101
|
Wilde EA, Bigler ED, Haider JM, Chu Z, Levin HS, Li X, Hunter JV. Vulnerability of the anterior commissure in moderate to severe pediatric traumatic brain injury. J Child Neurol 2006; 21:769-76. [PMID: 16970884 DOI: 10.1177/08830738060210090201] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In relation to the adult brain, the immature brain might be more vulnerable to damage during and following traumatic brain injury, particularly in white-matter tracts. Given well-established evidence of corpus callosum atrophy, we hypothesized that anterior commissure volume (using quantitative magnetic resonance imaging [MRI]) in this structure would be decreased in children with moderate to severe traumatic brain injury relative to typically developing children. Second, given the purported role of the anterior commissure in interhemispheric axon conveyance between temporal lobes, we hypothesized that temporal lobe white matter, temporal lesion volume, and injury severity (Glasgow Coma Scale score) would be predictive of decreased anterior commissure cross-sectional volume in patients with traumatic brain injury. Finally, we wished to establish the relationship between the anterior commissure and the temporal stem, a major white-matter tract into the temporal lobes, using diffusion tensor imaging fiber-tracking maps for each patient. We also hypothesized that children with traumatic brain injury would exhibit decreased fractional anisotropy in relation to typically developing children in a fiber system including the anterior commissure and the temporal lobes. Decreased anterior commissure cross-sectional volume was observed in patients with traumatic brain injury, and, as predicted, anterior commissure and temporal white-matter volumes were positively related to each other and to higher Glasgow Coma Scale scores. Lesion volume was not independently predictive of anterior commissure volume in the overall model. Diffusion tensor imaging fractional anisotropy values differed between the groups for the temporal stem-anterior commissure system, with the traumatic brain injury group exhibiting decreased fractional anisotropy. The anterior commissure, like the corpus callosum, appears to be highly vulnerable to white-matter degenerative changes resulting from mechanisms such as the direct impact of trauma, progressive axonal injury as tissue in other brain regions atrophies, or myelin degeneration. This is the first systematic examination of anterior commissure atrophy following traumatic brain injury using in vivo quantitative MRI and diffusion tensor imaging fiber tracking in pediatric subjects.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, 1709 Dryden Road, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech 2006; 39:1086-95. [PMID: 16549098 PMCID: PMC1479313 DOI: 10.1016/j.jbiomech.2005.02.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 02/14/2005] [Indexed: 11/16/2022]
Abstract
In traumatic brain injury (TBI) rapid deformation of brain tissue leads to axonal injury and cell death. In vivo quantification of such fast deformations is extremely difficult, but important for understanding the mechanisms of degeneration post-trauma and for development of numerical models of injury biomechanics. In this paper, strain fields in the brain of the perinatal rat were estimated from data obtained in vivo during rapid indentation. Tagged magnetic resonance (MR) images were obtained with high spatial (0.2 mm) and temporal (3.9 ms) resolution by gated image acquisition during and after impact. Impacts were repeated either 64 or 128 times to obtain images of horizontal and vertical tag lines in coronal and sagittal planes. Strain fields were estimated by harmonic phase (HARP) analysis of the tagged images. The original MR data was filtered and Fourier-transformed to obtain HARP images, following a method originally developed by Osman et al. (IEEE Trans. Med. Imaging 19(3) (2000) 186). The displacements of material points were estimated from intersections of HARP contours and used to generate estimates of the deformation gradient and Lagrangian strain tensors. Maximum principal Lagrangian strains of >0.20 at strain rates >40/s were observed during indentations of 2 mm depth and 21 ms duration.
Collapse
Affiliation(s)
- Philip V Bayly
- Mechanical and Aerospace Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1185, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
103
|
Giza CC, Maria NSS, Hovda DA. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma 2006; 23:950-61. [PMID: 16774479 PMCID: PMC2531140 DOI: 10.1089/neu.2006.23.950] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability in the pediatric population and can result in abnormal development. Experimental studies conducted in animals have revealed impaired plasticity following developmental TBI, even in the absence of significant anatomical damage. The N-methyl-D-aspartate receptor (NMDAR) is clearly involved in both normal development and in the pathophysiology of TBI. Following lateral fluid percussion injury in postnatal day (PND) 19 rats, we tested the hypothesis that TBI sustained at an early age would result in impaired NMDAR expression. Using immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR), protein and RNA levels of NMDAR subunits were measured in the cerebral cortex and hippocampus on post-injury days (PID) 1, 2, 4, and 7 (though the PID7 analysis was only for protein) and compared with age-matched shams. Significant effects of hemisphere (analysis of variance [ANOVA], p<0.01), and interactions between hemisphere and injury (ANOVA, p<0.05) and hemisphere and PID (ANOVA, p<0.05) were found for synaptic protein levels of the NR2A subunit in hippocampus. Specifically, within the ipsilateral hippocampus, NR2A was reduced by 9.9%, 47.9%, 40.8%, and 6.3% on PID1, PID2, PID4, and PID7, respectively. Within the cortex, there was a significant effect of injury (ANOVA, p<0.05) without any hemispheric differences. These bilateral cortical reductions measured 30.5%, 3.2%, 5.7%, and 13.4% at the same timepoints after injury. Injury had no significant main effect on NR1 or NR2B protein levels. RT-PCR analysis showed no significant changes in NR1, NR2A, or NR2B gene expression; however, as a positive control, hsp70 was induced more than twofold in ipsilateral cortex and hippocampus on PID1. It is known that NR2A expression levels increase during normal development, and in response to environmental stimuli. Our data suggest that injury-induced reduction in the expression of NR2A is one likely mechanism for the impaired experience-dependent neuroplasticity seen following traumatic injury to the immature brain.
Collapse
Affiliation(s)
- Christopher C Giza
- UCLA Brain Injury Research Center, Division of Neurosurgery/Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
104
|
Berger RP, Adelson PD, Richichi R, Kochanek PM. Serum Biomarkers after Traumatic and Hypoxemic Brain Injuries: Insight into the Biochemical Response of the Pediatric Brain to Inflicted Brain Injury. Dev Neurosci 2006; 28:327-35. [PMID: 16943655 DOI: 10.1159/000094158] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 02/23/2006] [Indexed: 11/19/2022] Open
Abstract
Inflicted traumatic brain injury (iTBI) involves a combination of mechanical trauma and hypoxemia. Serum biomarker concentrations may provide objective information about their relative importance to the pathophysiology of iTBI. We compared the time course of neuron-specific enolase (NSE), S100B and myelin basic protein after pediatric hypoxic-ischemic brain injury, iTBI and noninflicted TBI (nTBI). The time to reach peak concentrations of all three biomarkers was shorter after nTBI. Initial and peak S100B, initial and peak myelin basic protein and peak NSE concentrations were no different between the three groups. Initial NSE concentration was highest after nTBI. These results suggest that the biochemical response of the brain to iTBI is distinct from the response to nTBI and shares temporal similarities with hypoxic-ischemic brain injury. This may have important implications for the treatment and prognosis of children with iTBI.
Collapse
Affiliation(s)
- Rachel Pardes Berger
- Department of Pediatrics, Child Advocacy Center, Children's Hospital of Pittsburgh, and Safar Center for Resuscitation Research, University of Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
105
|
Bayly PV, Dikranian KT, Black EE, Young C, Qin YQ, Labruyere J, Olney JW. Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res 2006; 1107:70-81. [PMID: 16822489 PMCID: PMC2376971 DOI: 10.1016/j.brainres.2006.05.102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/22/2006] [Accepted: 05/26/2006] [Indexed: 11/20/2022]
Abstract
Closed head injury to the developing rat brain causes an acute excitotoxic lesion and axonal disruption at the impact site followed by a delayed pattern of apoptotic damage at various distant sites. Using an electromagnetic impact device to deliver a precisely controlled degree of mechanical deformation to the P7 infant rat skull, we studied the distribution of distant apoptotic lesions and the sequence and time course with which these lesions evolve following relatively mild closed head injury. The first major wave of apoptotic neurodegeneration occurred at 8 h postimpact in the retrosplenial cortex and pre- and parasubiculum. The next major wave occurred in the 16- to 24-h interval and was localized to the anterior thalamic nuclei. A third wave was detected at 36 to 48 h in the mammillary nuclei. We propose that the first and second waves were triggered by injury to a specific fiber tract, the corpus callosum/cingulum bundle that conveys reciprocal connections between the anterior thalamic nuclei and retrosplenial/pre- and parasubicular neurons. This fiber tract passes through a zone of maximum mechanical strain, as measured by tagged MRI. The third wave affecting mammillary neurons occurred because the principal synaptic targets of these neurons are the anterior thalamic neurons that were destroyed in the second wave of degeneration. Prevention of these apoptotic waves of brain damage is a realistic goal in view of the long delay between the impact event and onset of apoptotic degeneration.
