101
|
Saura-Sanmartin A, Pastor A, Martinez-Cuezva A, Cutillas-Font G, Alajarin M, Berna J. Mechanically interlocked molecules in metal-organic frameworks. Chem Soc Rev 2022; 51:4949-4976. [PMID: 35612363 DOI: 10.1039/d2cs00167e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically interlocked molecules (MIMs) have great potential in the development of molecular machinery due to their intercomponent dynamics. The incorporation of these molecules in a condensed phase makes it possible to take advantage of the control of the motion of the components at the macroscopic level. Metal-organic frameworks (MOFs) are postulated as ideal supports for intertwined molecules. This review covers the chemistry of the mechanical bond incorporated into metal-organic frameworks from the seminal studies to the latest published advances. We first describe some fundamental concepts of MIMs and MOFs. Next, we summarize the advances in the incorporation of rotaxanes and catenanes inside MOF matrices. Finally, we conclude by showing the study of the rotaxane dynamics in MOFs and the operation of some stimuli-responsive MIMs within MOFs. In addition to emphasising some selected examples, we offer a critical opinion on the state of the art of this research field, remarking the key points on which the future of these systems should be focused.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Aurelia Pastor
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Guillermo Cutillas-Font
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
102
|
Mulchandani A, Edberg J, Herckes P, Westerhoff P. Seasonal atmospheric water harvesting yield and water quality using electric-powered desiccant and compressor dehumidifiers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153966. [PMID: 35183644 DOI: 10.1016/j.scitotenv.2022.153966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric water harvesting (AWH) is an emerging technology for decentralized water supply and is proving to be viable for use in emergencies, military deployment, and sustainable industries. The atmosphere is a freshwater reservoir that contains 12,900 km3 of water, 6-fold more than the volume of global rivers. Dehumidification water harvesting technologies can be powered by solar, wind, or electric sources. Compressor/refrigerant-based dehumidifiers operate via dew point condensation and provide a cold surface upon which water vapor can condense. Conversely, desiccant-based technologies saturate water vapor using a sorbent that is then heated, and the supersaturated water vapor condenses on a surface when interacting with cooler ambient process air. This work compares productivity, energy consumption, efficiency, cost and quality of water produced of two water-harvesting mechanisms. Electric-powered compressor and desiccant dehumidifiers were operated outdoors for more than one year in the arid southwestern USA, where temperatures ranged from 3.1 to 43.7 °C and relative humidity (RH) ranged from 6 to 85%. The compressor system harvested >2-fold more water than the desiccant system when average RH during the run cycle was >30%, average temperature was >20 °C, and average dew point temperature was >5 °C. Desiccant systems performed more favorably when average RH during the run cycle was <30%, average temperature was <20 °C, and average dew point temperature was <5 °C. Water collected by compressor-based technologies had conductivity up to 180 μS/cm, turbidity up to 190 NTU, and aluminum, iron and manganese near or above the US EPA secondary drinking water standard. Dissolved organic carbon (DOC) averaged <2 mg C/L but ranged up to 12 mg C/L. Water collected by desiccant-based technologies had significantly lower conductivity, metals, and turbidity, and DOC was always <6 mg/L. Aldehydes such as formaldehyde and acetaldehyde and carboxylic acids such as formic acid and acetic acid were primary contributors to DOC. The differences in harvested water quality were attributed to differences in the condensation method between compressor and desiccant AWH technologies. Multiple strategies could be employed to prevent these volatile organic compounds (VOCs) from contributing to DOC in harvested water, such as pretreating air to remove VOCs or post-treating DOC in harvested liquid water.
Collapse
Affiliation(s)
- Anjali Mulchandani
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA.
| | - Justin Edberg
- NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA; School of Energy, Matter and Transport Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; NSF Nanosystems Engineering Research Center on Nanotechnology Enabled Water Treatment, USA
| |
Collapse
|
103
|
Wang K, Li Y, Xie LH, Li X, Li JR. Construction and application of base-stable MOFs: a critical review. Chem Soc Rev 2022; 51:6417-6441. [PMID: 35702993 DOI: 10.1039/d1cs00891a] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials constructed from organic ligands and metal ions/clusters. Owing to their unique advantages, they have attracted more and more attention in recent years and numerous studies have revealed their great potential in various applications. Many important applications of MOFs inevitably involve harsh alkaline operational environments. To achieve high performance and long cycling life in these applications, high stability of MOFs against bases is necessary. Therefore, the construction of base-stable MOFs has become a critical research direction in the MOF field. This review gives a historic summary of the development of base-stable MOFs in the last few years. The key factors that can determine the robustness of MOFs under basic conditions are analyzed. We also demonstrate the exciting achievements that have been made by utilizing base-stable MOFs in different applications. In the end, we discuss major challenges for the further development of base-stable MOFs. Some possible methods to address these problems are presented.
