promoter DNA methylation patterns of differentiated cells are largely established at the progenitor stage; yet, differentiation segregates a minor fraction of the commonly hypermethylated promoters, generating greater epigenetic divergence between differentiated cell types than between their undifferentiated counterparts. We also show an effect of promoter CpG content on methylation dynamics upon differentiation and distinct methylation profiles on transcriptionally active and inactive promoters. We infer that methylation state of lineage-specific promoters in MSCs is not a primary determinant of differentiation capacity. Our results support the view of a common origin of mesenchymal progenitors.
Collapse
Affiliation(s)
- Anita L Sørensen
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, and Norwegian Center for Stem Cell Research, 0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
1391
|
Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 2010; 18:662-74. [PMID: 20412780 PMCID: PMC2910615 DOI: 10.1016/j.devcel.2010.02.014] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/30/2009] [Accepted: 02/16/2010] [Indexed: 12/01/2022]
Abstract
Recent studies have demonstrated that MyoD initiates a feed-forward regulation of skeletal muscle gene expression, predicting that MyoD binds directly to many genes expressed during differentiation. We have used chromatin immunoprecipitation and high-throughput sequencing to identify genome-wide binding of MyoD in several skeletal muscle cell types. As anticipated, MyoD preferentially binds to a VCASCTG sequence that resembles the in vitro-selected site for a MyoD:E-protein heterodimer, and MyoD binding increases during differentiation at many of the regulatory regions of genes expressed in skeletal muscle. Unanticipated findings were that MyoD was constitutively bound to thousands of additional sites in both myoblasts and myotubes, and that the genome-wide binding of MyoD was associated with regional histone acetylation. Therefore, in addition to regulating muscle gene expression, MyoD binds genome wide and has the ability to broadly alter the epigenome in myoblasts and myotubes.
Collapse
Affiliation(s)
- Yi Cao
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Zizhen Yao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Deepayan Sarkar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Michael Lawrence
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Gilson J. Sanchez
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98105
| | - Maura H. Parker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kyle L. MacQuarrie
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98105
| | - Jerry Davison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin T. Morgan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Walter L. Ruzzo
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Departments of Computer Science and Engineering and Genome Sciences, University of Washington, 98105
| | - Robert C. Gentleman
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Neurology, University of Washington, 98105
| |
Collapse
|
1392
|
Båge T, Lindberg J, Lundeberg J, Modéer T, Yucel-Lindberg T. Signal pathways JNK and NF-kappaB, identified by global gene expression profiling, are involved in regulation of TNFalpha-induced mPGES-1 and COX-2 expression in gingival fibroblasts. BMC Genomics 2010; 11:241. [PMID: 20398340 PMCID: PMC2873473 DOI: 10.1186/1471-2164-11-241] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/15/2010] [Indexed: 01/17/2023] Open
Abstract
Background Prostaglandin E2 (PGE2) is involved in several chronic inflammatory diseases including periodontitis, which causes loss of the gingival tissue and alveolar bone supporting the teeth. We have previously shown that tumor necrosis factor α (TNFα) induces PGE2 synthesis in gingival fibroblasts. In this study we aimed to investigate the global gene expression profile of TNFα-stimulated primary human gingival fibroblasts, focusing on signal pathways related to the PGE2-synthesizing enzymes prostaglandin E synthases (PGES), as well as the upstream enzyme cyclooxygenase-2 (COX-2) and PGE2 production. Results Microarray and western blot analyses showed that the mRNA and protein expression of the inflammatory induced microsomal prostaglandin E synthase-1 (mPGES-1) was up-regulated by the cytokine TNFα, accompanied by enhanced expression of COX-2 and increased production of PGE2. In contrast, the expression of the isoenzymes microsomal prostaglandin E synthase-2 (mPGES-2) and cytosolic prostaglandin E synthase (cPGES) was unaffected by TNFα treatment. Using oligonucleotide microarray analysis in a time-course factorial design including time points 1, 3 and 6 h, differentially expressed genes in response to TNFα treatment were identified. Enrichment analysis of microarray data indicated two positively regulated signal transduction pathways: c-Jun N-terminal kinase (JNK) and Nuclear Factor-κB (NF-κB). To evaluate their involvement in the regulation of mPGES-1 and COX-2 expression, we used specific inhibitors as well as phosphorylation analysis. Phosphorylation analysis of JNK (T183/Y185) and NF-κB p65 (S536) showed increased phosphorylation in response to TNFα treatment, which was decreased by specific inhibitors of JNK (SP600125) and NF-κB (Bay 11-7082, Ro 106-9920). Inhibitors of JNK and NF-κB also decreased the TNFα-stimulated up-regulation of mPGES-1 and COX-2 as well as PGE2 production. Conclusion In the global gene expression profile, the enrichment analysis of microarray data identified the two signal transduction pathways JNK and NF-κB as positively regulated by the cytokine TNFα. Inhibition of these TNFα-activated signal pathways reduced the expression of mPGES-1 and COX-2 as well as their end product PGE2 in gingival fibroblasts. The involvement of the signal pathways JNK and NF-κB in the regulation of PGE2 induced by TNFα may suggest these two pathways as possible attractive targets in the chronic inflammatory disease periodontitis.
