101
|
Stout AJ, Zhang X, Letcher SM, Rittenberg ML, Shub M, Chai KM, Kaul M, Kaplan DL. Engineered autocrine signaling eliminates muscle cell FGF2 requirements for cultured meat production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537163. [PMID: 37131805 PMCID: PMC10153192 DOI: 10.1101/2023.04.17.537163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cultured meat is a promising technology that faces substantial cost barriers which are currently driven largely by the price of media components. Growth factors such as fibroblast growth factor 2 (FGF2) drive the cost of serum-free media for relevant cells including muscle satellite cells. Here, we engineered immortalized bovine satellite cells (iBSCs) for inducible expression of FGF2 and/or mutated RasG12V in order to overcome media growth factor requirements through autocrine signaling. Engineered cells were able to proliferate over multiple passages in FGF2-free medium, thereby eliminating the need for this costly component. Additionally, cells maintained their myogenicity, albeit with reduced differentiation capacity. Ultimately, this offers a proof-of-principle for lower-cost cultured meat production through cell line engineering.
Collapse
Affiliation(s)
- Andrew J. Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Xiaoli Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Sophia M. Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Miriam L. Rittenberg
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Shub
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Kristin M. Chai
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Maya Kaul
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - David L. Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| |
Collapse
|
102
|
Plummer-Medeiros AM, Culbertson AT, Morales-Perez CL, Liao M. Activity and Structural Dynamics of Human ABCA1 in a Lipid Membrane. J Mol Biol 2023; 435:168038. [PMID: 36889459 PMCID: PMC11540065 DOI: 10.1016/j.jmb.2023.168038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
The human ATP-binding cassette (ABC) transporter ABCA1 plays a critical role in lipid homeostasis as it extracts sterols and phospholipids from the plasma membrane for excretion to the extracellular apolipoprotein A-I and subsequent formation of high-density lipoprotein (HDL) particles. Deleterious mutations of ABCA1 lead to sterol accumulation and are associated with atherosclerosis, poor cardiovascular outcomes, cancer, and Alzheimer's disease. The mechanism by which ABCA1 drives lipid movement is poorly understood, and a unified platform to produce active ABCA1 protein for both functional and structural studies has been missing. In this work, we established a stable expression system for both a human cell-based sterol export assay and protein purification for in vitro biochemical and structural studies. ABCA1 produced in this system was active in sterol export and displayed enhanced ATPase activity after reconstitution into a lipid bilayer. Our single-particle cryo-EM study of ABCA1 in nanodiscs showed protein induced membrane curvature, revealed multiple distinct conformations, and generated a structure of nanodisc-embedded ABCA1 at 4.0-Å resolution representing a previously unknown conformation. Comparison of different ABCA1 structures and molecular dynamics simulations demonstrates both concerted domain movements and conformational variations within each domain. Taken together, our platform for producing and characterizing ABCA1 in a lipid membrane enabled us to gain important mechanistic and structural insights and paves the way for investigating modulators that target the functions of ABCA1.
Collapse
Affiliation(s)
- Ashlee M Plummer-Medeiros
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Bryn Mawr College Chemistry Department, 101 N Merion Avenue, Bryn Mawr, PA 19010, USA
| | - Alan T Culbertson
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Roivant Sciences, Inc., 451 D Street, Boston, MA 02210, USA
| | - Claudio L Morales-Perez
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Generate Biomedicines, 4 Corporate Drive Andover, MA, 01810, USA
| | - Maofu Liao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
103
|
Nair R, Pignot Y, Salinas-Illarena A, Bärreiter VA, Wratil PR, Keppler OT, Wichmann C, Baldauf HM. Purified recombinant lentiviral Vpx proteins maintain their SAMHD1 degradation efficiency in resting CD4 + T cells. Anal Biochem 2023; 670:115153. [PMID: 37037311 DOI: 10.1016/j.ab.2023.115153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Different protein purification methods exist. Yet, they need to be adapted for specific downstream applications to maintain functional integrity of the recombinant proteins. This study established a purification protocol for lentiviral Vpx (viral protein X) and test its ability to degrade sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) ex vivo in resting CD4+ T cells. For this purpose, we cloned a novel eukaryotic expression plasmid for Vpx including C-terminal 10x His- and HA-tags and confirmed that those tags did not alter the ability to degrade SAMHD1. We optimized purification conditions for Vpx produced in HEK293T cells with CHAPS as detergent and Co-NTA resins yielding the highest solubility and protein amounts. Size exclusion chromatography (SEC) further enhanced the purity of recombinant Vpx proteins. Importantly, nucleofection of resting CD4+ T cells demonstrated that purified recombinant Vpx protein efficiently degraded SAMHD1 in a proteasome-dependent manner. In conclusion, this protocol is suitable for functional downstream applications of recombinant Vpx and might be transferrable to other recombinant proteins with similar functions/properties as lentiviral Vpx.
