101
|
Deng B, Guo F, Duan N, Yang S, Tian H, Sun B. A Solvatochromic Fluorescent Probe for Solvent Polarity Detection Using a Smartphone. ChemistrySelect 2022. [DOI: 10.1002/slct.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bing Deng
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Feng Guo
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Ning Duan
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Shaoxiang Yang
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Hongyu Tian
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| | - Baoguo Sun
- Beijing Key laboratory of Flavor Chemistry Beijing Technology and Business University Beijing 100048 PR China
| |
Collapse
|
102
|
pH-activated DNA nanomachine for miRNA-21 imaging to accurately identify cancer cell. Mikrochim Acta 2022; 189:266. [PMID: 35776208 DOI: 10.1007/s00604-022-05340-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/14/2022] [Indexed: 10/17/2022]
Abstract
MicroRNA (miRNA) imaging has been employed to distinguish cancer cells from normal cells by exploiting the overexpression of miRNA in cancer. Inspired by the acidic extracellular tumor microenvironment, we designed a pH-activated DNA nanomachine to enable the specific detection of cancer cells using miRNA imaging. The DNA nanomachine was engineered by assembling two hairpins (Y1 and Y2) onto the surface of a ZIF-8 metal-organic framework (MOF), which decomposed under acidic conditions to release the adsorbed DNA hairpin molecules in situ. The released hairpins were captured by the target miRNA-21 and underwent catalytic hairpin assembly amplification between Y1 and Y2. The detection limit for miRNA assays using the DNA nanomachine was determined to be 27 pM, which is low enough for sensitive detection in living cells. Living cell imaging of miRNA-21 further corroborated the application of the DNA nanomachine in the identification of cancer cell.
Collapse
|
103
|
Zhao H, Shen FF, Sun JF, Gao ZZ. Cucurbit[8]uril-controlled [2 + 2] photodimerization of styrylpyridinium molecule. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
104
|
Ye F, Zhang L, Lu C, Bao Z, Wu Z, Liu Q, Shao Z, Hu L. Realizing Interfacial Electron/Hole Redistribution and Superhydrophilic Surface through Building Heterostructural 2 nm Co 0.85 Se-NiSe Nanograins for Efficient Overall Water Splittings. SMALL METHODS 2022; 6:e2200459. [PMID: 35587615 DOI: 10.1002/smtd.202200459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical overall water splitting using renewable energy input is highly desirable for large-scale green hydrogen generation, but it is still challenged due to the lack of low-cost, durable, and highly efficient electrocatalysts. Herein, 1D nanowires composed of numerous 2 nm Co0.85 Se-NiSe nanograin heterojunctions as efficient precious metal-free bifunctional electrocatalyst are reported for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline solution with the merits of high activity, durability, and low cost. The abundant microinterface among the ultrafine nanograins and the presence of lattice distortion around nanograin interface is found to create a superhydrophilic surface of the electrocatalyst, which significantly facilitate the fast diffusion of electrolytes and the release of the formed H2 and O2 from the catalyst surface. Furthermore, synergic effect between Co0.85 Se and NiSe grain on adjusting the electronic structure is revealed, which enhances electron mobility for fast electron transport during the HER/OER process. Owing to these merits, the rationally designed Co0.85 Se-NiSe heterostructures display efficient overall water splitting behavior with a low voltage of 1.54 V at 10 mA cm-2 and remarkable long-term durability for the investigated period of 50 h.
Collapse
Affiliation(s)
- Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lin Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhuoheng Bao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zeyi Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Qiang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (NanjingTech), Nanjing, 210009, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
105
|
Tang L, Yin Z, Wang R, Wang B, Jiang K, Ding M, Wang S. Understanding a ligand's effects on intra-cluster and inter-cluster assembly. NANOSCALE 2022; 14:8842-8848. [PMID: 35695330 DOI: 10.1039/d2nr01765b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ligands play an essential role in cluster assembly; however, understanding this behavior at the atomic level is far off. In this work, Cd12Ag32(S-PhOMe)36(PPh)4@Cd6Ag2(S-PhOMe)6Cl6(PPh3)8@Ag6(S-PhOMe)6Cl2 (Abbrev. Cd12Ag32-1) and Cd12Ag32(S-c-C6H11)36 (Abbrev. Cd12Ag32-2) were synthesized and structurally determined by single-crystal X-ray diffraction. An important finding is the selective adsorption of phosphine ligands that is caused by the different types of thiol ligands. In addition, Cd12Ag32-1 follows a unique stacking pattern in a superlattice with multiple inter-cluster channels. Overall, this study is helpful for an in-depth understanding of the effect of mixed ligands on nanocluster formation and the correlation between structure and properties in the nanocluster range.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Kefan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
106
|
Tian C, Yang J, Liu C, Chen P, Zhang T, Men Y, Ma H, Sun Y, Ma Y. Engineering substrate specificity of HAD phosphatases and multienzyme systems development for the thermodynamic-driven manufacturing sugars. Nat Commun 2022; 13:3582. [PMID: 35739124 PMCID: PMC9226320 DOI: 10.1038/s41467-022-31371-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Naturally, haloacid dehalogenase superfamily phosphatases have been evolved with broad substrate promiscuity; however, strong specificity to a particular substrate is required for developing thermodynamically driven routes for manufacturing sugars. How to alter the intrinsic substrate promiscuity of phosphatases and fit the “one enzyme-one substrate” model remains a challenge. Herein, we report the structure-guided engineering of a phosphatase, and successfully provide variants with tailor-made preference for three widespread phosphorylated sugars, namely, glucose 6-phosphate, fructose 6-phosphate, and mannose 6-phosphate, while simultaneously enhancement in catalytic efficiency. A 12000-fold switch from unfavorite substrate to dedicated one is generated. Molecular dynamics simulations reveal the origin of improved activity and substrate specificity. Furthermore, we develop four coordinated multienzyme systems and accomplish the conversion of inexpensive sucrose and starch to fructose and mannose in excellent yield of 94–96%. This innovative sugar-biosynthesis strategy overcomes the reaction equilibrium of isomerization and provides the promise of high-yield manufacturing of other monosaccharides and polyols. Haloacid dehalogenase-like phosphatases are widespread across all domains of life and play a crucial role in the regulation of levels of sugar phosphate metabolites in cells. The authors report on the structure-guided engineering of phosphatases for dedicated substrate specificity for the conversion of sucrose and starch into fructose and mannose.