Collapse
Affiliation(s)
- Philip V Bayly
- Mechanical and Aerospace Engineering, Washington University in St. Louis, MO 63130, USA.
| | | | | | | | | | | | | |
Collapse
|
106
|
|
107
|
Affiliation(s)
- C Bonnier
- Service de neurologie pédiatrique, cliniques universitaires Saint-Luc, 10, avenue Hippocrate, 1200 Bruxelles, Belgique.
| |
Collapse
|
108
|
Olney JW, Wozniak DF, Jevtovic-Todorovic V, Farber NB, Bittigau P, Ikonomidou C. Drug-induced apoptotic neurodegeneration in the developing brain. Brain Pathol 2006; 12:488-98. [PMID: 12408236 PMCID: PMC8095833 DOI: 10.1111/j.1750-3639.2002.tb00467.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Physiological cell death (PCD), a process by which redundant or unsuccessful neurons are deleted by apoptosis (cell suicide) from the developing central nervous system, has been recognized as a natural phenomenon for many years. Whether environmental factors can interact with PCD mechanisms to increase the number of neurons undergoing PCD, thereby converting this natural phenomenon into a pathological process, is an interesting question for which new answers are just now becoming available. In a series of recent studies we have shown that 2 major classes of drugs (those that block NMDA glutamate receptors and those that promote GABAA receptor activation), when administered to immature rodents during the period of synaptogenesis, trigger widespread apoptotic neurodegeneration throughout the developing brain. In addition, we have found that ethanol, which has both NMDA antagonist and GABAmimetic properties, triggers a robust pattern of apoptotic neurodegeneration, thereby deleting large numbers of neurons from many different regions of the developing brain. These findings provide a more likely explanation than has heretofore been available for the reduced brain mass and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome (FAS). The period of synaptogenesis, also known as the brain growth spurt period, occurs in different species at different times relative to birth. In rats and mice it is a postnatal event, but in humans it extends from the sixth month of gestation to several years after birth. Thus, there is a period in pre- and postnatal human development, lasting for several years, during which immature CNS neurons are prone to commit suicide if exposed to intoxicating concentrations of drugs with NMDA antagonist or GABAmimetic properties. These findings are important, not only because of their relevance to the FAS, but because there are many agents in the human environment, other than ethanol, that have NMDA antagonist or GABAmimetic properties. Such agents include drugs that may be abused by pregnant mothers (ethanol, phencyclidine [angel dust], ketamine [Special K], nitrous oxide [laughing gas], barbiturates, benzodiazepines), and many medicinals used in obstetric and pediatric neurology (anticonvulsants), and anesthesiology (all general anesthetics are either NMDA antagonists or GABAmimetics).
Collapse
Affiliation(s)
- John W Olney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Bonnier C, Mesplès B, Carpentier S, Henin D, Gressens P. Delayed white matter injury in a murine model of shaken baby syndrome. Brain Pathol 2006; 12:320-8. [PMID: 12146800 PMCID: PMC8095820 DOI: 10.1111/j.1750-3639.2002.tb00446.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Shaken baby syndrome, a rotational acceleration injury, is most common between 3 and 6 months of age and causes death in about 10 to 40% of cases and permanent neurological abnormalities in survivors. We developed a mouse model of shaken baby syndrome to investigate the pathophysiological mechanisms underlying the brain damage. Eight-day-old mouse pups were shaken for 15 seconds on a rotating shaker. Animals were sacrificed at different ages after shaking and brains were processed for histology. In 31-day-old pups, mortality was 27%, and 75% of survivors had focal brain lesions consisting of hemorrhagic or cystic lesions of the periventricular white matter, corpus callosum, and brainstem and cerebellar white matter. Hemorrhagic lesions were evident from postnatal day 13, and cysts developed gradually between days 15 and 31. All shaken animals, with or without focal lesions, had thinning of the hemispheric white matter, which was significant on day 31 but not earlier. Fragmented DNA labeling revealed a significant increase in cell death in the periventricular white matter, on days 9 and 13. White matter damage was reduced by pre-treatment with the NMDA receptor antagonist MK-801. This study showed that shaking immature mice produced white matter injury mimicking several aspects of human shaken baby syndrome and provided evidence that excess release of glutamate plays a role in the pathophysiology of the lesions.
Collapse
Affiliation(s)
- C Bonnier
- Service de Neurologie Pédiatrique, University of Louvain Medical School, Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
110
|
Hunt PS. Neonatal treatment with a competitive NMDA antagonist results in response-specific disruption of conditioned fear in preweanling rats. Psychopharmacology (Berl) 2006; 185:179-87. [PMID: 16416331 DOI: 10.1007/s00213-005-0291-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The N-methyl-D-aspartate (NMDA) receptor has been implicated in processes of neurodevelopment, including cell proliferation, synaptogenesis, and apoptosis. Several studies have reported that administration of NMDA antagonists early in development can cause long-lasting changes in behavior. For example, Gould and Cameron [Behav Neurosci 111:49-56 (1997a)] have shown that a single injection of the competitive NMDA antagonist CGP 43487 on postnatal day (PD) 5 affected behavioral immobility in young rats exposed to the odor of a natural predator. OBJECTIVES This experiment was undertaken to determine whether the behavioral effects previously reported would also be seen with conditioned cues. Both stimulus-elicited behavioral immobility (freezing) and changes in heart rate were recorded to examine impairments in responding across multiple measures. METHODS Animals were given a single injection of 0, 2.5, or 5.0 mg/kg CGP 43487 on PD 5. On PD 20 subjects were given paired or unpaired presentations of either an olfactory or auditory conditioned stimulus (CS) with a 110-dB-white-noise unconditioned stimulus. CS-elicited freezing and changes in heart rate were measured. RESULTS Pups treated with CGP exhibited impairments in conditioned freezing, but were unaffected in their expression of conditioned changes in heart rate, to both olfactory and auditory stimuli. CONCLUSIONS These results indicate that neonatal treatment with an NMDA antagonist affects the expression of fear in a response-specific manner. The data suggest that antagonist-induced alterations in neural systems involved in the expression of freezing are affected by NMDA receptor blockade early in life.
Collapse
Affiliation(s)
- Pamela S Hunt
- Department of Psychology, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA.
| |
Collapse
|
111
|
Matsumori Y, Northington FJ, Hong SM, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. Reduction of Caspase-8 and -9 Cleavage Is Associated With Increased c-FLIP and Increased Binding of Apaf-1 and Hsp70 After Neonatal Hypoxic/Ischemic Injury in Mice Overexpressing Hsp70. Stroke 2006; 37:507-12. [PMID: 16397188 DOI: 10.1161/01.str.0000199057.00365.20] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Caspase-8 and caspase-9 are essential proteases of the extrinsic and intrinsic apoptotic pathways, respectively. We investigated whether neuroprotection associated with overexpression of heat-shock protein 70 (Hsp70), a natural cellular antiapoptotic protein, is mediated by caspase-8 and caspase-9 signaling in the neonatal mouse brain after hypoxia/ischemia (H/I) injury.
Methods—
Postnatal day 7 transgenic mice overexpressing rat Hsp70 (Hsp70 Tg) and their wild-type (Wt) littermates underwent unilateral common carotid artery ligation followed by 30 minutes of exposure to 8% O
2
. The expression of apoptotic proteins was quantified by Western blot analysis, and the specific interaction between Hsp70 and apoptotic protease activating factor 1 (Apaf-1) was determined by coimmunoprecipitation.
Results—
Hsp70 overexpression reduced cytosolic translocation of cytochrome c without affecting the levels of Apaf-1 and pro–caspase-9 24 hours after H/I. The expression of these apoptotic proteins in the naïve neonatal brains was also not affected by Hsp70 overexpression. Reduced caspase-9 cleavage occurred in Hsp70 Tg mice compared with Wt littermates 24 hours after H/I and correlated with increased binding of Hsp70 and Apaf-1. Increased cellular Fas-associated death domain–like interleukin-1β–converting enzyme inhibitory protein (FLIP) expression and decreased caspase-8 cleavage were also observed in Hsp70 Tg compared with Wt mice 24 hours after H/I.
Conclusions—
Our results suggest that the extrinsic and intrinsic apoptotic pathways mediate the neuroprotective effects of Hsp70 overexpression in neonatal H/I, specifically by upregulating FLIP and sequestering Apaf-1, leading to reduced cleavage of caspase-8 and caspase-9.