Collapse
Affiliation(s)
- Kecheng Wang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Yaping Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiangyu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
104
|
Askarieh M, Farshidi H, Rashidi A, Pourreza A, Alivand MS. Comparative evaluation of MIL-101(Cr)/calcium alginate composite beads as potential adsorbents for removing water vapor from air. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
105
|
Fajal S, Mandal W, Mollick S, More YD, Torris A, Saurabh S, Shirolkar MM, Ghosh SK. Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sahel Fajal
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Writakshi Mandal
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Samraj Mollick
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Yogeshwer D. More
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Arun Torris
- Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Satyam Saurabh
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Mandar M. Shirolkar
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN) Symbiosis International (Deemed University) (SIU) Lavale Pune 412115 India
| | - Sujit K. Ghosh
- Department of Chemistry and Centre for Water Research Indian Institute of Science Education and Research Dr. Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
106
|
Structure Tuning of Hafnium Metal–Organic Frameworks through a Mixed Solvent Approach. CRYSTALS 2022. [DOI: 10.3390/cryst12060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent development of water-stable metal–organic frameworks (MOFs) has significantly broadened the application scope of this emerging type of porous material. Structure tuning of hafnium MOFs is less studied compared with zirconium MOFs. In this work, we report the synthesis of a mesoporous hafnium MOF, csq-MOF-1, through finely tuning the solvent mixture ratio. The successful synthesis of csq-MOF-1 also relies on the linker flexibility as linker bending and a symmetry decrease were observed in this framework as compared to its structural isomer NPF-300 (Hf). The mesoporous feature and permanent porosity were determined by the N2 adsorption at 77 K. Such a hierarchical pore feature is expected to enable a variety of applications through encapsulation of large functional molecules. The synthetic strategy of utilizing a mixed solvent and flexible linker is expected to inspire the development of new hafnium MOFs with diverse topological structures.
Collapse
|
107
|
Yang F, Ma J, Zhu Q, Ma Z, Wang J. Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22510-22520. [PMID: 35507501 DOI: 10.1021/acsami.2c06880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the main pollutants in indoor air is volatile organic compounds (VOCs), which can cause great harm to human health. So the development of a VOC detection technology is of great significance. In this work, a tetraphenylethylene-functionalized UiO-66 based on aggregation-induced emission was successfully prepared. The UiO-66-TBPE structure exhibits the characteristic blue emission of TBPE ligands under UV excitation and can be used as a luminescence sensor for fast and efficient detection of VOCs. More importantly, UiO-66-TBPE has a high fluorescence sensing selectivity in p-xylene and styrene vapor. To further improve the practical performance, we combined UiO-66-TBPE with the polymer polyacrylate (PA) to obtain a flexible hybrid membrane with fast detection performance for styrene vapor within the 30 s. The deeper sensing mechanism of p-xylene and styrene inducing different fluorescence enhancement and fluorescence quenching is explained by a combination of modern characterization techniques and computer simulation. Finally, we applied UiO-66-TBPE/PA to leather and still maintained a good sensing performance. It provides a potential way for the application of fluorescent metal-organic frameworks (MOFs) to detect VOCs in daily life.
Collapse
Affiliation(s)
- Fan Yang
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, P.R. China
| | - Qian Zhu
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - ZhongLei Ma
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore
| |
Collapse
|
108
|
Nguyen HL. Metal-Organic Frameworks Can Photocatalytically Split Water-Why Not? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200465. [PMID: 35393683 DOI: 10.1002/adma.202200465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The opinion is provided about the stability and photocatalytic capability of metal-organic frameworks in photocatalytic overall water splitting.
Collapse
Affiliation(s)
- Ha L Nguyen
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Joint UAEU-UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
109
|
Linker Functionalization Strategy for Water Adsorption in Metal-Organic Frameworks. Molecules 2022; 27:molecules27092614. [PMID: 35565965 PMCID: PMC9104645 DOI: 10.3390/molecules27092614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Water adsorption in metal-organic frameworks has gained a lot of scientific attention recently due to the potential to be used in adsorption-based water capture. Functionalization of their organic linkers can tune water adsorption properties by increasing the hydrophilicity, thus altering the shape of the water adsorption isotherms and the overall water uptake. In this work, a large set of functional groups is screened for their interaction with water using ab initio calculations. The functional groups with the highest water affinities form two hydrogen bonds with the water molecule, acting as H-bond donor and H-bond acceptor simultaneously. Notably, the highest binding energy was calculated to be -12.7 Kcal/mol for the -OSO3H group at the RI-MP2/def2-TZVPP-level of theory, which is three times larger than the reference value. Subsequently, the effect of the functionalization strategy on the water uptake is examined on a selected set of functionalized MOF-74-III by performing Monte Carlo simulations. It was found that the specific groups can increase the hydrophilicity of the MOF and enhance the water uptake with respect to the parent MOF-74-III for relative humidity (RH) values up to 30%. The saturation water uptake exceeded 800 cm3/cm3 for all candidates, classifying them among the top performing materials for water harvesting.
Collapse
|
110
|
Dai M, Zhao F, Fan J, Li Q, Yang Y, Fan Z, Ling S, Yu H, Liu S, Li J, Chen W, Yu G. A Nanostructured Moisture-Absorbing Gel for Fast and Large-Scale Passive Dehumidification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200865. [PMID: 35179809 DOI: 10.1002/adma.202200865] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Dehumidification is significant for environmental sustainability and human health. Traditional dehumidification methods involve significant energy consumption and have negative impact on the environment. The core challenge is to expose hygroscopic surfaces to the air, and appropriately store the captured water and avoid surface inactivation. Here, a nanostructured moisture-absorbing gel (N-MAG) for passive dehumidification, which consists of a hydrophilic nanocellulose network functionalized by hygroscopic lithium chloride, is reported. The interconnected nanocellulose can transfer the captured water to the internal space of the bulky N-MAG, eliminating water accumulation near the surfaces and hence enabling high-rate moisture absorption. The N-MAG can reduce the relative humidity from 96.7% to 28.7% in 6 h, even if the space is over 2 × 104 times of its own volume. The condensed water can be completely confined in the N-MAG, overcoming the problem of environmental pollution. This research brings a new perspective for sustainable humidity management without energy consumption and with positive environmental footprint.