Collapse
Affiliation(s)
- Tove Båge
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
1393
|
Salilew-Wondim D, Hölker M, Rings F, Ghanem N, Ulas-Cinar M, Peippo J, Tholen E, Looft C, Schellander K, Tesfaye D. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiol Genomics 2010; 42:201-18. [PMID: 20388838 DOI: 10.1152/physiolgenomics.00047.2010] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant gene expression in the uterine endometrium and embryo has been the major causes of pregnancy failure in cattle. However, selecting cows having adequate endometrial receptivity and embryos of better developmental competence based on the gene expression pattern has been a greater challenge. To investigate whether pretransfer endometrial and embryo gene expression pattern has a direct relation with upcoming pregnancy success, we performed a global endometrial and embryo transcriptome analysis using endometrial and embryo biopsy technology and the pregnancy outcome information. For this, endometrial samples were collected from Simmental heifers at day 7 and 14 of the estrous cycle, one cycle prior to embryo transfer. In the next cycle, blastocyst stage embryos were transferred to recipients at day 7 of the estrous cycle after taking 30-40% of the blastocyst as a biopsy for transcriptome analysis. The results revealed that at day 7 of the estrous cycle, the endometrial gene expression pattern of heifers whose pregnancy resulting in calf delivery was significantly different compared with those resulting in no pregnancy. These differences were accompanied by qualitative and quantitative alteration of major biological process and molecular pathways. However, the transcriptome difference was minimal between the two groups of animals at day 14 of the estrous cycle. Similarly, the transcriptome analysis between embryos biopsies that resulted in calf delivery and those resulted in no pregnancy revealed a total of 70 differentially expressed genes. Among these, the transcript levels of 32 genes including SPAG17, PF6, UBE2D3P, DFNB31, AMD1, DTNBP1, and ARL8B were higher in embryo biopsies resulting in calf delivery. Therefore, the present study highlights the potential of pretransfer endometrial and embryo gene expression patterns as predictors of pregnancy success in cattle.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1394
|
Delbarre E, Jacobsen BM, Reiner AH, Sørensen AL, Küntziger T, Collas P. Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 2010; 21:1872-84. [PMID: 20375147 PMCID: PMC2877645 DOI: 10.1091/mbc.e09-09-0839] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Histone variant H3.3 is loaded onto chromatin in a replication-independent manner, but the epigenetic environment of H3.3 is unclear. Quantitative imaging and chromatin immunoprecipitation show that in mesenchymal stem cells H3.3 targets lineage-priming genes with a potential for activation facilitated by a permissive chromatin environment. In contrast to canonical histones, histone variant H3.3 is incorporated into chromatin in a replication-independent manner. Posttranslational modifications of H3.3 have been identified; however, the epigenetic environment of incorporated H3.3 is unclear. We have investigated the genomic distribution of epitope-tagged H3.3 in relation to histone modifications, DNA methylation, and transcription in mesenchymal stem cells. Quantitative imaging at the nucleus level shows that H3.3, relative to replicative H3.2 or canonical H2B, is enriched in chromatin domains marked by histone modifications of active or potentially active genes. Chromatin immunoprecipitation of epitope-tagged H3.3 and array hybridization identified 1649 H3.3-enriched promoters, a fraction of which is coenriched in H3K4me3 alone or together with H3K27me3, whereas H3K9me3 is excluded, corroborating nucleus-level imaging data. H3.3-enriched promoters are predominantly CpG-rich and preferentially DNA methylated, relative to the proportion of methylated RefSeq promoters in the genome. Most but not all H3.3-enriched promoters are transcriptionally active, and coenrichment of H3.3 with repressive H3K27me3 correlates with an enhanced proportion of expressed genes carrying this mark. H3.3-target genes are enriched in mesodermal differentiation and signaling functions. Our data suggest that in mesenchymal stem cells, H3.3 targets lineage-priming genes with a potential for activation facilitated by H3K4me3 in facultative association with H3K27me3.