Collapse
Affiliation(s)
- Yasuhiko Matsumori
- Department of Neurological Surgery, University of California, Department of Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Abstract
This article reviews the important differences between children and adults suffering brain injury following cardiac arrest. The differences in etiology, pathophysiology, neuronal vulnerability, and repair in the context of the developing brain are reviewed. The available clinical data are reviewed, and selected treatment priori-ties are declared. The article includes a discussion of knowledge gaps and future directions.
Collapse
Affiliation(s)
- Robert W Hickey
- Division of Pediatric Emergency Medicine, Department of Pediatrics, University of Pittsburgh, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
113
|
Card JP, Santone DJ, Gluhovsky MY, Adelson PD. Plastic reorganization of hippocampal and neocortical circuitry in experimental traumatic brain injury in the immature rat. J Neurotrauma 2006; 22:989-1002. [PMID: 16156714 DOI: 10.1089/neu.2005.22.989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reorganization of circuitry in the immature forebrain resulting from controlled cortical impact was examined with viral transneuronal tracing. Animals injured on postnatal day (PND) 17 and sham controls from the same litters received an intracerebral injection of a recombinant strain of pseudorabies virus (PRV) into the entorhinal cortex on PND 45. Fifty hours following injection of virus the animals were perfused and infected neurons were localized immunohistochemically with antisera specific for PRV. Prior studies have demonstrated that the PRV recombinant used in this analysis moves exclusively in the retrograde direction through synaptically linked neurons. CCI induced a necrotic loss of cortex at the site of impact and variable damage to the underlying corpus callosum and rostral (dorsal) hippocampus that was not present in sham controls. Analysis of viral transport in sham controls revealed retrograde transport of virus through hippocampal and neocortical circuitry in a pattern consistent with established patterns of connectivity and topography. Injured animals exhibited preservation of topographically organized connections in both the hippocampus and neocortex. However, the magnitude of labeling in the injured hemisphere was significantly increased relative to control animals and correlated with the magnitude of the injury. The distribution of infected neurons in the contralateral uninjured hemisphere also conformed to known connections. However differences in the involvement of the corpus callosum in the injury resulted in greater variability in the number of infected neurons among cases. These data provide novel insights into trauma induced reorganization of the developing brain and add to the experimental tools that can be used to assess the basis for functional recovery in animal models of developmental traumatic brain injury.
Collapse
Affiliation(s)
- J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | |
Collapse
|
114
|
Holopainen IE. Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 2005; 30:1521-8. [PMID: 16362771 DOI: 10.1007/s11064-005-8829-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus has become one of the most extensively studied areas of the mammalian brain, and its proper function is of utmost importance, particularly for learning and memory. The hippocampus is the most susceptible brain region for damage, and its impaired function has been documented in many human brain diseases, e.g. hypoxia, ischemia, and epilepsy regardless of the age of the affected patients. In addition to experimental in vivo models of these disorders, the investigation of basic anatomical, physiological, and molecular aspects requires an adequate experimental in vitro model, which should meet the requirements for well-preserved representation of various cell types, and functional information processing properties in the hippocampus. In this review, the characteristics of organotypic hippocampal slice cultures (OHCs) together with the main differences between the in vivo and in vitro preparations are first briefly outlined. Thereafter, the use of OHCs in studies focusing on neuron cell death and synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520, Turku, Finland.
| |
Collapse
|
115
|
Abstract
Excitotoxicity is an important mechanism involved in perinatal brain injuries. Glutamate is the major excitatory neurotransmitter, and most neurons as well as many oligodendrocytes and astrocytes possess receptors for glutamate. Perinatal insults such as hypoxia-ischemia, stroke, hypoglycemia, kernicterus, and trauma can disrupt synaptic function leading to accumulation of extracellular glutamate and excessive stimulation of these receptors. The activities of certain glutamate receptor/channel complexes are enhanced in the immature brain to promote activity-dependent plasticity. Excessive stimulation of glutamate receptor/ion channel complexes triggers calcium flooding and a cascade of intracellular events that results in apoptosis and/or necrosis. Recent research suggests that some of these intracellular pathways are sexually dimorphic. Age dependent expression of different glutamate receptor subtypes with varying abilities to flux calcium has been associated with special patterns of selective vulnerability at different gestational ages. For example, selective injury to the putamen, thalamus and cerebral cortex from near total asphyxia in term infants may be related to excessive activation of neuronal NMDA and AMPA type glutamate receptors, while brainstem injury may be related primarily to stimulation of neuronal AMPA/kainate receptors. In contrast, periventricular leukomalacia in premature infants has been linked to expression of AMPA/kainate receptors on immature oligodendrocytes. Insight into the molecular pathways that mediate perinatal brain injuries could lead to therapeutic interventions.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
116
|
Hossain MA. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav 2005; 7:204-13. [PMID: 16054439 DOI: 10.1016/j.yebeh.2005.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 05/24/2005] [Indexed: 02/05/2023]
Abstract
Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in neonatal brain and that NP1 gene silencing is neuroprotective suggest that NP1 could be a new molecular target in the central neurons for preventing HI injury in developing brain. Most importantly, the specific interactions between NP1 and the excitatory glutamate receptors and their colocalization further implicate a role for this novel neuronal protein in the excitotoxic cascade. Recent experimental work suggests that these approaches may be effective during a longer therapeutic window after the insult, as they are acting on events that are relatively delayed, creating the potential for therapeutic interventions for these lifelong neurological disabilities.
Collapse
Affiliation(s)
- Mir Ahamed Hossain
- Department of Neurology, The Johns Hopkins University School of Medicine and The Kennedy Krieger Research Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
117
|
Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, Ozdemir N, Duman M, Ozkan H. Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett 2005; 385:234-9. [PMID: 15970378 DOI: 10.1016/j.neulet.2005.05.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/15/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
It is well known that head trauma induces the cognitive dysfunction resulted from hippocampal damage. In the present study, we aimed to demonstrate the effect of melatonin on hippocampal damage and spatial memory deficits in 7-day-old rat pups subjected to contusion injury. Melatonin was injected intraperitoneally at the doses of 5 or 20 mg/kg of body weight immediately after induction of traumatic injury. Hippocampal damage was examined by cresyl violet staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Spatial memory performance was assessed in the Morris water maze. Melatonin significantly attenuated trauma-induced neuronal death in hippocampal CA1, CA3 regions and dentate gyrus, and improved spatial memory deficits, which was equally effective at doses of 5-20 mg/kg. The present results suggest that melatonin is a highly promising agent for preventing the unfavorable outcomes of traumatic brain injury in young children.
Collapse
Affiliation(s)
- Durgul Ozdemir
- Department of Pediatrics, School of Medicine, Dokuz Eylul University, Inciralti, 35340 Izmir, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 2005; 1:5-16. [PMID: 15717003 PMCID: PMC534908 DOI: 10.1602/neurorx.1.1.5] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been increasingly recognized that cell death phenotypes and their molecular mechanisms are highly diverse. Necrosis is no longer considered a single entity, passively mediated by energy failure. Moreover, caspase-dependent apoptosis is not the only pathway involved in programmed cell death or even the only apoptotic mechanism. Recent experimental work emphasizes the diverse and interrelated nature of cell death mechanisms. Thus, there are both caspase-dependent and caspase-independent forms of apoptosis, which may differ morphologically as well as mechanistically. There are also necrotic-like phenotypes that require de novo protein synthesis and are, therefore, forms of programmed cell death. In addition, forms of cell death showing certain morphological features of both necrosis and apoptosis have been identified, leading to the term aponecrosis. Considerable experimental evidence also shows that modulation of one form of cell death may lead to another. Together, these observations underscore the need to substantially revise our conceptions about neuroprotection strategies. Use of multiple treatments that target different cell death cascades, or single agents that moderate multiple cell death pathways, is likely to lead to more effective neuroprotection for clinical disorders.
Collapse
Affiliation(s)
- Alexander G Yakovlev
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
119
|
Levin HS, Hanten G. Executive functions after traumatic brain injury in children. Pediatr Neurol 2005; 33:79-93. [PMID: 15876523 DOI: 10.1016/j.pediatrneurol.2005.02.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/16/2004] [Accepted: 02/07/2005] [Indexed: 11/19/2022]
Abstract
There is growing recognition that executive function, the superordinate, managerial capacity for directing more modular abilities, is frequently impaired by traumatic brain injury in children and mediates the neurobehavioral sequelae exhibited by these patients. This review encompasses the definition of specific executive functions, age-related changes in executive functions in typically developing children, and the effects of traumatic brain injury on executive functions. The neural substrate for executive functions is described, including relevant functional brain imaging studies that have implicated mediation by prefrontal and parietal cortex and their circuitry. The vulnerability of the neural substrate for executive function to the pathophysiology of traumatic brain injury is discussed, including focal lesions and diffuse axonal injury. Domains of executive functions covered in this review include the basic processes of working memory and inhibition and more complex processes such as decision making. Other domains of executive function, including motivation, self-regulation, and social cognition are discussed in terms of research methodology, clinical assessment, and findings in children with traumatic brain injury. Proposed approaches to the rehabilitation of executive functions are presented.