Collapse
Affiliation(s)
- Ming Dai
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fei Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Juanjuan Fan
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Qing Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Ya Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhuangjun Fan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
111
|
Li B, Lu F, Gu X, Shao K, Wu E, Qian G. Immobilization of Lewis Basic Nitrogen Sites into a Chemically Stable Metal-Organic Framework for Benchmark Water-Sorption-Driven Heat Allocations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105556. [PMID: 35146963 PMCID: PMC9009103 DOI: 10.1002/advs.202105556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient and stable water adsorbents for adsorption-driven heat transfer technology still remains a challenge due to the lack of efficient strategies to enhance low-pressure water uptakes. The authors herein demonstrate that the immobilization of Lewis basic nitrogen sites into metal-organic frameworks (MOFs) can improve water uptake and target benchmark coefficient of performances (COPs) for cooling and heating. They present the water sorption properties of a chemically stable MOF (termed as Zr-adip), designed by incorporating hydrophilic nitrogen sites into the adsorbent MIP-200. Zr-adip exhibits S-shaped sorption isotherms with an extremely high water uptake of 0.43 g g-1 at 303 K and P/P0 = 0.25, higher than MIP-200 (0.39 g g-1 ), KMF-1 (0.39 g g-1 ) and MOF-303 (0.38 g g-1 ). Theoretical calculations reveal that the incorporated N sites can serve as secondary adsorption sites to moderately interact with water, providing more binding sites to strengthen the water binding affinity. Zr-adip achieves exceptionally high COPs of 0.79 (cooling) and 1.75 (heating) with a low driving temperature of 70 °C, outperforming MIP-200 (0.78 and 1.53) and KMF-1 (0.75 and 1.74). Combined with its ultrahigh stability, excellent cycling performance, and easy regeneration, Zr-adip represents one of the best water adsorbents for adsorption-driven cooling and heating.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Feng‐Fan Lu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xiao‐Wen Gu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Kai Shao
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Enyu Wu
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Guodong Qian
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
112
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
113
|
Ye Y, Li Y, Wang J, Yuan S, Xu X, Zhang X, Zhou J, Wang B, Ma X. Generation of Environmentally Persistent Free Radicals on Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3265-3275. [PMID: 35245423 DOI: 10.1021/acs.langmuir.1c03491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been recognized as one of the important emerging contaminants with biological toxicity, environmental persistence, and global mobility. Previous studies have identified the catalytic role of surface metal oxides in EPFRs formation and illustrated the metal-dependence of EPFRs by studying on various metal oxide nanoparticles and single crystals. However, there is still lack of an understanding on the formation of EPFRs from the point of view of metal sites. Various factors (e.g., crystalline phases and surface species) of metal oxides are regarded to contribute to the generation of EPFRs, which present profound difficulties for scientists to tease apart the impact of metal type. Herein, a laboratory investigation, in terms of the acidity and oxidation strength of metal cations, was conducted by selecting metal-variable isostructural metal-organic frameworks as material platforms. Specifically, we evaluated EPFRs generation on MIL-100(M) (M = Al, Cr, Fe) from chlorine-substituted phenol vapor and catechol under thermal conditions. It is found that high Lewis acidity of metal sites is crucial for capturing the above two phenolic precursors, activating the O-H bond and promoting EPFRs formation. Radical species with half-life as long as 70 days were generated on MIL-100 rich in 5-fold coordinated Al3+ sites. The unpaired electron spin density donation was further confirmed by using 27Al solid-state nuclear magnetic resonance spectroscopy. Despite their higher oxidation power than Al3+, the exposed Cr3+ and Fe3+ sites show undetectable catalytic activity for the formation of EPFRs, because of their insufficient Lewis acidity. Our results suggest that the surface species rather than Lewis acid sites may be a major contributor to the formation of EPFRs on metal oxides like Fe2O3.
Collapse
Affiliation(s)
- Yuqing Ye
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yuan Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jie Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shuai Yuan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojun Xu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xinning Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojie Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
114
|
Tao Y, Wu Q, Huang C, Su W, Ying Y, Zhu D, Li H. Sandwich-Structured Carbon Paper/Metal-Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10966-10975. [PMID: 35179350 DOI: 10.1021/acsami.1c23644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solar-powered atmospheric water harvesting (AWH) with metal-organic frameworks (MOFs) has been recognized as an attractive way to alleviate water shortage stress in rural arid areas given the naturally abundant solar energy. However, the existing solar-powered AWH technologies only allow a singular water production mode: either solar heating-driven AWH which usually results in rather poor water productivity due to the limited availability of sufficient sunlight or conductive heating-driven all-day AWH with significantly improved water productivity but requiring additional electricity provided with a photovoltaic module. This greatly limits the flexibility in managing AWH based on climate conditions, water productivity, and energy cost. Herein, a sandwich-structured MOF monolith (denoted as CACS) with dual heating capacity, localized solar heating (LSH) and electrical heating (LEH), is presented. Compared with LSH, the use of LEH leads to more rapid and uniform heating of CACS monoliths, thereby driving a significantly enhanced water desorption efficiency with faster kinetics. Using the CACS monolith as an AWH sorbent, a new type of atmospheric water harvester is developed and able to produce water in multiple working modes: LSH-, LEH-, and LSH-/LEH-driven AWH, thereby enabling flexible AWH on demand: direct use of sunlight for LSH-driven AWH during the sunlight-sufficient day and/or LEH-driven all-day AWH powered by a photovoltaic module particularly during the sunlight-absent/-insufficient time (night or cloudy day). When working at the LSH-/LEH-driven AWH mode, the resulting prototype delivers 1.4 LH2O kgMOF-1 day-1 of water productivity with 2.3 kW·h L-1H2O of energy consumption, corresponding to 5.4 times higher water productivity than the LSH-driven AWH working mode alone and 17.9% of energy saving at the cost of 22.2% of water productivity reduction compared with the LEH-driven AWH working mode alone. The current work, therefore, demonstrates a novel solar-powered AWH strategy that enables all-day water production with flexible choices on AWH working modes in terms of climate conditions, desired water productivity, and energy cost.
