101
|
Structural insights into the activity regulation of full-length non-structural protein 1 from SARS-CoV-2. Structure 2023; 31:128-137.e5. [PMID: 36610391 PMCID: PMC9817231 DOI: 10.1016/j.str.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Collapse
|
102
|
Tiwari S, Chanak P, Singh SK. A Review of the Machine Learning Algorithms for Covid-19 Case Analysis. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2023; 4:44-59. [PMID: 36908643 PMCID: PMC9983698 DOI: 10.1109/tai.2022.3142241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/25/2021] [Indexed: 11/09/2022]
Abstract
The purpose of this article is to see how machine learning (ML) algorithms and applications are used in the COVID-19 inquiry and for other purposes. The available traditional methods for COVID-19 international epidemic prediction, researchers and authorities have given more attention to simple statistical and epidemiological methodologies. The inadequacy and absence of medical testing for diagnosing and identifying a solution is one of the key challenges in preventing the spread of COVID-19. A few statistical-based improvements are being strengthened to answer this challenge, resulting in a partial resolution up to a certain level. ML have advocated a wide range of intelligence-based approaches, frameworks, and equipment to cope with the issues of the medical industry. The application of inventive structure, such as ML and other in handling COVID-19 relevant outbreak difficulties, has been investigated in this article. The major goal of this article is to 1) Examining the impact of the data type and data nature, as well as obstacles in data processing for COVID-19. 2) Better grasp the importance of intelligent approaches like ML for the COVID-19 pandemic. 3) The development of improved ML algorithms and types of ML for COVID-19 prognosis. 4) Examining the effectiveness and influence of various strategies in COVID-19 pandemic. 5) To target on certain potential issues in COVID-19 diagnosis in order to motivate academics to innovate and expand their knowledge and research into additional COVID-19-affected industries.
Collapse
Affiliation(s)
- Shrikant Tiwari
- Department of Computer Science and EngineeringIndian Institute of Technology (BHU)Varanasi221005India
| | - Prasenjit Chanak
- Department of Computer Science and EngineeringIndian Institute of Technology (BHU)Varanasi221005India
| | - Sanjay Kumar Singh
- Department of Computer Science and EngineeringIndian Institute of Technology (BHU)Varanasi221005India
| |
Collapse
|
103
|
In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. HUMAN GENE 2023; 35. [PMID: 37521006 PMCID: PMC9754755 DOI: 10.1016/j.humgen.2022.201135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 is a severe respiratory disease caused by SARS-CoV-2, a novel human coronavirus. Patients infected with SARS-CoV-2 exhibit heterogeneous symptoms that pose pragmatic hurdles for implementing appropriate therapy and management of the COVID-19 patients and their post-COVID complications. Thus, understanding the impact of infection severity at the molecular level in the host is vital to understand the host response and accordingly it's precise management. In the current study, we performed a comparative transcriptomics analysis of publicly available seven asymptomatic and eight severe COVID-19 patients. Exploratory data analysis employing Principal Component Analysis (PCA) showed the distinct clusters of asymptomatic and severe patients. Subsequently, the differential gene expression analysis using DESeq2 identified 1224 significantly upregulated genes (logFC≥ 1.5, p-adjusted value <0.05) and 268 significantly downregulated genes (logFC≤ −1.5, p-adjusted value <0.05) in severe samples in comparison to asymptomatic samples. Eventually, Gene Set Enrichment Analysis (GSEA) revealed the upregulation of anti-viral and anti-inflammatory pathways, secondary infections, Iron homeostasis, anemia, cardiac-related, etc.; while, downregulation of lipid metabolism, adaptive immune response, translation, recurrent respiratory infections, heme-biosynthetic pathways, etc. Conclusively, these findings provide insight into the enhanced susceptibility of severe COVID-19 patients to other health comorbidities including non-viral pathogenic infections, atherosclerosis, autoinflammatory diseases, anemia, male infertility, etc. owing to the activation of biological processes, pathways and molecular functions associated with them. We anticipate this study will facilitate the researchers in finding efficient therapeutic targets and eventually the clinicians in management of COVID-19 patients and post-COVID-19 effects in them.
Collapse
|
104
|
Alyahyawi HE, Alharbi RA, Alatawi SK, Ahmed WAM, Almalki SSR. Assessment of the Prevalence and Incidence of COVID-19 in Saudi Arabia. J Multidiscip Healthc 2023; 16:227-236. [PMID: 36718380 PMCID: PMC9883987 DOI: 10.2147/jmdh.s394038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID 19) is reported to have started in Wuhan City, Hebei Province, China. It has spread rapidly all over the world, including Saudi Arabia, having a severe health emergency. This new virus was named as the 2019 novel coronavirus (2019-nCoV), and now severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on previous practice and phylogenetic and taxonomic investigations. SARS-CoV-2 belongs to the family of Coronaviridae, Betacoronavirus, Sarbecovirus subgenus, genome β. Throughout the COVID 19 pandemic, several strains of SARS-CoV-2 have been recognized around the world. The SARS-CoV-2 variants have caused significant morbidity and mortality worldwide and in Saudi Arabia as well. The rate at which COVID-19 spread across borders and affected countries has highlighted the significance of health care systems to nations and global operations. This review focuses on the origin, epidemiology, pathophysiology, transmission, and the impact of this disease, while highlighting the knowledge about SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hanan E Alyahyawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Saleha Keder Alatawi
- Department of Optometry, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Waled A M Ahmed
- Department of Nursing, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| | - Shaia S R Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah, Saudi Arabia
| |
Collapse
|
105
|
Abuhammad S, Alzoubi KH, Khabour OF, Hamaideh S, Khasawneh B. Sleep quality and sleep patterns among recovered individuals during post-COVID-19 among Jordanian: A cross-sectional national study. Medicine (Baltimore) 2023; 102:e32737. [PMID: 36701736 PMCID: PMC9857545 DOI: 10.1097/md.0000000000032737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
This study aims to investigate sleep patterns and quality in patients who had SARS-CoV-2 (COVID-19) infection and to determine the sleep quality and pattern among patients. A cross-sectional design was used to assess sleeping patterns during the post-COVID-19 era for recovered individuals from April 1st, 2022, to June 1st, 2022. The participants had to meet the following requirements: both genders, ages 18 to 70, and previously infected with COVID-19. The prevalence of low sleep quality among the recovered individuals during post-COVID-19 era was 834 (40.6%), and the prevalence of disturbance in sleep quality was 1308 (63.6%). Lower economic status and younger ages in twenties and thirties experienced more disturbances in sleep patterns than other older ages. Many predictors were determined the quality of sleep. These predictors were age (B = .105, P = .00), income (B = .05, P = .035) and educational level (B = .20, P = .006). To sum up, our study found that the prevalence of low sleep quality among the recovered individuals during post-COVID-19 era was moderate, and the prevalence of disturbance in sleep quality was high. The predictors of quality of sleep were age, income, and educational level. Practitioners should be trained to evaluate and manage sleep disturbances, as this comprehensive approach has the potential to reduce mental distress and prevent the consequences of sleep disturbances.
Collapse
Affiliation(s)
- Sawsan Abuhammad
- Department of Maternal and Child Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Dept. of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Shaher Hamaideh
- Department of Community and Mental Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Basheer Khasawneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
106
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The putative metal-binding proteome of the Coronaviridae family. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6969429. [PMID: 36610727 DOI: 10.1093/mtomcs/mfad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
Metalloproteins are well-known for playing various physicochemical processes in all life forms, including viruses. Some life-threatening viruses (such as some members of the Coronaviridae family of viruses) are emerged and remerged frequently and are rapidly transmitted throughout the globe. This study aims to identify and characterize the metal-binding proteins (MBPs) of the Coronaviridae family of viruses and further provides insight into the MBP's role in sustaining and propagating viruses inside a host cell and in the outer environment. In this study, the available proteome of the Coronaviridae family was exploited. Identified potential MBPs were analyzed for their functional domains, structural aspects, and subcellular localization. We also demonstrate phylogenetic aspects of all predicted MBPs among other Coronaviridae family members to understand the evolutionary trend among their respective hosts. A total of 256 proteins from 51 different species of coronaviruses are predicted as MBPs. These MBPs perform various key roles in the replication and survival of viruses within the host cell. Cysteine, aspartic acid, threonine, and glutamine are key amino acid residues interacting with respective metal ions. Our observations also indicate that the metalloproteins of this family of viruses circulated and evolved in different hosts, which supports the zoonotic nature of coronaviruses. The comprehensive information on MBPs of the Coronaviridae family may be further helpful in designing novel therapeutic metalloprotein targets. Moreover, the study of viral MBPs can also help to understand the roles of MBPs in virus pathogenesis and virus-host interactions.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India.,Department of Environmental Studies, University of Delhi, Delhi110007, India
| |
Collapse
|
107
|
Tiwari GK, Singh AK, Parihar P, Pandey R, Sharma DN, Rai PK. Understanding the perceived psychological distress and health outcomes of children during COVID-19 pandemic. EDUCATIONAL AND DEVELOPMENTAL PSYCHOLOGIST 2023; 40:103-114. [DOI: 10.1080/20590776.2021.1899749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/30/2020] [Indexed: 03/15/2025]
Affiliation(s)
- Gyanesh Kumar Tiwari
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| | - Ajit Kumar Singh
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| | - Priyanka Parihar
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| | - Ruchi Pandey
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| | - Devaki Nandan Sharma
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| | - Pramod Kumar Rai
- Department of Psychology, School of Humanities & Social Sciences, Dr. Hari Singh Gour Vishwavidyalaya (University), Sagar, India
| |
Collapse
|
108
|
Teppone M. History of advances in genetic engineering of viruses before COVID-19 pandemic. Surg Neurol Int 2023; 14:109. [PMID: 37025520 PMCID: PMC10070288 DOI: 10.25259/sni_36_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 04/08/2023] Open
Abstract
Background On December 31, 2019, the World Health Organization's China Country Office was alerted to cases of pneumonia of unknown cause detected in Wuhan City, Hubei Province of China. Methods Due to the fact that to date, the question of the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been resolved yet, the author analyzed the main advances in the development of genetic engineering of viruses that took place before the onset of the COVID-19 pandemic. Results The first artificial genetically modified viruses could appear in nature in the mid-1950s. The technique of nucleic acid hybridization was developed by the end-1960s. In the late 1970s, a method called the "reverse genetics" emerged to synthesize ribonucleic acid and deoxyribonucleic acid molecules. In the early 1980-s, it became possible to combine the genes of different viruses and insert the genes of one virus into the genome of another virus. Since that time, the production of vector vaccines began. At present, by modern technologies one can assemble any virus based on the nucleotide sequence available in the virus database or designed by a computer as a virtual model. Conclusion Scientists around the world are invited to answer the call of Neil Harrison and Jeffrey Sachs of Columbia University, for a thorough and independent investigation into the origin of SARS-CoV-2. Only a full understanding of the origin of the new virus can minimize the likelihood of a similar pandemic in the future.