Collapse
Affiliation(s)
- Harvey S Levin
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
120
|
Wilde EA, Hunter JV, Newsome MR, Scheibel RS, Bigler ED, Johnson JL, Fearing MA, Cleavinger HB, Li X, Swank PR, Pedroza C, Roberson GS, Bachevalier J, Levin HS. Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. J Neurotrauma 2005; 22:333-44. [PMID: 15785229 DOI: 10.1089/neu.2005.22.333] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vivo MRI volumetric analysis enables investigators to evaluate the extent of tissue loss following traumatic brain injury (TBI). However, volumetric studies of pediatric TBI are sparse, and there have been no volumetric studies to date in children examining specific subregions of the prefrontal and temporal lobes. In this study, MRI volumetry was used to evaluate brain volume differences in the whole brain, and prefrontal, temporal, and posterior regions of children following moderate to severe TBI as compared to uninjured children of similar age and demographic characteristics. The TBI group had significantly reduced whole brain, and prefrontal and temporal regional tissue volumes as well as increased cerebrospinal fluid (CSF). Confidence interval testing further revealed group differences on gray matter (GM) and white matter (WM) in the superior medial and ventromedial prefrontal regions, WM in the lateral frontal region, and GM, WM, and CSF in the temporal region. Whole brain volume and total brain GM were reduced, and total ventricular volume, total CSF volume, and ventricle-to-brain ratio (VBR) were increased in the TBI group. Additional analyses comparing volumetric data from typically developing children and subgroups of TBI patients with and without regional focal lesions suggested that GM loss in the frontal areas was primarily attributable to focal injury, while WM loss in the frontal and temporal lobes was related to both diffuse and focal injury. Finally, volumetric measures of preserved frontotemporal tissue were related to functional recovery as measured by the Glasgow Outcome Scale (adapted for children) with greater tissue preservation predicting better recovery.
Collapse
Affiliation(s)
- Elisabeth A Wilde
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Spalding KL, Dharmarajan AM, Harvey AR. Caspase-independent retinal ganglion cell death after target ablation in the neonatal rat. Eur J Neurosci 2005; 21:33-45. [PMID: 15654841 DOI: 10.1111/j.1460-9568.2004.03826.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In neonatal rats, superior colliculus (SC) ablation results in a massive and rapid increase in retinal ganglion cell (RGC) death that peaks about 24 h post-lesion (PL). Naturally occurring cell death during normal development, and RGC death after axonal injury in neonatal and adult rats, has primarily been ascribed to apoptosis. Given that normal developmental cell death is reported to involve caspase 3 activation, and blocking caspase activity in adults reduces axotomy-induced death, we examined whether blocking caspases in vivo reduces RGC death after neonatal SC lesions. Neither general nor specific caspase inhibitors increased neonatal RGC survival 6 and 24 h PL. These inhibitors were, however, effective in blocking caspases in another well-defined in vitro apoptosis model, the corpus luteum. Caspase 3 protein and mRNA levels in retinas from normal and SC-lesioned neonatal rats were assessed 3, 6 and 24 h after SC removal using immunohistochemistry, western and northern blots and quantitative real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) was used to independently monitor retinal cell death. The polymerase chain reaction data showed a small but insignificant increase in caspase 3 mRNA in retinas 24 h PL. Western blot analysis did not reveal a significant shift to cleaved (activated) caspase 3 protein. There was a small increase in the number of cleaved caspase 3 immunolabelled cells in the ganglion cell layer 24 h PL but this represented only a fraction of the death revealed by TUNEL. Together, these data indicate that, unlike the situation in adults, most lesion-induced RGC death in neonatal rats occurs independently of caspase activation.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
122
|
Bittigau P, Sifringer M, Felderhoff-Mueser U, Ikonomidou C. Apoptotic neurodegeneration in the context of traumatic injury to the developing brain. ACTA ACUST UNITED AC 2005; 56:83-9. [PMID: 15581279 DOI: 10.1016/j.etp.2004.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Head trauma is the leading cause of death and disability in the pediatric population. Some recent studies on neuropathological and biochemical features of traumatic injury to the developing brain revealed interesting aspects and potential targets for future research. Trauma triggers both excitotoxic and apoptotic neurodegeneration in the developing rat brain. Apoptotic neurodegeneration occurs in a delayed fashion over several days and contributes in an age-dependent fashion to neuropathologic outcome following head trauma, with the immature brain being exceedingly sensitive. Biochemical studies indicate that both the extrinsic and the intrinsic apoptotic pathways are involved in pathogenesis of apoptotic cell death following trauma in the developing brain and that caspase inhibition ameliorates apoptotic neurodegeneration in an infant head trauma model. Given the major contribution of apoptotic neurodegeneration to neuropathologic outcome following trauma to the developing brain, interference with apoptotic pathways may comprise a potential therapeutic target in pediatric traumatic brain injury.
Collapse
Affiliation(s)
- Petra Bittigau
- Department of Pediatric Neurology, Charité, Virchow Campus, Children's Hospital, Humboldt University, Augustenburger Platz 1, Berlin 13353, Germany
| | | | | | | |
Collapse
|
123
|
Bayly PV, Ji S, Song SK, Okamoto RJ, Massouros P, Genin GM. Measurement of strain in physical models of brain injury: a method based on HARP analysis of tagged magnetic resonance images (MRI). J Biomech Eng 2005; 126:523-8. [PMID: 15543872 PMCID: PMC2408558 DOI: 10.1115/1.1785811] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2-D) strain fields were estimated non-invasively in two simple experimental models of closed-head brain injury. In the first experimental model, shear deformation of a gel was induced by angular acceleration of its spherical container In the second model the brain of a euthanized rat pup was deformed by indentation of its skull. Tagged magnetic resonance images (MRI) were obtained by gated image acquisition during repeated motion. Harmonic phase (HARP) images corresponding to the spectral peaks of the original tagged MRI were obtained, following procedures proposed by Osman, McVeigh and Prince. Two methods of HARP strain analysis were applied, one based on the displacement of tag line intersections, and the other based on the gradient of harmonic phase. Strain analysis procedures were also validated on simulated images of deformed grids. Results show that it is possible to visualize deformation and to quantify strain efficiently in animal models of closed head injury.
Collapse
Affiliation(s)
- P V Bayly
- Mechanical and Aerospace Engineering, Washington University in St Louis, MO 63130, USA.
| | | | | | | | | | | |
Collapse
|
124
|
Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P, Obladen M, Ikonomidou C, Bührer C. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 2004; 57:50-9. [PMID: 15622543 DOI: 10.1002/ana.20322] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase-1-processed cytokines, interleukin (IL)-1beta and IL-18, are involved in oxygen-induced neuronal cell death. Six-day-old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro-Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL-1beta, IL-18, and IL-18 receptor alpha (IL-18Ralpha). Intraperitoneal injection of recombinant human IL-18-binding protein, a specific inhibitor of IL-18, attenuated hyperoxic brain injury. Mice deficient in IL-1 receptor-associated kinase 4 (IRAK-4), which is pivotal for both IL-1beta and IL-18 signal transduction, were protected against oxygen-mediated neurotoxicity. These findings causally link IL-1beta and IL-18 to hyperoxia-induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Charité, Campus Virchow Klinikum, Humboldt University Medical Center, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Rzeski W, Pruskil S, Macke A, Felderhoff-Mueser U, Reiher AK, Hoerster F, Jansma C, Jarosz B, Stefovska V, Bittigau P, Ikonomidou C. Anticancer agents are potent neurotoxins in vitro and in vivo. Ann Neurol 2004; 56:351-60. [PMID: 15349862 DOI: 10.1002/ana.20185] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotoxicity of anticancer agents complicates treatment of children with cancer. We investigated neurotoxic effects of common cytotoxic drugs in neuronal cultures and in the developing rat brain. When neurons were exposed to cisplatin (5-100 microM), cyclophosphamide (5-100 microM), methotrexate (5-100 microM), vinblastin (0.1-1 microM), or thiotepa (5-100 microM), a concentration-dependent neurotoxic effect was observed. Neurotoxicity was potentiated by nontoxic glutamate concentrations. The N-methyl-D-aspartate receptor antagonist MK 801 (10 microM), the AMPA receptor antagonists GYKI 52466 (10 microM) and NBQX (10 microM), and the pancaspase inhibitor Ac-DEVD-CHO (1 nM) ameliorated neurotoxicity of cytotoxic drugs. To investigate neurotoxicity in vivo, we administered to 7-day-old rats the following: cisplatin (5-15 mg/kg i.p.), cyclophosphamide (200-600 mg/kg i.p.), thiotepa (15-45 mg/kg), or ifosfamide (100-500 mg/kg) and their brains were analyzed at 4 to 24 hours. Cytotoxic drugs produced widespread lesions within cortex, thalamus, hippocampal dentate gyrus, and caudate nucleus in a dose-dependent fashion. Early histological analysis demonstrated dendritic swelling and relative preservation of axonal terminals, which are morphological features indicating excitotoxicity. After longer survival periods, degenerating neurons displayed morphological features consistent with active cell death. These results demonstrate that anticancer drugs are potent neurotoxins in vitro and in vivo; they activate excitotoxic mechanisms but also trigger active neuronal death.