Collapse
Affiliation(s)
- Yingle Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiannan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Cheng Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen Su
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifeng Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dunru Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
115
|
|
116
|
Legrand U, Girard-Lauriault PL, Meunier JL, Boudreault R, Tavares JR. Experimental and Theoretical Assessment of Water Sorbent Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2651-2659. [PMID: 35175059 DOI: 10.1021/acs.langmuir.1c03364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The kinetics of water adsorption in powder sorbent layers are important to design a scaled-up atmospheric water capture device. Herein, the adsorption kinetics of three sorbents, a chromium (Cr)-based metal-organic framework (Cr-MIL-101), a carbon-based material (nanoporous sponges/NPS), and silica gel, have been tested experimentally, using powder layers ranging from ∼0 to 7.5 mm in thickness, in a custom-made calibrated environmental chamber cycling from 5 to 95% RH at 30 °C. A mass and energy transfer model was applied onto the experimental curves to better understand the contribution of key parameters (maximum water uptake, kinetics of single particles, layer open porosity, and particle size distribution). Open porosity (i.e., the void-to-particle ratio in the sorbent layer) shows the highest influence to improve the kinetics. Converting the sorbent kinetics data into a daily yield of captured water demonstrated (i) the existence of an optimal open porosity for each sorbent, (ii) that thinner layers with moderate open porosity performed respectively better than thicker layers with high open porosity, and (iii) that high maximum water uptake and fast single-particle kinetics are not necessarily predictive of high daily water yield.
Collapse
Affiliation(s)
- Ulrich Legrand
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| | | | - Jean-Luc Meunier
- Department of Chemical Engineering, McGill University, 3610 University, Montréal, Quebec H3A 0C5, Canada
| | - Richard Boudreault
- Awn Nanotech, Inc., 1985 55th Ave, Suite 100, Dorval, Quebec H9P 1G9, Canada
| | - Jason Robert Tavares
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
117
|
Lu H, Shi W, Guo Y, Guan W, Lei C, Yu G. Materials Engineering for Atmospheric Water Harvesting: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110079. [PMID: 35122451 DOI: 10.1002/adma.202110079] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric water harvesting (AWH) is emerging as a promising strategy to produce fresh water from abundant airborne moisture to overcome the global clean water shortage. The ubiquitous moisture resources allow AWH to be free from geographical restrictions and potentially realize decentralized applications, making it a vital parallel or supplementary freshwater production approach to liquid water resource-based technologies. Recent advances in regulating chemical properties and micro/nanostructures of moisture-harvesting materials have demonstrated new possibilities to promote enhanced device performance and new understandings. This perspective aims to provide a timely overview on the state-of-the-art materials design and how they serve as the active components in AWH. First, the key processes of AWH, including vapor condensation, droplet nucleation, growth, and departure are outlined, and the desired material properties based on the fundamental mechanisms are discussed. Then, how tailoring materials-water interactions at the molecular level play a vital role in realizing high water uptake and low energy consumption is shown. Last, the challenges and outlook on further improving AWH from material designs and system engineering aspects are highlighted.
Collapse
Affiliation(s)
- Hengyi Lu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Wen Shi
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Youhong Guo
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
118
|
Shahbazi Farahani F, Rahmanifar MS, Noori A, El-Kady MF, Hassani N, Neek-Amal M, Kaner RB, Mousavi MF. Trilayer Metal-Organic Frameworks as Multifunctional Electrocatalysts for Energy Conversion and Storage Applications. J Am Chem Soc 2022; 144:3411-3428. [PMID: 35167746 DOI: 10.1021/jacs.1c10963] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The need for enhanced energy storage and improved catalysts has led researchers to explore advanced functional materials for sustainable energy production and storage. Herein, we demonstrate a reductive electrosynthesis approach to prepare a layer-by-layer (LbL) assembled trimetallic Fe-Co-Ni metal-organic framework (MOF) in which the metal cations within each layer or at the interface of the two layers are linked to one another by bridging 2-amino-1,4-benzenedicarboxylic acid linkers. Tailoring catalytically active sites in an LbL fashion affords a highly porous material that exhibits excellent trifunctional electrocatalytic activities toward the hydrogen evolution reaction (ηj=10 = 116 mV), oxygen evolution reaction (ηj=10 = 254 mV), as well as oxygen reduction reaction (half-wave potential = 0.75 V vs reference hydrogen electrode) in alkaline solutions. The dispersion-corrected density functional theory calculations suggest that the prominent catalytic activity of the LbL MOF toward the HER, OER, and ORR is due to the initial negative adsorption energy of water on the metal nodes and the elongated O-H bond length of the H2O molecule. The Fe-Co-Ni MOF-based Zn-air battery exhibits a remarkable energy storage performance and excellent cycling stability of over 700 cycles that outperform the commercial noble metal benchmarks. When assembled in an asymmetric device configuration, the activated carbon||Fe-Co-Ni MOF supercapacitor provides a superb specific energy and a power of up to 56.2 W h kg-1 and 42.2 kW kg-1, respectively. This work offers not only a novel approach to prepare an LbL assembled multimetallic MOF but also provides a benchmark for a multifunctional electrocatalyst for water splitting and Zn-air batteries.