Collapse
Affiliation(s)
- Mikhail Teppone
- Corresponding author: Mikhail Teppone, Medical Department, Nano City Holdings Berhad, No. 1, Jalan Sungai Jeluh 32/192, Shah Alam, 40460, Selangor, Malaysia.
| |
Collapse
|
109
|
Pinedo Otaola S, Sanmartín Cuevas V, Fernández Fernández de Leceta Z, Pérez Iglesias N, López De Munain Berganzo A, Azkuenaga Fernández M, Pérez Iriondo A, Aramburu Ojenbarrena A. [Impact of the COVID-19 on health of critical patient]. Rehabilitacion (Madr) 2023; 57:100731. [PMID: 35545484 PMCID: PMC8898668 DOI: 10.1016/j.rh.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Many patients perceive persistent symptoms and impairment in their quality of life after COVID-19. The critical patient is vulnerable to presenting physical and emotional alterations. The objective of this study is to assess the functional evolution and quality of life of the critical patient due to COVID-19. METHODS A prospective longitudinal multicenter study was carried out in critically ill hospitalized patients due to COVID-19 with a 6 month follow-up. Sociodemographic variables, comorbidity, the persistence of symptoms, SPPB scale, pulmonary and respiratory impact, CT scan, Barthel index, neuropsychological variables, physical activity (IPAQ scale), quality of life (Euroqol), and satisfaction were collected. RESULTS 115 patients were included. 75% are male and 86% are obese or overweight. The average time of hospitalization was 38.1±18.4 days, with 80.9% requiring mechanical ventilation. 25% need help from another person for self-care at discharge. 29.2% had a normal CT lung screening at 134.1+70.9 days. At 6 months, functional recovery is favorable, although 36.5% perceive muscle weakness and 22% present fragility. 36.5% of patients report a lack of concentration. The most affected dimension in quality of life is that referred to pain (53%), followed by anxiety or depression. Most perform low physical activity. Satisfaction with clinical follow-up is high. CONCLUSIONS In post-critical patients due to COVID-19, physical, functional, and quality of life alterations prevail at 6 months after hospital discharge.
Collapse
Affiliation(s)
- S Pinedo Otaola
- Hospital Universitario Galdakao, Servicio Vasco de Salud (Osakidetza), Galdakao, Bizkaia, España.
| | | | | | | | | | - M Azkuenaga Fernández
- Hospital Universitario Galdakao, Servicio Vasco de Salud (Osakidetza), Galdakao, Bizkaia, España
| | | | - A Aramburu Ojenbarrena
- Hospital Universitario Galdakao, Servicio Vasco de Salud (Osakidetza), Galdakao, Bizkaia, España
| |
Collapse
|
110
|
Alqatari S, Alkhafaji DM, AlShammari LT, AlArgan R, Alwaheed A, Boumarah DN. COVID-19 and Malignancy: What is the Association? A Case Report and Review of the Literature. Med Arch 2023; 77:237-240. [PMID: 37700926 PMCID: PMC10495138 DOI: 10.5455/medarh.2023.77.237-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 09/14/2023] Open
Abstract
Background After more than two years since Coronavirus disease 2019 (COVID-19) was first identified as a global pandemic, we still observe a variety of clinical presentations. From asymptomatic carriers to severely ill patients. Most patients infected with COVID-19 present with respiratory symptoms. Objective However, case reports of different presentations were published, none of them highlighted the potential of COVID-19 to facilitate the manifestation of hidden malignancy, particularly, gallbladder carcinoma. Case presentation In this report, we present a case of a 77-year-old Saudi lady with multiple comorbidities, presented with an acute confusional state after one month of having asymptomatic COVID-19 infection. Significantly, she was completely functional prior to her presentation and did not manifest any symptoms such as weight loss or fever. Her clinical assessment demonstrated severe abdominal tenderness and guarding on palpation. Computed tomography scans of the abdomen showed perforated gallbladder cancer. Conclusion Among multiple clinical presentations related to COVID-19 infection, gastrointestinal manifestations are the most common extrapulmonary symptoms, ranging from mild to more severe symptoms. Acute abdomen with perforated viscus should be kept in mind as a differential diagnosis when dealing with COVID-19 infected patients who present with severe abdominal pain. The current case report highlights one of unusual presentations of COVID-19 infection.
Collapse
Affiliation(s)
- Safi Alqatari
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Dania M. Alkhafaji
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Lateefah T. AlShammari
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Reem AlArgan
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Abrar Alwaheed
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| | - Dhuha N. Boumarah
- Department of Surgery, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Khobar, Saudi Arabia
| |
Collapse
|
111
|
Jeong K, Chang J, Park SM, Kim J, Jeon S, Kim DH, Kim YE, Lee JC, Im S, Jo Y, Min JY, Lee H, Yeom M, Seok SH, On DI, Noh H, Yun JW, Park JW, Song D, Seong JK, Kim KC, Lee JY, Park HJ, Kim S, Nam TG, Lee W. Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay. Antiviral Res 2023; 209:105473. [PMID: 36435212 PMCID: PMC9682871 DOI: 10.1016/j.antiviral.2022.105473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
To identify potent antiviral compounds, we introduced a high-throughput screen platform that can rapidly classify hit compounds according to their target. In our platform, we performed a compound screen using a lentivirus-based pseudovirus presenting a spike protein of coronavirus, and we evaluated the hit compounds using an amplified luminescence proximity homogeneous assay (alpha) test with purified host receptor protein and the receptor binding domain of the viral spike. With our screen platform, we were able to identify both spike-specific compounds (class I) and broad-spectrum antiviral compounds (class II). Among the hit compounds, thiosemicarbazide was identified to be selective to the interaction between the viral spike and its host cell receptor, and we further optimized the binding potency of thiosemicarbazide through modification of the pyridine group. Among the class II compounds, we found raloxifene and amiodarone to be highly potent against human coronaviruses including Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. In particular, using analogs of the benzothiophene moiety, which is also present in raloxifene, we have identified benzothiophene as a novel structural scaffold for broad-spectrum antivirals. This work highlights the strong utility of our screen platform using a pseudovirus assay and an alpha test for rapid identification of potential antiviral compounds and their mechanism of action, which can lead to the accelerated development of therapeutics against newly emerging viral infections.
Collapse
Affiliation(s)
- Kwiwan Jeong
- Bio-center, Gyeonggido Business and Science Accelerator, Suwon, South Korea,Corresponding author
| | - JuOae Chang
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sun-mi Park
- Bio-center, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Jinhee Kim
- Institut Pasteur Korea, Seongnam, South Korea
| | | | - Dong Hwan Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Young-Eui Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Joo Chan Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Somyoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Yejin Jo
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | | | - Hanbyeul Lee
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, South Korea
| | - Da In On
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, South Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Kyung-Chang Kim
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Joo-Yeon Lee
- Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Hyun-Ju Park
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea,Corresponding author
| | - Seungtaek Kim
- Institut Pasteur Korea, Seongnam, South Korea,Corresponding author
| | - Tae-gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea,Corresponding author
| | - Wonsik Lee
- Department of Pharmacy, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea,Corresponding author
| |
Collapse
|
112
|
Biswas S, Biswas A. Anxiety level among students of different college and universities in India during lock down in connection to the COVID-19 pandemic. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2023; 31:49-55. [PMID: 33432293 PMCID: PMC7788277 DOI: 10.1007/s10389-020-01431-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Objectives COVID-19 incidence became a pandemic immediately after its origin and spread. Apart from death because of coronavirus infection, the pandemic brought unbearable psychological pressure to all. We assessed the psychological pressure on college and university students in India through cluster sampling. Methods The students responded (n = 209) to an online questionnaire following the Generalized Anxiety Disorder Scale (GAD-7) and Hamilton Anxiety Rating Scale (HAM-A) with some other basic information. Results According to GAD-7 scoring, we found the respondent students had severe anxiety (1.44%), moderately severe anxiety (14.35%), moderate anxiety (36.36%) and mild anxiety (47.85%). Following HAM-A scoring, anxiety level among the students could be scaled as severe (0.96%), high (4.31%), moderate (13.40%) and mild anxiety (34.93%) level. Age of the students was a confounding factor (p = 0.049, HAM-A) of experiencing anxiety, students <20 years of age were more anxious. We found female students to be more anxious than the males following the HAM-A scoring tool. Academic delays (R2 = 0.996, p = 0.036) and impact on daily life (R2 = 0.996, p = 0.117) were positively associated with anxiety symptoms, while social support was marginally correlated (R2 = 0.726, p = 0.069) with the anxiety level. Conclusions As the study found almost all the students are experiencing anxiety because of the current pandemic situation, continuous observation of psychological health for all is recommended as well as establishing psychological intervention during the preparedness phase.