Collapse
Affiliation(s)
- Wojciech Rzeski
- Department of Pediatric Neurology, Charité, Campus Virchow Klinikum, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Little is known about the underlying mechanisms of head trauma in the developing brains, despite considerable social and economic impact following such injuries. Age has been shown to substantially influence morbidity and mortality. Children younger than 4 years of age had worse cognitive, motor, and brain atrophy outcomes than children 6 years of age and older. Younger children tend to more frequently suffer from diffuse cerebral swelling compared to adults. Typical autoptic findings also include axonal injury and ischemic neurodegeneration. These differences impact not only the primary response of the brain to injury but the secondary response as well. The complexity of damaging mechanisms in traumatic brain injury contributes to the problem of determining effective therapy. As an alternative/ adjunct to pharmacological approaches, hypothermia has been shown to be cerebroprotective in traumatized adult brains. Although a large number of animal studies have shown protective effects of hypothermia in a variety of damaging mechanisms after TBI, little data exist for young, developing brains. The injury mechanisms of TBI in the immature, effects of hypothermia following resuscitation on adult and immature traumatized brains, and some possible mechanisms of action of hypothermia in the immature traumatized brain are discussed in this review.
Collapse
Affiliation(s)
- Harald G Fritz
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Jena, Friedrich Schiller University, 07740 Jena, Germany.
| | | |
Collapse
|
127
|
Bonnier C, Mesples B, Gressens P. Animal models of shaken baby syndrome: revisiting the pathophysiology of this devastating injury. ACTA ACUST UNITED AC 2004; 7:165-71. [PMID: 15204568 DOI: 10.1080/13638490410001703325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To better understand outcomes after early brain injuries, studies must address multiple variables including age at injury, the mechanisms and severity of injury, environmental factors (before and after injury) and developmental factors. Animal models are helpful for elucidating these different aspects. First, this paper describes a new model of shaken baby syndrome (SBS) in mice, without impact or hypoxia. Mortality was 27%; 75% of survivors had focal brain lesions consisting of haemorrhagic or cystic lesions of the white matter, corpus callosum and cerebellum. All shaken animals, with and without focal lesions, showed delayed white matter atrophy. White matter damage and atrophy were reduced by pre-treatment with an NMDA receptor antagonist, indicating that excess glutamate release contributed to the pathophysiology of the lesions. Secondly, it discusses data on neuroprotection after early brain injuries; drugs targeting the NMDA receptors cannot be used in clinical practice but indirect neuroprotection strategies including anti-NO, anti-free radicals and trophic factors hold promise for limiting the excitotoxic white matter damage induced by early injury, in particular caused by shaking, during brain development. Thirdly, it describes two experimental models in which SBS outcomes are determined when the trauma is combined with environmental influences, namely medications during the acute phase, most notably anti-epileptic drugs and rearing conditions.
Collapse
Affiliation(s)
- Christine Bonnier
- Service de Neurologie Pédiatrique, Cliniques Saint-Luc, UCL, Avenue Hippocrate 10, 1067, 1200-Bruxelles, Belgium.
| | | | | |
Collapse
|
128
|
Hossain MA, Russell JC, O'Brien R, Laterra J. Neuronal pentraxin 1: a novel mediator of hypoxic-ischemic injury in neonatal brain. J Neurosci 2004; 24:4187-96. [PMID: 15115814 PMCID: PMC6729280 DOI: 10.1523/jneurosci.0347-04.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neonatal hypoxic-ischemic brain injury is a major cause of neurological disability and mortality. Its therapy will likely require a greater understanding of the discrete neurotoxic molecular mechanism(s) triggered by hypoxia-ischemia (HI). Here, we investigated the role of neuronal pentraxin 1 (NP1), a member of a newly recognized subfamily of "long pentraxins," in the HI injury cascade. Neonatal brains developed marked infarcts in the ipsilateral cerebral hemisphere at 24 hr and showed significant loss of ipsilateral striatal, cortical, and hippocampal volumes at 7 d after HI compared with the contralateral hemisphere and sham controls. Immunofluorescence analyses revealed elevated neuronal expression of NP1 in the ipsilateral cerebral cortex from 6 hr to 7 d and in the hippocampal CA1 and CA3 regions from 24 hr to 7 d after HI. These same brain areas developed infarcts and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells within 24-48 hr of HI. In primary cortical neurons, NP1 protein was induced >2.5-fold (p < 0.001) after their exposure to hypoxia that caused approximately 30-40% neuronal death. Transfecting cortical neurons with antisense oligodeoxyribonucleotides directed against NP1 mRNA (NP1AS) significantly inhibited (p < 0.01) hypoxia-induced NP1 protein induction and neuronal death (p < 0.001), demonstrating a specific requirement of NP1 in hypoxic neuronal injury. NP1 protein colocalized and coimmunoprecipitated with the fast excitatory AMPA glutamate receptor subunit (GluR1) in primary cortical neurons, and hypoxia induced a time-dependent increase in NP1-GluR1 interactions. NPIAS also protected against AMPA-induced neuronal death (p < 0.05), implicating a role for NP1 in the excitotoxic cascade. Our results show that NP1 induction mediates hypoxic-ischemic injury probably by interacting with and modulating GluR1 and potentially other excitatory glutamate receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- Cell Hypoxia
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/prevention & control
- In Situ Nick-End Labeling
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurotoxins/antagonists & inhibitors
- Neurotoxins/toxicity
- Oligonucleotides, Antisense/pharmacology
- Protein Binding/physiology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Receptors, AMPA/metabolism
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/antagonists & inhibitors
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
Collapse
Affiliation(s)
- Mir Ahamed Hossain
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
129
|
Abstract
A single exposure of infant rats or mice to ethanol during synaptogenesis (mid to late pregnancy for humans) can cause developing neurons to commit suicide (die by apoptosis) on a massive scale. The neuronal loss demonstrated in recent studies is more severe and much more widely distributed (many brain regions, plus spinal cord and retina) than has been documented in prior animal ethanol studies. By suppressing neuronal activity via NMDA glutamate and GABAA receptors, ethanol disrupts synaptogenesis, thereby activating in developing neurons a programmed signal to commit suicide. These recent findings help clarify important aspects of the fetal alcohol syndrome, and demonstrate the usefulness of an in vivo infant rodent model for studying the neurotoxic effects of ethanol on the developing central nervous system.
Collapse
|
130
|
Cernak I, Vink R, Natale J, Stoica B, Lea PM, Movsesyan V, Ahmed F, Knoblach SM, Fricke ST, Faden AI. The "dark side" of endocannabinoids: a neurotoxic role for anandamide. J Cereb Blood Flow Metab 2004; 24:564-78. [PMID: 15129189 DOI: 10.1097/00004647-200405000-00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endocannabinoids, including 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine; AEA), have neuroprotective effects in the brain through actions at CB1 receptors. However, AEA also binds to vanilloid (VR1) receptors and induces cell death in several cell lines. Here we show that anandamide causes neuronal cell death in vitro and exacerbates cell loss caused by stretch-induced axonal injury or trophic withdrawal in rat primary neuronal cultures. Administered intracerebroventricularly, AEA causes sustained cerebral edema, as reflected by diffusion-weighted magnetic resonance imaging, regional cell loss, and impairment in long-term cognitive function. These effects are mediated, in part, through VR1 as well as through calpain-dependent mechanisms, but not through CB1 receptors or caspases. Central administration of AEA also significantly upregulates genes involved in pro-inflammatory/microglial-related responses. Thus, anandamide produces neurotoxic effects both in vitro and in vivo through multiple mechanisms independent of the CB1 receptor.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Olney JW, Young C, Wozniak DF, Jevtovic-Todorovic V, Ikonomidou C. Do pediatric drugs cause developing neurons to commit suicide? Trends Pharmacol Sci 2004; 25:135-9. [PMID: 15019268 DOI: 10.1016/j.tips.2004.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- John W Olney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
132
|
Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg 2004; 100:88-96. [PMID: 14743917 DOI: 10.3171/jns.2004.100.1.0088] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Cultures containing human neural stem and progenitor cells (neurospheres) have the capacity to proliferate and differentiate into the major phenotypes of the adult brain. These properties make them candidates for therapeutic transplantation in cases of neurological diseases that involve cell loss. In this study, long-term cultured and cryopreserved cells were transplanted into the traumatically injured rat brain to evaluate the potential for human neural stem/progenitor cells to survive and differentiate following traumatic injury.