Collapse
Affiliation(s)
- Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Cui Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Tong Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
107
|
Hong Z, Zhong J, Gong S, Huang S, Zhong Q, Ding D, Bian H, Liang H, Huang FP. A triphenylphosphine coordinated cinnamaldehyde-derived copper(I) Fenton-like agent with mitochondrial aggregation damage for chemodynamic therapy. J Mater Chem B 2022; 10:5086-5094. [PMID: 35730927 DOI: 10.1039/d2tb00789d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT), which uses agents to induce cell death by decomposing endogenous hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (˙OH), has been recognized as a promising approach to treat cancer. However, improving the efficiency of ˙OH production is considered one of the biggest challenges that limits the therapeutic efficacy of CDT. Herein, to controllably and efficiently induce oxidative damage through the production of ˙OH, we developed a new metal complex CDT agent with atomically precise structural characteristics as a deviation from traditional nanomaterial-CDT agents. The obtained CDT agent, a cinnamaldehyde derived copper(I) complex (denoted Cin-OD-Cu), was found to be continuously enriched in the mitochondria of A2780 ovarian carcinoma cells, which was accompanied by the generation of large amounts of ˙OH via Cu(I)-mediated Fenton-like reactions of H2O2, thereby stimulating oxidative stress in the mitochondria and eventually leading to cell death. Moreover, in vivo experiments showed that Cin-OD-Cu was capable of effectively inhibiting tumor growth with excellent biocompatibility. We believe this research enriches the limited selection of atomically precise metal complex CDT agents in particular for reactive oxygen species-mediated treatments aimed at inducing mitochondria oxidative damage; we anticipate that it will provide new insights into the development of novel, atomically precise agents for CDT.
Collapse
Affiliation(s)
- Zhaoguo Hong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Jingjing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Sihui Gong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Sudi Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Qiongqiong Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Dangdang Ding
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Hedong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
108
|
Zhou XM, Zhuo Y, Tu TT, Yuan R, Chai YQ. Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Anal Chem 2022; 94:8732-8739. [PMID: 35678832 DOI: 10.1021/acs.analchem.2c01171] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/μL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
109
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
110
|
Xiong W, Zhou M, Huang X, Yang W, Zhang D, Lv Y, Li H. Direct In Situ Vertical Growth of Interlaced Mesoporous NiO Nanosheets on Carbon Felt for Electrocatalytic Ammonia Synthesis. Chemistry 2022; 28:e202200779. [DOI: 10.1002/chem.202200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Xiong
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Min Zhou
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Xiaoyan Huang
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University Baoding 071003 China
| | - Da Zhang
- Changjiang River Scientific Research Institute Wuhan 430071 China
| | - Yaokang Lv
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
111
|
Wang Y, Zhao Z, Sun R, Bian J, Zhang Z, Jing L. TiO 2-Modulated tetra(4-carboxyphenyl)porphyrin/perylene diimide organic Z-scheme nano-heterojunctions for efficient visible-light catalytic CO 2 reduction. NANOSCALE 2022; 14:8041-8049. [PMID: 35622376 DOI: 10.1039/d2nr01753a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient Z-scheme heterojunctions with wide visible-light responsive perylene diimide (PDI) is highly desired for CO2 conversion, while the effective charge transfer and separation are crucial. Herein, TiO2-modulated tetra(4-carboxyphenyl)porphyrin/perylene diimide (T-TP/PDI) organic nano-heterojunctions have been fabricated for CO2 reduction, in which TP and PDI are first assembled via π-π interactions between their similar 2D conjugate structures, and then the TiO2 nanoparticles (ca. 10 nm) are anchored as an energy platform through the carboxyl groups on TP. The optimal one exhibits a ∼10-fold enhancement in photocatalytic activity compared with the pristine PDI. Based on the time-resolved surface photovoltage responses, electron paramagnetic resonance signals, in situ diffuse reflectance infrared Fourier transform spectra and the amount evaluation of H2O2 as the water-oxidation intermediate, it is suggested that the exceptional photoactivity be ascribed to the accelerated charge transfer and separation resulting from the constructed Z-scheme nano-heterojunctions with intimate interfacial interactions and the introduced energy platform TiO2 oriented towards largely inhibiting the type-II charge transfer pathway. This work diversifies the strategies for constructing efficient organic Z-scheme heterojunctions, and provides insight into interface correlation among components.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhenlong Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Rui Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, P. R. China
| | - Ji Bian
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Ziqing Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
112
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
113
|
Treglia A, Ambrosio F, Martani S, Folpini G, Barker AJ, Albaqami MD, De Angelis F, Poli I, Petrozza A. Effect of electronic doping and traps on carrier dynamics in tin halide perovskites. MATERIALS HORIZONS 2022; 9:1763-1773. [PMID: 35510702 PMCID: PMC9390658 DOI: 10.1039/d2mh00008c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
Tin halide perovskites have recently emerged as promising materials for low band gap solar cells. Much effort has been invested on controlling the limiting factors responsible for poor device efficiencies, namely self-p-doping and tin oxidation. Both phenomena are related to the presence of defects; however, full understanding of their implications in the optoelectronic properties of the material is still missing. We provide a comprehensive picture of the competing radiative and non-radiative recombination processes in tin-based perovskite thin films to establish the interplay between doping and trapping by combining photoluminescence measurements with trapped-carrier dynamic simulations and first-principles calculations. We show that pristine Sn perovskites, i.e. sample processed with commercially available SnI2 used as received, exhibit extremely high radiative efficiency due to electronic doping which boosts the radiative band-to-band recombination. Contrarily, thin films where Sn4+ species are intentionally introduced show drastically reduced radiative lifetime and efficiency due to a dominance of Auger recombination at all excitation densities when the material is highly doped. The introduction of SnF2 reduces the doping and passivates Sn4+ trap states but conversely introduces additional non-radiative decay channels in the bulk that fundamentally limit the radiative efficiency. Overall, we provide a qualitative model that takes into account different types of traps present in tin-perovskite thin films and show how doping and defects can affect the optoelectronic properties.
Collapse
Affiliation(s)
- Antonella Treglia
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
- Physics Department, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - Francesco Ambrosio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Perugia, Italy
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Samuele Martani
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
- Physics Department, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - Giulia Folpini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
| | - Alex J Barker
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
| | - Munirah D Albaqami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Isabella Poli
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
| | - Annamaria Petrozza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via G. Pascoli 70/3, 20133, Milano, Italy.
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
114
|
Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine. Biosens Bioelectron 2022; 206:114144. [DOI: 10.1016/j.bios.2022.114144] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
|
115
|
Tao Z, Zhu Y, Zhou Z, Wang A, Tan Y, Chen Z, Yu M, Yang Y. Constructing Hydrophobic Interface with Close-Packed Coordination Supramolecular Network for Long-Cycling and Dendrite-Free Zn-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107971. [PMID: 35499186 DOI: 10.1002/smll.202107971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Commercialization of aqueous zinc-metal batteries remains unrealistic due to the substantial dendrite growth and side reaction issues on the zinc anodes. It is highly demanded to develop easy-to-handle approaches for constructing stable, dense, as well as homogeneous solid anode/electrolyte interfaces. Herein, the authors construct the zinc anode interface with a close-packed Zn-TSA (TSA = thiosalicylate) coordination supramolecular network through the facile and up-scalable wet-chemical method. The hydrophobic Zn-TSA network can block solvated water and establish a solid-state diffusion barrier to well-distribute the interfacial Zn2+ , thus inhibiting hydrogen evolution and zinc dendrite growth on the anode. Meanwhile, the Zn-TSA network induces the formation of a uniform and stable solid electrolyte interphase composed of multiple inorganic-organic compounds. This denser structure can accommodate and self-heal the crack/degradation of the anode interphase associated with the repeated volume changes, and suppress the generation of detrimental by-product, Znx (OTF- )y (OH)2x-y ·nH2 O. Such a rationally fabricated anode/electrolyte interface further endows the assembled symmetric cells with superior plating/stripping stability for over 2000 h without dendrite formation (at 1 mA cm-2 and 1 mAh cm-2 ). Furthermore, this zinc anode has practical application in the Zn-MoS2 and Zn-V2 O5 full cells. This study provides a new train of thought for constructing the dense interface of zinc-metal anode.
