101
|
Wass S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain Cogn 2011; 75:18-28. [PMID: 21055864 DOI: 10.1016/j.bandc.2010.10.005] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/22/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Sam Wass
- Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
102
|
Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage 2010; 55:479-90. [PMID: 21168519 DOI: 10.1016/j.neuroimage.2010.12.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/29/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022] Open
Abstract
The corpus callosum is the largest white matter tract, important for interhemispheric communication. The aim of this study was to investigate and compare corpus callosum size, shape and diffusion characteristics in 106 very preterm infants and 22 full-term infants. Structural and diffusion magnetic resonance images were obtained at term equivalent. The corpus callosum was segmented, cross-sectional areas were calculated, and shape was analyzed. Fractional anisotropy, mean, axial and radial diffusivity measures were obtained from within the corpus callosum, with additional probabilistic tractography analysis. Very preterm infants had significantly reduced callosal cross-sectional area compared with term infants (p=0.004), particularly for the mid-body and posterior sub-regions. Very preterm callosi were more circular (p=0.01). Fractional anisotropy was lower (p=0.007) and mean (p=0.006) and radial (p=0.001) diffusivity values were higher in very preterm infants' callosi, particularly at the anterior and posterior ends. The volume of tracts originating from the corpus callosum was reduced in very preterm infants (p=0.001), particularly for anterior mid-body (p=0.01) and isthmus tracts (p=0.04). This study characterizes callosal size, shape and diffusion in typically developing infants at term equivalent age, and reports macrostructural and microstructural abnormalities as a result of prematurity.
Collapse
|
103
|
Fame RM, MacDonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2010; 34:41-50. [PMID: 21129791 DOI: 10.1016/j.tins.2010.10.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/04/2010] [Accepted: 10/08/2010] [Indexed: 01/24/2023]
Abstract
Callosal projection neurons (CPN) are a diverse population of neocortical projection neurons that connect the two hemispheres of the cerebral cortex via the corpus callosum. They play key roles in high-level associative connectivity, and have been implicated in cognitive syndromes of high-level associative dysfunction, such as autism spectrum disorders. CPN evolved relatively recently compared to other cortical neuron populations, and have undergone disproportionately large expansion from mouse to human. While much is known about the anatomical trajectory of developing CPN axons, and progress has been made in identifying cellular and molecular controls over midline crossing, only recently have molecular-genetic controls been identified that specify CPN populations, and help define CPN subpopulations. In this review, we discuss the development, diversity and evolution of CPN.
Collapse
Affiliation(s)
- Ryann M Fame
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
104
|
Shukla DK, Keehn B, Lincoln AJ, Müller RA. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 2010; 49:1269-78, 1278.e1-2. [PMID: 21093776 PMCID: PMC3346956 DOI: 10.1016/j.jaac.2010.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/17/2010] [Accepted: 08/31/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle cerebellar peduncle in children with ASD and typically developing (TD) children. METHOD DTI data were obtained from 26 children with ASD and 24 matched TD children. Fractional anisotropy (FA), mean diffusivity (MD), and axial and radial diffusion were calculated for the whole brain, the genu, body, and splenium of the corpus callosum, the genu and anterior and posterior limbs of the internal capsule, and the middle cerebellar peduncle. RESULTS Children with ASD had reduced FA and increased radial diffusion for whole-brain white matter and all three segments of the corpus callosum and internal capsule, compared with those in TD children. Increased MD was found for the whole brain and for anterior and posterior limbs of the internal capsule. Reduced axial diffusion was found for the body of corpus callosum. Reduced FA was also found for the middle cerebellar peduncle. CONCLUSIONS Our findings suggest widespread white matter compromise in children with ASD. Abnormalities in the corpus callosum indicate impaired interhemispheric transfer. Results for the internal capsule and middle cerebellar peduncle add to the currently limited DTI evidence on subcortico-cortical tracts in ASD. The robust impairment found in all three segments of the internal capsule is consistent with studies documenting impairment of elementary sensorimotor function in ASD.
Collapse
Affiliation(s)
- Dinesh K Shukla
- Brain Development Imaging Laboratory, San Diego State University, San Diego, USA
| | | | | | | |
Collapse
|
105
|
Defensor EB, Pearson BL, Pobbe RLH, Bolivar VJ, Blanchard DC, Blanchard RJ. A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice. Behav Brain Res 2010; 217:302-8. [PMID: 21055421 DOI: 10.1016/j.bbr.2010.10.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 01/02/2023]
Abstract
The BTBR T+ tf/J (BTBR) inbred mouse strain displays a low sociability phenotype relevant to the first diagnostic symptom of autism, deficits in reciprocal social interactions. Previous studies have shown that BTBR mice exhibit reduced social approach, juvenile play, and interactive behaviors. The present study evaluated the behavior of the BTBR and C57BL/6J (B6) strains in social proximity. Subjects were closely confined and tested in four experimental conditions: same strain male pairs (Experiment 1); different strain male pairs (Experiment 2); same strain male pairs and female pairs (Experiment 3); same strain male pairs treated with an anxiolytic (Experiment 4). Results showed that BTBR mice displayed decreased nose tip-to-nose tip, nose-to-head and upright behaviors and increased nose-to-anogenital, crawl under and crawl over behaviors. These results demonstrated avoidance of reciprocal frontal orientations in the BTBR, providing a parallel to gaze aversion, a fundamental predictor of autism. For comparative purposes, Experiment 3 assessed male and female mice in a three-chamber social approach test and in the social proximity test. Results from the three-chamber test showed that male B6 and female BTBR displayed a preference for the sex and strain matched conspecific stimulus, while female B6 and male BTBR did not. Although there was no significant interaction between sex and strain in the social proximity test, a significant main effect of sex indicated that female mice displayed higher levels of nose tip-to-nose tip contacts and lower levels of anogenital investigation (nose-to-anogenital) in comparison to male mice, all together suggesting different motivations for sociability in males and females. Systemic administration of the anxiolytic, diazepam, decreased the frequency of two behaviors associated with anxiety and defensiveness, upright and jump escape, as well as crawl under behavior. This result suggests that crawl under behavior, observed at high levels in BTBR mice, is elicited by the aversiveness of social proximity, and possibly serves to avoid reciprocal frontal orientations with other mice.
Collapse
Affiliation(s)
- Erwin B Defensor
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Res 2010; 183:38-43. [PMID: 20542669 DOI: 10.1016/j.pscychresns.2010.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 11/21/2022]
Abstract
The goal of the study was to investigate the size of the corpus callosum (CC) and its subsegments in relation to total brain volume (TBV) as an empirical indicator of impaired connectivity in autism with special respect to gender. In MRI data sets of 29 adults with high-functioning autism (HFA) and 29 age-, gender- and IQ-matched control subjects, the TBV was measured and the CC was analyzed as a whole and in subsegments employing two different manual segmentation procedures. With respect to diagnosis, there were no significant differences in the dependent variables (CC, CC subsegments, and TBV). With respect to gender, only TBV was significantly increased in males compared with females, resulting in a significantly decreased CC/TBV ratio in males. This finding, however, was independent from gender and can be fully attributed to brain size. Our findings do not support the following hypotheses: (1) a hypothesis of impaired CC in HFA adults as a subgroup of patients with autism spectrum disorders, and (2) the sexual dimorphism hypothesis of the CC.