Methods. Neural stem/progenitor cell cultures were established from 10-week-old human forebrain. Immunosuppressed adult rats received a unilateral parietal cortical contusion injury, which was delivered using the weight-drop method. Immediately following the injury, these animals received transplants of neural stem/progenitor cells, which were placed close to the site of injury. Two or 6 weeks after the procedure, these animals were killed and their brains were examined by immunohistochemical analysis.
At both 2 and 6 weeks postoperatively, the transplanted human cells were found in the perilesional zone, hippocampus, corpus callosum, and ipsilateral subependymal zone of the rats. Compared with the 2-week time point, an increased number of HuN-positive cells was observed at 6 weeks. In addition, at 6 weeks post—injury/transplantation, the cells were noted to cross the midline to the contralateral corpus callosum and into the contralateral cortex. Double labeling demonstrated neuronal and astrocytic, but not oligodendrocytic differentiation. Moreover, the cortex appeared to provide an environment that was less hospitable to neuronal differentiation than the hippocampus.
Conclusions. This study shows that expandable human neural stem/progenitor cells survive transplantation, and migrate, differentiate, and proliferate in the injured brain. These cells could potentially be developed for transplantation therapy in cases of traumatic brain injury.
Collapse
Affiliation(s)
- André Wennersten
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
133
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: Implications for development of neuroprotective treatment strategies. Neurotherapeutics 2004. [DOI: 10.1007/bf03206563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
134
|
Farber NB, Olney JW. Drugs of abuse that cause developing neurons to commit suicide. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:37-45. [PMID: 14741749 DOI: 10.1016/j.devbrainres.2003.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.
Collapse
Affiliation(s)
- Nuri B Farber
- Department of Psychiatry, Washington University, Campus Box 8134, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|
135
|
Felderhoff-Mueser U, Buhrer C, Groneck P, Obladen M, Bartmann P, Heep A. Soluble Fas (CD95/Apo-1), soluble Fas ligand, and activated caspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 2003; 54:659-64. [PMID: 12867600 DOI: 10.1203/01.pdr.0000084114.83724.65] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus may result in loss of tissue associated with neuronal degeneration, axonal damage, and reactive gliosis. The soluble form of the anti-apoptotic regulator Fas (sFas) and the pro-apoptotic factors soluble FasL (sFasL) and activated caspase 3 were studied in the cerebrospinal fluid of infants with hydrocephalus. Fifteen preterm infants with posthemorrhagic hydrocephalus undergoing serial reservoir puncture and seven term or near-term infants with nonhemorrhagic hydrocephalus and shunt surgery were included in the study. Twenty-four age-matched patients with lumbar puncture for the exclusion of meningitis served as controls. Elevated levels of sFas were observed in infants with posthemorrhagic hydrocephalus [median (range), 131 ng/mL (51-279 ng/mL)] and in nonhemorrhagic hydrocephalus [127 ng/mL (35-165 ng/mL)]. sFas concentrations were highest in a subgroup of eight patients with posthemorrhagic hydrocephalus developing periventricular leukomalacia [164 ng/mL (76-227 ng/mL)]. In contrast, in 24 control infants, sFas was low, in 15 cases below detection limit (0.5 ng/mL) and in nine cases, 24 ng/mL (20-43 ng/mL). sFasL and activated caspase 3 did not differ from control infants in all groups of patients. Increased intrathecal release of sFas in the cerebrospinal fluid of infants with hydrocephalus may serve as an indicator of brain injury from progressive ventricular dilatation.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Charité, Children's Hospital, Campus Virchow Klinikum, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
136
|
Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat. J Neurotrauma 2003; 20:1163-77. [PMID: 14651804 DOI: 10.1089/089771503770802853] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical and biomechanical evidence indicates that mechanisms and pathology of head injury in infants and young children may be different from those in adults. Biomechanical computer-based modeling, which can be used to provide insight into the thresholds for traumatic tissue injury, requires data on material properties of the brain, skull, and sutures that are specific for the pediatric population. In this study, brain material properties were determined for rats at postnatal days (PND) 13, 17, 43, and 90, and skull/suture composite (braincase) properties were determined at PND 13, 17, and 43. Controlled 1 mm indentation of a force probe into the brain was used to measure naive, non-preconditioned (NPC) and preconditioned (PC) instantaneous (G(i)) and long-term (G( infinity )) shear moduli of brain tissue both in situ and in vitro. Brains at 13 and 17 PND exhibited statistically indistinguishable shear moduli, as did brains at 43 and 90 PND. However, the immature (average of 13 and 17 PND) rat brain (G(i) = 3336 Pa NPC, 1754 Pa PC; G( infinity )= 786 Pa NPC, 626 Pa PC) was significantly stiffer (p < 0.05) than the mature (average of 43 and 90 PND) brains (G(i) = 1721 Pa NPC, 1232 Pa PC; G( infinity ) = 508 Pa NPC, 398 Pa PC). A "reverse engineering" finite element model approach, which simulated the indentation of the force probe into the intact braincase, was used to estimate the effective elastic moduli of the braincase. Although the skull of older rats was significantly thicker than that of the younger rats, there was no significant age-dependent change in the effective elastic modulus of the braincase (average value = 6.3 MPa). Thus, the increase in structural rigidity of the braincase with age (up to 43 PND) was due to an increase in skull thickness rather than stiffening of the tissue. These observations of a stiffer brain and more compliant braincase in the immature rat compared with the adult rat will aid in the development of age-specific experimental models and in computational head injury simulations. Specifically, these results will assist in the selection of forces to induce comparable mechanical stresses, strains and consequent injury profiles in brain tissues of immature and adult animals.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
137
|
Zhang X, Graham SH, Kochanek PM, Marion DW, Nathaniel PD, Watkins SC, Clark RSB. Caspase-8 expression and proteolysis in human brain after severe head injury. FASEB J 2003; 17:1367-9. [PMID: 12738800 DOI: 10.1096/fj.02-1067fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Programmed cell death involves a complex and interrelated cascade of cysteine proteases termed caspases that are synthesized as inactive zymogens, which are proteolytically processed to active enzymes. Caspase-8 is an initiator caspase that becomes activated when Fas death receptor-Fas ligand (FasL) coupling on the cell surface leads to coalescence of a "death complex" perpetuating the programmed cell death cascade. In this study, brain tissue samples removed from adult patients during the surgical management of severe intracranial hypertension after traumatic brain injury (TBI; n=17) were compared with postmortem control brain tissue samples (n=6). Caspase-8 mRNA was measured by semiquantitative reverse transcription and polymerase chain reaction, and caspase-8 protein was examined by Western blot and immunocytochemistry. Fas and FasL were also examined using Western blot. Caspase-8 mRNA and protein were increased in TBI patients vs. controls, and caspase-8 protein was predominately expressed in neurons. Proteolysis of caspase-8 to 20-kDa fragments was seen only in TBI patients. Fas was also increased after TBI vs. control and was associated with relative levels of caspase-8, supporting formation of a death complex. These data identify additional steps in the programmed cell death cascade involving Fas death receptors and caspase-8 after TBI in humans.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- Department of Critical Care Medicine, The Safar Center for Resuscitation Research and the Brain Trauma Research Center, University of Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 2003; 116:59-70. [PMID: 12535938 DOI: 10.1016/s0306-4522(02)00571-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously demonstrated that the peroxynitrite concentration increases after impact spinal cord injury. This study tests whether spinal cord injury-elevated peroxynitrite induces apoptotic cell death. Peroxynitrite was generated at the concentration and duration produced by spinal cord injury by administering S-morpholinosydnonimine through a microdialysis fiber into the gray matter of the rat spinal cord. Fragmented DNA was visualized by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling. Transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons were quantitated by counting the transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling and neuron-specific enolase double-stained neurons along the fiber track in the sections removed at 6, 12, 24 and 48 h post-peroxynitrite exposure. Peroxynitrite significantly increased transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive neurons at all time points examined (P< or =0.001) compared with artificial cerebrospinal fluid controls (Two-way analysis of variance followed by Tukey test), peaking at 24 h post-exposure. Electron microscopic observation of characteristic features of apoptosis confirmed peroxynitrite-induced neuronal apoptosis. Total transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling-positive cells were counted in areas near and 0.2 mm away from the fiber track. The counts both peaked at 24 h with no significant difference between the two areas. However, at 6 and 12 h post-exposure the counts were significantly higher near than away from the fiber track (P=0.03 and P=0.007 respectively, paired t test). Immunohistochemical staining indicates caspase-3 was activated by peroxynitrite; this activation peaked at 6 h post-exposure, suggesting that activation of caspase-3 might be an early event in the apoptotic cell death cascade. We conclude that 1) peroxynitrite generated in the cord at the level produced by spinal cord injury induces neuronal apoptosis, indicating a role for peroxynitrite in secondary spinal cord injury; 2) caspase activation might be involved in peroxynitrite-induced neuronal apoptosis; 3) therefore removal of peroxynitrite should reduce secondary cell death after spinal cord injury.