Collapse
Affiliation(s)
- Zengren Tao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfei Zhu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zekun Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Anding Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanming Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhao Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
| | - Yangyi Yang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
116
|
Hu T, Liu Q, Zhou Z, Zhao W, Huang H, Meng F, Liu W, Zhang Q, Gu L, Liang R, Tan C. Preparation of Dye Molecule-Intercalated MoO 3 Organic/Inorganic Superlattice Nanoparticles for Fluorescence Imaging-Guided Catalytic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200595. [PMID: 35599433 DOI: 10.1002/smll.202200595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Intercalation of organic molecules into the van der Waals gaps of layered materials allows for the preparation of organic/inorganic superlattices for varying promising applications. Herein, the preparation of a series of dye molecule/MoO3 organic/inorganic superlattice nanoparticles by aqueous intercalation of several dye molecules into layered MoO3 for fluorescence imaging-guided catalytic therapy is reported. The long MoO3 nanobelts are treated by ball milling and subsequent aqueous intercalation followed by a cation ion exchange to obtain the dye molecule-intercalated MoO3 organic/inorganic superlattices. Importantly, because of the activation induced by organic intercalation, the Nile blue (NB)-intercalated MoO3-x (NB-MoO3-x ) nanoparticles show excellent catalytic activity for the generation of reactive oxygen species, that is, hydroxyl radical (·OH) and superoxide anion (·O2- ), through catalyzing H2 O2 and O2 , respectively. Moreover, the intense fluorescence of the intercalated NB molecules endows NB-MoO3-x with the in vivo fluorescence imaging capability. Thus, the polyvinylpyrrolidone-modified NB-MoO3-x nanoparticles can be used for tumor-specific catalytic therapy to realize efficient cancer cell elimination in vitro and fluorescence imaging-guided tumor ablation in vivo.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Wei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, HKSAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
117
|
Feng Y, Guan Y, Zhou E, Zhang X, Wang Y. Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201339. [PMID: 35466554 PMCID: PMC9218783 DOI: 10.1002/advs.202201339] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The active sites and charge/mass transfer properties in electrocatalysts play vital roles in kinetics and thermodynamics of electrocatalysis, and impose direct impacts on electrocatalytic performance, which cannot be achieved by a simplex structure. As a prototype, the authors propose a double-heterojunctional nanostructure of NiS2 /Ni3 C@C containing NiS2 /Ni3 C and Ni3 C/C heterojunctions as a general model to optimize the above issues and boost electrocatalytic performance. During the thermal reorganization, the in situ reaction between NiS2 nanoparticles and carbon induces the formation of Ni3 C between them and constructs tightly contacted two kinds of interfaces among the three components. The TEM and XPS reveal the intimately contacted three components and the as-constructed interacted dual interfaces, further confirming the formation of a porous double-heterojunctional nanostructure. Theoretical calculations uncover that the electron density redistribution occurs at Ni3 C/C interface by spontaneous electron transfer from defected carbon to Ni3 C and lower ΔGH* achieves at NiS2 /Ni3 C interface by the concentrated interfacial charge density, which favors the simultaneous realization of high catalytic activity and rapid charge/mass transfer. When applied for hydrogen evolution reaction (HER), the porous double-heterojunctional NiS2 /Ni3 C@C exhibits excellent HER activity and durability among all pH values. Profoundly, this special double-heterojunctional structure can provide a new model for high-performance electrocatalysts and beyond.
Collapse
Affiliation(s)
- Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Yongxin Guan
- Chongqing Industry Polytechnic CollegeChongqing401120P. R. China
| | - Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
118
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
119
|
Wang T, Xi Q, Li Y, Fu H, Hua Y, Shankar EG, Kakarla AK, Yu JS. Regulating Dendrite-Free Zinc Deposition by Red Phosphorous-Derived Artificial Protective Layer for Zinc Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200155. [PMID: 35466570 PMCID: PMC9218763 DOI: 10.1002/advs.202200155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Indexed: 05/21/2023]
Abstract
Rational architecture design of the artificial protective layer on the zinc (Zn) anode surface is a promising strategy to achieve uniform Zn deposition and inhibit the uncontrolled growth of Zn dendrites. Herein, a red phosphorous-derived artificial protective layer combined with a conductive N-doped carbon framework is designed to achieve dendrite-free Zn deposition. The Zn-phosphorus (ZnP) solid solution alloy artificial protective layer is formed during Zn plating. Meanwhile, the dynamic evolution mechanism of the ZnP on the Zn anode is successfully revealed. The concentration gradient of the electrolyte on the electrode surface can be redistributed by this protective layer, thereby achieving a uniform Zn-ion flux. The fabricated Zn symmetrical battery delivers a dendrite-free plating/stripping for 1100 h at the current density of 2.0 mA cm-2 . Furthermore, aqueous Zn//MnO2 full cell exhibits a reversible capacity of 200 mAh g-1 after 350 cycles at 1.0 A g-1 . This study suggests an effective solution for the suppression of Zn dendrites in Zn metal batteries, which is expected to provide a deep insight into the design of high-performance rechargeable aqueous Zn-ion batteries.
Collapse
Affiliation(s)
- Tian Wang
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee UniversityYongin‐siGyeonggi‐do17104Republic of Korea
| | - Qiao Xi
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Yifan Li
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University127 West Youyi RoadXi'an710072China
| | - Hao Fu
- Department of PhysicsDongguk UniversitySeoul04620Republic of Korea
| | - Yongbin Hua
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee UniversityYongin‐siGyeonggi‐do17104Republic of Korea
| | - Edugulla Girija Shankar
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee UniversityYongin‐siGyeonggi‐do17104Republic of Korea
| | - Ashok Kumar Kakarla
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee UniversityYongin‐siGyeonggi‐do17104Republic of Korea
| | - Jae Su Yu
- Department of Electronics and Information Convergence EngineeringInstitute for Wearable Convergence ElectronicsKyung Hee UniversityYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
120
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
121
|
Liu X, Xiong W, Zheng J, Wu J, Huang B, Zhu Q, Li Y, Xiao S, Chen Q, Yang J, Yang Z. Electrochemical Performance and Behavior Mechanism for Zn/LiFePO 4 Battery in a Slightly Acidic Aqueous Electrolyte. CHEMSUSCHEM 2022; 15:e202102631. [PMID: 35262280 DOI: 10.1002/cssc.202102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The electrochemical performances and process mechanisms of Zn/LiFePO4 cells in a slightly acidic 1.9 m Li2 SO4 -0.5 m ZnSO4 aqueous solution were investigated. The results showed that the hydrogen depletion side reaction on the surface of the zinc sheet led to an increase in pH of the electrolyte and fluctuations in specific capacity of the cells, and that the dissolution of Fe2+ ions and the lamination of LiFePO4 particles resulted in a decrease in the specific capacity of the cells. At pH 5.0, the initial discharge specific capacity of the Zn/LiFePO4 cell was about 120.0 mAh g-1 at 0.25 C, about 64.4 mAh g-1 at 3 C, with about 60.9 % capacity retention rate after 200 cycles at 1 C, and the Li+ ions diffusion coefficient was about 7.75×10-12 cm2 s-1 .