Collapse
Affiliation(s)
- Erwan Delbarre
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
1395
|
Weisman D, Alkio M, Colón-Carmona A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC PLANT BIOLOGY 2010; 10:59. [PMID: 20377843 PMCID: PMC2923533 DOI: 10.1186/1471-2229-10-59] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L. under phenanthrene treatment, and compared the results to published Arabidopsis microarray data representing a variety of stress and hormone treatments. In addition, to probe hormonal aspects of PAH stress, we assayed transgenic ethylene-inducible reporter plants as well as ethylene pathway mutants under phenanthrene treatment. RESULTS Microarray results revealed numerous perturbations in signaling and metabolic pathways that regulate reactive oxygen species (ROS) and responses related to pathogen defense. A number of glutathione S-transferases that may tag xenobiotics for transport to the vacuole were upregulated. Comparative microarray analyses indicated that the phenanthrene response was closely related to other ROS conditions, including pathogen defense conditions. The ethylene-inducible transgenic reporters were activated by phenanthrene. Mutant experiments showed that PAH inhibits growth through an ethylene-independent pathway, as PAH-treated ethylene-insensitive etr1-4 mutants exhibited a greater growth reduction than WT. Further, phenanthrene-treated, constitutive ethylene signaling mutants had longer roots than the untreated control plants, indicating that the PAH inhibits parts of the ethylene signaling pathway. CONCLUSIONS This study identified major physiological systems that participate in the PAH-induced stress response in Arabidopsis. At the transcriptional level, the results identify specific gene targets that will be valuable in finding lead compounds and engineering increased tolerance. Collectively, the results open a number of new avenues for researching and improving plant resilience and PAH phytoremediation.
Collapse
Affiliation(s)
- David Weisman
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| | - Merianne Alkio
- Institute of Biological Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Str 2, D-30419 Hannover, Germany
| | - Adán Colón-Carmona
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| |
Collapse
|
1396
|
Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M, Atasoy U. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 2010; 10:126. [PMID: 20370918 PMCID: PMC2856550 DOI: 10.1186/1471-2407-10-126] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/06/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs). METHODS The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established. RESULTS We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis. CONCLUSION This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.
Collapse
Affiliation(s)
- Robert Calaluce
- Department of Surgery, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
1397
|
Behnke K, Loivamäki M, Zimmer I, Rennenberg H, Schnitzler JP, Louis S. Isoprene emission protects photosynthesis in sunfleck exposed Grey poplar. PHOTOSYNTHESIS RESEARCH 2010; 104:5-17. [PMID: 20135229 DOI: 10.1007/s11120-010-9528-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/11/2010] [Indexed: 05/12/2023]
Abstract
In the present study, we combined transient temperature and light stress (sunfleck) and comparably analyzed photosynthetic gas exchange in Grey poplar which has been genetically modified in isoprene emission capacity. Overall, we demonstrate that for poplar leaves the ability to emit isoprene is crucial to maintain photosynthesis when exposed to sunflecks. Net CO2 assimilation and electron transport rates were strongly impaired in sunfleck-treated non-isoprene emitting poplars. Similar impairment was not detected when the leaves were exposed to high light (lightflecks) only. Within 10 h non-isoprene emitting poplars recovered from sunfleck-related impairment as indicated by chlorophyll fluorescence and microarray analysis. Unstressed leaves of non-isoprene emitting poplars had higher ascorbate contents, but also higher contents of malondialdehyde than wild-type. Microarray analyses revealed lipid and chlorophyll degradation processes in the non-isoprene emitting poplars. Thus, there is evidence for an adjustment of the antioxidative system in the non-isoprene emitting poplars even under normal growth conditions.