Collapse
Affiliation(s)
- F Bao
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard RT 0653, Galveston, TX 77555-0653, USA
| | | |
Collapse
|
139
|
Polster BM, Robertson CL, Bucci CJ, Suzuki M, Fiskum G. Postnatal brain development and neural cell differentiation modulate mitochondrial Bax and BH3 peptide-induced cytochrome c release. Cell Death Differ 2003; 10:365-70. [PMID: 12700636 DOI: 10.1038/sj.cdd.4401158] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.
Collapse
Affiliation(s)
- B M Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
140
|
Wennersten A, Holmin S, Mathiesen T. Characterization of Bax and Bcl-2 in apoptosis after experimental traumatic brain injury in the rat. Acta Neuropathol 2003; 105:281-8. [PMID: 12557016 DOI: 10.1007/s00401-002-0649-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 10/18/2002] [Accepted: 10/18/2002] [Indexed: 12/22/2022]
Abstract
This study was undertaken to fulfill the need for additional data on the dynamics of Bax and Bcl-2 expression in conjunction to the cell death that ensues following experimental brain contusion. Adult Sprague-Dawley rats were subjected to a unilateral experimental controlled cortical contusion and killed at 1, 2, 4, 6 and 10 days post injury (dpi). Cell death was examined by the terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method together with immunohistochemistry for cellular markers. Expression of Bax and Bcl-2 were analyzed by immunohistochemistry and in situ hybridization. The number of TUNEL-positive cells was highest at 1 dpi and decreased with time. At all time points, 10-16% of the TUNEL-positive cells showed an apoptotic nuclear morphology. The apoptotic features were restricted to neurons and some inflammatory cells. Immunohistochemistry for Bax revealed a translocation of Bax from a diffuse to a granular distribution in neurons. An up-regulation of Bax mRNA at 6 dpi was discernible. This increase was associated with a statistically significant increase in number of cells with up-regulated and translocated Bax protein. Moreover, a statistically significant increase of Bcl-2 mRNA was detected at 10 dpi. The potential window for anti-apoptotic treatment to salvage neurons is wide. The susceptibility of neurons to necrosis and apoptosis through different pathways during a prolonged post-traumatic period indicate that different pharmacological strategies may be required at different time points after trauma.
Collapse
Affiliation(s)
- André Wennersten
- Department of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | |
Collapse
|
141
|
Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. J Neurotrauma 2003; 20:123-37. [PMID: 12675967 DOI: 10.1089/08977150360547053] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of injury-related death and disability among children under the age of 15 years in the United States. Epidemiological studies have revealed that even within the pediatric population there are differences in incidence, gender differences, causes, types of injuries sustained, and mortality within age subdivisions. This heterogeneity must be taken into account when developing appropriate models to address TBI in children. This review explores the current developmental TBI models, including fluid percussion, weight drop, and controlled cortical impact. It also addresses unique considerations to modeling pediatric brain injury that require special attention when modeling and designing studies: age appropriateness, injury severity, evaluation of recovery, plasticity, and anesthesia.
Collapse
Affiliation(s)
- Mayumi L Prins
- Division of Neurosurgery, UCLA School of Medicine, Los Angeles, California 90095-7039, USA.
| | | |
Collapse
|
142
|
Liou AKF, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003; 69:103-42. [PMID: 12684068 DOI: 10.1016/s0301-0082(03)00005-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a severe episode of ischemia, traumatic brain injury (TBI) or epilepsy, it is typical to find necrotic cell death within the injury core. In addition, a substantial number of neurons in regions surrounding the injury core have been observed to die via the programmed cell death (PCD) pathways due to secondary effects derived from the various types of insults. Apart from the cell loss in the injury core, cell death in regions surrounding the injury core may also contribute to significant losses in neurological functions. In fact, it is the injured neurons in these regions around the injury core that treatments are targeting to preserve. In this review, we present our cumulated understanding of stress-activated signaling pathways and apoptotic pathways in the research areas of ischemic injury, TBI and epilepsy and that gathered from concerted research efforts in oncology and other diseases. However, it is obvious that our understanding of these pathways in the context of acute brain injury is at its infancy stage and merits further investigation. Hopefully, this added research effort will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat these acute brain injuries.
Collapse
Affiliation(s)
- Anthony K F Liou
- Department of Neurology, University of Pittsburgh School of Medicine, S526 Biomedical Science Tower, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
143
|
Bittigau P, Sifringer M, Felderhoff-Mueser U, Hansen HH, Ikonomidou C. Neuropathological and biochemical features of traumatic injury in the developing brain. Neurotox Res 2003; 5:475-90. [PMID: 14715432 DOI: 10.1007/bf03033158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Trauma to the developing brain constitutes a poorly explored field. Some recent studies attempting to model and study pediatric head trauma, the leading cause of death and disability in the pediatric population, revealed interesting aspects and potential targets for future research. Trauma triggers both excitotoxic and apoptotic neurodegeneration in the developing rat brain. Excitotoxic neurodegeneration develops and subsides rapidly (within hours) whereas apoptotic cell death occurs in a delayed fashion over several days following the initial traumatic insult. Apoptotic neurodegeneration contributes in an age-dependent fashion to neuronal injury following head trauma, with the immature brain being exceedingly sensitive. In the most vulnerable ages the apoptosis contribution to the extent of traumatic brain damage far outweighs that of the excitotoxic component. Molecular and biochemical studies indicate that both extrinsic and intrinsic mechanisms are involved in pathogenesis of apoptotic cell death following trauma. Interestingly, in infant rats a pan-caspase inhibitor ameliorated apoptotic neurodegeneration with a therapeutic time window of up to 8 h after trauma. These results help explain unfavorable outcomes of very young pediatric head trauma patients and imply that regimens which target slow active forms of cell death may comprise a successful neuroprotective approach.
Collapse
Affiliation(s)
- Petra Bittigau
- Departments of Pediatric Neurology and Neonatology, Charité Children's Hospital, Humboldt University, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
144
|
Abstract
Here, I will review accumulating evidence that during the developmental period of synaptogenesis, also known as the brain growth spurt period, neurons are very sensitive to specific disturbances in their synaptic environment. During this period, abnormal increases in NMDA glutamate (Glu) receptor activity triggers excitotoxic neurodegeneration, and abnormal inhibition of neuronal activity (by blockade of NMDA Glu receptors or excessive activation of GABAA receptors) triggers neuronal suicide (apoptosis). Only a transient disturbance, lasting for a few hours, is sufficient to trigger either excitotoxic or apoptotic neurodegeneration during this developmental period. Ethanol, which has both NMDA antagonist and GABAmimetic properties, triggers widespread apoptotic neurodegeneration in the developing rat, mouse or guinea pig brain, and this provides a likely explanation for the reduced brain mass and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome (FAS). The brain growth spurt occurs in different species at different times relative to birth. In rats and mice it is a postnatal event, but in humans it extends from the 6th month of gestation to several years after birth. Thus, there is a period in fetal and neonatal human development, lasting for several years, during which immature central nervous system (CNS) neurons are exquisitely sensitive to environmental agents (the specific number and variety of which remains to be established) that can trigger widespread neurodegeneration by inducing specific abnormal changes in the synaptic environment. Agents identified thus far include drugs that may be abused by pregnant mothers (ethanol, phencyclidine (PCP) (angel dust), ketamine (Special K), nitrous oxide (laughing gas), barbiturates, benzodiazepines) and many medicinals used in obstetric and pediatric medicine as sedatives, anti-convulsants or anesthetics (all general anesthetics are either NMDA antagonists or GABAmimetics). Many other chemicals in the human environment remain to be evaluated for their ability to cause developing CNS neurons to commit suicide, and this provides an exciting challenge for the field of developmental neurotoxicology.