Collapse
Affiliation(s)
- Saroni Biswas
- Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal 741235 India
| | - Anirban Biswas
- Departmernt of Environmental Science, Nabadwip Vidyasagar College, Nabadwip, West Bengal 741302 India
| |
Collapse
|
113
|
Salman H, Al-Khero Z, Al-Aziz Yousif Z, Thanoon A. The consequences of severe acute respiratory syndrome coronavirus-2 on acute kidney injury among iraqi patients. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2023. [DOI: 10.4103/bbrj.bbrj_353_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
114
|
Nguyen PTK, Robinson PD, Fitzgerald DA, Marais BJ. The dilemma of improving rational antibiotic use in pediatric community-acquired pneumonia. Front Pediatr 2023; 11:1095166. [PMID: 36846166 PMCID: PMC9945262 DOI: 10.3389/fped.2023.1095166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Pneumonia is the number one cause of disease and deaths in children under five years old, outside the neonatal period, with the greatest number of cases reported from resource-limited settings. The etiology is variable, with not much information on the local etiology drug resistance profile in many countries. Recent studies suggest an increasing contribution from respiratory viruses, also in children with severe pneumonia, with an increased relative contribution in settings that have good vaccine coverage against common bacterial pathogens. Respiratory virus circulation was greatly reduced during highly restrictive measures to contain the spread of COVID-19 but rebounded once COVID-19 restrictions were relaxed. We conducted a comprehensive literature review of the disease burden, pathogens, case management and current available prevention of community acquired childhood pneumonia, with a focus on rational antibiotic use, since the treatment of respiratory infections is the leading cause of antibiotic use in children. Consistent application of revised World Health Organisation (WHO) guidance that children presenting with coryzal symptoms or wheeze can be managed without antibiotics in the absence of fever, will help to reduce unnecessary antibiotic use, as will increased availability and use of bedside inflammatory marker tests, such as C-reactive protein (CRP) in children with respiratory symptoms and fever.
Collapse
Affiliation(s)
- Phuong T K Nguyen
- Department of General Medicine, The Children's Hospital Westmead, Westmead, NSW, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital Westmead, NSW, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital Westmead, NSW, Australia.,The University of Sydney, Discipline of Child and Adolescent Health, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Ben J Marais
- The University of Sydney, Discipline of Child and Adolescent Health, Faculty of Medicine and Health, Sydney, NSW, Australia.,Department of Infectious Diseases, The Children's Hospital Westmead, Westmead, NSW, Australia
| |
Collapse
|
115
|
Mahagamage Y, Marasinghe K. The socio-economic effects of covid-19. SAUDE E SOCIEDADE 2023. [DOI: 10.1590/s0104-12902022200961en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Abstract The covid-19 epidemic has spread rapidly all around the world since December 8, 2019, from China, the world’s largest exporter of goods. The outbreak quickly spread throughout the countries, affecting the health sector, and causing economic, environmental, and social challenges. Therefore, the article discusses the impacts of covid-19, to provide a better understanding to the public and the researchers regarding its impact on the society, education, communication, and economy of infected countries. The study followed a qualitative case study approach, including literature review and document analysis. The review was done on a wide range of data sources including journal articles, books, government documents, newspaper articles, and policy reports. The covid-19 is rigorously disrupting the global economy and almost all countries are trying to slow down the spread of the disease by increasing the testing, facilitating treatments of infected patients, quarantining suspected cases via contact networks, implementing social distancing by restricting large gatherings, maintaining countrywide or partial lock down, and etc. However, these aspects are highly challenging to the maintenance of the society’s daily life and addressing difficulties raised by the public to implement correct strategies to face the pandemic situations globally is necessary.
Collapse
|
116
|
Song T, Chen C, Bao S, Du B, Wang X, Liu J, Wang F, Ma W, Yao G, Wan X, Zhang X, Wang J, Jiang H. An immobilization-based, loop-mediated isothermal amplification device for nucleic acid detection of SARS-CoV-2 N gene. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Chang Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Xiaokun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Wei Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Xinlong Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Jingjing Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| |
Collapse
|
117
|
Bhatele KR, Jha A, Tiwari D, Bhatele M, Sharma S, Mithora MR, Singhal S. COVID-19 Detection: A Systematic Review of Machine and Deep Learning-Based Approaches Utilizing Chest X-Rays and CT Scans. Cognit Comput 2022; 16:1-38. [PMID: 36593991 PMCID: PMC9797382 DOI: 10.1007/s12559-022-10076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
This review study presents the state-of-the-art machine and deep learning-based COVID-19 detection approaches utilizing the chest X-rays or computed tomography (CT) scans. This study aims to systematically scrutinize as well as to discourse challenges and limitations of the existing state-of-the-art research published in this domain from March 2020 to August 2021. This study also presents a comparative analysis of the performance of four majorly used deep transfer learning (DTL) models like VGG16, VGG19, ResNet50, and DenseNet over the COVID-19 local CT scans dataset and global chest X-ray dataset. A brief illustration of the majorly used chest X-ray and CT scan datasets of COVID-19 patients utilized in state-of-the-art COVID-19 detection approaches are also presented for future research. The research databases like IEEE Xplore, PubMed, and Web of Science are searched exhaustively for carrying out this survey. For the comparison analysis, four deep transfer learning models like VGG16, VGG19, ResNet50, and DenseNet are initially fine-tuned and trained using the augmented local CT scans and global chest X-ray dataset in order to observe their performance. This review study summarizes major findings like AI technique employed, type of classification performed, used datasets, results in terms of accuracy, specificity, sensitivity, F1 score, etc., along with the limitations, and future work for COVID-19 detection in tabular manner for conciseness. The performance analysis of the four majorly used deep transfer learning models affirms that Visual Geometry Group 19 (VGG19) model delivered the best performance over both COVID-19 local CT scans dataset and global chest X-ray dataset.
Collapse
Affiliation(s)
| | - Anand Jha
- RJIT BSF Academy, Tekanpur, Gwalior India
| | | | | | | | | | | |
Collapse
|
118
|
Zhang X, Wang W, Zhao X, Cheng H, Song Y, Song X. Implementing caregiver management measures in general hospitals to prevent the COVID-19 pandemic. Nurs Open 2022; 10:2983-2990. [PMID: 36528877 PMCID: PMC9878028 DOI: 10.1002/nop2.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/11/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
AIM To summarize the whole process management measures for caregivers of inpatients in a non-new coronavirus pneumonia designated hospital in China during the novel coronavirus pneumonia epidemic. The implementation of these measures is mainly to prevent the virus pandemic caused by crowd gathering. DESIGN A quasi-experimental study. METHODS Novel coronavirus pneumonia prevention and control measures were implemented in the 'pre-hospital link, hospitalization link and discharge link' for the whole process of the hospitalized patients' caregivers. To evaluate the effects by time point inspection, the results were fed back using information technology for quality improvement. RESULTS The results of three time point inspections indicated that the management quality of many projects improved continuously (p < 0.05). From January to June of 2021, 20 departments implemented a facial recognition information management system. The ratio of patients/caregivers admitted was 1:0.528~1:0.965; It was found that it is effective to implement the whole process management measures. The facial recognition system plays a key role in the comprehensive management of the caregivers.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandongChina
| | - Wei Wang
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandongChina
| | - Xiaojing Zhao
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandongChina
| | - Haihui Cheng
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandongChina
| | - Yang Song
- Department of CardiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityShandongChina
| | - Xinhong Song
- Property Supervision and Management Office of Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
119
|
Ghaffari HR, Farshidi H, Alipour V, Dindarloo K, Azad MH, Jamalidoust M, Madani A, Aghamolaei T, Hashemi Y, Fazlzadeh M, Fakhri Y. Detection of SARS-CoV-2 in the indoor air of intensive care unit (ICU) for severe COVID-19 patients and its surroundings: considering the role of environmental conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85612-85618. [PMID: 34482469 PMCID: PMC8418690 DOI: 10.1007/s11356-021-16010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 04/15/2023]
Abstract
There is ambiguity about the airborne transmission of the SARS-CoV-2. While a distance of 6 feet is considered a safe physical distance, new findings show that the virus can be transmitted more than that distance and cause infection. In hospitals, this may cause the virus to be transmitted from the treatment wards of COVID-19 patients to adjacent wards and infect medical staff, non-COVID-19 patients, and patient companions. The aim of this study was to investigate the presence of coronavirus in the air of ICU and adjacent wards. The low volume sampler (LVS) with two separate inlets for PM2.5 and PM10 was applied to collect indoor air of intensive care unit (ICU) with confirmed COVID- 19 patients and its surroundings. The samples were collected on 0.3μ PTFE filter fitted to the holder. Sampling was done at flow rate of 16.7 l/min for 24 h. The SRAS-CoV-2 virus was isolated using a SinaPure™ Virus Extraction Kit (SINACLON, Iran). The presence of SARS-CoV-2 genome was assessed using a commercially available SARS-CoV-2 Test Kit (Pishtaz-Iran), according to the manufacturer's instructions using One Step plus Real-Time PCR system tool (Applied Biosystems, USA). A total of sixteen samples were taken, and the positive test rate for SRAS-CoV-2 was 12.5 % (2/16). All samples from surrounding (rest room and hallway) were negative, but two air samples from indoor of ICU (next to the patient bed and nursing station) were found to be positive. The results support the possibility of transmitting the SRAS-CoV-2 through the air at a greater distance than what is known as a safe physical distance. Therefore, in addition to maintaining a safe physical distance, other precautions including wearing a face mask, preventing air recirculation, and maximizing the use of natural ventilation should be considered, especially in crowded and enclosed environments.