Collapse
Affiliation(s)
- Xinxin Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Weixiong Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jiawei Zheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jinmei Wu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Bin Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Qing Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yanwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Shunhua Xiao
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Quanqi Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jianwen Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Zhaoling Yang
- Pan Asia Technical Automotive Center Co., Ltd., Shanghai, 201201, P. R. China
| |
Collapse
|
122
|
Nie G, Zhou Y, Song M, Xu J, Cui Z, Feng Y, Wang H, Chen D, Zhang Y, Wang K. NIR-II imaging-guided diagnosis and evaluation of the therapeutic effect on acute alcoholic liver injury via a nanoprobe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1847-1855. [PMID: 35412537 DOI: 10.1039/d2ay00279e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acute alcoholic liver injury (AALI) is hard to diagnose on account of no obvious clinical symptoms, and thereby it easily develops into serious liver diseases and threatens people's health. However, traditional methods for detecting AALI are far from satisfactory due to the low sensitivity, invasiveness and non-visualization, and the development of new techniques is in urgent demand. Near-infrared (NIR)-II fluorescence imaging has been widely studied in biochemistry and biomedicine. As the blood flow velocity of the liver is closely related to the progression of AALI, herein, a NIR-II fluorescent nanoprobe, NTPB-NPs, was applied to diagnose AALI by monitoring the fluorescence intensity changes in the liver caused by the variations of the blood flow velocity. More importantly, when medication was applied to alleviate the liver injury of AALI mice, NTPB-NPs could also track the therapeutic effect in situ. In this study, the relationship between hepatic vascular velocity and the progression of AALI was confirmed with NTPB-NPs via NIR-II imaging. To the best of our knowledge, this is the first time that a NIR-II fluorescence imaging technique has been used to diagnose AALI mice and evaluate the therapeutic effect on AALI mice. This study may also provide a potential NIR-II imaging agent for clinical research to improve the management of liver injury related diseases.
Collapse
Affiliation(s)
- Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| | - Yinxing Zhou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| | - Mengzi Song
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Cui
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yangzhen Feng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China.
| | - Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, China
| | - Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China.
| | - Yu Zhang
- Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
123
|
Feng Y, Zhou J, Qiu H, Schnitzlein M, Hu J, Liu L, Würthner F, Xie Z. Boron-Locked Starazine - A Soluble and Fluorescent Analogue of Starphene. Chemistry 2022; 28:e202200770. [PMID: 35388924 PMCID: PMC9325424 DOI: 10.1002/chem.202200770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/26/2022]
Abstract
A starlike heterocyclic molecule containing an electron‐deficient nonaaza‐core structure and three peripheral isoquinolines locked by three tetracoordinate borons, namely isoquinoline‐nona‐starazine (QNSA), is synthesized by using readily available reactants through a rather straightforward approach. This new heteroatom‐rich QNSA possesses a quasi‐planar π‐backbone structure, and bears phenyl substituents on borons which protrude on both sides of the π‐backbones endowing it with good solubility in common organic solvents. Contrasting to its starphene analogue, QNSA shows intense fluorescence with a quantum yield (PLQY) of up to 62 % in dilute solution.
Collapse
Affiliation(s)
- Yi Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Honglin Qiu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Matthias Schnitzlein
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jingtao Hu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| |
Collapse
|
124
|
Subnanometric Cu clusters on atomically Fe-doped MoO 2 for furfural upgrading to aviation biofuels. Nat Commun 2022; 13:2591. [PMID: 35546157 PMCID: PMC9095587 DOI: 10.1038/s41467-022-30345-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Single cluster catalysts (SCCs) are considered as versatile boosters in heterogeneous catalysis due to their modifiable single cluster sites and supports. In this work, we report subnanometric Cu clusters dispersed on Fe-doped MoO2 support for biomass-derived furfural upgrading. Systematical characterizations suggest uniform Cu clusters (composing four Cu atoms in average) are homogeneously immobilized on the atomically Fe-doped ultrafine MoO2 nanocrystals (Cu4/Fe0.3Mo0.7O2@C). The atomic doping of Fe into MoO2 leads to significantly modified electronic structure and consequently charge redistribution inside the supported Cu clusters. The as-prepared Cu4/Fe0.3Mo0.7O2@C shows superior catalytic performance in the oxidative coupling of furfural with C3~C10 primary/secondary alcohols to produce C8~C15 aldehydes/ketones (aviation biofuel intermediates), outperforming the conventionally prepared counterparts. DFT calculations and control experiments are further carried out to interpret the structural and compositional merits of Cu4/Fe0.3Mo0.7O2@C in the oxidative coupling reaction, and elucidate the reaction pathway and related intermediates.
Collapse
|
125
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
126
|
Yang H, Guo P, Wang R, Chen Z, Xu H, Pan H, Sun D, Fang F, Wu R. Sequential Phase Conversion-Induced Phosphides Heteronanorod Arrays for Superior Hydrogen Evolution Performance to Pt in Wide pH Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107548. [PMID: 35306709 DOI: 10.1002/adma.202107548] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Developing an efficient and non-precious pH-universal hydrogen evolution reaction electrocatalyst is highly desirable for hydrogen production by electrochemical water splitting but remains a significant challenge. Herein, a hierarchical structure composed of heterostructured Ni2 P-Ni12 P5 nanorod arrays rooted on Ni3 S2 film (Ni2 P-Ni12 P5 @Ni3 S2 ) via a simultaneous corrosion and sulfidation is built followed by a phosphidation treatment toward the metallic nickel foam. The combination of theoretical calculations with in/ex situ characterizations unveils that such a unique sequential phase conversion strategy ensures the strong interfacial coupling between Ni2 P and Ni12 P5 as well as the robust stabilization of 1D heteronanorod arrays by Ni3 S2 film, resulting in the promoted water adsorption/dissociation energy, the optimized hydrogen adsorption energy, and the enhanced electron/proton transfer ability accompanied with an excellent stability. Consequently, Ni2 P-Ni12 P5 @Ni3 S2 /NF requires only 32, 46, and 34 mV overpotentials to drive 10 mA cm-2 in 1.0 m KOH, 0.5 m H2 SO4 , and 1.0 m phosphate-buffered saline electrolytes, respectively, exceeding almost all the previously reported non-noble metal-based electrocatalysts. This work may pave a new avenue for the rational design of non-precious electrocatalysts toward pH-universal hydrogen evolution catalysis.
Collapse
Affiliation(s)
- Hongyuan Yang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Peifang Guo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ruirui Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hongbin Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu, 322000, P. R. China
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
127
|
Ni Q, Kim B, Wu C, Kang K. Non-Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solid-Electrolyte-Interphase, Current Collectors, Binders, and Separators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108206. [PMID: 34905643 DOI: 10.1002/adma.202108206] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Rechargeable aqueous zinc batteries (AZBs) are one of the promising options for large-scale electrical energy storage owing to their safety, affordability and environmental friendliness. During the past decade, there have been remarkable advancements in the AZBs technology, which are achieved through intensive efforts not only in the area of electrode materials but also in the fundamental understandings of non-electrode components such as electrolytes, solid electrolyte interphase (SEI), current collectors, binders, and separators. In particular, the breakthroughs in the non-electrode components should not be underestimated in having enabled the AZBs to attain a higher energy and power density beyond that of the conventional AZBs, proving their critical role. In this article, the recent research progress is comprehensively reviewed with respect to non-electrode components in AZBs, covering the new-type of electrolytes that have been introduced, attempts for the tailoring of SEI, and the design efforts for multi-functional current collectors, binders and separators, along with the remaining challenges associated with these non-electrode components. Finally, perspectives are discussed toward future research directions in this field. This extensive overview on the non-electrode components is expected to guide and spur further development of high-performance AZBs.