Collapse
Affiliation(s)
- John W Olney
- Departments of Psychiatry and Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
145
|
Labrada L, Liang XH, Zheng W, Johnston C, Levine B. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J Virol 2002; 76:11688-703. [PMID: 12388728 PMCID: PMC136759 DOI: 10.1128/jvi.76.22.11688-11703.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.
Collapse
Affiliation(s)
- Lucia Labrada
- Department of Medicine, Columbia University College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
146
|
Felderhoff-Mueser U, Sifringer M, Pesditschek S, Kuckuck H, Moysich A, Bittigau P, Ikonomidou C. Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 2002; 11:231-45. [PMID: 12505417 DOI: 10.1006/nbdi.2002.0521] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Trauma triggers diffuse apoptotic neurodegeneration in the developing rat brain. To explore the pathogenesis of this phenomenon we investigated the involvement of three possible mechanisms: death receptor activation, activation of the intrinsic apoptotic pathway by cytochrome c release into the cytoplasm, and changes in trophic support provided by endogenous neurotrophins. We detected a decrease in the expression of bcl-2 and bcl-x(L), two antiapoptotic proteins that decrease mitochondrial membrane permeability, an increase in cytochrome c immunoreactivity in the cytosolic fraction, and an activation of caspase-9 in brain regions which show apoptotic neurodegeneration following percussion brain trauma in 7-day-old rats. Increase in the expression of the death receptor Fas was revealed by RT-PCR analysis, Western blotting, and immunohistochemistry, as was activation of caspase-8 in cortex and thalamus. Apoptotic neurodegeneration was accompanied by an increase in the expression of BDNF and NT-3 in vulnerable brain regions. The pancaspase inhibitor z-VAD.FMK ameliorated apoptotic neurodegeneration with a therapeutic time window of up to 8 h after trauma. These findings suggest involvement of intrinsic and extrinsic apoptotic pathways in neurodegeneration following trauma to the developing rat brain. Upregulation of neurotrophin expression may represent an endogenous mechanism that limits this apoptotic process.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Charité Children's Hospital, Humboldt University, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Trauma is the leading cause of both morbidity and mortality in the pediatric population, and traumatic injury causes > 50% of all childhood deaths. Significant mortality rates have been reported for children with traumatic brain injury. Although children have better survival rates as compared with adults with traumatic brain injury, the long-term sequelae and consequences are often more devastating in children due to their age and developmental potential. The costs involved in the care of a child with severe traumatic brain injury, extended over that child's lifetime, are significant. It is unfortunate that despite preventive measures, traumatic brain injury remains the major morbidity and mortality factor for children.
Collapse
Affiliation(s)
- Catherine A Mazzola
- Department of Neurosurgery, University of Pittsburgh, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
148
|
Natale JE, Cheng Y, Martin LJ. Thalamic neuron apoptosis emerges rapidly after cortical damage in immature mice. Neuroscience 2002; 112:665-76. [PMID: 12074908 DOI: 10.1016/s0306-4522(02)00098-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In adults and children, head trauma can have long-term neuropathological and functional consequences. The thalamus is a major site of remote neurodegeneration after cortical damage in adult humans and experimental animals, but less is known about thalamic responses to cortical injury in the immature brain. This study introduces an in vivo model of axotomy/target deprivation-induced neuronal apoptosis in the dorsal lateral geniculate nucleus of the thalamus produced by unilateral ablation of the occipital cortex in the immature mouse. We specifically examined whether occipital cortex ablation in the immature brain causes apoptotic death of projection neurons in the dorsal lateral geniculate nucleus. After unilateral occipital cortex aspiration, 10-day-old C57BL/6 mice were recovered for up to 28 days. Fluorogold-prelabeled thalamocortical projection neurons were apoptotic at 36-48 h after ablation. The structural progression of apoptosis in the immature lateral geniculate nucleus reveals typical chromatolytic morphology by 18-24 h, followed by cytoplasmic shrinkage and chromatin condensation characteristic of end-stage apoptosis after 36-48 h. Electron microscopy confirmed the presence of apoptosis. This study shows internucleosomal DNA fragmentation and expression of cleaved caspase-3 occurs rapidly, being noted first at 18 h, well before the peak of apoptotic cell death occurring at 36 h after cortical damage in the immature brain. From these data we suggest that axotomy/target deprivation-induced cell death in the immature brain may: (1) differ from that previously reported in adult mice with respect to the time required for progression to cell death; (2) be mediated by caspase-3 activation.
Collapse
Affiliation(s)
- J E Natale
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010-2970, USA.
| | | | | |
Collapse
|
149
|
Tong W, Igarashi T, Ferriero DM, Noble LJ. Traumatic brain injury in the immature mouse brain: characterization of regional vulnerability. Exp Neurol 2002; 176:105-16. [PMID: 12093087 DOI: 10.1006/exnr.2002.7941] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We characterized the regional and temporal patterns of neuronal injury and axonal degeneration after controlled cortical impact of moderate severity in mice at postnatal day 21. Animals were euthanized at 1, 3, or 7 days after injury or sham operation. The brains were removed and prepared for immunolocalization of neurons and microglia/macrophages or subjected to Fluoro-Jade and silver stains, indicators of irreversible neuronal cell injury and axonal degeneration. There was significant neuronal loss in both the ipsi- and the contralateral cortices, ipsilateral hippocampus, and ipsilateral thalamus by 7 days post injury compared to sham-operated animals. Activated microglia/macrophages were most prominent in regions of neuronal loss including the ipsilateral cortex, hippocampus, and thalamus. Neuronal injury, as evidenced by Fluoro-Jade labeling, was not apparent in sham-operated animals. In injured animals, labeling was identified in the ipsilateral cortex and hippocampus at 1 and 3 days post injury. Silver- and Fluoro-Jade-labeled degenerating axons were observed in the ipsilateral subcortical white matter by 1 day post injury, in the ipsilateral external capsule, caudate putamen, and contralateral subcortical white matter by 3 days post injury, and in the internal capsule, pyramidal tracts, and cerebellar peduncles by 7 days post injury. Our findings demonstrate that controlled cortical impact in the developing brain generates neuronal loss in both the ipsilateral and the contralateral cortex, a temporally distinct pattern of subcortical neuronal injury/death, and widespread white matter damage. These observations serve as an important baseline for studying human brain injury and optimizing therapies for the brain-injured child.
Collapse
Affiliation(s)
- Winnie Tong
- Department of Neurological Surgery, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
150
|
Lok J, Martin LJ. Rapid subcellular redistribution of Bax precedes caspase-3 and endonuclease activation during excitotoxic neuronal apoptosis in rat brain. J Neurotrauma 2002; 19:815-28. [PMID: 12184852 DOI: 10.1089/08977150260190410] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neuronal apoptosis is induced prominently in the newborn rodent brain by glutamate receptor excitotoxicity and related insults, including trauma and hypoxia-ischemia. However, the molecular mechanisms of this neurodegeneration are unclear. We tested the hypothesis that changes in the subcellular distribution of the proapoptotic protein Bax precede the activation of downstream apoptosis-effector mechanisms such as caspase-3 cleavage and endonuclease activation during the progression of excitotoxic neuronal apoptosis in the striatum of newborn rat. Kainic acid (4 nmol) was injected into striatum of anesthetized 7-day-old rats, and the animals were killed at 2, 6, 12, and 24 h postinsult. Controls were age-matched, vehicle-injected, or naive rats. Counts of ultrastructurally confirmed striatal neuron apoptosis in brain sections were highest at 24 h. Striatal tissue was microdissected and fractionated into cytosolic, mitochondrial-, and nuclear-enriched compartments. Immunoblots showed that Bax translocates from the cytosol fraction to the mitochondrial fraction, with maximal translocation by 2 h in the absence of changes in mitochondrial accumulation. Cleaved caspase-3 levels increase progressively in both cytosolic and mitochondrial fractions between 6 and 24 h. Cleaved caspase-3 accumulates in apoptotic striatal neurons as shown by immunolocalization. Internucleosomal fragmentation of DNA coincides with caspase-3 cleavage. We conclude that rapid translocation of Bax to mitochondria precedes caspase-3 and endonuclease activation during excitotoxic neuronal apoptosis in newborn rat brain and that initiation of this death cascade occurs within 2 h after glutamate receptor activation.
Collapse
Affiliation(s)
- Josephine Lok
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|