Collapse
Affiliation(s)
- Ramya Nair
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Yanis Pignot
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alejandro Salinas-Illarena
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Valentin A Bärreiter
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| |
Collapse
|
104
|
Hyperkalemic periodic paralysis associated with a novel missense variant located in the inner pore of Nav1.4. Brain Dev 2023; 45:205-211. [PMID: 36628799 DOI: 10.1016/j.braindev.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/30/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hyperkalemic periodic paralysis (HyperPP) is an autosomal dominantly inherited disease characterized by episodic paralytic attacks with hyperkalemia, and is caused by mutations of the SCN4A gene encoding the skeletal muscle type voltage-gated sodium channel Nav1.4. The pathological mechanism of HyperPP was suggested to be associated with gain-of-function changes for Nav1.4 gating, some of which are defects of slow inactivation. CASE PRESENTATION & METHODS We identified a HyperPP family consisting of the proband and his mother, who showed a novel heterozygous SCN4A variant, p.V792G, in an inner pore lesion of segment 6 in Domain II of Nav1.4. Clinical and neurophysiological evaluations were conducted for the proband and his mother. We explored the pathogenesis of the variant by whole-cell patch clamp technique using HEK293T cells expressing the mutant Nav1.4 channel. RESULTS Functional analysis of Nav1.4 with the V792G mutation revealed a hyperpolarized shift of voltage-dependent activation and fast inactivation. Moreover, steady-state slow inactivation in V792G was impaired with larger residual currents in comparison with wild-type Nav1.4. CONCLUSION V792G in SCN4A is a pathogenic variant associated with the HyperPP phenotype and the inner pore lesion of Nav1.4 plays a crucial role in slow inactivation.
Collapse
|
105
|
Meier M, Gupta M, Akgül S, McDougall M, Imhof T, Nikodemus D, Reuten R, Moya-Torres A, To V, Ferens F, Heide F, Padilla-Meier GP, Kukura P, Huang W, Gerisch B, Mörgelin M, Poole K, Antebi A, Koch M, Stetefeld J. The dynamic nature of netrin-1 and the structural basis for glycosaminoglycan fragment-induced filament formation. Nat Commun 2023; 14:1226. [PMID: 36869049 PMCID: PMC9984387 DOI: 10.1038/s41467-023-36692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.
Collapse
Affiliation(s)
- Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Serife Akgül
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Denise Nikodemus
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Raphael Reuten
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Obsterics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Vu To
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fraser Ferens
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Birgit Gerisch
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kate Poole
- Max Delbrück Center for Molecular Medicine, Robert Roessle Str 10, Berlin-Buch, Germany.,EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany.
| | - Manuel Koch
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
106
|
Sowinska W, Wawro M, Biswas DD, Kochan J, Pustelny K, Solecka A, Gupta AS, Mockenhaupt K, Polak J, Kwinta B, Kordula T, Kasza A. The homeostatic function of Regnase-2 restricts neuroinflammation. FASEB J 2023; 37:e22798. [PMID: 36753401 PMCID: PMC9983307 DOI: 10.1096/fj.202201978r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
The precise physiological functions and mechanisms regulating RNase Regnase-2 (Reg-2/ZC3H12B/MCPIP2) activity remain enigmatic. We found that Reg-2 actively modulates neuroinflammation in nontransformed cells, including primary astrocytes. Downregulation of Reg-2 in these cells results in increased mRNA levels of proinflammatory cytokines IL-1β and IL-6. In primary astrocytes, Reg-2 also regulates the mRNA level of Regnase-1 (Reg-1/ZC3H12A/MCPIP1). Reg-2 is expressed at high levels in the healthy brain, but its expression is reduced during neuroinflammation as well as glioblastoma progression. This process is associated with the upregulation of Reg-1. Conversely, overexpression of Reg-2 is accompanied by the downregulation of Reg-1 in glioma cells in a nucleolytic NYN/PIN domain-dependent manner. Interestingly, low levels of Reg-2 and high levels of Reg-1 correlate with poor-glioblastoma patients' prognoses. While Reg-2 restricts the basal levels of proinflammatory cytokines in resting astrocytes, its expression is reduced in IL-1β-activated astrocytes. Following IL-1β exposure, Reg-2 is phosphorylated, ubiquitinated, and degraded by proteasomes. Simultaneously, the Reg-2 transcript is destabilized by tristetraprolin (TTP) and Reg-1 through the AREs elements and conservative stem-loop structure present in its 3'UTR. Thus, the peer-control loop, of Reg-1 and Reg-2 opposing each other, exists. The involvement of TTP in Reg-2 mRNA turnover is confirmed by the observation that high TTP levels correlate with the downregulation of the Reg-2 expression in high-grade human gliomas. Additionally, obtained results reveal the importance of Reg-2 in inhibiting human and mouse glioma cell proliferation. Our current studies identify Reg-2 as a critical regulator of homeostasis in the brain.
Collapse
Affiliation(s)
- Weronika Sowinska
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Debolina D. Biswas
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Katarzyna Pustelny
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Solecka
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Angela S. Gupta
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Karli Mockenhaupt
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA
| | - Jarosław Polak
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA.,To whom correspondence should be addressed: Aneta Kasza, , Tel. (+48)126646521 and Tomasz Kordula, , Tel. (+1)804-828-0771
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland,To whom correspondence should be addressed: Aneta Kasza, , Tel. (+48)126646521 and Tomasz Kordula, , Tel. (+1)804-828-0771
| |
Collapse
|
107
|
Jang J, Tang K, Youn J, McDonald S, Beyer HM, Zurbriggen MD, Uppalapati M, Woolley GA. Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s. Nat Methods 2023; 20:432-441. [PMID: 36823330 DOI: 10.1038/s41592-023-01764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/21/2022] [Indexed: 02/25/2023]
Abstract
Optogenetic tools for controlling protein-protein interactions (PPIs) have been developed from a small number of photosensory modules that respond to a limited selection of wavelengths. Cyanobacteriochrome (CBCR) GAF domain variants respond to an unmatched array of colors; however, their natural molecular mechanisms of action cannot easily be exploited for optogenetic control of PPIs. Here we developed bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s by engineering synthetic light-dependent interactors for a red/green GAF domain. The systematic approach enables the future engineering of the broad chromatic palette of CBCRs for optogenetics use. BICYCLs are among the smallest optogenetic tools for controlling PPIs and enable either green-ON/red-OFF (BICYCL-Red) or red-ON/green-OFF (BICYCL-Green) control with up to 800-fold state selectivity. The access to green wavelengths creates new opportunities for multiplexing with existing tools. We demonstrate the utility of BICYCLs for controlling protein subcellular localization and transcriptional processes in mammalian cells and for multiplexing with existing blue-light tools.