Collapse
Affiliation(s)
- Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vali Alipour
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kavoos Dindarloo
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassani Azad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marzieh Jamalidoust
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz, Iran.
| | - Abdolhossein Madani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Teamour Aghamolaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yaser Hashemi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
120
|
Kieber-Emmons T. Can Endemic Human Coronaviruses Be a COVID-19 Vaccine Approach? Monoclon Antib Immunodiagn Immunother 2022; 41:301-302. [PMID: 36576881 DOI: 10.1089/mab.2022.29012.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
121
|
Ansari MA, Alomary MN, Jamal QMS, Almoshari Y, Salawi A, Almahmoud SA, Khan J. State-of-the-art Tools to Elucidate the Therapeutic Potential of TAT-peptide (TP) Conjugated Repurposing Drug Against SARS-CoV-2 Spike Glycoproteins. Curr Pharm Des 2022; 28:3706-3719. [PMID: 36278465 DOI: 10.2174/1381612829666221019144259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND In late 2019, a highly infectious and pathogenic coronavirus was recognized as Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2), which causes acute respiratory disease, threatening human health and public safety. A total of 448,327,303 documented cases and 6,028,576 deaths have been reported as of March 8th 2022. The COVID-19 vaccines currently undergoing clinical trials or already in use should provide at least some protection against SARS-CoV-2; however, the emergence of new variations as a result of mutations may lessen the effectiveness of the currently available vaccines. Since the efficacy of available drugs and vaccines against COVID-19 is notably lower, there is an urgent need to develop a potential drug to treat this deadly disease. The SARS-CoV-2 spike (SCoV-SG) is the foremost drug target among coronaviruses. OBJECTIVE The major objectives of the current study are to conduct a molecular docking study investigation of TAT-peptide47-57(GRKKRRQRRRP)-conjugated remodified therapeutics such as ritonavir (RTV), lopinavir (LPV), favipiravir (FPV), remdesivir (RMV), hydroxychloroquine (HCQ), molnupiravir (MNV) and nirmatrelvir (NMV) with (SCoV-SG) structure. METHODS Molecular docking analysis was performed to study the interaction of repurposed drugs and drugs conjugated with the TAT-peptide with target SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) using Auto- Dock. Further docking investigation was completed with PatchDock and was visualized by the discovery of the studio visualizer 2020. RESULTS TAT-peptides are well-characterized immune enhancers that are used in intracellular drug delivery. The results of molecular docking analysis showed higher efficiency and significantly enhanced and improved interactions between TP-conjugated repurposed drugs and the target sites of the SCoV-SG structure. CONCLUSION The study concluded that TP-conjugated repurposed drugs may be effective in preventing COVID- 19, and therefore, in vitro, in vivo, and clinical trial studies are required in detail.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ahmed Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
122
|
Sarkar B, Ullah MA, Araf Y, Islam NN, Zohora US. Immunoinformatics-guided designing and in silico analysis of epitope-based polyvalent vaccines against multiple strains of human coronavirus (HCoV). Expert Rev Vaccines 2022; 21:1851-1871. [PMID: 33435759 PMCID: PMC7989953 DOI: 10.1080/14760584.2021.1874925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The group of human coronaviruses (HCoVs) consists of some highly pathogenic viruses that have caused several outbreaks in the past. The newly emerged strain of HCoV, the SARS-CoV-2 is responsible for the recent global pandemic that has already caused the death of hundreds of thousands of people due to the lack of effective therapeutic options. METHODS In this study, immunoinformatics methods were used to design epitope-based polyvalent vaccines which are expected to be effective against four different pathogenic strains of HCoV i.e., HCoV-OC43, HCoV-SARS, HCoV-MERS, and SARS-CoV-2. RESULTS The constructed vaccines consist of highly antigenic, non-allergenic, nontoxic, conserved, and non-homologous T-cell and B-cell epitopes from all the four viral strains. Therefore, they should be able to provide strong protection against all these strains. Protein-protein docking was performed to predict the best vaccine construct. Later, the MD simulation and immune simulation of the best vaccine construct also predicted satisfactory results. Finally, in silico cloning was performed to develop a mass production strategy of the vaccine. CONCLUSION If satisfactory results are achieved in further in vivo and in vitro studies, then the vaccines designed in this study might be effective as preventative measures against the selected HCoV strains.
Collapse
Affiliation(s)
- Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
123
|
Cable J, Fauci A, Dowling WE, Günther S, Bente DA, Yadav PD, Madoff LC, Wang L, Arora RK, Van Kerkhove M, Chu MC, Jaenisch T, Epstein JH, Frost SDW, Bausch DG, Hensley LE, Bergeron É, Sitaras I, Gunn MD, Geisbert TW, Muñoz‐Fontela C, Krammer F, de Wit E, Nordenfelt P, Saphire EO, Gilbert SC, Corbett KS, Branco LM, Baize S, van Doremalen N, Krieger MA, Clemens SAC, Hesselink R, Hartman D. Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:209-225. [PMID: 36183296 PMCID: PMC9538336 DOI: 10.1111/nyas.14898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.
Collapse
Affiliation(s)
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Dennis A. Bente
- University of Texas Medical BranchGalveston National LaboratoryGalvestonTexasUSA
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Pragya Dhruv Yadav
- Indian Council of Medical Research‐National Institute of VirologyPuneIndia
| | - Lawrence C. Madoff
- Department of MedicineUniversity of Massachusetts Chan School of MedicineWorcesterMassachusettsUSA
| | | | - Rahul K. Arora
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | | | - May C. Chu
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | - Thomas Jaenisch
- Colorado School of Public HealthAnschutz Medical CampusAuroraColoradoUSA
| | | | | | | | - Lisa E. Hensley
- Partnership for Research on Vaccines and Infectious Diseases in Liberia (PREVAIL)MonroviaLiberia
- Division of Clinical ResearchNational Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High‐Consequence Pathogens and PathologyCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Ioannis Sitaras
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michael D. Gunn
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Thomas W. Geisbert
- University of ManitobaWinnipegManitobaCanada
- Galveston National Laboratory and Department of Microbiology and ImmunologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - César Muñoz‐Fontela
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infection ResearchHamburgGermany
| | - Florian Krammer
- Department of Microbiology and Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for ImmunologyLa JollaCaliforniaUSA
| | - Sarah C. Gilbert
- Pandemic Sciences Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Kizzmekia S. Corbett
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | | | - Sylvain Baize
- Unité de Biologie des Infections Virales EmergentesInstitut PasteurLyonFrance
- Centre International de Recherche en Infectiologie (CIRI)LyonFrance
- INSERM, Ecole Normale Supérieure de LyonUniversité de LyonLyonFrance
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontanaUSA
| | - Marco A. Krieger
- Laboratory for Applied Science and Technology in Health, Carlos Chagas InstituteOswaldo Cruz Foundation ‐ ParanáCuritibaBrazil
- Integrated Translational Program in Chagas Disease from Fiocruz (Fio‐Chagas)Oswaldo Cruz Foundation ‐ Rio de JaneiroRio de JaneiroBrazil
| | - Sue Ann Costa Clemens
- Oxford Vaccine GroupOxford UniversityOxfordUK
- Institute for Global HealthUniversity of SienaSienaItaly
| | - Renske Hesselink
- Coalition for Epidemic Preparedness Innovations (CEPI)OsloNorway
| | - Dan Hartman
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| |
Collapse
|
124
|
Romero-Aroca P, Baget-Bernaldiz M, Sagarra R, Hervás E, Blasco R, Molina J, Moreno EF, Garcia-Curto E. Impact of the COVID-19 Pandemic on the Metabolic Control of Diabetic Patients in Diabetic Retinopathy and Its Screening. J Clin Med 2022; 11:jcm11237121. [PMID: 36498696 PMCID: PMC9737650 DOI: 10.3390/jcm11237121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM), screening programs of which have been affected by the COVID-19 pandemic. The aim of the present study was to determine the impact of the COVID-19 pandemic on the screening of diabetes patients in our healthcare area (HCA). (2) Methods: We carried out a retrospective study of patients with DM who had attended the DR screening program between January 2015 and June 2022. We studied attendance, DM metabolic control and DR incidence. (3) Results: Screening for DR decreased in the first few months of the pandemic. The incidence of mild and moderate DR remained stable throughout the study, and we observed little increase in severe DR, proliferative DR and neovascular glaucoma during 2021 and 2022. (4) Conclusions: The current study shows that during the COVID-19 pandemic, screening program attendance decreased during the year 2020, which then recovered in 2021. Regarding the most severe forms of DR, a slight increase in cases was observed, beginning in the year 2021. Nevertheless, we aimed to improve the telemedicine systems, since the conditions of a significant proportion of the studied patients worsened during the pandemic; these patients are likely those who were already poorly monitored.
Collapse
Affiliation(s)
- Pedro Romero-Aroca
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), 43204 Reus, Spain
- Correspondence:
| | - Marc Baget-Bernaldiz
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), 43204 Reus, Spain
| | - Ramon Sagarra
- Pere Virgili Institute for Health Research (IISPV), 43204 Reus, Spain
- Health Care Area Reus-Priorat, Institut Catala de la Salut, 43202 Reus, Spain
| | - Esther Hervás
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
| | - Reyes Blasco
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
| | - Julia Molina
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
| | - Empar F. Moreno
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
| | - Eugeni Garcia-Curto
- Ophthalmology Service, Hospital Universitario Sant Joan de Reus, 43204 Reus, Spain
- Medicine and Surgery Departement, Medicine and Health Science Faculty, Universitat Rovira & Virgili, 43204 Reus, Spain
- Pere Virgili Institute for Health Research (IISPV), 43204 Reus, Spain
| |
Collapse
|
125
|
Zhao L, Hall M, de Cesare M, MacIntyre-Cockett G, Lythgoe K, Fraser C, Bonsall D, Golubchik T, COVID-19 Genomics UK (COG-UK) Consortium, Ferretti L. The mutational spectrum of SARS-CoV-2 genomic and antigenomic RNA. Proc Biol Sci 2022; 289:20221747. [PMID: 36382519 PMCID: PMC9667359 DOI: 10.1098/rspb.2022.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The raw material for viral evolution is provided by intra-host mutations occurring during replication, transcription or post-transcription. Replication and transcription of Coronaviridae proceed through the synthesis of negative-sense 'antigenomes' acting as templates for positive-sense genomic and subgenomic RNA. Hence, mutations in the genomes of SARS-CoV-2 and other coronaviruses can occur during (and after) the synthesis of either negative-sense or positive-sense RNA, with potentially distinct patterns and consequences. We explored for the first time the mutational spectrum of SARS-CoV-2 (sub)genomic and anti(sub)genomic RNA. We use a high-quality deep sequencing dataset produced using a quantitative strand-aware sequencing method, controlled for artefacts and sequencing errors, and scrutinized for accurate detection of within-host diversity. The nucleotide differences between negative- and positive-sense strand consensus vary between patients and do not show dependence on age or sex. Similarities and differences in mutational patterns between within-host minor variants on the two RNA strands suggested strand-specific mutations or editing by host deaminases and oxidative damage. We observe generally neutral and slight negative selection on the negative strand, contrasting with purifying selection in ORF1a, ORF1b and S genes of the positive strand of the genome.