Collapse
|
107
|
Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. ACTA ACUST UNITED AC 2010; 65:56-79. [PMID: 20550950 DOI: 10.1016/j.brainresrev.2010.06.002] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/29/2010] [Accepted: 06/09/2010] [Indexed: 12/30/2022]
Abstract
Prenatal stress (PS) has been linked to abnormal cognitive, behavioral and psychosocial outcomes in both animals and humans. Animal studies have clearly demonstrated PS effects on the offspring's brain, however, while it has been speculated that PS most likely affects the brains of exposed human fetuses as well, no study has to date examined this possibility prospectively using an independent stressor (i.e., a stressful event that the pregnant woman has no control over, such as a natural disaster). The aim of this review is to summarize the existing animal literature by focusing on specific brain regions that have been shown to be affected by PS both macroscopically and microscopically. These regions include the hippocampus, amygdala, corpus callosum, anterior commissure, cerebral cortex, cerebellum and hypothalamus. We first discuss the mechanisms by which the effects of PS might occur. In particular, we show that maternal and fetal hypothalamic-pituitary-adrenal (HPA) axes, and the placenta, are the most likely candidates for these mechanisms. We see that, although animal studies have obvious advantages over human studies, the integration of findings in animals and the transfer of these findings to human populations remains a complex issue. Finally, we show how it is possible to circumvent these challenges by studying the effects of PS on brain development directly in humans, by taking advantage of natural or man-made disasters and assessing the impact and consequences of such stressful events on pregnant women and their offspring prospectively.
Collapse
Affiliation(s)
- Arnaud Charil
- McGill University, Department of Psychiatry, Montreal, Québec, Canada
| | | | | | | |
Collapse
|
108
|
Accurate Automated Detection of Autism Related Corpus Callosum Abnormalities. J Med Syst 2010; 35:929-39. [DOI: 10.1007/s10916-010-9510-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
109
|
Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 2010; 30:4419-27. [PMID: 20335478 DOI: 10.1523/jneurosci.5714-09.2010] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cross-sectional magnetic resonance imaging (MRI) studies have long hypothesized that the brain in children with autism undergoes an abnormal growth trajectory that includes a period of early overgrowth; however, this has never been confirmed by a longitudinal study. We performed the first longitudinal study of brain growth in toddlers at the time symptoms of autism are becoming clinically apparent using structural MRI scans at multiple time points beginning at 1.5 years up to 5 years of age. We collected 193 scans on 41 toddlers who received a confirmed diagnosis of autistic disorder at approximately 48 months of age and 44 typically developing controls. By 2.5 years of age, both cerebral gray and white matter were significantly enlarged in toddlers with autistic disorder, with the most severe enlargement occurring in frontal, temporal, and cingulate cortices. In the longitudinal analyses, which we accounted for age and gender effect, we found that all regions (cerebral gray, cerebral white, frontal gray, temporal gray, cingulate gray, and parietal gray) except occipital gray developed at an abnormal growth rate in toddlers with autistic disorder that was mainly characterized by a quadratic age effect. Females with autistic disorder displayed a more pronounced abnormal growth profile in more brain regions than males with the disorder. Given that overgrowth clearly begins before 2 years of age, future longitudinal studies would benefit from inclusion of even younger populations as well as further characterization of genetic and other biomarkers to determine the underlying neuropathological processes causing the onset of autistic symptoms.
Collapse
|
110
|
Peltier J, Verclytte S, Delmaire C, Deramond H, Pruvo JP, Le Gars D, Godefroy O. Microsurgical anatomy of the ventral callosal radiations: new destination, correlations with diffusion tensor imaging fiber-tracking, and clinical relevance. J Neurosurg 2010; 112:512-9. [PMID: 19612974 DOI: 10.3171/2009.6.jns081712] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In the current literature, there is a lack of a detailed map of the origin, course, and connections of the ventral callosal radiations of the human brain. METHODS The authors used an older dissection technique based on a freezing process as well as diffusion tensor imaging to investigate this area of the human brain. RESULTS The authors demonstrated interconnections between areas 11, 12, and 25 for the callosal radiations of the trunk and rostrum of the corpus callosum; between areas 9, 10, and 32 for the genu; and between areas 6, 8, and 9 for the ventral third of the body. The authors identified new ventral callosal connections crossing the rostrum between both temporal poles and coursing within the temporal stem, and they named these connections the "callosal radiations of Peltier." They found that the breadth of the callosal radiations slightly increases along their course from the rostrum to the first third of the body of the corpus callosum. CONCLUSIONS The fiber dissection and diffusion tensor imaging techniques are complementary not only in their application to the study of the commissural system in the human brain, but also in their practical use for diagnosis and surgical planning. Further investigations, neurocognitive tests, and other contributions will permit elucidation of the functional relevance of the newly identified callosal radiations in patients with disease involving the ventral corpus callosum.
Collapse
Affiliation(s)
- Johann Peltier
- Laboratory of Anatomy and Organogenesis, University of Picardy Jules Verne, Amiens, France.
| | | | | | | | | | | | | |
Collapse
|
111
|
Sahyoun CP, Belliveau JW, Soulières I, Schwartz S, Mody M. Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in high-functioning autism. Neuropsychologia 2010; 48:86-95. [PMID: 19698726 DOI: 10.1016/j.neuropsychologia.2009.08.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/14/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
High-functioning individuals with autism have been found to favor visuospatial processing in the face of typically poor language abilities. We aimed to examine the neurobiological basis of this difference using functional magnetic resonance imaging and diffusion tensor imaging. We compared 12 children with high functioning autism (HFA) to 12 age- and IQ-matched typically developing controls (CTRL) on a pictorial reasoning paradigm under three conditions: V, requiring visuospatial processing; S, requiring language (i.e., semantic) processing; and V+S, a hybrid condition in which language use could facilitate visuospatial transformations. Activated areas in the brain were chosen as endpoints for probabilistic diffusion tractography to examine tract integrity (FA) within the structural network underlying the activation patterns. The two groups showed similar networks, with linguistic processing activating inferior frontal, superior and middle temporal, ventral visual, and temporo-parietal areas, whereas visuospatial processing activated occipital and inferior parietal cortices. However, HFA appeared to activate occipito-parietal and ventral temporal areas, whereas CTRL relied more on frontal and temporal language regions. The increased reliance on visuospatial abilities in HFA was supported by intact connections between the inferior parietal and the ventral temporal ROIs. In contrast, the inferior frontal region showed reduced connectivity to ventral temporal and middle temporal areas in this group, reflecting impaired activation of frontal language areas in autism. The HFA group's engagement of posterior brain regions along with its weak connections to frontal language areas suggest support for a reliance on visual mediation in autism, even in tasks of higher cognition.
Collapse
Affiliation(s)
- Chérif P Sahyoun
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129-2060, USA.
| | | | | | | | | |
Collapse
|
112
|
Chura LR, Lombardo MV, Ashwin E, Auyeung B, Chakrabarti B, Bullmore ET, Baron-Cohen S. Organizational effects of fetal testosterone on human corpus callosum size and asymmetry. Psychoneuroendocrinology 2010; 35:122-32. [PMID: 19833443 DOI: 10.1016/j.psyneuen.2009.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
Abstract
Previous theory and research in animals has identified the critical role that fetal testosterone (FT) plays in organizing sexually dimorphic brain development. However, to date there are no studies in humans directly testing the organizational effects of FT on structural brain development. In the current study we investigated the effects of FT on corpus callosum size and asymmetry. High-resolution structural magnetic resonance images (MRI) of the brain were obtained on 28 8-11-year-old boys whose exposure to FT had been previously measured in utero via amniocentesis conducted during the second trimester. Although there was no relationship between FT and midsaggital corpus callosum size, increasing FT was significantly related to increasing rightward asymmetry (e.g., Right>Left) of a posterior subsection of the callosum, the isthmus, that projects mainly to parietal and superior temporal areas. This potential organizational effect of FT on rightward callosal asymmetry may be working through enhancing the neuroprotective effects of FT and result in an asymmetric distribution of callosal axons. We suggest that this possible organizational effect of FT on callosal asymmetry may also play a role in shaping sexual dimorphism in functional and structural brain development, cognition, and behavior.