Collapse
Affiliation(s)
- Jaewan Jang
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jeffrey Youn
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sherin McDonald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-Universität, Düsseldorf, Germany. .,CEPLAS - Cluster of Excellence on Plant Science, Düsseldorf, Germany.
| | - Maruti Uppalapati
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
108
|
Moghimianavval H, Patel C, Mohapatra S, Hwang SW, Kayikcioglu T, Bashirzadeh Y, Liu AP, Ha T. Engineering Functional Membrane-Membrane Interfaces by InterSpy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202104. [PMID: 35618485 PMCID: PMC9789529 DOI: 10.1002/smll.202202104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Engineering synthetic interfaces between membranes has potential applications in designing non-native cellular communication pathways and creating synthetic tissues. Here, InterSpy is introduced as a synthetic biology tool consisting of a heterodimeric protein engineered to form and maintain membrane-membrane interfaces between apposing synthetic as well as cell membranes through the SpyTag/SpyCatcher interaction. The inclusion of split fluorescent protein fragments in InterSpy allows tracking of the formation of a membrane-membrane interface and reconstitution of functional fluorescent protein in the space between apposing membranes. First, InterSpy is demonstrated by testing split protein designs using a mammalian cell-free expression (CFE) system. By utilizing co-translational helix insertion, cell-free synthesized InterSpy fragments are incorporated into the membrane of liposomes and supported lipid bilayers with the desired topology. Functional reconstitution of split fluorescent protein between the membranes is strictly dependent on SpyTag/SpyCatcher. Finally, InterSpy is demonstrated in mammalian cells by detecting fluorescence reconstitution of split protein at the membrane-membrane interface between two cells each expressing a component of InterSpy. InterSpy demonstrates the power of CFE systems in the functional reconstitution of synthetic membrane interfaces via proximity-inducing proteins. This technology may also prove useful where cell-cell contacts and communication are recreated in a controlled manner using minimal components.
Collapse
Affiliation(s)
- Hossein Moghimianavval
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Chintan Patel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sonisilpa Mohapatra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Tunc Kayikcioglu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
109
|
Complementary Cell Lines for Protease Gene-Deleted Single-Cycle Adenovirus Vectors. Cells 2023; 12:cells12040619. [PMID: 36831286 PMCID: PMC9954690 DOI: 10.3390/cells12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
To increase the safety of adenovirus vector (AdV)-based therapy without reducing its efficacy, a single-cycle adenovirus vector (SC-AdV) with a deletion in the protease gene (PS) was developed in order to be used as a substitute for the replication-competent adenovirus (RC-AdV). Since no infectious viral particles are assembled, there is no risk of viral shedding. The complementary cell lines for this developed AdV proved to be suboptimal for the production of viral particles and require the presence of fetal bovine serum (FBS) to grow. In the current study, we produced both stable pools and clones using adherent and suspension cells expressing the PS gene. The best adherent cell pool can be used in the early stages for the generation of protease-deleted adenovirus, plaque purification, and titration. Using this, we produced over 3400 infectious viral particles per cell. Additionally, the best suspension subclone that was cultured in the absence of FBS yielded over 4000 infectious viral particles per cell. Harvesting time, culture media, and concentration of the inducer for the best suspension subclone were further characterized. With these two types of stable cells (pool and subclone), we successfully improved the titer of protease-deleted adenovirus in adherent and suspension cultures and eliminated the need for FBS during the scale-up production. Eight lots of SC-AdV were produced in the best suspension subclone at a scale of 2 to 8.2 L. The viral and infectious particle titers were influenced by the virus backbone and expressed transgene.
Collapse
|
110
|
Shi T, Burg AR, Caldwell JT, Roskin K, Castro-Rojas CM, Chukwuma PC, Gray GI, Foote SG, Alonso J, Cuda CM, Allman DA, Rush JS, Regnier CH, Wieczorek G, Alloway RR, Shields AR, Baker BM, Woodle ES, Hildeman DA. Single cell transcriptomic analysis of renal allograft rejection reveals novel insights into intragraft TCR clonality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.524808. [PMID: 36798151 PMCID: PMC9934650 DOI: 10.1101/2023.02.08.524808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding. We performed combined single cell RNA transcriptomic and TCRα/β sequencing on rBx from patients with ACR under differing immunosuppression (IS): tacrolimus, iscalimab, and belatacept. TCR analysis revealed a highly restricted CD8 + T cell clonal expansion (CD8 EXP ), independent of HLA mismatch or IS type. Subcloning of TCRα/β cDNAs from CD8 EXP into Jurkat76 cells (TCR -/- ) conferred alloreactivity by mixed lymphocyte reaction. scRNAseq analysis of CD8 EXP revealed effector, memory, and exhausted phenotypes that were influenced by IS type. Successful anti-rejection treatment decreased, but did not eliminate, CD8 EXP , while CD8 EXP were maintained during treatment-refractory rejection. Finally, most rBx-derived CD8 EXP were also observed in matching urine samples. Overall, our data define the clonal CD8 + T cell response to ACR, providing novel insights to improve detection, assessment, and treatment of rejection.