Collapse
Affiliation(s)
- Lele Zhao
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | | | | | - Katrina Lythgoe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - David Bonsall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tanya Golubchik
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK,Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, University of Sydney, Sydney NSW 2006, Australia
| | | | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
126
|
Negro A, Tortora M, Gemini L, de Falco A, Somma F, d’Agostino V. Neurological manifestations of COVID-19: a retrospective observational study based on 1060 patients with a narrative review. Acta Radiol 2022; 64:1950-1957. [PMID: 36451533 PMCID: PMC9720471 DOI: 10.1177/02841851221138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background In the past two decades, three coronavirus epidemics have been reported. Coronavirus disease 2019 (COVID-19) is caused by a severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). In most patients, the disease is characterized by interstitial pneumonia, but features can affect other organs. Purpose To document the radiological features of the patients and to perform a narrative review of the literature. Material and Methods We conducted a retrospective, single-center study on 1060 consecutive hospitalized patients with COVID-19 at our institution. According to the inclusion criteria, we selected patients to be studied in more radiological detail. All images were obtained as per standard of care protocols. We performed a statistic analysis to describe radiological features. We then presented a systematic review of the main and conventional neuroimaging findings in COVID-19. Results Of 1060 patients hospitalized for COVID-19 disease, 15% (159) met the eligibility criteria. Of these, 16 (10%) did not undergo radiological examinations for various reasons, while 143 (90%) were examined. Of these 143 patients, 48 (33.6%) had positive neuroimaging. We found that the most frequent pathology was acute ischemic stroke (n=16, 33.3%). Much less frequent were Guillain–Barre syndrome (n=9, 18.8%), cerebral venous thrombosis (n=7, 14.6%), encephalitis or myelitis (n=6, 12.5%), intracranial hemorrhage and posterior hemorrhagic encephalopathy syndrome (n=4, 8.3%), exacerbation of multiple sclerosis (n=4, 8.3%), and Miller–Fisher syndrome (n=2, 4.2%). Conclusion Our data are coherent with the published literature. Knowledge of these patterns will make clinicians consider COVID-19 infection when unexplained neurological findings are encountered.
Collapse
Affiliation(s)
- Alberto Negro
- Department of Neuroradiology, Ospedale del Mare, Naples, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University “Federico II,” Naples, Italy
| | - Laura Gemini
- Department of Advanced Biomedical Sciences, University “Federico II,” Naples, Italy
| | | | - Francesco Somma
- Department of Neuroradiology, Ospedale del Mare, Naples, Italy
| | | |
Collapse
|
127
|
Shin H, Kim S, Jo A, Won J, Gil CH, Yoon SY, Cha H, Kim HJ. Intranasal inoculation of IFN-λ resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Front Immunol 2022; 13:1009424. [PMID: 36524125 PMCID: PMC9744928 DOI: 10.3389/fimmu.2022.1009424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction The innate immune responses of upper airway could further our understanding toward antiviral strategies against SARS-CoV-2. We characterize the potential of interferon (IFN)-λ as an innate immune inducer for the rapid clearance of SARS-CoV-2 in the lung and the therapeutic efficacy of intranasal inoculation of IFN-λ to resolve acute lung infection. Methods Syrian golden hamsters were infected with SARS-CoV-2 and the dynamics of SARS-CoV-2 infection depending on IFN-λ inoculation were tested. Results SARS-CoV-2-infected Syrian golden hamsters exhibited a significant decrease in body weight and high viral mRNA level at 3 days post-infection (dpi). Although viral replication was reduced completely from 7 dpi, the pathologic findings remained prominent until 14 dpi in the lung of hamsters. The transcription of IFN-λ was significantly induced in response to SARS-CoV-2 infection with the increase of IFN-stimulated genes. Intranasal inoculation of IFN-λ restricted SARS-CoV-2 replication in the lungs of infected completely from 3 dpi with markedly reduction of inflammatory cytokines. The transcriptional phenotypes were altered to the direction of damage repair and tissue remodeling in the lungs of SARS-CoV-2-infected hamsters following intranasal inoculation of IFN-λ, which improved SARS-CoV-2-caused lung damage. Conclusion Collectively, our findings suggest that IFN-λ might be a potent innate immune inducer in the lung and intranasal inoculation of IFN-λ resolves SARS-CoV-2 infection with rapid viral clearance and improvement of lung damage.
Collapse
Affiliation(s)
- Haeun Shin
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - Ara Jo
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - Jina Won
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - Chan Hee Gil
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
| | - So Yeon Yoon
- Seoul National University Hospital, Seoul, South Korea
| | - Hyunkyung Cha
- Seoul National University Hospital, Seoul, South Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, South Korea
- Seoul National University Hospital, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
128
|
Feng L, Fu S, Zhang P, Zhang Y, Zhao Y, Yao Y, Luo L, Ping P. Potential use of the S-protein-Angiotensin converting enzyme 2 binding pathway in the treatment of coronavirus disease 2019. Front Public Health 2022; 10:1050034. [PMID: 36518573 PMCID: PMC9742547 DOI: 10.3389/fpubh.2022.1050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), infects humans through a strong interaction between the viral spike protein (S-protein) and angiotensin converting enzyme 2 (ACE2) receptors on the cell surface. The infection of host lung cells by SARS-CoV-2 leads to clinical symptoms in patients. However, ACE2 expression is not restricted to the lungs; altered receptors have been found in the nasal and oral mucosa, vessel, brain, pancreas, gastrointestinal tract, kidney, and heart. The future of COVID-19 is uncertain, however, new viral variants are likely to emerge. The SARS-CoV-2 Omicron variant has a total of 50 gene mutations compared with the original virus; 15 of which occur in the receptor binding domain (RBD). The RBD of the viral S-protein binds to the human ACE2 receptor for viral entry. Mutations of the ACE2-RBD interface enhance tight binding by increasing hydrogen bond interactions and expanding the accessible surface area. Extracorporeal membrane oxygenation, hyperbaric oxygen, and aggressive dialysis for the treatment of COVID-19 have shown various degrees of clinical success. The use of decoy receptors based on the ACE2 receptor as a broadly potent neutralizer of SARS-CoV-2 variants has potential as a therapeutic mechanism. Drugs such as 3E8 could block binding of the S1-subunit to ACE2 and restrict the infection of ACE2-expressing cells by a variety of coronaviruses. Here, we discuss the development of ACE2-targeted strategies for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Long Feng
- Department of Anesthesia, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Shihui Fu
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yujie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Yao Yao
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
129
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
130
|
Ulukhanova LU, Karnaeva NS, Dzhabrailova ME, Agaeva SG, Gadzhimirzaeva AG. The epidemiological situation of coronavirus infection (COVID-19) in the Republic of Dagestan and measures to reduce it. CHILDREN INFECTIONS 2022. [DOI: 10.22627/2072-8107-2022-21-4-49-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The article shows the epidemiological situation of the coronavirus infection COVID-19 (SARS-CoV2) in the Republic of Dagestan for the period 2020-2022, according to the «Republican Center for Infectious Diseases and AIDS» of Makhachkala, Dagestan. Results. The epidemiological situation of the new coronavirus infection in the Republic of Dagestan (RD) remains unfavorable. In 2020, since the beginning of the pandemic, the «Wuhan» strain has been circulating, and since September 2020, the active circulation of the British «alpha» strain has begun. A new wave in 2021 with the highest incidence was recorded from June to September – associated with the inclusion of the Indian «delta» strain SARS-CoV-2 in the epidemic process. Strains of «omicron» that exist today are BA.1 and BA.2 may lead to hospitalization. They are still dangerous for residential people and patients with risk factors. Conclusion. Among the adult population, the largest number of cases of the disease was registered 90.7%. Three main age risk groups have been identified: the adult population from 50 to 64 years; from 65 years and older and from 40 to 49 years. The analysis of mortality by age groups also revealed the main risk groups: persons aged 50-59 years (15.12%); 60-64 years (23%) and over 65 years (55.6%). On 04.07.2022 1,557,661 people were vaccinated with the Gum-COVID-Vac, EpiVacCorona, KoviVak and Sputnik Light vaccine, including 1,377,645 people who completed vaccination.
Collapse
Affiliation(s)
| | | | - M. E. Dzhabrailova
- Republican Center of Infectious Diseases and AIDS named after S.M. Magomedov
| | | | | |
Collapse
|
131
|
Pushparaj TL, Irudaya Raj EF, Irudaya Rani EF. A detailed review of contrast-enhanced fluorescence magnetic resonance imaging techniques for earlier prediction and easy detection of COVID-19. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2144762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - E. Fantin Irudaya Raj
- Department of Electrical and Electronics Engineering, Dr. Sivanthi Aditanar College of Engineering, India
| | - E. Francy Irudaya Rani
- Department of Electronics and Communication Engineering, Francis Xavier Engineering College, India
| |
Collapse
|
132
|
Pan SJ, Hou Y, Yang YP, Wang GG, Chen XY, Qian WY, Tung TH, Hu XM. Relationship between nosocomial infections and coronavirus disease 2019 in the neurosurgery unit: clinical characteristics and outcomes from a Chinese Tertiary-Care Hospital. BMC Infect Dis 2022; 22:836. [PMID: 36368929 PMCID: PMC9651116 DOI: 10.1186/s12879-022-07845-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has raised awareness of infection prevention and control. We found that the incidence of nosocomial infection in neurosurgery has changed. This study aimed to evaluate the impact of "coronavirus disease 2019 (COVID-19) prevention and control measures" on nosocomial infections in neurosurgery. METHODS To explore changes in nosocomial infections in neurosurgery during the COVID-19 pandemic, the clinical data of inpatients undergoing neurosurgery at Taizhou Hospital of Zhejiang Province between January 1 and April 30, 2020 (COVID-19 era) were first analyzed and then compared with those from same period in 2019 (first pre-COVID-19 era). We also analyzed data between May 1 and December 31, 2020 (post-COVID-19 era) at the same time in 2019 (second pre-COVID-19 era). RESULTS The nosocomial infection rate was 7.85% (54/688) in the first pre-COVID-19 era and 4.30% (26/605) in the COVID-19 era (P = 0.01). The respiratory system infection rate between the first pre-COVID-19 and COVID-19 eras was 6.1% vs. 2.0% (P < 0.01), while the urinary system infection rate was 1.7% vs. 2.0% (P = 0.84). Between the first pre-COVID-19 and COVID-19 eras, respiratory system and urinary infections accounted for 77.78% (42/54) vs. 46.15% (12/26) and 22.22% (12/54) vs. 46.15% (12/26) of the total nosocomial infections, respectively (P < 0.01). Between the second pre-COVID-19 and post-COVID-19 eras, respiratory system and urinary accounted for 53.66% (44/82) vs. 40.63% (39/96) and 24.39% (20/82) vs. 40.63% (39/96) of the total nosocomial infections, respectively (P = 0.02). CONCLUSIONS The incidence of nosocomial infections in neurosurgery reduced during the COVID-19 pandemic. The reduction was primarily observed in respiratory infections, while the proportion of urinary infections increased significantly.