Collapse
Affiliation(s)
- Fatemeh Shahbazi Farahani
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| | | | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788-15811, P.O. Box: 16875-163, Iran.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14117-13116, P.O. Box 14115-175, Iran
| |
Collapse
|
119
|
Khan S, Frontera A, Matsuda R, Kitagawa S, Mir MH. Topochemical [2 + 2] Cycloaddition in a Two-Dimensional Metal-Organic Framework via SCSC Transformation Impacts Halogen ···Halogen Interactions. Inorg Chem 2022; 61:3029-3032. [PMID: 35143721 DOI: 10.1021/acs.inorgchem.2c00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoactive two-dimensional metal-organic framework (2D MOF) [Zn(4-spy)(DCTP)]n (1) [where 4-spy = 4-styrylpyridine and H2DCTP = 2,5-dichloroterephthalic acid] undergoes photochemical [2 + 2] cycloaddition on UV irradiation to obtain three-dimensional (3D) MOF [Zn(rctt-4-ppcb)(DCTP)]n (2) [rctt-4-ppcb = 1,3-bis(4'-pyridyl)-2,4-bis(phenyl)cyclobutane] in a single-crystal to single-crystal (SCSC) manner. This structural transformation leads to stronger halogen···halogen interaction that is well-corroborated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca Baleares Spain
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Nagoya, 464-8603 Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 615-8510, Japan
| | | |
Collapse
|
120
|
Gu XW, Wang JX, Wu E, Wu H, Zhou W, Qian G, Chen B, Li B. Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. J Am Chem Soc 2022; 144:2614-2623. [PMID: 35109657 DOI: 10.1021/jacs.1c10973] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purification of C2H4 from a ternary C2H2/C2H6/C2H4 mixture by one-step adsorption separation is of prime importance but challenging in the petrochemical industry; however, effective strategies to design high-performance adsorbents are lacking. We herein report for the first time the incorporation of Lewis basic sites into a C2H6-selective MOF, enabling efficient one-step production of polymer-grade C2H4 from ternary mixtures. Introduction of amino groups into highly stable C2H6-selective UiO-67 can not only partition large pores into smaller cagelike pockets to provide suitable pore confinement but also offer additional binding sites to simultaneously enhance C2H2 and C2H6 adsorption capacities over C2H4. The amino-functionalized UiO-67-(NH2)2 thus exhibits exceptionally high C2H2 and C2H6 uptakes as well as benchmark C2H2/C2H4 and C2H6/C2H4 selectivities, surpassing all of the C2H2/C2H6-selective materials reported so far. Theoretical calculations combined with in situ infrared spectroscopy indicate that the synergetic effect of suitable pore confinement and functional surfaces decorated with amino groups provides overall stronger multipoint van der Waals interactions with C2H2 and C2H6 over C2H4. The exceptional performance of UiO-67-(NH2)2 was evidenced by breakthrough experiments for C2H2/C2H6/C2H4 mixtures under dry and wet conditions, providing a remarkable C2H4 productivity of 0.55 mmol g-1 at ambient conditions.
Collapse
Affiliation(s)
- Xiao-Wen Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Enyu Wu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
121
|
Gong W, Xie H, Idrees KB, Son FA, Chen Z, Sha F, Liu Y, Cui Y, Farha OK. Water Sorption Evolution Enabled by Reticular Construction of Zirconium Metal–Organic Frameworks Based on a Unique [2.2]Paracyclophane Scaffold. J Am Chem Soc 2022; 144:1826-1834. [DOI: 10.1021/jacs.1c11836] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
122
|
High Water Adsorption MOFs with Optimized Pore‐Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
123
|
Li Q, Ying Y, Tao Y, Li H. Assemblable Carbon Fiber/Metal–Organic Framework Monoliths for Energy-Efficient Atmospheric Water Harvesting. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiangqiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifeng Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingle Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
124
|
Li L, Shi Z, Liang H, Liu J, Qiao Z. Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:159. [PMID: 35010109 PMCID: PMC8746952 DOI: 10.3390/nano12010159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022]
Abstract
Atmospheric water harvesting by strong adsorbents is a feasible method of solving the shortage of water resources, especially for arid regions. In this study, a machine learning (ML)-assisted high-throughput computational screening is employed to calculate the capture of H2O from N2 and O2 for 6013 computation-ready, experimental metal-organic frameworks (CoRE-MOFs) and 137,953 hypothetical MOFs (hMOFs). Through the univariate analysis of MOF structure-performance relationships, Qst is shown to be a key descriptor. Moreover, three ML algorithms (random forest, gradient boosted regression trees, and neighbor component analysis (NCA)) are applied to hunt for the complicated interrelation between six descriptors and performance. After the optimizing strategy of grid search and five-fold cross-validation is performed, three ML can effectively build the predictive model for CoRE-MOFs, and the accuracy R2 of NCA can reach 0.97. In addition, based on the relative importance of the descriptors by ML, it can be quantitatively concluded that the Qst is dominant in governing the capture of H2O. Besides, the NCA model trained by 6013 CoRE-MOFs can predict the selectivity of hMOFs with a R2 of 0.86, which is more universal than other models. Finally, 10 CoRE-MOFs and 10 hMOFs with high performance are identified. The computational screening and prediction of ML could provide guidance and inspiration for the development of materials for water harvesting in the atmosphere.
Collapse
Affiliation(s)
- Lifeng Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.L.); (Z.S.)
| | - Zenan Shi
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.L.); (Z.S.)