Collapse
|
111
|
Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O’Reilly RJ. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527552. [PMID: 36798179 PMCID: PMC9934604 DOI: 10.1101/2023.02.08.527552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Certain phosphorylated peptides are differentially presented by MHC molecules on cancer cells characterized by aberrant phosphorylation. Phosphopeptides presented in complex with the human leukocyte antigen HLA-A*02:01 provide a stability advantage over their nonphosphorylated counterparts. This stability is thought to contribute to enhanced immunogenicity. Whether tumor-associated phosphopeptides presented by other common alleles exhibit immunogenicity and structural characteristics similar to those presented by A*02:01 is unclear. Therefore, we determined the identity, structural features, and immunogenicity of phosphopeptides presented by the prevalent alleles HLA-A*03:01, -A*11:01, -C*07:01, and - C*07:02. Methods We isolated peptide-MHC complexes by immunoprecipitation from 10 healthy and neoplastic tissue samples using mass spectrometry, and then combined the resulting data with public immunopeptidomics datasets to assemble a curated set of phosphopeptides presented by 20 distinct healthy and neoplastic tissue types. We determined the biochemical features of selected phosphopeptides by in vitro binding assays and in silico docking, and their immunogenicity by analyzing healthy donor T cells for phosphopeptide-specific multimer binding and cytokine production. Results We identified a subset of phosphopeptides presented by HLA-A*03:01, A*11:01, C*07:01 and C*07:02 on multiple tumor types, particularly lymphomas and leukemias, but not healthy tissues. These phosphopeptides are products of genes essential to lymphoma and leukemia survival. The presented phosphopeptides generally exhibited similar or worse binding to A*03:01 than their nonphosphorylated counterparts. HLA-C*07:01 generally presented phosphopeptides but not their unmodified counterparts. Phosphopeptide binding to HLA-C*07:01 was dependent on B- pocket interactions that were absent in HLA-C*07:02. While HLA-A*02:01 and -A*11:01 phosphopeptide-specific T cells could be readily detected in an autologous setting even when the nonphosphorylated peptide was co-presented, HLA-A*03:01 or -C*07:01 phosphopeptides were repeatedly nonimmunogenic, requiring use of allogeneic T cells to induce phosphopeptide- specific T cells. Conclusions Phosphopeptides presented by multiple alleles that are differentially expressed on tumors constitute tumor-specific antigens that could be targeted for cancer immunotherapy, but the immunogenicity of such phosphopeptides is not a general feature. In particular, phosphopeptides presented by HLA-A*02:01 and A*11:01 exhibit consistent immunogenicity, while phosphopeptides presented by HLA-A*03:01 and C*07:01, although appropriately presented, are not immunogenic. Thus, to address an expanded patient population, phosphopeptide-targeted immunotherapies should be wary of allele-specific differences. What is already known on this topic - Phosphorylated peptides presented by the common HLA alleles A*02:01 and B*07:02 are differentially expressed by multiple tumor types, exhibit structural fitness due to phosphorylation, and are targets of healthy donor T cell surveillance, but it is not clear, however, whether such features apply to phosphopeptides presented by other common HLA alleles. What this study adds - We investigated the tumor presentation, binding, structural features, and immunogenicity of phosphopeptides to the prevalent alleles A*03:01, A*11:01, C*07:01, and C*07:02, selected on the basis of their presentation by malignant cells but not normal cells. We found tumor antigens derived from genetic dependencies in lymphomas and leukemias that bind HLA-A3, -A11, -C7 molecules. While we could detect circulating T cell responses in healthy individuals to A*02:01 and A*11:01 phosphopeptides, we did not find such responses to A*03:01 or C*07:01 phosphopeptides, except when utilizing allogeneic donor T cells, indicating that these phosphopeptides may not be immunogenic in an autologous setting but can still be targeted by other means. How this study might affect research, practice or policy - An expanded patient population expressing alleles other than A*02:01 can be addressed through the development of immunotherapies specific for phosphopeptides profiled in the present work, provided the nuances we describe between alleles are taken into consideration.