Collapse
Affiliation(s)
- Qiao Ni
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byunghoon Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chuan Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P.R. China
| | - Kisuk Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
128
|
Jia W, Fan R, Zhang J, Zhu K, Gai S, Yin Y, Yang Y. Smart MOF-on-MOF Hydrogel as a Simple Rod-shaped Core for Visual Detection and Effective Removal of Pesticides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201510. [PMID: 35388969 DOI: 10.1002/smll.202201510] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The immoderate use of pesticides in the modern agricultural industry has led to the pollution of water resources and ultimately threatens the human body. Herein, two metal-organic frameworks (MOFs), namely {[Zn(tpt)2 ·2H2 O]}n (Zn1) and {[Zn2 (tpt)2 (bdc)]}n (Zn2), (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole), respectively, are constructed as smart materials for visual and on-site detection of pesticides and their removal from water. The exposed nitrogen-rich sites and high chemical stability make Zn2 a self-assembly core to further fabricate MOF-on-MOF-sodium alginate (ZIF-8-on-Zn2@SA) composite by wrapping ZIF-8 on the outside surface. Inheriting the excellent fluorescent emission of Zn2, the rod-like ZIF-8-on-Zn2@SA module exhibits naked-eye detection of thiophanate-methyl (TM) in real fruits and vegetables with a broad linear range (10-100 × 10-6 m), a low limit of detection (LOD = 0.14 × 10-6 m), and satisfactory recoveries (98.30-102.70%). In addition, carbendazim (CBZ), the metabolite of TM after usage in crops, can be efficiently removed from water by the ZIF-8-on-Zn2@SA (qmax = 161.8 mg g-1 ) with a high correlation coefficient (R2 > 0.99). Therefore, the portable ZIF-8-on-Zn2@SA sensing platform presents a promising candidate for monitoring and removal of pesticides, especially suitable for regions with serious pesticide environmental pollution.
Collapse
Affiliation(s)
- Wenwen Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ke Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shuang Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuanyuan Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
129
|
Ifijen IH, Maliki M. A comprehensive review on the synthesis and photothermal cancer therapy of titanium nitride nanostructures. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ikhazuagbe H. Ifijen
- Department of Research Operations, Rubber Research Institute of Nigeria, Benin, Nigeria
| | - Muniratu Maliki
- Department of Industrial Chemistry, Edo State University, Uzairue, Iyamho, Nigeria
| |
Collapse
|
130
|
He J, Tao T, Yang F, Sun Z. Optimizing the Electrolyte Systems for Na 3 (VO 1-x PO 4 ) 2 F 1+2x (0≤x≤1) Cathode and Understanding their Interfacial Chemistries Towards High-Rate Sodium-Ion Batteries. CHEMSUSCHEM 2022; 15:e202102522. [PMID: 35050553 DOI: 10.1002/cssc.202102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries (SIBs) have been regarded as promising alternative to lithium-ion batteries (LIBs) due to the abundance of sodium resource and cost-effectiveness of electrode manufacture. Na3 (VO1-x PO4 )2 F1+2x (0≤x≤1, NVPF1+2x ) polyanionic material, a potential high-energy-density cathode, has shown superior electrochemical performances for advanced SIBs due to its high working voltage (>3.9 V). Electrolyte composition, which plays an indispensable and critical role in determining the cycle stability and the electrode/electrolyte interfacial properties, is of great significance to possess good compatibility with electrode materials, especially the NVPF1+2x cathode. Here, different electrolyte systems, including commonly used 1.0 m NaPF6 /diglyme (NP-005), 1.0 m NaPF6 /propylene carbonate (PC)/5.0 % fluoroethylene carbonate (FEC) (NP-009), 1.0 m NaClO4 /ethylene carbonate-dimethyl carbonate (EC-DMC; 1 : 1 v/v)/5.0 % FEC (NC-019), and 1.0 m NaClO4 /PC (NC-013), were systematically investigated and compared for NVPF1+2x cathode. NVPF1+2x electrode with NP-009 electrolyte showed a superior cycle stability and rate capability at 1-10 C (1 C=130 mA g-1 ) than that of NC-019 and NC-013, while NVPF1+2x electrode with NP-005 electrolyte showed the best high-rate capability at 20-50 C. The cathode/electrolyte interphase (CEI), post-mortem electrode morphology, and electrochemical kinetic characteristics of NVPF1+2x electrode with different electrolytes were profoundly investigated and compared. It demonstrated that NVPF1+2x electrode with NP-005 exhibited a thin, efficient, and NaF-rich CEI layer with less polarization, smaller interfacial resistance, and faster Na+ diffusion than that of NC-019 and NC-013 since they suffered from a thick, overgrown CEI layer due to the consecutive decomposition of FEC, NaClO4 , and/or linear DMC, resulting in inferior electrochemical performance. This work provides new insights for the battery community to gain more comprehensive understanding about the compatibility and interfacial chemistry between different electrolyte systems and various electrode surfaces.
Collapse
Affiliation(s)
- Jiarong He
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Tao Tao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Fan Yang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhipeng Sun
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
131
|
Li YK, Ying TT, Zhang H, Tan YH, Tang YZ, Wang FX, Wan MY. Unusual symmetry breaking in high-temperature enantiomeric ferroelectrics with large spontaneous polarization. Dalton Trans 2022; 51:6860-6867. [PMID: 35438712 DOI: 10.1039/d2dt00592a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organic-inorganic hybrid perovskites have gained extensive research interest due to their combination of chirality and the excellent optical, electrical and spin properties of perovskite materials, especially in two-dimensional hybrid perovskites. Herein, we report two-dimensional organic-inorganic perovskite enantiomeric ferroelectric [(R)-β-MPA]2CdCl4 (1) and [(S)-β-MPA]2CdCl4 (2) (MPA+ =methylphenethylammonium). Their mirror relationships are verified by both circular dichroism (CD) and crystal structures. At the same time, the two exhibit very similar ferroelectricity and related properties, including high Curie temperature (343 K), large spontaneous polarization (4.65 μC cm-2), and low coercive force field (13 kV cm-1). Unusually, at room temperature the crystal phase is monoclinic with the space group C2 and above the phase transition temperature it is triclinic with the space group P1, which means that the symmetry decreases with the increase of temperature. In addition, it exhibits a flexible switchable SHG response, while [(R)-β-MPA]2CdCl4 and [(S)-β-MPA]2CdCl4 have wide band gaps of 4.21 and 4.26 eV, respectively, mainly contributed by inorganic CdCl6 octahedra. This discovery opens a new way for the construction of two-dimensional enantiomeric molecular ferroelectrics.