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.L.); (Z.S.)
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.L.); (Z.S.)
| |
Collapse
|
125
|
Sultana A, Kathuria A, Gaikwad KK. Metal-organic frameworks for active food packaging. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1479-1495. [PMID: 35035339 PMCID: PMC8748186 DOI: 10.1007/s10311-022-01387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 05/07/2023]
Abstract
Food wastage is a major concern for sustainable health and agriculture. To reduce food waste, classical preservation techniques such as drying, pasteurization, freeze-drying, fermentation, and microwave are available. Nonetheless, these techniques display shortcomings such as alteration of food and taste. Such shortcomings may be solved by active food packaging, which involves the incorporation of active agents into the packaging material. Recently, metal-organic frameworks, a class of porous hybrid supramolecular materials, have been developed as an active agent to extend food shelf life and maintain safety. Here, we review metal-organic frameworks in active packaging as oxygen scavengers, antimicrobials, moisture absorbers, and ethylene scavengers. We present methods of incorporation of metal-organic frameworks into packaging materials and their applications.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Ajay Kathuria
- Industrial of Technology and Packaging, California Polytechnic State University, San Luis Obispo, CA 93407 USA
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
126
|
Zaworotko M, Deng M, Mukherjee S, Liang YJ, Fang XD, Zhu AX. Water vapour induced reversible switching between a 1-D coordination polymer and a 0-D aqua complex. Chem Commun (Camb) 2022; 58:8218-8221. [DOI: 10.1039/d2cc02777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Zn(3-tba)2], 1, a 1-D coordination polymer synthesised as 1·DMA, 1α, transformed to a nonporous form, 1β upon activation. 1β underwent further transformation to the dimeric complex [Zn(3-tba)2(H2O)2], 2, above 40%...
Collapse
|
127
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
128
|
Qiao J, Liu X, Zhang L, Liu Y. Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1406-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
129
|
Santos KM, Menezes TR, Oliveira MR, Silva TS, Santos KS, Barros VA, Melo DC, Ramos AL, Santana CC, Franceschi E, Dariva C, Egues SM, Borges GR, De Conto JF. Natural gas dehydration by adsorption using MOFs and silicas: A review. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
130
|
Wang F, Zhang X, Wang Q, Xie Y, Wang C, Zhao J, Yang Q, Chen Z. Preparation of MS/MIL-101(Cr) composite material and its properties of atmospheric water collection. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
131
|
Zhu NX, Wei ZW, Chen CX, Xiong XH, Xiong YY, Zeng Z, Wang W, Jiang JJ, Fan YN, Su CY. High Water Adsorption MOFs with Optimized Pore-Nanospaces for Autonomous Indoor Humidity Control and Pollutants Removal. Angew Chem Int Ed Engl 2021; 61:e202112097. [PMID: 34779556 DOI: 10.1002/anie.202112097] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.
Collapse
Affiliation(s)
- Neng-Xiu Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang-Yang Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zheng Zeng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ji-Jun Jiang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ya-Nan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
132
|
Aghamohammadi P, Arici M, Büyükgüngör O, Wriedt M, Yeşilel OZ. A series of three dimensional lanthanoid(III)-metal-organic frameworks with zwitterionic linker. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Parya Aghamohammadi
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Mürsel Arici
- Department of Chemistry, Faculty of Arts and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Orhan Büyükgüngör
- Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Mario Wriedt
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Okan Zafer Yeşilel
- Department of Chemistry, Faculty of Arts and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
133
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
134
|
Gong W, Liu Y, Cui Y. Chiral and robust Zr(IV)-based metal-organic frameworks built from spiro skeletons. Faraday Discuss 2021; 231:168-180. [PMID: 34196638 DOI: 10.1039/d1fd00014d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chiral metal-organic frameworks (CMOFs) have emerged as an important subclass of chiral materials; however, their development is hindered substantially by limited enantiopure functional linkers and poor chemical stabilities. Here we report the design and synthesis of a total of five enantiopure spiro-based tetracarboxylate linkers with diverse functionalities and their use in connecting Zr6 clusters to form an array of highly robust and porous CMOFs. X-ray crystallographic analysis and structure examination unambiguously revealed that the resulting CMOFs possess multifarious three-dimensional networks with novel topologies and pore systems, highlighting the great potential of chiral spiro skeletons in the fabrication of intriguing structures. PXRD and N2 adsorption experiments validated their exceptional chemical stability towards boiling water as well as aqueous acid and base solutions. Moreover, their potential applications in enantioselective catalysis and separation are also presented.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
135
|
Datar A, Witman M, Lin L. Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights. AIChE J 2021. [DOI: 10.1002/aic.17447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Archit Datar
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
| | | | - Li‐Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| |
Collapse
|
136
|
Grenev IV, Shubin AA, Solovyeva MV, Gordeeva LG. The impact of framework flexibility and defects on the water adsorption in CAU-10-H. Phys Chem Chem Phys 2021; 23:21329-21337. [PMID: 34545867 DOI: 10.1039/d1cp03242a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aluminum-based metal-organic framework (MOF) CAU-10-H is a promising candidate for heat transformation and water harvesting applications due to its hydrothermal stability, beneficial step-wise water adsorption isotherm and low toxicity. In this study, the effects of the framework flexibility and structural defects on the mechanism of water sorption in CAU-10-H were studied by grand canonical Monte Carlo (GCMC) methods. It was shown by the simulations that the rigid ideal MOF framework is hydrophobic. The account of the linker "flapping" motion during the simulations made the framework more hydrophilic due to unblocking of hydroxyl groups that are inaccessible to water molecules for the rigid structure model. However, this model cannot predict the experimental pressure, at which the step on the adsorption isotherm is observed. Based on this result, we suggested that the presence of structural defects could increase the MOF hydrophilicity. The investigation of the water adsorption using several models of defective structures demonstrated that even a small number of defects shift the calculated position of the step on the adsorption isotherm towards the experimental values. The results obtained in this study emphasize that the controlled synthesis of defective structures is one of the most efficient methods of regulating the MOF adsorption properties.