Collapse
Affiliation(s)
- Zaki Molvi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité- University Medicine Berlin, Berlin, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Berlin Institute of Health at Charité –Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jessica Urraca
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
| | - Richard J. O’Reilly
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, NY, NY, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
112
|
King CR, Liu Y, Amato KA, Schaack GA, Hu T, Smith JA, Mehle A. Pathogen-driven CRISPR screens identify TREX1 as a regulator of DNA self-sensing during influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527556. [PMID: 36798235 PMCID: PMC9934597 DOI: 10.1101/2023.02.07.527556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Intracellular pathogens interact with host factors, exploiting those that enhance replication while countering those that suppress it. Genetic screens have begun to define the host:pathogen interface and establish a mechanistic basis for host-directed therapies. Yet, limitations of current approaches leave large regions of this interface unexplored. To uncover host factors with pro-pathogen functions, we developed a novel fitness-based screen that queries factors important during the middle-to-late stages of infection. This was achieved by engineering influenza virus to direct the screen by programing dCas9 to modulate host gene expression. A genome-wide screen identified the cytoplasmic DNA exonuclease TREX1 as a potent pro-viral factor. TREX1 normally degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self DNA. Our mechanistic studies revealed that this same process functions during influenza virus infection to enhance replication. Infection triggered release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolized the mitochondrial DNA preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify host innate sensing during RNA virus infection, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen driven fitness-based screens to pinpoint key host regulators of intracellular pathogens.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Grace A. Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A Smith
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
113
|
Subach OM, Vlaskina AV, Agapova YK, Nikolaeva AY, Anokhin KV, Piatkevich KD, Patrushev MV, Boyko KM, Subach FV. Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers. Int J Mol Sci 2023; 24:ijms24043279. [PMID: 36834686 PMCID: PMC9963904 DOI: 10.3390/ijms24043279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Anna V. Vlaskina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Yulia K. Agapova
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Alena Y. Nikolaeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Konstantin V. Anokhin
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Kiryl D. Piatkevich
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Maxim V. Patrushev
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow 123182, Russia
- Correspondence: ; Tel.: +7-499-196-7100-3389
| |
Collapse
|
114
|
Merline R, Rödig H, Zeng-Brouwers J, Poluzzi C, Tascher G, Michaelis J, Lopez-Mosqueda J, Rhiner A, Huber LS, Diehl V, Dikic I, Kögel D, Münch C, Wygrecka M, Schaefer L. A20 binding and inhibitor of nuclear factor kappa B (NF-κB)-1 (ABIN-1): a novel modulator of mitochondrial autophagy. Am J Physiol Cell Physiol 2023; 324:C339-C352. [PMID: 36440857 PMCID: PMC10191128 DOI: 10.1152/ajpcell.00493.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
A20 binding inhibitor of nuclear factor kappa B (NF-κB)-1 (ABIN-1), a polyubiquitin-binding protein, is a signal-induced autophagy receptor that attenuates NF-κB-mediated inflammation and cell death. The present study aimed to elucidate the potential role of ABIN-1 in mitophagy, a biological process whose outcome is decisive in diverse physiological and pathological settings. Microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) was found to be in complex with ectopically expressed hemagglutinin (HA)-tagged-full length (FL)-ABIN-1. Bacterial expression of ABIN-1 and LC3A and LC3B showed direct binding of ABIN-1 to LC3 proteins, whereas mutations in the LC3-interacting region (LIR) 1 and 2 motifs of ABIN-1 abrogated ABIN-1/LC3B-II complex formation. Importantly, induction of autophagy in HeLa cells resulted in colocalization of ABIN-1 with LC3B-II in autophagosomes and with lysosomal-associated membrane protein 1 (LAMP-1) in autophagolysosomes, leading to degradation of ABIN-1 with p62. Interestingly, ABIN-1 was found to translocate to damaged mitochondria in HeLa-mCherry-Parkin transfected cells. In line with this observation, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated deletion of ABIN-1 significantly inhibited the degradation of the mitochondrial outer membrane proteins voltage-dependent anion-selective channel 1 (VDAC-1), mitofusin-2 (MFN2), and translocase of outer mitochondrial membrane (TOM)20. In addition, short interfering RNA (siRNA)-mediated knockdown of ABIN-1 significantly decreased lysosomal uptake of mitochondria in HeLa cells expressing mCherry-Parkin and the fluorescence reporter mt-mKEIMA. Collectively, our results identify ABIN-1 as a novel and selective mitochondrial autophagy regulator that promotes mitophagy, thereby adding a new player to the complex cellular machinery regulating mitochondrial homeostasis.
Collapse
Affiliation(s)
- Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Heiko Rödig
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Chiara Poluzzi
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Jonas Michaelis
- Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | | | - Andrew Rhiner
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
- Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
115
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
116
|
Fan M, Zhang J, Lee CL, Zhang J, Feng L. Structure and thiazide inhibition mechanism of the human Na-Cl cotransporter. Nature 2023; 614:788-793. [PMID: 36792826 PMCID: PMC10030352 DOI: 10.1038/s41586-023-05718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The sodium-chloride cotransporter (NCC) is critical for kidney physiology1. The NCC has a major role in salt reabsorption in the distal convoluted tubule of the nephron2,3, and mutations in the NCC cause the salt-wasting disease Gitelman syndrome4. As a key player in salt handling, the NCC regulates blood pressure and is the target of thiazide diuretics, which have been widely prescribed as first-line medications to treat hypertension for more than 60 years5-7. Here we determined the structures of human NCC alone and in complex with a commonly used thiazide diuretic using cryo-electron microscopy. These structures, together with functional studies, reveal major conformational states of the NCC and an intriguing regulatory mechanism. They also illuminate how thiazide diuretics specifically interact with the NCC and inhibit its transport function. Our results provide critical insights for understanding the Na-Cl cotransport mechanism of the NCC, and they establish a framework for future drug design and for interpreting disease-related mutations.