Collapse
Affiliation(s)
- Yu-Kong Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Ting-Ting Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Hao Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Yu-Hui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Yun-Zhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Fang-Xin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| | - Ming-Yang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China.
| |
Collapse
|
132
|
Li J, Chen M, Zhou S, Li H, Hao J. Self-assembly of fullerene C 60-based amphiphiles in solutions. Chem Soc Rev 2022; 51:3226-3242. [PMID: 35348141 DOI: 10.1039/d1cs00958c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fullerene C60 is an all-carbon cage molecule with rich physicochemical properties. It is highly symmetric and hydrophobic, which can be used as a building block for the preparation of amphiphiles that self-assemble into diverse supramolecular structures in aqueous solutions. Meanwhile, C60 is also lipophobic, which is different from the alkyl chains in traditional surfactants. By attaching alkyl chains to the C60 sphere, a new type of lipophobic-lipophilic amphiphiles can be constructed which undergo self-assembly in n-alkanes. When inorganic clusters such as polyoxometalate are linked to the C60 sphere, organic-inorganic hybrids will be obtained which can self-assemble in polar organic solvents. Pristine C60 has also been modified by polar groups such as hydroxy and carboxy, which are linked to hydrophobic moieties and form a new class of amphiphiles. In this review, the self-assembly of C60-based amphiphiles in aqueous and nonaqueous solutions will be summarized. The characteristics exhibited by C60-based amphiphiles during the self-assembly will be discussed with close comparison to traditional surfactants, and the influences of the aggregate formation on the physicochemical properties of the C60 sphere will be described. Finally, a brief summary will be given together with a promising perspective in near future.
Collapse
Affiliation(s)
- Jinrui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Mengjun Chen
- School of Qilu Transportation, Shandong University, Jinan, 250002, China
| | - Shengju Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
133
|
Wei X, Wu J, Jiang H, Zhao X, Zhu Y. Improving the conductivity and dimensional stability of anion exchange membranes by grafting of quaternized dendrons. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangtai Wei
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Jianrong Wu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Hao Jiang
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| | - Xinsheng Zhao
- School of Physics and Electronic Engineering Jiangsu Normal University Xuzhou P. R. China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University Nanning P. R. China
| |
Collapse
|
134
|
Wu P, Yan S, Fang W, Wang B. Molecular Mechanism of the Mononuclear Copper Complex-Catalyzed Water Oxidation from Cluster-Continuum Model Calculations. CHEMSUSCHEM 2022; 15:e202102508. [PMID: 35080143 DOI: 10.1002/cssc.202102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cluster-continuum model calculations were conducted to decipher the mechanism of water oxidation catalyzed by a mononuclear copper complex. Among various O-O bond formation mechanisms investigated in this study, the most favorable pathway involved the nucleophilic attack of OH- onto the .+ L-CuII -OH- intermediate. During such process, the initial binding of OH- to the proximity of .+ L-CuII -OH- would result in the spontaneous oxidation of OH- , leading to OH⋅ radical and CuII -OH- species. The further O-O coupling between OH⋅ radical and CuII -OH- was associated with a barrier of 14.8 kcal mol-1 , leading to the formation of H2 O2 intermediate. Notably, the formation of "CuIII -O.- " species, a widely proposed active species for O-O bond formation, was found to be thermodynamically unfavorable and could be bypassed during the catalytic reactions. On the basis the present calculations, a catalytic cycle of the mononuclear copper complex-catalyzed water oxidation was proposed.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, P. R. China
| |
Collapse
|
135
|
Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum Sulfide-Based Materials for Photo-Excited Antibacterial Application. Adv Healthc Mater 2022; 11:e2200360. [PMID: 35385610 DOI: 10.1002/adhm.202200360] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/01/2023]
Abstract
Bacterial infections have seriously threatened human health and the abuse of natural or artificial antibiotics leads to bacterial resistance, so development of a new generation of antibacterial agents and treatment methods is urgent. 2D molybdenum sulfide (MoS2 ) has good biocompatibility, high specific surface area to facilitate surface modification and drug loading, adjustable energy bandgap, and high near-infrared photothermal conversion efficiency (PCE), so it is often used for antibacterial application through its photothermal or photodynamic effects. This review comprehensively summarizes and discusses the fabrication processes, structural characteristics, antibacterial performance, and the corresponding mechanisms of MoS2 -based materials as well as their representative antibacterial applications. In addition, the outlooks on the remaining challenges that should be addressed in the field of MoS2 are also proposed.
Collapse
Affiliation(s)
- Fangqian Chen
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yue Luo
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center Collaborative Innovation Center for Advanced Organic Chemical Materials Co‐constructed by the Province and Ministry Hubei Key Laboratory of Polymer Materials Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials School of Materials Science and Engineering Hubei University Wuhan 430062 China
| | - Yufeng Zheng
- School of Materials Science & Engineering Peking University Beijing 100871 China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shanxi 710049 China
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science Quanzhou Normal University Quanzhou Fujian Province 362000 China
| | - Shuilin Wu
- School of Materials Science & Engineering Peking University Beijing 100871 China
| |
Collapse
|
136
|
Chen L, Chang Y, Shi S, Wang S, Wang L. Solution-processed white OLEDs with power efficiency over 90 lm W -1 by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter. MATERIALS HORIZONS 2022; 9:1299-1308. [PMID: 35195631 DOI: 10.1039/d1mh02060a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solution-processed white organic light-emitting diodes (WOLEDs) have shown much lower device efficiency than their vacuum-deposited counterparts, due to the lack of triplet exciton management in a single-emissive-layer device structure, which will induce triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). Here, two kinds of solution-processed WOLEDs, including thermally activated delayed fluorescence (TADF)/phosphorescence hybrid WOLEDs and all-TADF WOLEDs, with high power efficiency are developed by using a high triplet energy level (T1) interfacial exciplex as a host and a high reverse intersystem crossing (RISC) rate TADF emitter as a blue dopant for triplet exciton management. The interfacial exciplex host with high T1 can ensure that triplet excitons transfer from the host to the blue emitter, and the blue TADF emitter with high RISC rate (1.15 × 107 s-1) can rapidly upconvert triplet excitons to singlet ones to avoid TTA and TPA. The solution-processed TADF/phosphorescence hybrid and all-TADF WOLEDs exhibit maximum external quantum efficiencies of 31.1% and 27.3%, together with maximum power efficiencies of 93.5 and 70.4 lm W-1, respectively, which are the record efficiencies for solution-processed WOLEDs, and quite comparable to those of most vacuum-deposited counterparts.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Song Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
137
|
Zhu K, Li Z, Sun Z, Liu P, Jin T, Chen X, Li H, Lu W, Jiao L. Inorganic Electrolyte for Low-Temperature Aqueous Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107662. [PMID: 35182110 DOI: 10.1002/smll.202107662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Aqueous sodium ion batteries have received widespread attention due to their great application potential and high safety. However, the serious capacity fading under low temperature dramatically restricts their practical application. Compared to flammable and toxic organic antifreezing additives, addition of common cheap inorganic inert additives to improve low-temperature performance is of interest scientifically. Herein, low-cost calcium chloride is served as antifreezing additive in 1 m NaClO4 aqueous electrolyte due to its strong interaction with water molecules. The freezing point of the optimized electrolyte is significantly reduced to below -50 °C with an ultrahigh ionic conductivity (7.13 mS cm-1 ) at -50 °C. All pure inorganic composition of the full battery delivers a high capacity of 74.5 mAh g-1 under 1 C (1 C = 150 mA g-1 ) at -30 °C. More importantly, when tested under 10 C at -30 °C, the battery can achieve an ultralong cycling stability of 6000 cycles with no obvious capacity decay, indicating fast Na+ transport under low temperature. Significantly, this work provides an easy-to-operate strategy by adding cheap inorganic salt to develop high-performance low-temperature aqueous batteries.