Collapse
Affiliation(s)
- Shuang-Jun Pan
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yong Hou
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Yu-Pei Yang
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Geng-Ge Wang
- Hospital Infection Control Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Xiao-Yan Chen
- Hospital Infection Control Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Wei-Yang Qian
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| | - Xiao-Ming Hu
- Department of Neurosurgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, China.
| |
Collapse
|
133
|
Corrêa-Junior D, de Andrade IB, Alves V, Araújo GRDS, Frases S. Clinical Challenges of Emerging and Re-Emerging Yeast Infections in the Context of the COVID-19 Pandemic. Microorganisms 2022; 10:2223. [PMID: 36363816 PMCID: PMC9695014 DOI: 10.3390/microorganisms10112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
During the geological eras, some fungi, through adaptation and/or environmental/ecological pressure, interacted directly and indirectly with humans, through occasionally harmful interaction interdependent on the individual's immunological condition. Infections caused by yeasts are underreported, subjugated, and underdiagnosed, and treatment is restricted to a few drugs, even after the significant progress of medicine and pharmacology. In the last centuries, antagonistically, there has been an exponential increase of immunocompromised individuals due to the use of immunosuppressive drugs such as corticosteroids, increased cases of transplants, chemotherapeutics, autoimmune diseases, neoplasms, and, more recently, coronavirus disease 2019 (COVID-19). This review aims to survey emerging and re-emerging yeast infections in the current clinical context. Currently, there is an immense clinical challenge for the rapid and correct diagnosis and treatment of systemic mycoses caused by yeasts due to the terrible increase in cases in the current context of COVID-19.
Collapse
Affiliation(s)
- Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil
| | - Glauber R. de S. Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, CEP 21941-902, Brazil
- Rede Micologia RJ, FAPERJ, Rio de Janeiro, CEP 21941-902, Brazil
| |
Collapse
|
134
|
Aljuaid A, Salam A, Almehmadi M, Baammi S, Alshabrmi FM, Allahyani M, Al-Zaydi KM, Izmirly AM, Almaghrabi S, Baothman BK, Shahab M. Structural Homology-Based Drug Repurposing Approach for Targeting NSP12 SARS-CoV-2. Molecules 2022; 27:7732. [PMID: 36431833 PMCID: PMC9694939 DOI: 10.3390/molecules27227732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 has a highly conserved non-structural protein 12 (NSP-12) involved in RNA-dependent RNA polymerase (RdRp) activity. For the identification of potential inhibitors for NSP-12, computational approaches such as the identification of homologous proteins that have been previously targeted by FDA-approved antivirals can be employed. Herein, homologous proteins of NSP-12 were retrieved from Protein DataBank (PDB) and the evolutionary conserved sequence and structure similarity of the active site of the RdRp domain of NSP-12 was characterized. The identified homologous structures of NSP-12 belonged to four viral families: Coronaviridae, Flaviviridae, Picornaviridae, and Caliciviridae, and shared evolutionary conserved relationships. The multiple sequences and structural alignment of homologous structures showed highly conserved amino acid residues that were located at the active site of the RdRp domain of NSP-12. The conserved active site of the RdRp domain of NSP-12 was evaluated for binding affinity with the FDA-approved antivirals, i.e., Sofosbuvir and Dasabuvir in a molecular docking study. The molecular docking of Sofosbuvir and Dasabuvir with the active site that contains conserved motifs (motif A-G) of the RdRp domain of NSP-12 revealed significant binding affinity. Furthermore, MD simulation also inferred the potency of Sofosbuvir and Dasabuvir. In conclusion, targeting the active site of the RdRp domain of NSP-12 with Dasabuvir and Sofosbuvir might reduce viral replication and pathogenicity and could be further studied for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdus Salam
- Precision Medicine Lab, Laboratory Building, Rehman Medical Institute, Phase-V, Hayatabad, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khadijah M. Al-Zaydi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23738, Saudi Arabia
| | - Abdullah M. Izmirly
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center and Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
135
|
Praena B, Mascaraque M, Andreu S, Bello-Morales R, Abarca-Lachen E, Rapozzi V, Gilaberte Y, González S, López-Guerrero JA, Juarranz Á. Potent Virucidal Activity In Vitro of Photodynamic Therapy with Hypericum Extract as Photosensitizer and White Light against Human Coronavirus HCoV-229E. Pharmaceutics 2022; 14:pharmaceutics14112364. [PMID: 36365182 PMCID: PMC9693429 DOI: 10.3390/pharmaceutics14112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT) with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract (HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light, HE has long durability, being able to maintain the prevention of viral infection. Given its potent in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate to fight against SARS-CoV-2 as a virucidal compound.
Collapse
Affiliation(s)
- Beatriz Praena
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Marta Mascaraque
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Edgar Abarca-Lachen
- Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Spain
| | | | - Yolanda Gilaberte
- Hospital Miguel Servet, Servicio de Dermatología, 50009 Zaragoza, Spain
| | - Salvador González
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, 28805 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| | - Ángeles Juarranz
- Departamento de Biología, Universidad Autónoma de Madrid, Edificio de Biología, Darwin 2, Cantoblanco, 28049 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, 28040 Madrid, Spain
- Correspondence: (J.A.L.-G.); (Á.J.)
| |
Collapse
|
136
|
Fan YT, Lee JY, Cheng YC, Lin HH, Chien CH, Tu PW, Chung HW. The requirements of nucleic acid test for COVID-19 during public health emergency: Current regulatory in Taiwan, Singapore, and the United States. J Chin Med Assoc 2022; 85:1038-1043. [PMID: 36343271 DOI: 10.1097/jcma.0000000000000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In mid-2022, the COVID-19 cases have reached close to 562 million, but its overall infection rate is hard to confirm. Even with effective vaccines, break-through infections with new variants occur, and safe and reliable testing still plays a critical role in isolation of infected individuals and in control of an outbreak of a COVID-19 pandemic. In response to this urgent need, the diagnostic tests for COVID-19 are rapidly evolving and improving these days. The health authorities of many countries issued requirements for detecting SARS-CoV-2 diagnosis tests during the pandemic and have timely access to these tests to ensure safety and effectiveness. In this study, we compared the requirements of EUA in Taiwan, Singapore, and the United States. For the performance evaluations of nucleic acid extraction, inclusivity, limit of detection (LoD), cross-reactivity, interference, cutoff, and stability, the requirements are similar in the three countries. The use of natural clinical specimens is needed for clinical evaluation in Taiwan and the United States. However, carry-over and cross-contamination studies can be exempted in Taiwan and the United States but are required in Singapore. This review outlines requirements and insight to guide the test developers on the development of IVDs. Considering the rapidly evolving viruses and severe pandemic of COVID-19, timely and accurate diagnostic testing is imperative to the management of diseases. As noted above, the performance requirements for SARS-CoV-2 nucleic acid tests are similar between Taiwan, Singapore and the United States. The differences are mainly in two points: the recommended microorganisms for cross-reactivity study, and the specimen requirement for clinical evaluation. This study provides an overview of current requirements of SARS-CoV-2 nucleic acid tests in Taiwan, Singapore, and the United States.
Collapse
Affiliation(s)
- Yin-Ting Fan
- Office of Medical Device Evaluation, Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| | - Jin-Yu Lee
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Yu-Che Cheng
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Hsin-Hui Lin
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Chia-Hung Chien
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Pei-Weng Tu
- Division of Medical Devices and Cosmetics, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Hui-Wen Chung
- Office of Medical Device Evaluation, Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC
| |
Collapse
|
137
|
Affiliation(s)
- Thomas R Vetter
- From the Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, Texas
| |
Collapse
|
138
|
Wilson IM, Frazier MN, Li JL, Randall TA, Stanley RE. Biochemical Characterization of Emerging SARS-CoV-2 Nsp15 Endoribonuclease Variants. J Mol Biol 2022; 434:167796. [PMID: 35995266 PMCID: PMC9389836 DOI: 10.1016/j.jmb.2022.167796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.
Collapse
Affiliation(s)
- Isha M Wilson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA. https://twitter.com/@ishamyana
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA; Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC, 29424, USA(†). https://twitter.com/@MNFrazier5
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
139
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
140
|
Vázquez-Rodríguez EM, Vázquez-Rodríguez CF, Ortega-Betancourt NV, León-Hernández RC, de León-Escobedo R, Moctezuma-Paz A, Vázquez-Nava F. [Physical inactivity in young people during home confinement due to COVID-19]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2022; 60:649-656. [PMID: 36283027 PMCID: PMC10396040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 06/16/2023]
Abstract
Background Physical inactivity is a highly prevalent condition in the world and has been associated with increased susceptibility to develop comorbidities and present with severe respiratory distress syndrome due to COVID-19. Objective To identify the factors present in the family environment and the personal reasons associated with physical inactivity in young people during confinement at home due to COVID-19. Material and methods A cross-sectional study analyzed data from 1,326 young people, ages 15 - 18. To collect information, a questionnaire was constructed using the Google Forms tool and distributed through the WhatsApp application and email to collect the information. Results The prevalence of physical inactivity was 43.4%. Approximately 24.4% were overweight, and 8.8% were obese. Near 43.0% of young people reported living in an environment with a dysfunctional family. The multivariate logistic regression analysis showed that suffering from obesity, does not have space at home, or devices to exercise and present a change in emotions, are related to the physical inactivity of young people during confinement at home due to the COVID-19 pandemic. Conclusions It is important to promote a harmonious environment within the family and the personal development of a healthy lifestyle, during the period of application of the contingency plan due to the presence of a pandemic, in order to maintain a better healthy physical and mental state.