Collapse
Affiliation(s)
- Ivan V Grenev
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia. .,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Aleksandr A Shubin
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia. .,Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia
| | - Marina V Solovyeva
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia.
| | - Larisa G Gordeeva
- Boreskov Institute of Catalysis, Ac. Lavrentiev av. 5, Novosibirsk 630090, Russia.
| |
Collapse
|
137
|
Han X, Guo Z. Lubricant-Infused Three-Dimensional Frame Composed of a Micro/Nanospinous Ball Cluster Structure with Salient Durability and Superior Fog Harvesting Capacity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46192-46201. [PMID: 34542265 DOI: 10.1021/acsami.1c14276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the limitation of the special wettability surface in the water collection field, the smooth surface injected by the lubricant has attracted wide attention. In this study, a simple two-step electrochemical reaction was used to successfully design a micro/nanospinous ball cluster structure on the surface of a frame. Subsequently, after low-surface-energy treatment and lubricant immersion, a lubricant-infused three-dimensional frame is prepared. The three-dimensional grid system of the frame and the micro/nanospinous ball cluster structure on the surface exert synergistic capillary force, which helps to maintain a stable lubricant-infused smooth surface. This interface system, which exhibits superior water collection efficiency, can achieve efficient droplet capture, coagulation, and removal. The prepared lubricant-infused frame also has remarkable corrosion resistance and anti-icing performance. After high-shear rate rotation and long-term storage, it still maintains a stable and smooth surface. The reported lubricant-infused three-dimensional frame has great potential in water condensation, droplet transport, and phase-to-heat transition.
Collapse
Affiliation(s)
- Xutong Han
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
138
|
Yang X, Xie Z, Zhang T, Zhang G, Zhao Z, Wang Y, Xing G, Chen L. Direct pore engineering of 2D imine covalent organic frameworks via sub-stoichiometric synthesis. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
139
|
|
140
|
Legrand U, Klassen D, Watson S, Aufoujal A, Nisol B, Boudreault R, Waters KE, Meunier JL, Girard-Lauriault PL, Wertheimer MR, Tavares JR. Nanoporous Sponges as Carbon-Based Sorbents for Atmospheric Water Generation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulrich Legrand
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| | - Darius Klassen
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| | - Sean Watson
- Groupe des Couches Minces, Department of Engineering Physics, Polytechnique Montreal, Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Alessio Aufoujal
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| | - Bernard Nisol
- Groupe des Couches Minces, Department of Engineering Physics, Polytechnique Montreal, Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Richard Boudreault
- Awn Nanotech, Inc., 1985 55th Avenue, Suite 100, Dorval, Quebec H9P 1G9, Canada
| | - Kristian E. Waters
- Department of Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 University, Montreal, Quebec H3A 0C5, Canada
| | - Jean-Luc Meunier
- Department of Chemical Engineering, McGill University, 3610 University, Montréal, Quebec H3A 0C5, Canada
| | | | - Michael Robert Wertheimer
- Groupe des Couches Minces, Department of Engineering Physics, Polytechnique Montreal, Box 6079, Station Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Jason R. Tavares
- CREPEC, Chemical Engineering Department, Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
141
|
Huang B, Tan Z. Host-Guest Interactions Between Metal-Organic Frameworks and Air-Sensitive Complexes at High Temperature. Front Chem 2021; 9:706942. [PMID: 34414161 PMCID: PMC8369409 DOI: 10.3389/fchem.2021.706942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
The host-guest chemistry of metal–organic frameworks (MOFs) has been attracting increasing attention owing to the outstanding properties derived from MOFs-guests combinations. However, there are large difficulties involved in the syntheses of the host-guest MOF systems with air-sensitive metal complexes. In addition, the behaviors on host-guest interactions in the above systems at high temperature are not clear. This study reported the synthetic methods for host-guest systems of metal–organic framework and air-sensitive metal complexes via a developed chemical vapor infiltration process. With the synchrotron X-ray powder diffraction (XRPD) measurements and Fourier Transform infrared spectroscopy (FTIR), the successful loadings of Fe(CO)5 in HKUST-1 and NH2-MIL-101(Al) have been confirmed. At high temperatures, the structural and chemical componential changes were investigated in detail by XRPD and FTIR measurements. HKUST-1 was proven to have strong interaction with Fe(CO)5 and resulted in a heavy loading amount of 63.1 wt%, but too strong an interaction led to deformation of HKUST-1 sub-unit under heating conditions. NH2-MIL-101(Al), meanwhile, has a weaker interaction and is chemically inert to Fe(CO)5 at high temperatures.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zhe Tan
- Institute of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
142
|
Wu Q, Su W, Li Q, Tao Y, Li H. Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti 3C 2-Incorporated Metal-Organic Framework Monoliths. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38906-38915. [PMID: 34351132 DOI: 10.1021/acsami.1c10536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar-powered atmospheric water harvest (SAWH) with metal-organic frameworks (MOFs) represents one of the most sustainable, energy-efficient, and low-cost ways to alleviate water shortage stress in arid regions. However, the daily water productivity of previously developed SAWH devices remains low as they are merely allowed to be operated in batch mode and complete one water harvest cycle every day. This inevitably makes it rather challenging to deploy MOF-based SAWH for water production at scales. To overcome this challenge, MXene Ti3C2-incorporated UiO-66-NH2 (TUN) cylindrical monoliths (13 mm diameter, 4 mm thickness) with vertically aligned porous networks have been prepared and exhibited greatly enhanced solar heating capacity and atmospheric water adsorption/desorption kinetics. Using TUN monoliths as atmospheric water adsorbents, a novel SAWH device containing a flippable adsorbent stage with dual TUN monolith layers attached on both sides has been fabricated. Such a novel design enables the prototype to produce water in a continuous mode under sunlight irradiation, delivering 57.8 mLH2O kgMOF-1 h-1 of water productivity in a simulated indoor arid environment (20% relative humidity, 298 K). This is the first exploration in continuous water production with MOF-based SAWH, demonstrating a promising way to achieve scalable and low-cost SAWH in arid areas.