Collapse
Affiliation(s)
- Lindsay R Chura
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
113
|
Kishi N, Macklis JD. MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol 2009; 222:51-8. [PMID: 20025874 DOI: 10.1016/j.expneurol.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a human neurodevelopmental disorder presenting almost exclusively in female infants; it is the second most common cause of mental retardation in girls, after Down's syndrome. The identification in 1999 that mutation of the methyl-CpG-binding protein 2 (MECP2) gene on the X chromosome causes Rett syndrome has led to a rapid increase in understanding of the neurobiological basis of the disorder. However, much about the functional role of MeCP2, and the cellular phenotype of both patients with Rett syndrome and mutant Mecp2 mouse models, remains unclear. Building on prior work in which we demonstrated that cortical layer 2/3 pyramidal neurons (primarily interhemispheric "callosal projection neurons" (CPN)) have reduced dendritic complexity and smaller somata in Mecp2-null mice, here we investigate whether Mecp2 loss-of-function affects neuronal maturation cell-autonomously and/or non-cell-autonomously by creating physical chimeras. We transplanted Mecp2-null or wild-type (wt) E17-18 cortical neuroblasts and immature neurons from mice constitutively expressing enhanced green fluorescent protein (eGFP) into wt P2-3 mouse cortices to generate chimeric cortices. Mecp2-null layer 2/3 pyramidal neurons in both Mecp2-null and wt neonatal cortices exhibit equivalent reduction in dendritic complexity, and are smaller than transplanted wt neurons, independent of recipient environment. These results indicate that the phenotype of Mecp2-null pyramidal neurons results largely from cell-autonomous mechanisms, with additional non-cell-autonomous effects. Dysregulation of MeCP2 target genes in individual neuronal populations such as CPN is likely centrally involved in Rett syndrome pathogenesis. Our results indicating MeCP2 function in the centrally affected projection neuron population of CPN themselves provide a foundation and motivation for identification of transcriptionally regulated MeCP2 target genes in developing CPN.
Collapse
Affiliation(s)
- Noriyuki Kishi
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
114
|
A voxel-based morphometry comparison of regional gray matter between fragile X syndrome and autism. Psychiatry Res 2009; 174:138-45. [PMID: 19853418 PMCID: PMC2783567 DOI: 10.1016/j.pscychresns.2009.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
The phenotypic association between fragile X syndrome (FXS) and autism is well established, but no studies have directly compared whole-brain anatomy between the two disorders. We performed voxel-based morphometry analyses of magnetic resonance imaging (MRI) scans on 10 individuals with FXS, 10 individuals with autism, and 10 healthy comparison subjects to identify volumetric changes in each disorder. Regional gray matter volumes within frontal, parietal, temporal, and cingulate gyri, as well as in the caudate nuclei and cerebellum, were larger in the FXS group relative to the autism group. In addition, volume increases in FXS were observed in frontal gyri and caudate nuclei compared to controls. The autism group exhibited volume increases in frontal and temporal gyri relative to the FXS group, and no volume increases relative to controls. Volumetric deficits relative to controls were observed in regions of the cerebellum for both groups, with additional deficits in parietal and temporal gyri for the FXS group. Our caudate nuclei and frontal gyri results may implicate dysfunction of frontostriatal circuitry in FXS. Cerebellar deficits suggest atypical development of the cerebellum contributing to the phenotype of both disorders, but further imply that unique cerebellar regions contribute to the phenotype of each disorder.
Collapse
|
115
|
Frazier TW, Hardan AY. A meta-analysis of the corpus callosum in autism. Biol Psychiatry 2009; 66:935-41. [PMID: 19748080 PMCID: PMC2783565 DOI: 10.1016/j.biopsych.2009.07.022] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/15/2009] [Accepted: 07/19/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Previous magnetic resonance imaging (MRI) studies have reported reductions in corpus callosum (CC) total area and CC regions in individuals with autism. However, studies have differed concerning the magnitude and/or region contributing to CC reductions. The present study determined the significance and magnitude of reductions in CC total and regional area measures in autism. METHOD PubMed and PsycINFO databases were searched to identify MRI studies examining corpus callosum area in autism. Ten studies contributed data from 253 patients with autism (mean age = 14.58, SD = 6.00) and 250 healthy control subjects (mean age = 14.47, SD = 5.31). Of these 10 studies, 8 reported area measurements for corpus callosum regions (anterior, mid/body, and posterior), and 6 reported area for Witelson subdivisions. Meta-analytic procedures were used to quantify differences in total and region CC area measurements. RESULTS Total CC area was reduced in autism and the magnitude of the reduction was medium (weighted mean d = .48, 95% confidence interval [CI] = .30-.66). All regions showed reductions in size with the magnitude of the effect decreasing caudally (anterior d = .49, mid/body d = .43, posterior d = .37). Witelson subdivision 3 (rostral body) showed the largest effect, indicating greatest reduction in the region containing premotor/supplementary motor neurons. CONCLUSIONS Corpus callosum reductions are present in autism and support the aberrant connectivity hypothesis. Future diffusion tensor imaging studies examining specific fiber tracts connecting the hemispheres are needed to identify the cortical regions most affected by CC reductions.
Collapse
Affiliation(s)
- Thomas W. Frazier
- Center for Autism and Center for Pediatric Behavioral Health, Cleveland Clinic
| | - Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University
| |
Collapse
|
116
|
Schumann CM, Carter Barnes C, Lord C, Courchesne E. Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 2009; 66:942-9. [PMID: 19726029 PMCID: PMC2795360 DOI: 10.1016/j.biopsych.2009.07.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/08/2009] [Accepted: 07/10/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND Autism is a heterogeneous neurodevelopmental disorder of unknown etiology. The amygdala has long been a site of intense interest in the search for neuropathology in autism, given its role in emotional and social behavior. An interesting hypothesis has emerged that the amygdala undergoes an abnormal developmental trajectory with a period of early overgrowth in autism; however this finding has not been well established at young ages nor analyzed with boys and girls independently. METHODS We measured amygdala volumes on magnetic resonance imaging scans from 89 toddlers at 1-5 years of age (mean = 3 years). Each child returned at approximately 5 years of age for final clinical evaluation. RESULTS Toddlers who later received a confirmed autism diagnosis (32 boys, 9 girls) had a larger right (p < .01) and left (p < .05) amygdala compared with typically developing toddlers (28 boys, 11 girls) with and without covarying for total cerebral volume. Amygdala size in toddlers with autism spectrum disorder correlated with the severity of their social and communication impairments as measured on the Autism Diagnostic Interview and Vineland scale. Strikingly, girls differed more robustly from typical in amygdala volume, whereas boys accounted for the significant relationship of amygdala size with severity of clinical impairment. CONCLUSIONS This study provides evidence that the amygdala is enlarged in young children with autism; the overgrowth must begin before 3 years of age and is associated with the severity of clinical impairments. However, neuroanatomic phenotypic profiles differ between males and females, which critically affects future studies on the genetics and etiology of autism.