Collapse
Affiliation(s)
- Eliza Mireya Vázquez-Rodríguez
- Universidad Veracruzana, Facultad de Medicina, Campus Minatitlán. Veracruz, Veracruz, MéxicoUniversidad VeracruzanaMéxico
| | - Carlos Francisco Vázquez-Rodríguez
- Instituto Mexicano del Seguro Social, Hospital Regional No. 1, Departamento de Medicina Comunitaria. Orizaba, Veracruz, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Nancy Virginia Ortega-Betancourt
- Instituto Mexicano del Seguro Social, Hospital Regional No. 1, Departamento de Medicina Comunitaria. Orizaba, Veracruz, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Rodrigo César León-Hernández
- Universidad Autónoma de Tamaulipas, Facultad de Enfermería. Tampico, Tamaulipas, MéxicoUniversidad Autónoma de TamaulipasMéxico
| | - Raúl de León-Escobedo
- Universidad Autónoma de Tamaulipas, Facultad de Medicina de Tampico, Departamento de Investigación. Tampico, Tamaulipas, MéxicoUniversidad Autónoma de TamaulipasMéxico
| | - Alejandro Moctezuma-Paz
- Instituto Mexicano del Seguro Social, Coordinación de Investigación en Salud, División de Investigación Clínica. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Francisco Vázquez-Nava
- Universidad Autónoma de Tamaulipas, Facultad de Medicina de Tampico, Departamento de Investigación. Tampico, Tamaulipas, MéxicoUniversidad Autónoma de TamaulipasMéxico
| |
Collapse
|
141
|
Jiménez-Báez MV, Sandoval-Jurado L, Santiago-Espinosa O, Ramírez-Aranda JM, Romero-Figueroa MDS, Montiel-Jarquín A, Prieto-Torres ME. [Epidemiological and clinical characteristics of the COVID-19 epidemic in Mexico: Quintana Roo case]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2022; 60:657-665. [PMID: 36283034 PMCID: PMC10395888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
Objective Identify risk factors for severe outcome in Mexican patients with COVID-19 in the population of Quintana Roo. Material and methods Study of 5,916 who met the criteria for suspected cases of COVID-19, 2,531 confirmed by qrTPCR-Sars-CoV-2 tests, of which 1,486 were positive, among which they were classified as hospitalized (severe COVID-19) and outpatients. Multivariate logistic regression analysis was performed to explore the factors associated with the severity of COVID-19 and death as clinical outcomes. The basic reproduction number (R0) was calculated Statistical analysis) Endorsement of the ethics committee 2301. Results SARS-CoV-2 positive patients presented a high prevalence of hypertension 29.1%, diabetes 23.5%, obesity 24%, and 48.5% have at least one chronic disease. There is a high risk of severity for COVID-19 in patients with diabetes OR=3.14, hypertension OR=1.88, obesity OR=1.68, kidney disease OR=3.2, older than 65 years OR=13.6 and men OR=1.7. These factors also increase the risk of death up to 7.7 times. The maximum R0 during the epidemic was 2.4. Conclusion Liver and kidney disease, diabetes, hypertension, and obesity are significantly associated with severe COVID-19 and death.
Collapse
Affiliation(s)
- María Valeria Jiménez-Báez
- Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada Estatal Quintana Roo, Coordinación de Planeación y Enlace Institucional. Cancún, Quintana Roo, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Luis Sandoval-Jurado
- Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada Estatal Quintana Roo, Coordinación de Planeación y Enlace Institucional. Cancún, Quintana Roo, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Oscar Santiago-Espinosa
- Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada Estatal Quintana Roo, Coordinación de Información y Análisis Estratégico. Cancún, Quintana Roo, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - José Manuel Ramírez-Aranda
- Universidad Autónoma de Nuevo León, Departamento de Medicina Familiar. Monterrey, Nuevo León, MéxicoUniversidad Autónoma de Nuevo LeónMéxico
| | | | - Alvaro Montiel-Jarquín
- Instituto Mexicano del Seguro Social, Hospital de Especialidades de Puebla, Puebla, Puebla, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - María Erhandi Prieto-Torres
- Instituto Mexicano del Seguro Social, Órgano de Operación Administrativa Desconcentrada Estatal Quintana Roo, Coordinación de Información y Análisis Estratégico. Cancún, Quintana Roo, MéxicoInstituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
142
|
Bedada FB, Gorfu G, Teng S, Neita ME. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:917201. [PMID: 39157715 PMCID: PMC11328875 DOI: 10.3389/fmmed.2022.917201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/13/2022] [Indexed: 08/20/2024]
Abstract
SARS-CoV-2 is a novel zoonotic positive-sense RNA virus (ssRNA+) belonging to the genus beta coronaviruses (CoVs) in the Coronaviridae family. It is the causative agent for the outbreak of the disease, COVID-19. It is the third CoV causing pneumonia around the world in the past 2 decades. To date, it has caused significant deaths worldwide. Notably, the emergence of new genetic variants conferring efficient transmission and immune evasion remained a challenge, despite the reduction in the number of death cases, owing to effective vaccination regimen (boosting) and safety protocols. Thus, information harnessed from SARS-CoV-2 genomic organization is indispensable for seeking laboratory diagnosis and treatment options. Here in, we review previously circulating variants of SARS-CoV-2 designated variant of concern (VOC) including the Alpha (United Kingdom), Beta (South Africa), Gamma (Brazil), Delta (India), and recently circulating VOC, Omicron (South Africa) and its divergent subvariants (BA.1, BA.2, BA.3, BA.2.12.1, BA.4 and BA.5) with BA.5 currently becoming dominant and prolonging the COVID pandemic. In addition, we address the role of computational models for mutagenesis analysis which can predict important residues that contribute to transmissibility, virulence, immune evasion, and molecular detections of SARS-CoV-2. Concomitantly, the importance of harnessing the immunobiology of SARS-CoV-2 and host interaction for therapeutic purpose; and use of an in slilico based biocomputational approaches to achieve this purpose via predicting novel therapeutic agents targeting PRR such as toll like receptor, design of universal vaccine and chimeric antibodies tailored to the emergent variant have been highlighted.
Collapse
Affiliation(s)
- Fikru B. Bedada
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| | - Gezahegn Gorfu
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
- Department of Pathology, College of Medicine, Howard University, Washington, DC, United States
| | - Shaolei Teng
- Department of Biology, College of Arts and Sciences, Howard University, Washington, DC, United States
| | - Marguerite E. Neita
- Department of Clinical Laboratory Science, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, United States
| |
Collapse
|
143
|
Ennaceur S. Risk Factors Associated with Mental Health Outcomes during the Post-Quarantine Period of the COVID-19 in Saudi Population: A Cross-Sectional Study. Behav Sci (Basel) 2022; 12:bs12100391. [PMID: 36285960 PMCID: PMC9598952 DOI: 10.3390/bs12100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 03/10/2023] Open
Abstract
Background: The present study aims to evaluate the mental health symptoms in the Saudi population during the COVID-19 post-quarantine period and to identify the risk factors associated with the severity of the symptoms. Methods: Anxiety was measured with the 7-item Generalized Anxiety Disorder questionnaire, depression with the 9-item Patient Health Questionnaire, insomnia with the 7-item Insomnia Severity Index, and distress with the 22-item Impact Event Scale-Revised questionnaire. Results: A total of 885 respondents answered the online questionnaires. The majority were women (72.8%), married (67.4%), have children (59.3%), and with high education levels (93.2%). The results showed that a high number of the respondents experienced mild to severe symptoms of anxiety (533; 60.3%), depression (659; 47.5%), insomnia (510; 57.6%), and distress (645; 72.9%). The multivariable logistic analysis demonstrated severe anxiety and insomnia among women (OR = 1.71; 95% CI 1.07−1.98; p < 0.001 and OR = 2.00; 95% CI 1.78−2.35; p = 0.002); severe depression among those under 35 (OR = 2.06; 95% CI 1.97−2.44; p = 0.001; and severe distress among non-Saudi respondents (OR = 1.71; 95% CI 1.09−1.93; p < 0.001). Conclusions: The results might help in establishing precautionary measures for protecting the mental health of the general population during pandemics.