Collapse
Affiliation(s)
- Kunjie Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaopeng Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiqin Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Pei Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ting Jin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuchun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haixia Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030035, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030035, China
| |
Collapse
|
138
|
Wang Z, Shen J, Xu X, Yuan J, Zuo S, Liu Z, Zhang D, Liu J. In-Situ Synthesis of Carbon-Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106640. [PMID: 35146906 DOI: 10.1002/smll.202106640] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been considered as one of the most promising electrochemical energy storage systems because of their high energy density. However, a series of issues severely limit the practical performances of Li-S batteries such as low conductivity, significant volume change, and shuttle effect. The hollow carbon spheres with huge voids and high electrical conductivity are promising as sulfur hosts. Unfortunately, the nonpolar nature of carbon materials cannot prevent the shuttle effect effectively. In this case, the atomic cobalt is introduced to a nitrogen-doped hollow carbon sphere (ACo@HCS) through polymerization and controlled pyrolysis. The atomic cobalt dopants not only act as active sites to restrict the shuttle effect, but also can promote the kinetics of the sulfur redox reactions. ACo@HCS acting as sulfur host exhibits a high discharge capacity (1003 mAh g-1 ) at a 1.0 C rate after 500 cycles, and the corresponding decay rate is as low as 0.002% per cycle. This exciting work paves a new way to design high-performance Li-S batteries.
Collapse
Affiliation(s)
- Zhuosen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiadong Shen
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xijun Xu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jujun Yuan
- School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, China
| | - Shiyong Zuo
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Zhengbo Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Dechao Zhang
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- School of Physics and Electronics, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
139
|
Liu Z, Yan F. Switchable Adhesion: On-Demand Bonding and Debonding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200264. [PMID: 35233988 PMCID: PMC9036041 DOI: 10.1002/advs.202200264] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Indexed: 05/14/2023]
Abstract
Adhesives have a long and illustrious history throughout human history. The development of synthetic polymers has highly improved adhesions in terms of their strength and environmental tolerance. As soft robotics, flexible electronics, and intelligent gadgets become more prevalent, adhesives with changeable adhesion capabilities will become more necessary. These adhesives should be programmable and switchable, with the ability to respond to light, electromagnetic fields, thermal, and other stimuli. These requirements necessitate novel concepts in adhesion engineering and material science. Considerable studies have been carried out to develop a wide range of adhesives. This review focuses on stimuli-responsive material-based adhesives, outlining current research on switchable and controlled adhesives, including design and manufacturing techniques. Finally, the potential for smart adhesives in applications, and the development of future adhesive forms are critically suggested.
Collapse
Affiliation(s)
- Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| |
Collapse
|
140
|
Zhou Y, Zhang W, Wang X, Li P, Tang B. Recent Progresses in Small Molecule Fluorescence and Photoacoustic Dual-modal Probes for the Detection of Bioactive Molecules in Vivo. Chem Asian J 2022; 17:e202200155. [PMID: 35344260 DOI: 10.1002/asia.202200155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Indexed: 11/08/2022]
Abstract
Intracellular bioactive molecules are essential for the maintenance of homeostasis in living organisms. Abnormal levels of them are closely related to the occurrence and development of some diseases. Hence, the direct and accurate visualization of these bioactive molecules is of vital importance for exploring their pathological roles. However, the low-content, short-lived, and widely distributed properties of bioactive molecules impede the comprehensive analysis of them dramatically. Fluorescent and photoacoustic dual-mode imaging technology provides a new solution to the above issue. Specifically, the combination of fluorescence and photoacoustic, which possesses the advantages of high resolution and in-depth tissue analysis, enables a more in-depth and systematic exploration of the pathogenic mechanisms of bioactive molecules. Moreover, due to the structural tailorability of small molecule probes, numerous small molecule dual-mode probes have been developed to meet the demand for real-time tracking and visualization of bioactive molecules in living cells or in vivo. Hence, in this review, we briefly summarize the key advances in small molecule fluorescence and photoacoustic dual-modal probes within recent years (2015-2021). A particular focus is placed on the design strategies and biological applications of probes for the detection of various bioactive molecules in vivo . Furthermore, the challenges and further prospects in this hot field are highlighted.
Collapse
Affiliation(s)
- Yongqing Zhou
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Wen Zhang
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Xin Wang
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Ping Li
- Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, CHINA
| | - Bo Tang
- Shandong Normal University, Chemistry, No.88 Wenhua East Road, 250014, Jinan, CHINA
| |
Collapse
|
141
|
Pathak K, Gayen S, Saha S, Nandi C, Mishra S, Ghosh S. Coordination and Hydroboration of Ru(II)‐Borate Complexes: Dihydridoborate vs. Bis(dihydridoborate). Chemistry 2022; 28:e202104393. [DOI: 10.1002/chem.202104393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kriti Pathak
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| | - Sourav Gayen
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| | - Suvam Saha
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| | - Chandan Nandi
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| | - Shivankan Mishra
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| | - Sundargopal Ghosh
- Department of Chemistry Indian Institute of Technology, Madras Chennai 600036 India
| |
Collapse
|
142
|
Sun H, Zhou X, Leng Y, Li X, Du J. Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by Trans-Cis Isomerization of Azobenzene. Macromol Rapid Commun 2022; 43:e2200131. [PMID: 35322512 DOI: 10.1002/marc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
The stimuli-responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, we demonstrate the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans-cis isomerization, using an azobenzene-containing amphiphilic homopolymer (PAzoAA) as building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π-π interaction, which promotes the formation of nanobowls rather than spherical nanostructures. Upon exposed to UV irradiation, trans-cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π-π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re-assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70°C without UV light. We further confirm that the high incubation temperature after UV irradiation is critical for the cis-trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, we propose a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
143
|
Wang B, Wang L, Zhang B, Zeng S, Tian F, Dou J, Qian Y, Xu L. Niobium Diboride Nanoparticles Accelerating Polysulfide Conversion and Directing Li 2S Nucleation Enabled High Areal Capacity Lithium-Sulfur Batteries. ACS NANO 2022; 16:4947-4960. [PMID: 35245027 DOI: 10.1021/acsnano.2c01179] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The shuttle effect of polysulfides and Li2S sluggish nucleation are the major problems hampering the further development of lithium-sulfur batteries. The reasonable design for sulfur host materials with catalytic function has been an effective strategy for promoting polysulfide conversion. Compared with other types of transition metal compounds, transition metal borides with high conductivity and catalytic capability are more suitable as sulfur host materials. Herein, a niobium diboride (NbB2) nanoparticle with abundant and high-efficiency catalytic sites has been synthesized by facile solid-phase reaction. The NbB2 with both high conductivity and catalytic nature could regulate 3D-nucleation and growth of Li2S, decrease the reaction energy barrier, and accelerate the transformation of polysulfides. Thus, the NbB2 cathode could retain a high capacity of 1014 mAh g-1 after 100 cycles. In addition, the high initial specific capacities of 703/609 mAh g-1 are also achieved at 5 C/10 C and could run for 1000/1300 cycles within a low decay rate of 0.057%/0.051%. Even with a high sulfur loading up to 16.5 mg cm-2, an initial areal capacity of 17 mAh cm-2 could be achieved at 0.1 C. This work demonstrates a successful method for enhancing the kinetics of polysulfide conversion and directing Li2S nucleation.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Lu Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Bo Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Suyuan Zeng
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Fang Tian
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| |
Collapse
|
144
|
Guo J, Liu H, Li D, Wang J, Djitcheu X, He D, Zhang Q. A minireview on the synthesis of single atom catalysts. RSC Adv 2022; 12:9373-9394. [PMID: 35424892 PMCID: PMC8985184 DOI: 10.1039/d2ra00657j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Single atom catalysis is a prosperous and rapidly growing research field, owing to the remarkable advantages of single atom catalysts (SACs), such as maximized atom utilization efficiency, tailorable catalytic activities as well as supremely high catalytic selectivity. Synthesis approaches play crucial roles in determining the properties and performance of SACs. Over the past few years, versatile methods have been adopted to synthesize SACs. Herein, we give a thorough and up-to-date review on the progress of approaches for the synthesis of SACs, outline the general principles and list the advantages and disadvantages of each synthesis approach, with the aim to give the readers a clear picture and inspire more studies to exploit novel approaches to synthesize SACs effectively.