Collapse
Affiliation(s)
- Qiannan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen Su
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiangqiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingle Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
143
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
144
|
Li Y, Wang HT, Zhao YL, Lv J, Zhang X, Chen Q, Li JR. Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
145
|
Goswami R, Das S, Seal N, Pathak B, Neogi S. High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34012-34026. [PMID: 34255471 DOI: 10.1021/acsami.1c05088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atmospheric water harvesting, triphasic detection of water contaminants, and advanced antiforgery measures are among important global agendas, where metal-organic frameworks (MOFs), as an incipient class of multifaceted materials, can affect substantial development of individual properties at the interface of tailor-made fabrication. The chemically robust and microporous MOF, encompassing contrasting pore functionalization, exhibits an S-shaped water adsorption curve at 300 K with a steep pore-filling step near P/P0 = 0.5 and shows reversible uptake-release performance. Density functional theory (DFT) studies provide atomistic-level snapshots of sequential insertion of H2O molecules inside the porous channels and also portray H-bonding interactions with polar functional sites in the two-fold interpenetrated structure. The highly emissive attribute with an electron-pull system benefits the fast-responsive framework and highly regenerable detection of four classes of organic pollutants (2,4,6-trinitrophenol (TNP), dichloran, aniline, and nicotine) in water at a record-low sensitivity. In addition to solid-, liquid-, and vapor-phase sensing, host-guest-mediated reversible fluoroswitching is validated through repetitive paper-strip monitoring and image-based detection of food sample contamination. Structure-property synergism in the electron transfer route of sensing is justified from DFT calculations that describe the reshuffling of molecular orbital energy levels in an electron-rich network by each organotoxin, besides evidencing framework-analyte supramolecular interactions. The MOF further delineates the pH-responsive luminescence defect repair via site-specific emission modulation, wherein reversibly alternated "encrypted and decrypted" states are utilized as highly reusable anticounterfeiting labels over multiple platforms and conceptualized as artificial molecular switches. Aiming at self-calibrated, advanced security claims, a NOR-OR coupled logic gate is devised based on commensurate fluorescence-cum-real-time synchronous detection of organic and inorganic (HCl and NH3) pollutants.
Collapse
Affiliation(s)
- Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Sandeep Das
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Biswarup Pathak
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
146
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
147
|
Magott M, Gaweł B, Sarewicz M, Reczyński M, Ogorzały K, Makowski W, Pinkowicz D. Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chem Sci 2021; 12:9176-9188. [PMID: 34276948 PMCID: PMC8261731 DOI: 10.1039/d1sc02060a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Bartłomiej Gaweł
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Karolina Ogorzały
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Wacław Makowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
148
|
Li J, Yi M, Zhang L, You Z, Liu X, Li* B. Energy related ion transports in coordination polymers. NANO SELECT 2021. [DOI: 10.1002/nano.202100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jinli Li
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Mao Yi
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Laiyu Zhang
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Zifeng You
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Xiongli Liu
- College of Materials Science and Engineering Nankai University Tianjin China
| | - Baiyan Li*
- College of Materials Science and Engineering Nankai University Tianjin China
| |
Collapse
|
149
|
Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213902] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
150
|
Abstract
Nowadays, the rapidly growing population, climate change, and environment pollution put heavy pressure on fresh water resources. The atmosphere is the immense worldwide and available water source. The Adsorptive Water Harvesting from the Atmosphere (AWHA) method is considered a promising alternative to desalination technologies for remote arid regions. The development of novel adsorbents with advanced water-adsorption properties is a prerequisite for practical realization of this method. Metal–organic frameworks (MOFs) are a novel class of porous crystalline solids that bring a great potential for AWHA due to their extremely high specific surface area, porosity, and tailored adsorption properties. This work addresses MIL-160 as a water adsorbent for AWHA. The water-adsorption equilibrium of MIL-160 was studied by volumetric method, the isosteric heat of adsorption was calculated, and finally, the potential of MIL-160 for AWHA was evaluated for climatic conditions of the deserts of Saudi Arabia, Mongolia, the Sahara, Atacama, and Mojave as reference arid regions. MIL-160 was shown to ensure a maximum specific water productivity of 0.31–0.33 gH2O/gads per cycle. High fractions of water extracted (0.90–0.98) and collected (0.48–0.97) could be achieved at a regeneration temperature of 80 °C with natural cooling of the condenser by ambient air. The specific energy consumption for water production varied from 3.5 to 6.8 kJ/g, which is acceptable if solar heat is used to drive the desorption. The AWHA method employing MIL-160 is a promising way to achieve a fresh water supply in remote arid areas.
Collapse
|