Collapse
Affiliation(s)
- Minrui Fan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chien-Ling Lee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jinru Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
117
|
Rahmani S, Ahmed H, Ibazebo O, Fussner-Dupas E, Wakarchuk WW, Antonescu CN. O-GlcNAc transferase modulates the cellular endocytosis machinery by controlling the formation of clathrin-coated pits. J Biol Chem 2023; 299:102963. [PMID: 36731797 PMCID: PMC9999237 DOI: 10.1016/j.jbc.2023.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) controls the internalization and function of a wide range of cell surface proteins. CME occurs by the assembly of clathrin and many other proteins on the inner leaflet of the plasma membrane into clathrin-coated pits (CCPs). These structures recruit specific cargo destined for internalization, generate membrane curvature, and in many cases undergo scission from the plasma membrane to yield intracellular vesicles. The diversity of functions of cell surface proteins controlled via internalization by CME may suggest that regulation of CCP formation could be effective to allow cellular adaptation under different contexts. Of interest is how cues derived from cellular metabolism may regulate CME, given the reciprocal role of CME in controlling cellular metabolism. The modification of proteins with O-linked β-GlcNAc (O-GlcNAc) is sensitive to nutrient availability and may allow cellular adaptation to different metabolic conditions. Here, we examined how the modification of proteins with O-GlcNAc may control CCP formation and thus CME. We used perturbation of key enzymes responsible for protein O-GlcNAc modification, as well as specific mutants of the endocytic regulator AAK1 predicted to be impaired for O-GlcNAc modification. We identify that CCP initiation and the assembly of clathrin and other proteins within CCPs are controlled by O-GlcNAc protein modification. This reveals a new dimension of regulation of CME and highlights the important reciprocal regulation of cellular metabolism and endocytosis.
Collapse
Affiliation(s)
- Sadia Rahmani
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Hafsa Ahmed
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Osemudiamen Ibazebo
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Eden Fussner-Dupas
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada.
| |
Collapse
|
118
|
Williams NL, Hong L, Jaffe M, Shields CE, Haynes KA. PIC recruitment by synthetic reader-actuators to polycomb-silenced genes blocks triple-negative breast cancer invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525196. [PMID: 36747762 PMCID: PMC9900809 DOI: 10.1101/2023.01.23.525196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Scientists have used small molecule inhibitors and genetic knockdown of gene-silencing polycomb repressive complexes (PRC1/2) to determine if restoring the expression of tumor suppressor genes can block proliferation and invasion of cancer cells. A major limitation of this approach is that inhibitors can not restore key transcriptional activators that are mutated in many cancers, such as p53 and members of the BRAF SWI/SNF complex. Furthermore, small molecule inhibitors can alter the activity of, rather than inhibit, the polycomb enzyme EZH2. While chromatin has been shown to play a major role in gene regulation in cancer, poor clinical results for polycomb chromatin-targeting therapies for diseases like triple-negative breast cancer (TNBC) could discourage further development of this emerging avenue for treatment. To overcome the limitations of inhibiting polycomb to study epigenetic regulation, we developed an engineered chromatin protein to manipulate transcription. The synthetic reader-actuator (SRA) is a fusion protein that directly binds a target chromatin modification and regulates gene expression. Here, we report the activity of an SRA built from polycomb chromodomain and VP64 modules that bind H3K27me3 and subunits of the Mediator complex, respectively. In SRA-expressing BT-549 cells, we identified 122 upregulated differentially expressed genes (UpDEGs, ≥ 2-fold activation, adjusted p < 0.05). On-target epigenetic regulation was determined by identifying UpDEGs at H3K27me3-enriched, closed chromatin. SRA activity induced activation of genes involved in cell death, cell cycle arrest, and the inhibition of migration and invasion. SRA-expressing BT-549 cells showed reduced spheroid size in Matrigel over time, loss of invasion, and activation of apoptosis. These results show that Mediator-recruiting regulators broadly targeted to silenced chromatin activate silenced tumor suppressor genes and stimulate anti-cancer phenotypes. Therefore further development of gene-activating epigenetic therapies might benefit TNBC patients.
Collapse
Affiliation(s)
- Natecia L Williams
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| | - Lauren Hong
- Georgia Institute of Technology, Atlanta, GA 30332
| | - Maya Jaffe
- Georgia Institute of Technology, Atlanta, GA 30332
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30312 USA
| |
Collapse
|
119
|
Fernandez SG, Ferguson L, Ingolia NT. Ribosome rescue factor PELOTA modulates translation start site choice and protein isoform levels of transcription factor C/EBP α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524343. [PMID: 36711859 PMCID: PMC9882168 DOI: 10.1101/2023.01.16.524343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Translation initiation at alternative start sites can dynamically control the synthesis of two or more functionally distinct protein isoforms from a single mRNA. Alternate isoforms of the hematopoietic transcription factor CCAAT-enhancer binding protein α (C/EBPα) produced from different start sites exert opposing effects during myeloid cell development. This alternative initiation depends on sequence features of the CEBPA transcript, including a regulatory upstream open reading frame (uORF), but the molecular basis is not fully understood. Here we identify trans-acting factors that affect C/EBPα isoform choice using a sensitive and quantitative two-color fluorescence reporter coupled with CRISPRi screening. Our screen uncovered a role for the ribosome rescue factor PELOTA (PELO) in promoting expression of the longer C/EBPα isoform, by directly removing inhibitory unrecycled ribosomes and through indirect effects mediated by the mechanistic target of rapamycin (mTOR) kinase. Our work provides further mechanistic insights into coupling between ribosome recycling and translation reinitiation in regulation of a key transcription factor, with implications for normal hematopoiesis and leukemiagenesis.