Collapse
Affiliation(s)
- Cynthia Mills Schumann
- Department of Neurosciences, Autism Center of Excellence, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Cynthia Carter Barnes
- Department of Neurosciences, Autism Center of Excellence, University of California, San Diego
| | - Catherine Lord
- Department of Psychology, Autism and Communication Disorders Center, University of Michigan
| | - Eric Courchesne
- Department of Neurosciences, Autism Center of Excellence, University of California, San Diego
| |
Collapse
|
117
|
McAlonan GM, Cheung C, Cheung V, Wong N, Suckling J, Chua SE. Differential effects on white-matter systems in high-functioning autism and Asperger's syndrome. Psychol Med 2009; 39:1885-1893. [PMID: 19356262 DOI: 10.1017/s0033291709005728] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Whether autism spectrum maps onto a spectrum of brain abnormalities and whether Asperger's syndrome (ASP) is distinct from high-functioning autism (HFA) are debated. White-matter maldevelopment is associated with autism and disconnectivity theories of autism are compelling. However, it is unknown whether children with ASP and HFA have distinct white-matter abnormalities. METHOD Voxel-based morphometry mapped white-matter volumes across the whole brain in 91 children. Thirty-six had autism spectrum disorder. A history of delay in phrase speech defined half with HFA; those without delay formed the ASP group. The rest were typically developing children, balanced for age, IQ, gender, maternal language and ethnicity. White-matter volumes in HFA and ASP were compared and each contrasted with controls. RESULTS White-matter volumes around the basal ganglia were higher in the HFA group than ASP and higher in both autism groups than controls. Compared with controls, children with HFA had less frontal and corpus callosal white matter in the left hemisphere; those with ASP had less frontal and corpus callosal white matter in the right hemisphere with more white matter in the left parietal lobe. CONCLUSIONS HFA involved mainly left hemisphere white-matter systems; ASP affected predominantly right hemisphere white-matter systems. The impact of HFA on basal ganglia white matter was greater than ASP. This implies that aetiological factors and management options for autism spectrum disorders may be distinct. History of language acquisition is a potentially valuable marker to refine our search for causes and treatments in autism spectrum.
Collapse
Affiliation(s)
- G M McAlonan
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR China.
| | | | | | | | | | | |
Collapse
|
118
|
Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S, Keshavan MS, Minshew NJ. Corpus callosum volume in children with autism. Psychiatry Res 2009; 174:57-61. [PMID: 19781917 PMCID: PMC2761427 DOI: 10.1016/j.pscychresns.2009.03.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 11/22/2008] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
The corpus callosum (CC) is the main commissure connecting the cerebral hemispheres. Previous evidence suggests the involvement of the CC in the pathophysiology of autism. However, most studies examined the mid-sagittal area and investigations applying novel methods are warranted. The goal of this investigation is to apply a volumetric method to examine the size of the CC in autism and to identify any association with clinical features. An MRI-based morphometric study of the total CC volume and its seven subdivisions was conducted and involved 22 children with autism (age range 8.1-12.7 years) and 23 healthy, age-matched controls. Reductions in the total volume of the CC and several of its subdivisions were found in the autism sample. Associations were observed between CC structures and clinical features including social deficits, repetitive behaviors, and sensory abnormalities. Volumetric alterations of the CC observed in this investigation are consistent with midsagittal area tracings of decreased CC size in autism. These findings support the aberrant connectivity hypothesis with possible decrease in interhemispheric communications.
Collapse
Affiliation(s)
- Antonio Y. Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA,Corresponding Author: Antonio Y. Hardan, M.D., 401 Quarry Road, Stanford, CA 94305, Phone: 1-650-723-5511, Fax: 1-650-724-7389,
| | - Melissa Pabalan
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nidhi Gupta
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Rahul Bansal
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Nadine M. Melhem
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA
| | - Serguei Fedorov
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel and Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nancy J. Minshew
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
119
|
Yang M, Clarke AM, Crawley JN. Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. Eur J Neurosci 2009; 29:1663-77. [PMID: 19419429 DOI: 10.1111/j.1460-9568.2009.06714.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The BTBR T+tf/J (BTBR) strain is an inbred strain of mice that displays prominent social deficits and repetitive behaviors analogous to the defining symptoms of autism, along with complete congenital agenesis of the corpus callosum (CC). The BTBR strain is genetically distant from the widely used C57BL/6J (B6) strain, which exhibits high levels of sociability, a low level of repetitive behaviors, and an intact CC. Emerging evidence implicates compromised interhemispherical connectivity in some cases of autism. We investigated the hypothesis that the disconnection of CC fiber tracts contributes to behavioral traits in mice that are relevant to the behavioral symptoms of autism. Surgical lesion of the CC in B6 mice at postnatal day 7 had no effect on juvenile play and adult social approaches, and did not elevate repetitive self-grooming. In addition, LP/J, the strain that is genetically closest to the BTBR strain but has an intact CC, displayed juvenile play deficits and repetitive self-grooming similar to those seen in BTBR mice. These corroborative results offer evidence against the hypothesis that the CC disconnection is a primary cause of low sociability and a high level of repetitive behaviors in inbred mice. Our findings indicate that genes mediating other aspects of neurodevelopment, including those whose mutations underlie more subtle disruptions in white matter pathways and connectivity, are more likely to contribute to the aberrant behavioral phenotypes in the BTBR mouse model of autism.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH Building 35, Room 1C-909, Mail Code 3730, Bethesda, MD 20892-3730, USA.
| | | | | |
Collapse
|
120
|
Bohland JW, Wu C, Barbas H, Bokil H, Bota M, Breiter HC, Cline HT, Doyle JC, Freed PJ, Greenspan RJ, Haber SN, Hawrylycz M, Herrera DG, Hilgetag CC, Huang ZJ, Jones A, Jones EG, Karten HJ, Kleinfeld D, Kötter R, Lester HA, Lin JM, Mensh BD, Mikula S, Panksepp J, Price JL, Safdieh J, Saper CB, Schiff ND, Schmahmann JD, Stillman BW, Svoboda K, Swanson LW, Toga AW, Van Essen DC, Watson JD, Mitra PP. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol 2009; 5:e1000334. [PMID: 19325892 PMCID: PMC2655718 DOI: 10.1371/journal.pcbi.1000334] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.
Collapse
Affiliation(s)
- Jason W Bohland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Lewis JD, Theilmann RJ, Sereno MI, Townsend J. The relation between connection length and degree of connectivity in young adults: a DTI analysis. Cereb Cortex 2009; 19:554-62. [PMID: 18552356 PMCID: PMC2638815 DOI: 10.1093/cercor/bhn105] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using diffusion tensor imaging and tractography to detail the patterns of interhemispheric connectivity and to determine the length of the connections, and formulae based on histological results to estimate degree of connectivity, we show that connection length is negatively correlated with degree of connectivity in the normal adult brain. The degree of interhemispheric connectivity--the ratio of interhemispheric connections to total corticocortical projection neurons--was estimated for each of 5 subregions of the corpus callosum in 22 normal males between 20 and 45 years of age (mean 31.68; standard deviation 8.75), and the average length of the longest tracts passing through each point of each subregion was calculated. Regression analyses were used to assess the relation between connection length and the degree of connectivity. Connection length was negatively correlated with degree of connectivity in all 5 subregions, and the regression was significant in 4 of the 5, with an average r(2) of 0.255. This is contrasted with previous analyses of the relation between brain size and connectivity, and connection length is shown to be a superior predictor. The results support the hypothesis that cortical networks are optimized to reduce conduction delays and cellular costs.