Collapse
Affiliation(s)
- Soukaina Ennaceur
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Jeddah 11673, Saudi Arabia
| |
Collapse
|
144
|
Solomon M, Liang C. Human coronaviruses: The emergence of SARS-CoV-2 and management of COVID-19. Virus Res 2022; 319:198882. [PMID: 35934258 PMCID: PMC9351210 DOI: 10.1016/j.virusres.2022.198882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/12/2022]
Abstract
To date, a total of seven human coronaviruses (HCoVs) have been identified, all of which are important respiratory pathogens. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has led to a global pandemic causing millions of infections and deaths. Here, we summarize the discovery and fundamental virology of HCoVs, discuss their zoonotic transmission and highlight the weak species barrier of SARS-CoV-2. We also discuss the possible origins of SARS-CoV-2 variants of concern identified to date and discuss the experimental challenges in characterizing mutations of interest and propose methods to circumvent them. As the COVID-19 treatment and prevention landscape rapidly evolves, we summarize current therapeutics and vaccines, and their implications on SARS-CoV-2 variants. Finally, we explore how interspecies transmission of SARS-CoV-2 may drive the emergence of novel strains, how disease severity may evolve and how COVID-19 will likely continue to burden healthcare systems globally.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
145
|
Obeng EM, Fianu I, Danquah MK. Multivalent ACE2 engineering-A promising pathway for advanced coronavirus nanomedicine development. NANO TODAY 2022; 46:101580. [PMID: 35942040 PMCID: PMC9350675 DOI: 10.1016/j.nantod.2022.101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/30/2022] [Indexed: 05/06/2023]
Abstract
The spread of coronavirus diseases has resulted in a clarion call to develop potent drugs and vaccines even as different strains appear beyond human prediction. An initial step that is integral to the viral entry into host cells results from an active-targeted interaction of the viral spike (S) proteins and the cell surface receptor, called angiotensin-converting enzyme 2 (ACE2). Thus, engineered ACE2 has been an interesting decoy inhibitor against emerging coronavirus infestation. This article discusses promising innovative ACE2 engineering pathways for current and emerging coronavirus therapeutic development. First, we provide a brief discussion of some ACE2-associated human coronaviruses and their cell invasion mechanism. Then, we describe and contrast the individual spike proteins and ACE2 receptor interactions, highlighting crucial hotspots across the ACE2-associated coronaviruses. Lastly, we address the importance of multivalency in ACE2 nanomedicine engineering and discuss novel approaches to develop and achieve multivalent therapeutic outcomes. Beyond coronaviruses, these approaches will serve as a paradigm to develop new and improved treatment technologies against pathogens that use ACE2 receptor for invasion.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Isaac Fianu
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
146
|
Chellasamy SK, Watson E. Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102277. [PMID: 35965668 PMCID: PMC9364929 DOI: 10.1016/j.jksus.2022.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Human ezrin protein interacts with SARS-CoV S endodomain and restricts virus fusion, entry, and early events of infection. In general, their binding strength and their structural stability determines their successful entry into the host cells. However, the binding affinity of these two endodomains with the ezrin protein has been elusive due to a paucity of knowledge on the 3D structure. This study modelled the endodomains of both SARS-CoV-1 and SARS-CoV-2 and then docked these models with human ezrin protein. This study establishes that the modelled endodomains of both SARS-CoV-1 and SARS-Cov-2 consisted of three disulphide bridges for self-stabilization. Protein-protein docking listed four salt bridges with a higher buried surface area between ezrin-SARS-CoV-1 endodomain compared to that of ezrin-SARS-CoV-2 with six salt bridges with lower buried surface area. Molecular simulation of the ezrin-SARS-CoV-1 endodomain showed better structural stability with lower Root Mean Square Deviation score compared to that of ezrin-SARS-CoV-2 endodomain due to the substitution of alanine with cysteine residue. Protein-ligand docking studies confirmed better ezrin-drug interaction for quercetin, minocycline, calcifediol, calcitriol, selamectin, ivermectin and ergocalciferol. However, protein–ligand simulation confirmed strong drug-protein interaction during simulation for all the above-listed drugs except for ergocalciferol which could not establish its interaction with the protein during simulation. Strong drug binding within the active site pocket therefore restricts the interaction of viral endodomain and simultaneously stabilizes the ezrin protein. Furthermore, the higher stability between the ezrin after their interaction with the drug moiety could restrict the virus fusion and the infection. This study provides a basis for further development of these drug molecules to clinical trials aiming to identify potential drug molecules which can treat COVID-19 infection.
Collapse
Affiliation(s)
- Selvaa Kumar Chellasamy
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, Sector-15, CBD Belapur, Navi Mumbai 400614, India
| | - Eleanor Watson
- School of Computing & Engineering, University of Gloucestershire, United Kingdom
| |
Collapse
|
147
|
Bharti PK, Husai A. Mining and analysis of microsatellites in human coronavirus genomes using the in-house built Java pipeline. Genomics Inform 2022; 20:e35. [PMID: 36239112 PMCID: PMC9576472 DOI: 10.5808/gi.20033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Microsatellites or simple sequence repeats are motifs of 1 to 6 nucleotides in length present in both coding and non-coding regions of DNA. These are found widely distributed in the whole genome of prokaryotes, eukaryotes, bacteria, and viruses and are used as molecular markers in studying DNA variations, gene regulation, genetic diversity and evolutionary studies, etc. However, in vitro microsatellite identification proves to be time-consuming and expensive. Therefore, the present research has been focused on using an in-house built java pipeline to identify, analyse, design primers and find related statistics of perfect and compound microsatellites in the seven complete genome sequences of coronavirus, including the genome of coronavirus disease 2019, where the host is Homo sapiens. Based on search criteria among seven genomic sequences, it was revealed that the total number of perfect simple sequence repeats (SSRs) found to be in the range of 76 to 118 and compound SSRs from 01 to10, thus reflecting the low conversion of perfect simple sequence to compound repeats. Furthermore, the incidence of SSRs was insignificant but positively correlated with genome size (R2 = 0.45, p > 0.05), with simple sequence repeats relative abundance (R2 = 0.18, p > 0.05) and relative density (R2 = 0.23, p > 0.05). Dinucleotide repeats were the most abundant in the coding region of the genome, followed by tri, mono, and tetra. This comparative study would help us understand the evolutionary relationship, genetic diversity, and hypervariability in minimal time and cost.
Collapse
Affiliation(s)
- P K Bharti
- School of Computer Science, Shri Venkateshwara University, Gajraula 244236, Uttar Pradesh, India
| | - Akhtar Husai
- Department of Computer Science & IT, MJP Rohilkhand University, Bareilly 243006, Uttar Pradesh, India
| |
Collapse
|
148
|
Nash C. Fear-Responses to Bat-Originating Coronavirus Pandemics with Respect to Quarantines Gauged in Relation to Postmodern Thought—Implications and Recommendations. COVID 2022; 2:1303-1328. [DOI: 10.3390/covid2100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Fear-responses to bat-originating coronavirus pandemics with respect to quarantine imposition are gathered and interpreted from large datasets, identified and disseminated by media. Responses are effectively gauged using postmodern thought with a continuum ranging from people’s resilience to define their own perspectives to public views being socially conditioned from media persistence in maintaining fear. Public responses to the 2003 SARS pandemic generally presumed and supported resilience of citizens’ perspectives. In contrast, from late 2019 to mid-2022, public responses to the COVID-19 pandemic were media-determined, promoting fear. In this regard, reactions to the COVID-19 quarantines are contrasted to the hospital isolations of SARS. The primary source of the difference was the major polarizing influence by social media of the WHO policy makers’ pronouncements and of healthcare providers’ statements directing media spotlight in their guidance of public response to COVID-19 throughout the pandemic, unlike during SARS. An investigation of cognitive bias regarding the psychological and societal implications related to this migration from resilience to fear regarding public responses to novel bat-originating coronavirus pandemics elicits recommendations concerning future quarantine dictates. These recommendations are dependent on appropriate encouragement of hopeful resilience through evidence based practice with respect to one extreme of the postmodern thought continuum.
Collapse
Affiliation(s)
- Carol Nash
- History of Medicine Program, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
149
|
Harte JV, Wakerlin SL, Lindsay AJ, McCarthy JV, Coleman-Vaughan C. Metalloprotease-Dependent S2′-Activation Promotes Cell–Cell Fusion and Syncytiation of SARS-CoV-2. Viruses 2022; 14:v14102094. [PMID: 36298651 PMCID: PMC9608990 DOI: 10.3390/v14102094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 cell–cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell–cell fusion assays. We also show that metalloproteases promote S2′-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.
Collapse
Affiliation(s)
- James V. Harte
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Samantha L. Wakerlin
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking & Disease Laboratory, Biosciences Institute, School of Biochemistry & Cell Biology, University College Cork, T12 YT20 Cork, Ireland
| | - Justin V. McCarthy
- Signal Transduction Laboratory, School of Biochemistry & Cell Biology and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, Western Gateway Building, T12 XF62 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| | - Caroline Coleman-Vaughan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
- Correspondence: (J.V.M.); (C.C.-V.)
| |
Collapse
|
150
|
Shoaib M, Abukhaled M, Kainat S, Nisar KS, Raja MAZ, Zubair G. Integrated Neuro-Evolution-Based Computing Paradigm to Study the COVID-19 Transposition and Severity in Romania and Pakistan. INT J COMPUT INT SYS 2022. [PMCID: PMC9483269 DOI: 10.1007/s44196-022-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Numerical treatment of the COVID-19 transposition and severity in Romania and Pakistan has been presented in this study, i.e., ANN-GA-SQP through artificial neural network genetic algorithms (ANN-GA) and sequential quadratic programming (SQP), a design of an integrated computational intelligent paradigm, COVID-19 is widely considered to be the greatest health threat humanity has ever faced. In terms of both health and economics, COVID-19 is a huge disaster. Many academics have looked at the COVID-19 model in their research papers, although they use different traditional techniques to represent it. The use of hybrid suggested solutions to solve this issue in the present article is significant, demonstrating the study's novelty. The SIR model of COVID-19 consists of a susceptible, infectious, and recovered class of population. The activation function for the construction of functions based on fitness in mean squared error sense is developed using nonlinear equations of the COVID-19 SIR model for the best performance of ANN-GA-SQP with the combined potential of GA and SQP of a network. While detailed refining is done with efficient local search with SQP, GAs operates as a global search. In addition, a neuron analysis will be presented to verify the effectiveness and complexity of the proposed method. Adam’s numerical methodology is applied to compare the sustainability and efficacy of the presented paradigm. Analytical evaluations of mean, median, and semi-interquartile range values, as well as Theil’s inequality coefficients, root mean squared error, and mean of absolute deviation) values have been observed. The convergence and correctness of the ANN-GA-SQP approach are further validated by statistical analyses.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
| | - Marwan Abukhaled
- Department of Mathematics and Statistics, American University of Sharjah, Sharjah, UAE
| | - Saba Kainat
- Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
| | - Kottakkaran Sooppy Nisar
- Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, Saudi Arabia
| | - Muhammad Asif Zahoor Raja
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002 Taiwan, ROC
| | - Ghania Zubair
- Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
| |
Collapse
|