Collapse
Affiliation(s)
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Nicholas T. Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley
| |
Collapse
|
120
|
Luqman-Fatah A, Watanabe Y, Uno K, Ishikawa F, Moran JV, Miyoshi T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat Commun 2023; 14:203. [PMID: 36639706 PMCID: PMC9839780 DOI: 10.1038/s41467-022-35757-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Some interferon stimulated genes (ISGs) encode proteins that inhibit LINE-1 (L1) retrotransposition. Here, we use immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify proteins that associate with the L1 ORF1-encoded protein (ORF1p) in ribonucleoprotein particles. Three ISG proteins that interact with ORF1p inhibit retrotransposition: HECT and RLD domain containing E3 ubiquitin-protein ligase 5 (HERC5); 2'-5'-oligoadenylate synthetase-like (OASL); and helicase with zinc finger 2 (HELZ2). HERC5 destabilizes ORF1p, but does not affect its cellular localization. OASL impairs ORF1p cytoplasmic foci formation. HELZ2 recognizes sequences and/or structures within the L1 5'UTR to reduce L1 RNA, ORF1p, and ORF1p cytoplasmic foci levels. Overexpression of WT or reverse transcriptase-deficient L1s lead to a modest induction of IFN-α expression, which is abrogated upon HELZ2 overexpression. Notably, IFN-α expression is enhanced upon overexpression of an ORF1p RNA binding mutant, suggesting ORF1p binding might protect L1 RNA from "triggering" IFN-α induction. Thus, ISG proteins can inhibit retrotransposition by different mechanisms.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuko Uno
- Division of Basic Research, Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
121
|
Jarman EJ, Horcas‐Lopez M, Waddell SH, MacMaster S, Gournopanos K, Soong DYH, Musialik K, Tsokkou P, Ng M, Cambridge WA, Wilson DH, Kagey MH, Newman W, Pollard JW, Boulter L. DKK1 drives immune suppressive phenotypes in intrahepatic cholangiocarcinoma and can be targeted with anti-DKK1 therapeutic DKN-01. Liver Int 2023; 43:208-220. [PMID: 35924447 PMCID: PMC10087034 DOI: 10.1111/liv.15383] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Dickkopf-1 (DKK1) is associated with poor prognosis in intrahepatic cholangiocarcinoma (iCCA), but the mechanisms behind this are unclear. Here, we show that DKK1 plays an immune regulatory role in vivo and inhibition reduces tumour growth. METHODS Various in vivo GEMM mouse models and patient samples were utilized to assess the effects of tumour specific DKK1 overexpression in iCCA. DKK1-driven changes to the tumour immune microenvironment were characterized by immunostaining and gene expression analysis. DKK1 overexpressing and damage-induced models of iCCA were used to demonstrate the therapeutic efficacy of DKK1 inhibition in these contexts using the anti-DKK1 therapeutic, DKN-01. RESULTS DKK1 overexpression in mouse models of iCCA drives an increase in chemokine and cytokine signalling, the recruitment of regulatory macrophages, and promotes the formation of a tolerogenic niche with higher numbers of regulatory T cells. We show a similar association of DKK1 with FOXP3 and regulatory T cells in patient tissue and gene expression data, demonstrating these effects are relevant to human iCCA. Finally, we demonstrate that inhibition of DKK1 with the monoclonal antibody mDKN-01 is effective at reducing tumour burden in two distinct mouse models of the disease. CONCLUSION DKK1 promotes tumour immune evasion in iCCA through the recruitment of immune suppressive macrophages. Targeting DKK1 with a neutralizing antibody is effective at reducing tumour growth in vivo. As such, DKK1 targeted and immune modulatory therapies may be an effective strategy in iCCA patients with high DKK1 tumour expression or tolerogenic immune phenotypes.
Collapse
Affiliation(s)
- Edward J. Jarman
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Marta Horcas‐Lopez
- MRC Centre for Reproductive HealthQueen's Medical Research Institute, The University of EdinburghEdinburghUK
| | - Scott H. Waddell
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Stephanie MacMaster
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | | | - Daniel Y. H. Soong
- MRC Centre for Reproductive HealthQueen's Medical Research Institute, The University of EdinburghEdinburghUK
| | - Kamila I. Musialik
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Panagiota Tsokkou
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - Minn‐E Ng
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | - William A. Cambridge
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
- Department of Clinical SurgeryUniversity of Edinburgh, Little France CrescentEdinburghUK
| | - David H. Wilson
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| | | | | | - Jeffrey W. Pollard
- MRC Centre for Reproductive HealthQueen's Medical Research Institute, The University of EdinburghEdinburghUK
| | - Luke Boulter
- MRC Human Genetics UnitInstitute of Genetics and Cancer, University of EdinburghEdinburghUK
| |
Collapse
|
122
|
Arias-Arias JL, Molina-Castro SE, Monturiol-Gross L, Lomonte B, Corrales-Aguilar E. Stable production of recombinant SARS-CoV-2 receptor-binding domain in mammalian cells with co-expression of a fluorescent reporter and its validation as antigenic target for COVID-19 serology testing. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 37:e00780. [PMID: 36619904 PMCID: PMC9805376 DOI: 10.1016/j.btre.2022.e00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
SARS-CoV-2 receptor binding domain (RBD) recognizes the angiotensin converting enzyme 2 (ACE2) receptor in host cells that enables infection. Due to its antigenic specificity, RBD production is important for development of serological assays. Here we have established a system for stable RBD production in HEK 293T mammalian cells that simultaneously express the recombinant fluorescent protein dTomato, which enables kinetic monitoring of RBD expression by fluorescence microscopy. In addition, we have validated the use of this recombinant RBD in an ELISA assay for the detection of anti-RBD antibodies in serum samples of COVID-19 convalescent patients. Recombinant RBD generated using this approach can be useful for generation of antibody-based therapeutics against SARS-CoV-2, as well serological assays aimed to test antibody responses to this relevant virus.