Collapse
Affiliation(s)
- John D Lewis
- Department of Cognitive Science, University of California-San Diego, La Jolla, CA 92093-0515, USA.
| | | | | | | |
Collapse
|
122
|
Keary CJ, Minshew NJ, Bansal R, Goradia D, Fedorov S, Keshavan MS, Hardan AY. Corpus callosum volume and neurocognition in autism. J Autism Dev Disord 2009; 39:834-41. [PMID: 19165587 DOI: 10.1007/s10803-009-0689-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 01/05/2009] [Indexed: 11/24/2022]
Abstract
The corpus callosum has recently been considered as an index of interhemispheric connectivity. This study applied a novel volumetric method to examine the size of the corpus callosum in 32 individuals with autism and 34 age-, gender- and IQ-matched controls and to investigate the relationship between this structure and cognitive measures linked to interhemispheric functioning. Participants with autism displayed reductions in total corpus callosum volume and in several of its subdivisions. Relationships were also observed between volumetric alterations and performance on several cognitive tests including the Tower of Hanoi test. These findings provide further evidence for anatomical alterations in the corpus callosum in autism, but warrant additional studies examining the relationship of this structure and specific measures of interhemispheric connectivity.
Collapse
Affiliation(s)
- Christopher J Keary
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Recent developments in functional imaging as well as the emergence of new anatomical imaging techniques suited for the study of white matter have shifted investigational paradigms from a localized to a more holistic network approach. Aside from detecting local activity, functional MRI can be applied to the study of connectivity. However, the concept of "functional connectivity" remains broad, and specific designs and analyses may affect the results. In addition, connectivity cannot be viewed in isolation. Rather, from a developmental perspective, connectivity and local cortical architecture are intimately related. Therefore, combined approaches examining local organization and connectivity are the most promising avenues for elucidating disturbances of neurofunctional organization in developmental disorders. Here this approach is illustrated via data obtained from autism research that suggest impaired local cortical architecture and reduced long-range connectivity between cerebral regions.
Collapse
Affiliation(s)
- Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, San Diego, CA 92120-1863, USA.
| |
Collapse
|
124
|
Exaggerated responses to stress in the BTBR T+tf/J mouse: an unusual behavioral phenotype. Behav Brain Res 2008; 197:462-5. [PMID: 18977396 DOI: 10.1016/j.bbr.2008.09.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 01/05/2023]
Abstract
This study shows that the BTBR T+tf/J mouse, a model for autism spectrum disorder (ASD), has increased levels of the stress hormone corticosterone, when compared to C57BL/6J mice. In addition, we have shown that tail suspension of the BTBR produces a heightened anxiety response in the elevated plus maze. These results suggest that the BTBR mouse is stressor-reactive exhibiting hormone responses that might predispose it to ASD.
Collapse
|
125
|
Abstract
AbstractAutism is a neurodevelopmental disorder characterized by social and communication deficits, and repetitive behavior. Studies investigating the integrity of brain systems in autism suggest a wide range of gray and white matter abnormalities that are present early in life and change with development. These abnormalities predominantly affect association areas and undermine functional integration. Executive function, which has a protracted development into adolescence and reflects the integration of complex widely distributed brain function, is also affected in autism. Evidence from studies probing response inhibition and working memory indicate impairments in these core components of executive function, as well as compensatory mechanisms that permit normative function in autism. Studies also demonstrate age-related improvements in executive function from childhood to adolescence in autism, indicating the presence of plasticity and suggesting a prolonged window for effective treatment. Despite developmental gains, mature executive functioning is limited in autism, reflecting abnormalities in wide-spread brain networks that may lead to impaired processing of complex information across all domains.
Collapse
|
126
|
Fusiform function in children with an autism spectrum disorder is a matter of "who". Biol Psychiatry 2008; 64:552-60. [PMID: 18621359 PMCID: PMC2673799 DOI: 10.1016/j.biopsych.2008.05.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite the importance of face processing for normal social development, no functional magnetic resonance imaging studies of face processing in autism have focused exclusively on the childhood years. To fill this gap, 45 children aged 6-12 participated in practice scans. After exclusion due to motion, 11 children with an ASD and 11 age-matched normal control subjects were included in final analyses. METHODS Stimuli consisted of pictures of a familiar adult, familiar child, stranger adult, stranger child, and objects. During the scan, children pressed a button in response to an identical face shown on two consecutive trials. On the basis of our prior research, masks of four anatomic regions of interest (ROIs) including the fusiform gyrus, amygdala, and anterior and posterior cingulate were created for each subject and manually edited for anatomic precision. Following deconvolution analyses, the number of voxels significantly active and percent signal change values that fell within each ROI mask were calculated for each subject. RESULTS Analyses revealed normal fusiform activity in children with autism when viewing a face of their mother or other children. In contrast, looking at stranger adult faces initiated profound deficits in that the mean number of significantly active voxels in the fusiform bilaterally was approximately 25% of that shown in typically developing children. CONCLUSIONS A selective fusiform deficit in response only to the faces of adult strangers may be the result of reduced attention and interest during those conditions. Face processing abnormalities found in autism beyond the fusiform likely exist.
Collapse
|
127
|
Tagawa Y, Mizuno H, Hirano T. Activity-dependent development of interhemispheric connections in the visual cortex. Rev Neurosci 2008; 19:19-28. [PMID: 18561818 DOI: 10.1515/revneuro.2008.19.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interhemispheric axon fibers connect the two cerebral cortical hemispheres via the corpus callosum and function to integrate information between the hemispheres. In the development of callosal connections, an early phase involves axon guidance molecules and a later phase requires neuronal activity. In addition to the well-studied role of sensory-driven neuronal activity, recent studies have demonstrated an essential role of callosal neuron firing activity in forming axonal projections and dendritic maturation during the developmental period before sensory input is available. Results suggest that factors affecting the cellular excitability of developing callosal neurons can influence the establishment of interhemispheric connections. Possible synaptic and non-synaptic mechanisms for activity-dependent axonal projections are discussed.
Collapse
Affiliation(s)
- Yoshiaki Tagawa
- Department of Biophysics, Kyoto University Graduate School of Science, Kyoto, Japan.
| | | | | |
Collapse
|
128
|
Diehl JJ, Bennetto L, Watson D, Gunlogson C, McDonough J. Resolving ambiguity: a psycholinguistic approach to understanding prosody processing in high-functioning autism. BRAIN AND LANGUAGE 2008; 106:144-52. [PMID: 18502497 PMCID: PMC2603133 DOI: 10.1016/j.bandl.2008.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 04/01/2008] [Accepted: 04/22/2008] [Indexed: 05/19/2023]
Abstract
Individuals with autism exhibit significant impairments in prosody production, yet there is a paucity of research on prosody comprehension in this population. The current study adapted a psycholinguistic paradigm to examine whether individuals with autism are able to use prosody to resolve syntactically ambiguous sentences. Participants were 21 adolescents with high-functioning autism (HFA), and 22 typically developing controls matched on age, IQ, receptive language, and gender. The HFA group was significantly less likely to use prosody to disambiguate syntax, but scored comparably to controls when syntax alone or both prosody and syntax indicated the correct response. These findings indicate that adolescents with HFA have difficulty using prosody to disambiguate syntax in comparison to typically developing controls, even when matched on chronological age, IQ, and receptive language. The implications of these findings for how individuals with autism process language are discussed.