Collapse
Affiliation(s)
- Katja Behnke
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | | | | | | | | | | |
Collapse
|
1398
|
Palmer RD, Murray MJ, Saini HK, van Dongen S, Abreu-Goodger C, Muralidhar B, Pett MR, Thornton CM, Nicholson JC, Enright AJ, Coleman N, Children's Cancer and Leukaemia Group. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 2010; 70:2911-23. [PMID: 20332240 PMCID: PMC3000593 DOI: 10.1158/0008-5472.can-09-3301] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite their extensive clinical and pathologic heterogeneity, all malignant germ cell tumors (GCT) are thought to originate from primordial germ cells. However, no common biological abnormalities have been identified to date. We profiled 615 microRNAs (miRNA) in pediatric malignant GCTs, controls, and GCT cell lines (48 samples in total) and re-analyzed available miRNA expression data in adult gonadal malignant GCTs. We applied the bioinformatic algorithm Sylamer to identify miRNAs that are of biological importance by inducing global shifts in mRNA levels. The most significant differentially expressed miRNAs in malignant GCTs were all from the miR-371-373 and miR-302 clusters (adjusted P < 0.00005), which were overexpressed regardless of histologic subtype [yolk sac tumor (YST)/seminoma/embryonal carcinoma (EC)], site (gonadal/extragonadal), or patient age (pediatric/adult). Sylamer revealed that the hexamer GCACTT, complementary to the 2- to 7-nucleotide miRNA seed AAGUGC shared by six members of the miR-371-373 and miR-302 clusters, was the only sequence significantly enriched in the 3'-untranslated region of mRNAs downregulated in pediatric malignant GCTs (as a group), YSTs and ECs, and in adult YSTs (all versus nonmalignant tissue controls; P < 0.05). For the pediatric samples, downregulated genes containing the 3'-untranslated region GCACTT showed significant overrepresentation of Gene Ontology terms related to cancer-associated processes, whereas for downregulated genes lacking GCACTT, Gene Ontology terms generally represented metabolic processes only, with few genes per term (adjusted P < 0.05). We conclude that the miR-371-373 and miR-302 clusters are universally overexpressed in malignant GCTs and coordinately downregulate mRNAs involved in biologically significant pathways.
Collapse
Affiliation(s)
- Roger D Palmer
- Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1399
|
Irizarry RA, Wang C, Zhou Y, Speed TP. Gene set enrichment analysis made simple. Stat Methods Med Res 2010; 18:565-75. [PMID: 20048385 DOI: 10.1177/0962280209351908] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, choose an appropriate cut-off, and create a list of candidate genes. This approach has been criticised for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, the most popular method, gene set enrichment analysis (GSEA), seems overly complicated. Furthermore, GSEA is based on a statistical test known for its lack of sensitivity. In this article we compare the performance of a simple alternative to GSEA. We find that this simple solution clearly outperforms GSEA. We demonstrate this with eight different microarray datasets.
Collapse
Affiliation(s)
- Rafael A Irizarry
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
1400
|
Gurumurthy RK, Mäurer AP, Machuy N, Hess S, Pleissner KP, Schuchhardt J, Rudel T, Meyer TF. A loss-of-function screen reveals Ras- and Raf-independent MEK-ERK signaling during Chlamydia trachomatis infection. Sci Signal 2010; 3:ra21. [PMID: 20234004 DOI: 10.1126/scisignal.2000651] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that have a major effect on human health. Because of their intimate association with their host, chlamydiae depend on various host cell functions for their survival. Here, we present an RNA-interference-based screen in human epithelial cells that identified 59 host factors that either positively or negatively influenced the replication of Chlamydia trachomatis (Ctr). Two factors, K-Ras and Raf-1, which are members of the canonical Ras-Raf-MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway, were identified as central components of signaling networks associated with hits from the screen. Depletion of Ras or Raf in HeLa cells increased pathogen growth. Mechanistic analyses revealed that ERK was activated independently of K-Ras and Raf-1. Infection with Ctr led to the Akt-dependent, increased phosphorylation (and inactivation) of Raf-1 at serine-259. Furthermore, phosphorylated Raf-1 relocalized from the cytoplasm to the intracellular bacterial inclusion in an Akt- and 14-3-3beta-dependent manner. Together, these findings not only show that Chlamydia regulates components of an important host cell signaling pathway, but also provide mechanistic insights into how this is achieved.
Collapse
|