Collapse
Affiliation(s)
- Jiawen Guo
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
145
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
146
|
Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat Commun 2022; 13:1375. [PMID: 35296655 PMCID: PMC8927601 DOI: 10.1038/s41467-022-28987-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Selective conversion of methane (CH4) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu2@C3N4) as advanced catalysts for CH4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H2O2) and oxygen (O2) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH4 with O2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu−1h−1. Mechanistic studies reveal that the high reactivity of Cu2@C3N4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C3N4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H2O2 and O2 activation in thermo- and photocatalysis, respectively. Selective conversion of methane into value-added chemicals is a promising approach for utilization of hydrocarbon sources. Here the authors develop dimeric copper centers supported on graphitic carbon nitride (denoted as Cu2@C3N4) with >10% conversion and >98% selectivity toward methyl oxygenates in both thermo- and photo- catalytic reactions.
Collapse
|
147
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
148
|
Priamushko T, Budiyanto E, Eshraghi N, Weidenthaler C, Kahr J, Jahn M, Tüysüz H, Kleitz F. Incorporation of Cu/Ni in Ordered Mesoporous Co-Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Li-O 2 Batteries. CHEMSUSCHEM 2022; 15:e202102404. [PMID: 34905292 PMCID: PMC9303656 DOI: 10.1002/cssc.202102404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Indexed: 06/02/2023]
Abstract
Ordered mesoporous CuNiCo oxides were prepared via nanocasting with varied Cu/Ni ratio to establish its impact on the electrochemical performance of the catalysts. Physicochemical properties were determined along with the electrocatalytic activities toward oxygen evolution/reduction reactions (OER/ORR). Combining Cu, Ni, and Co allowed creating active and stable bifunctional electrocatalysts. CuNiCo oxide (Cu/Ni≈1 : 4) exhibited the highest current density of 411 mA cm-2 at 1.7 V vs. reversible hydrogen electrode (RHE) and required the lowest overpotential of 312 mV to reach 10 mA cm-2 in 1 m KOH after 200 cyclic voltammograms. OER measurements were also conducted in the purified 1 m KOH, where CuNiCo oxide (Cu/Ni≈1 : 4) also outperformed NiCo oxide and showed excellent chemical and catalytic stability. For ORR, Cu/Ni incorporation provided higher current density, better kinetics, and facilitated the 4e- pathway of the oxygen reduction reaction. The tests in Li-O2 cells highlighted that CuNiCo oxide can effectively promote ORR and OER at a lower overpotential.
Collapse
Affiliation(s)
- Tatiana Priamushko
- Department of Inorganic Chemistry-Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090Wien, ViennaAustria
| | - Eko Budiyanto
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nicolas Eshraghi
- Center for Low-Emission TransportElectric Vehicle TechnologiesAIT Austrian Institute of Technology GmbHGiefinggasse 21210Wien, ViennaAustria
| | - Claudia Weidenthaler
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jürgen Kahr
- Center for Low-Emission TransportElectric Vehicle TechnologiesAIT Austrian Institute of Technology GmbHGiefinggasse 21210Wien, ViennaAustria
| | - Marcus Jahn
- Center for Low-Emission TransportElectric Vehicle TechnologiesAIT Austrian Institute of Technology GmbHGiefinggasse 21210Wien, ViennaAustria
| | - Harun Tüysüz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Freddy Kleitz
- Department of Inorganic Chemistry-Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090Wien, ViennaAustria
| |
Collapse
|
149
|
Abstract
As a new member of carbon allotropes, graphdiyne (GDY) has the characteristics of being one-atom-thick with two-dimensional layers comprising sp and sp2 hybridized carbon atoms, and represents a trend in the development of carbon materials. Its unique chemical and electronic structures give GDY many unique and fascinating properties such as rich chemical bonds, highly conjugated and super-large π structures, infinitely distributed pores and high inhomogeneity of charge distribution. GDY has entered a period of rapid development, especially with the significant emergence of fundamental research and applied research achievements over the past five years. As one of the frontiers of chemistry and materials science, graphdiyne was listed in the Top 10 research areas in the 2020 Research Frontiers report and was jointly released in the Top 10 in the world by Clarivate and the Chinese Academy of Sciences. The research results have shown the great potential of GDY in the applications of energy, catalysis, environmental science, electronic devices, detectors, biomedicine and therapy, etc. Scientists are eager to explore and fully reveal the new properties, discover new scientific concepts and phenomena, discover the new conversion modes and mechanisms of GDY in photoelectricity, energy, and catalysis, etc., and build the important scientific value of new conversion devices. This review covers research on the foundation and application of GDY, such as the controlled preparation of new methods of GDY and GDY-based materials, studies on new mechanisms and properties in chemistry and physics, and the foundation and applications in energy, catalysis, photoelectric and devices.
Collapse
Affiliation(s)
- Yan Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuxin Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
150
|
Zhao Y, Wang S, Zhu LJ, Sun MJ, Zhang T, Cao R. A Graphene‐supported Copper Complex as Site‐Isolated Catalyst for Electrochemical CO2 Reduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Zhao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter N/A CHINA
| | - Shan Wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter N/A CHINA
| | - Lin-Jun Zhu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter N/A CHINA
| | - Meng-Jiao Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter N/A CHINA
| | - Teng Zhang
- Fujian Institute of Research on the Structure of Matter 155 Yangqiaoxi Rd Fuzhou CHINA
| | - Rong Cao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter N/A CHINA
| |
Collapse
|