Collapse
Affiliation(s)
- Joshua J Diehl
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, USA.
| | | | | | | | | |
Collapse
|
129
|
Fairless AH, Dow HC, Toledo MM, Malkus KA, Edelmann M, Li H, Talbot K, Arnold SE, Abel T, Brodkin ES. Low sociability is associated with reduced size of the corpus callosum in the BALB/cJ inbred mouse strain. Brain Res 2008; 1230:211-7. [PMID: 18662677 DOI: 10.1016/j.brainres.2008.07.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/15/2022]
Abstract
The behavioral manifestations of autism, including reduced sociability (reduced tendency to seek social interaction), may be related to underdevelopment of the corpus callosum (CC). The BALB/cJ inbred mouse strain is a useful model system for testing the relationship between reduced sociability and CC underdevelopment. BALB/cJ mice show low levels of sociability, on average, but substantial intrastrain variability in sociability, as well as striking variability in CC development. This study tested the hypothesis that sociability is positively correlated with CC size within the BALB/cJ inbred strain. 30-day-old BALB/cJ and C57BL/6J mice were tested for sociability towards gonadectomized A/J stimulus mice in a social choice task. The size of the corpus callosum was measured histologically at the midsagittal plane. BALB/cJ mice showed a significant positive correlation between the tendency to sniff the stimulus mouse and size of the CC relative to brain weight. C57BL/6J mice showed consistently high levels of sociability and normal corpus callosum development. These results suggest that abnormal white matter structure is associated with deficits in sociability in BALB/cJ mice. Additional studies are warranted to elucidate the relationship between brain connectivity and sociability in this model system.
Collapse
Affiliation(s)
- Andrew H Fairless
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Soc Neurosci 2008; 4:135-52. [PMID: 18633829 PMCID: PMC3086301 DOI: 10.1080/17470910802198510] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study used fMRI to investigate the functioning of the Theory of Mind (ToM) cortical network in autism during the viewing of animations that in some conditions entailed the attribution of a mental state to animated geometric figures. At the cortical level, mentalizing (attribution of metal states) is underpinned by the coordination and integration of the components of the ToM network, which include the medial frontal gyrus, the anterior paracingulate, and the right temporoparietal junction. The pivotal new finding was a functional underconnectivity (a lower degree of synchronization) in autism, especially in the connections between frontal and posterior areas during the attribution of mental states. In addition, the frontal ToM regions activated less in participants with autism relative to control participants. In the autism group, an independent psychometric assessment of ToM ability and the activation in the right temporoparietal junction were reliably correlated. The results together provide new evidence for the biological basis of atypical processing of ToM in autism, implicating the underconnectivity between frontal regions and more posterior areas.
Collapse
|
131
|
Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 2008; 31:241-61; discussion 261-320. [DOI: 10.1017/s0140525x08004214] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractAutistic-spectrum conditions and psychotic-spectrum conditions (mainly schizophrenia, bipolar disorder, and major depression) represent two major suites of disorders of human cognition, affect, and behavior that involve altered development and function of the social brain. We describe evidence that a large set of phenotypic traits exhibit diametrically opposite phenotypes in autistic-spectrum versus psychotic-spectrum conditions, with a focus on schizophrenia. This suite of traits is inter-correlated, in that autism involves a general pattern of constrained overgrowth, whereas schizophrenia involves undergrowth. These disorders also exhibit diametric patterns for traits related to social brain development, including aspects of gaze, agency, social cognition, local versus global processing, language, and behavior. Social cognition is thus underdeveloped in autistic-spectrum conditions and hyper-developed on the psychotic spectrum.;>We propose and evaluate a novel hypothesis that may help to explain these diametric phenotypes: that the development of these two sets of conditions is mediated in part by alterations of genomic imprinting. Evidence regarding the genetic, physiological, neurological, and psychological underpinnings of psychotic-spectrum conditions supports the hypothesis that the etiologies of these conditions involve biases towards increased relative effects from imprinted genes with maternal expression, which engender a general pattern of undergrowth. By contrast, autistic-spectrum conditions appear to involve increased relative bias towards effects of paternally expressed genes, which mediate overgrowth. This hypothesis provides a simple yet comprehensive theory, grounded in evolutionary biology and genetics, for understanding the causes and phenotypes of autistic-spectrum and psychotic-spectrum conditions.
Collapse
|
132
|
McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. GENES BRAIN AND BEHAVIOR 2008; 7:152-63. [PMID: 17559418 DOI: 10.1111/j.1601-183x.2007.00330.x] [Citation(s) in RCA: 606] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autism is a behaviorally defined neurodevelopmental disorder of unknown etiology. Mouse models with face validity to the core symptoms offer an experimental approach to test hypotheses about the causes of autism and translational tools to evaluate potential treatments. We discovered that the inbred mouse strain BTBR T+tf/J (BTBR) incorporates multiple behavioral phenotypes relevant to all three diagnostic symptoms of autism. BTBR displayed selectively reduced social approach, low reciprocal social interactions and impaired juvenile play, as compared with C57BL/6J (B6) controls. Impaired social transmission of food preference in BTBR suggests communication deficits. Repetitive behaviors appeared as high levels of self-grooming by juvenile and adult BTBR mice. Comprehensive analyses of procedural abilities confirmed that social recognition and olfactory abilities were normal in BTBR, with no evidence for high anxiety-like traits or motor impairments, supporting an interpretation of highly specific social deficits. Database comparisons between BTBR and B6 on 124 putative autism candidate genes showed several interesting single nucleotide polymorphisms (SNPs) in the BTBR genetic background, including a nonsynonymous coding region polymorphism in Kmo. The Kmo gene encodes kynurenine 3-hydroxylase, an enzyme-regulating metabolism of kynurenic acid, a glutamate antagonist with neuroprotective actions. Sequencing confirmed this coding SNP in Kmo, supporting further investigation into the contribution of this polymorphism to autism-like behavioral phenotypes. Robust and selective social deficits, repetitive self-grooming, genetic stability and commercial availability of the BTBR inbred strain encourage its use as a research tool to search for background genes relevant to the etiology of autism, and to explore therapeutics to treat the core symptoms.
Collapse
Affiliation(s)
- H G McFarlane
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730, USA
| | | | | | | | | | | |
Collapse
|
133
|
Williams DL, Minshew NJ. Understanding autism and related disorders: what has imaging taught us? Neuroimaging Clin N Am 2008; 17:495-509, ix. [PMID: 17983966 DOI: 10.1016/j.nic.2007.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Structural imaging studies of autism have documented increased total brain volume and early acceleration in brain growth. Functional MR imaging (fMRI) studies in autism have also led to the view of autism as a disorder of cortical functioning in which functional connectivity or synchronization of brain regions and cortical activity are disturbed with atypical cortical specialization.
Collapse
Affiliation(s)
- Diane L Williams
- Department of Speech-Language Pathology, Rangos School of Health Sciences, Fisher Hall 412, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
134
|
Mason RA, Williams DL, Kana RK, Minshew N, Just MA. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia 2008; 46:269-80. [PMID: 17869314 PMCID: PMC2259382 DOI: 10.1016/j.neuropsychologia.2007.07.018] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/26/2007] [Accepted: 07/18/2007] [Indexed: 11/20/2022]
Abstract
The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum.
Collapse
Affiliation(s)
- Robert A Mason
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| | | | | | | | | |
Collapse
|
135
|
Lewis JD, Elman JL. Growth-related neural reorganization and the autism phenotype: a test of the hypothesis that altered brain growth leads to altered connectivity. Dev Sci 2008; 11:135-55. [PMID: 18171375 PMCID: PMC2706588 DOI: 10.1111/j.1467-7687.2007.00634.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and effectiveness of short- and long-distance connections, and should thus impact the growth and retention of connections. Reduced brain size should favor long-distance connectivity; brain overgrowth should favor short-distance connectivity; and inconsistent deviations from the normal growth trajectory - as occurs in autism - should result in potentially disruptive changes to established patterns of functional and physical connectivity during development. To explore this hypothesis, neural networks which modeled inter-hemispheric interaction were grown at the rate of either typically developing children or children with autism. The influence of the length of the inter-hemispheric connections was analyzed at multiple developmental time-points. The networks that modeled autistic growth were less affected by removal of the inter-hemispheric connections than those that modeled normal growth - indicating a reduced reliance on long-distance connections - for short response times, and this difference increased substantially at approximately 24 simulated months of age. The performance of the networks showed a corresponding decline during development. And direct analysis of the connection weights showed a parallel reduction in connectivity. These modeling results support the hypothesis that the deviant growth trajectory in autism spectrum disorders may lead to a disruption of established patterns of functional connectivity during development, with potentially negative behavioral consequences, and a subsequent reduction in physical connectivity. The results are discussed in relation to the growing body of evidence of reduced functional and structural connectivity in autism, and in relation to the behavioral phenotype, particularly the developmental aspects.
Collapse
Affiliation(s)
- John D Lewis
- Department of Cognitive Science, University of California at San Diego, USA.
| | | |
Collapse
|
136
|
Engrailed2 and Cerebellar Development in the Pathogenesis of Autism Spectrum Disorders. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
137
|
Kilian S, Brown WS, Hallam BJ, McMahon W, Lu J, Johnson M, Bigler ED, Lainhart J. Regional Callosal Morphology in Autism and Macrocephaly. Dev Neuropsychol 2007; 33:74-99. [DOI: 10.1080/87565640701729821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
138
|
Hillier A, Campbell H, Keillor J, Phillips N, Beversdorf DQ. Decreased false memory for visually presented shapes and symbols among adults on the autism spectrum. J Clin Exp Neuropsychol 2007; 29:610-6. [PMID: 17691033 DOI: 10.1080/13803390600878760] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Individuals with autism spectrum disorders (ASD) have been shown in some studies to be less susceptible to the verbal "false memory" effect, perhaps due to restricted semantic associative networks. High-functioning individuals with ASD can demonstrate subtle language impairments. However, relative preservation of spatial skills can also be observed. This study investigated false memory in both visual and verbal paradigms to elucidate whether adults with ASD would be more or less prone to illusory recognition in a visual paradigm that contained slides of geometric figures with minimal linguistic and semantic associative representation. In the verbal paradigm, modeled on the Deese-Roediger-McDermott method, those with ASD did not perform significantly better than a matched comparison group. In contrast, in the visual paradigm those with ASD were significantly better able to discriminate true items from lure items and were less likely to falsely recognize the lures. Findings from the visual paradigm provide further evidence of restricted associative networks in ASD, particularly in the spatial domain.
Collapse
|
139
|
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J. Mapping Early Brain Development in Autism. Neuron 2007; 56:399-413. [PMID: 17964254 DOI: 10.1016/j.neuron.2007.10.016] [Citation(s) in RCA: 541] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
140
|
Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 2007; 23:289-99. [PMID: 17765485 DOI: 10.1016/j.eurpsy.2007.05.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/16/2007] [Accepted: 05/30/2007] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Structural brain abnormalities have been described in autism but studies are often small and contradictory. We aimed to identify which brain regions can reliably be regarded as different in autism compared to healthy controls. METHOD A systematic search was conducted for magnetic resonance imaging studies of regional brain size in autism. Data were extracted and combined using random effects meta-analysis. The modifying effects of age and IQ were investigated using meta-regression. RESULTS The total brain, cerebral hemispheres, cerebellum and caudate nucleus were increased in volume, whereas the corpus callosum area was reduced. There was evidence for a modifying effect of age and IQ on the cerebellar vermal lobules VI-VII and for age on the amygdala. CONCLUSIONS Autism may result from abnormalities in specific brain regions and a global lack of integration due to brain enlargement. Inconsistencies in the literature partly relate to differences in the age and IQ of study populations. Some regions may show abnormal growth trajectories.
Collapse
Affiliation(s)
- Andrew C Stanfield
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
141
|
Libbey JE, Coon HH, Kirkman NJ, Sweeten TL, Miller JN, Stevenson EK, Lainhart JE, McMahon WM, Fujinami RS. Are there enhanced MBP autoantibodies in autism? J Autism Dev Disord 2007; 38:324-32. [PMID: 17588145 DOI: 10.1007/s10803-007-0400-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/10/2007] [Indexed: 11/29/2022]
Abstract
Autoantibodies to central nervous system antigens, such as myelin basic protein (MBP), may play a role in autism. We measured autoantibody titers to MBP in children with autism, both classic onset and regressive onset forms, controls (healthy age- and gender-matched) and individuals with Tourette syndrome via enzyme-linked immunosorbent assays. We found a significant difference in autoantibody titers to MBP, not accounted for by age or medication, between Tourette and classic autism (both significantly lower) when compared to regressive autism, but not when compared to controls. Autoantibody responses against MBP are unlikely to play a pathogenic role in autism.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Neurology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
It has been speculated that autism and specific language impairment share common underlying neural substrates because of the overlap in language impairment issues and evidence suggesting parallels in other domains and implying a possible shared genetic risk. Anatomically the two sets of disorders have generally been studied using different methodologies, but when identical methodologies have been used substantial similarities have been noted. Functionally there is a growing body of literature suggesting sensory perception abnormalities that have parallels in both conditions and that may be upstream of language abnormalities. Finding upstream mechanisms that impact language and non-language abnormalities in autism and specific language impairment would impact the orientation taken by translational attempts to use science to design treatments.
Collapse
Affiliation(s)
- Martha R Herbert
- Department of Neurology, Massachusetts General Hospital, MGH/Martinos, CNY-149-6012, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
143
|
|
144
|
Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE. Diffusion tensor imaging of the corpus callosum in Autism. Neuroimage 2007; 34:61-73. [PMID: 17023185 DOI: 10.1016/j.neuroimage.2006.08.032] [Citation(s) in RCA: 410] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/10/2006] [Accepted: 08/13/2006] [Indexed: 10/24/2022] Open
Abstract
The corpus callosum is the largest commissural white matter pathway that connects the hemispheres of the human brain. In this study, diffusion tensor imaging (DTI) was performed on subject groups with high-functioning autism and controls matched for age, handedness, IQ, and head size. DTI and volumetric measurements of the total corpus callosum and subregions (genu, body and splenium) were made and compared between groups. The results showed that there were significant differences in volume, fractional anisotropy, mean diffusivity, and radial diffusivity between groups. These group differences appeared to be driven by a subgroup of the autism group that had small corpus callosum volumes, high mean diffusivity, low anisotropy, and increased radial diffusivity. This subgroup had significantly lower performance IQ measures than either the other individuals with autism or the control subjects. Measurements of radial diffusivity also appeared to be correlated with processing speed measured during the performance IQ tests. The subgroup of autism subjects with high mean diffusivity and low fractional anisotropy appeared to cluster with the highest radial diffusivities and slowest processing speeds. These results suggest that the microstructure of the corpus callosum is affected in autism, which may be related to nonverbal cognitive performance.
Collapse
Affiliation(s)
- Andrew L Alexander
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Farag AA, Fahmi R, Casanova MF, Abdel-Hakim AE, El-Munim HA, El-Baz A. Robust Neuroimaging-Based Classification Techniques Of Autistic Vs. Typically Developing Brain. DEFORMABLE MODELS 2007:535-566. [DOI: 10.1007/978-0-387-68343-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
146
|
Mosconi M, Zwaigenbaum L, Piven J. Structural MRI in autism: Findings and future directions. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
147
|
Spencer MD, Moorhead TWJ, Lymer GKS, Job DE, Muir WJ, Hoare P, Owens DGC, Lawrie SM, Johnstone EC. Structural correlates of intellectual impairment and autistic features in adolescents. Neuroimage 2006; 33:1136-44. [PMID: 16996749 DOI: 10.1016/j.neuroimage.2006.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/13/2006] [Accepted: 08/11/2006] [Indexed: 11/23/2022] Open
Abstract
Intellectual disability, a common but under-researched condition, is strongly associated with autism spectrum disorders (ASD). Although studies have investigated the neural correlates of intelligence quotient (IQ) and ASD in intellectually unimpaired subjects, these issues have not been addressed in intellectually impaired subjects. We studied 63 intellectually disabled adolescents receiving additional learning support and 72 controls using whole brain tissue volumes extracted from native space and voxel-based morphometry (VBM) in normalised space. We applied a qualitative and quantitative review of VBM preprocessing and modified the optimised method to establish optimum co-registration of the brains in normalised space. We report tissue density differences at cluster level with adjustment for underlying smoothness. Individuals with intellectual disability had smaller total white matter and total brain tissue volumes than controls, as well as reduced grey matter density in the right cerebellar hemisphere and left temporo-parietal cortex, and reduced white matter density in the posterior corpus callosum. Intellectually disabled subjects were additionally subgrouped according to their degree of reported autistic features. Reduced grey matter density was detected in the thalamus of subjects with autistic features scoring within the pervasive developmental disorder range as compared to subjects below the threshold for ASD, and increased white matter density was detected in the left superior temporal gyrus of subjects scoring above the threshold for autism as compared to subjects below the threshold for ASD.
Collapse
Affiliation(s)
- Michael D Spencer
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Vidal CN, Nicolson R, DeVito TJ, Hayashi KM, Geaga JA, Drost DJ, Williamson PC, Rajakumar N, Sui Y, Dutton RA, Toga AW, Thompson PM. Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiatry 2006; 60:218-25. [PMID: 16460701 DOI: 10.1016/j.biopsych.2005.11.011] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 11/01/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Volumetric studies have reported reductions in the size of the corpus callosum (CC) in autism, but the callosal regions contributing to this deficit have differed among studies. In this study, a computational method was used to detect and map the spatial pattern of CC abnormalities in male patients with autism. METHODS Twenty-four boys with autism (aged 10.0 +/- 3.3 years) and 26 control boys (aged 11.0 +/- 2.5 years) underwent a magnetic resonance imaging (MRI) scan at 3 Tesla. Total and regional areas of the CC were determined using traditional morphometric methods. Three-dimensional (3D) surface models of the CC were also created from the MRI scans. Statistical maps were created to visualize morphologic variability of the CC and to localize regions of callosal thinning in autism. RESULTS Traditional morphometric methods detected a significant reduction in the total callosal area and in the anterior third of the CC in patients with autism; however, 3D maps revealed significant reductions in both the splenium and genu of the CC in patients. CONCLUSIONS Statistical maps of the CC revealed callosal deficits in autism with greater precision than traditional morphometric methods. These abnormalities suggest aberrant connections between cortical regions, which is consistent with the hypothesis of abnormal cortical connectivity in autism.
Collapse
Affiliation(s)
- Christine N Vidal
- Laboratory of Neuro Imaging, Brain Mapping Division, Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095-7332, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain 2006; 129:2484-93. [PMID: 16835247 PMCID: PMC4500127 DOI: 10.1093/brain/awl164] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comprehending high-imagery sentences like The number eight when rotated 90 degrees looks like a pair of eyeglasses involves the participation and integration of several cortical regions. The linguistic content must be processed to determine what is to be mentally imaged, and then the mental image must be evaluated and related to the sentence. A theory of cortical underconnectivity in autism predicts that the interregional collaboration required between linguistic and imaginal processing in this task would be underserved in autism. This functional MRI study examined brain activation in 12 participants with autism and 13 age- and IQ-matched control participants while they processed sentences with either high- or low-imagery content. The analysis of functional connectivity among cortical regions showed that the language and spatial centres in the participants with autism were not as well synchronized as in controls. In addition to the functional connectivity differences, there was also a group difference in activation. In the processing of low-imagery sentences (e.g. Addition, subtraction and multiplication are all math skills), the use of imagery is not essential to comprehension. Nevertheless, the autism group activated parietal and occipital brain regions associated with imagery for comprehending both the low and high-imagery sentences, suggesting that they were using mental imagery in both conditions. In contrast, the control group showed imagery-related activation primarily in the high-imagery condition. The findings provide further evidence of underintegration of language and imagery in autism (and hence expand the understanding of underconnectivity) but also show that people with autism are more reliant on visualization to support language comprehension.
Collapse
Affiliation(s)
- Rajesh K Kana
- Center for Cognitive Brain Imaging, Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
150
|
Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. ACTA ACUST UNITED AC 2006; 17:951-61. [PMID: 16772313 PMCID: PMC4500121 DOI: 10.1093/cercor/bhl006] [Citation(s) in RCA: 667] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The brain activation of a group of high-functioning autistic participants was measured using functional magnetic resonance imaging during the performance of a Tower of London task, in comparison with a control group matched with respect to intelligent quotient, age, and gender. The 2 groups generally activated the same cortical areas to similar degrees. However, there were 3 indications of underconnectivity in the group with autism. First, the degree of synchronization (i.e., the functional connectivity or the correlation of the time series of the activation) between the frontal and parietal areas of activation was lower for the autistic than the control participants. Second, relevant parts of the corpus callosum, through which many of the bilaterally activated cortical areas communicate, were smaller in cross-sectional area in the autistic participants. Third, within the autism group but not within the control group, the size of the genu of the corpus callosum was correlated with frontal-parietal functional connectivity. These findings suggest that the neural basis of altered cognition in autism entails a lower degree of integration of information across certain cortical areas resulting from reduced intracortical connectivity. The results add support to a new theory of cortical underconnectivity in autism, which posits a deficit in integration of information at the neural and cognitive levels.
Collapse
Affiliation(s)
- Marcel Adam Just
- Center for Cognitive Brain Imaging, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|