Collapse
Affiliation(s)
- Jorge L. Arias-Arias
- Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología Universidad de Costa Rica, San José, 11501-2060, Costa Rica,Dulbecco Lab Studio, Residencial Lisboa 2G, Alajuela, 20102, Costa Rica
| | - Silvia E. Molina-Castro
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Laura Monturiol-Gross
- Instituto Clodomiro Picado (ICP), Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica,Corresponding author.
| | - Bruno Lomonte
- Instituto Clodomiro Picado (ICP), Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Eugenia Corrales-Aguilar
- Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| |
Collapse
|
123
|
AMPK is required for recovery from metabolic stress induced by ultrasound microbubble treatment. iScience 2022; 26:105883. [PMID: 36685038 PMCID: PMC9845798 DOI: 10.1016/j.isci.2022.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Ultrasound-stimulated microbubble (USMB) treatment is a promising strategy for cancer therapy. USMB promotes drug delivery by sonoporation and enhanced endocytosis, and also impairs cell viability. However, USMB elicits heterogeneous effects on cell viability, with apparently minimal effects on a subset of cells. This suggests that mechanisms of adaptation following USMB allow some cells to survive and/or proliferate. Herein, we used several triple negative breast cancer cells to identify the molecular mechanisms of adaptation to USMB-induced stress. We found that USMB alters steady-state levels of amino acids, glycolytic intermediates, and citric acid cycle intermediates, suggesting that USMB imposes metabolic stress on cells. USMB treatment acutely reduces ATP levels and stimulates the phosphorylation and activation of AMP-activated protein kinase (AMPK). AMPK is required to restore ATP levels and support cell proliferation post-USMB treatment. These results suggest that AMPK and metabolic perturbations are likely determinants of the antineoplastic efficacy of USMB treatment.
Collapse
|
124
|
Tschorn N, van Heuvel Y, Stitz J. Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase. Mol Biotechnol 2022:10.1007/s12033-022-00642-6. [DOI: 10.1007/s12033-022-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
AbstractThe use of two-component transposon plasmid vector systems, namely, a transposase construct and a donor vector carrying the gene of interest (GOI) can accelerate the development of recombinant cell lines. However, the undesired stable transfection of the transposase construct and the sustained expression of the enzyme can cause genetic instability due to the re-mobilization of the previously transposed donor vectors. Using a Sleeping Beauty-derived vector system, we established three recombinant cell pools and demonstrate stable integration of the transposase construct and sustained expression of the transposase over a period of 48 days. To provide an alternative approach, transcripts of the transposase gene were generated in vitro and co-transfected with donor vector plasmid at different ratios and mediating high GOI copy number integrations and expression levels. We anticipate that the use of transposase mRNA will foster further improvements in future cell line development processes.
Collapse
|
125
|
Akova Ölken E, Aszodi A, Taipaleenmäki H, Saito H, Schönitzer V, Chaloupka M, Apfelbeck M, Böcker W, Saller MM. SFRP2 Overexpression Induces an Osteoblast-like Phenotype in Prostate Cancer Cells. Cells 2022; 11:cells11244081. [PMID: 36552843 PMCID: PMC9777425 DOI: 10.3390/cells11244081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer bone metastasis is still one of the most fatal cancer diagnoses for men. Survival of the circulating prostate tumor cells and their adaptation strategy to survive in the bone niche is the key point to determining metastasis in early cancer stages. The promoter of SFRP2 gene, encoding a WNT signaling modulator, is hypermethylated in many cancer types including prostate cancer. Moreover, SFRP2 can positively regulate osteogenic differentiation in vitro and in vivo. Here, we showed SFRP2 overexpression in the prostate cancer cell line PC3 induces an epithelial mesenchymal transition (EMT), increases the attachment, and modifies the transcriptome towards an osteoblast-like phenotype (osteomimicry) in a collagen 1-dependent manner. Our data reflect a novel molecular mechanism concerning how metastasizing prostate cancer cells might increase their chance to survive within bone tissue.
Collapse
Affiliation(s)
- Elif Akova Ölken
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Veronika Schönitzer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Michael Chaloupka
- Urologischen Klinik und Poliklinik, LMU Hospital, Marchioninistr 15, 81377 München, Germany
| | - Maria Apfelbeck
- Urologischen Klinik und Poliklinik, LMU Hospital, Marchioninistr 15, 81377 München, Germany
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Maximilian Michael Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-89-4400-55486
| |
Collapse
|
126
|
Shibano M, Kubota T, Kokubun N, Miyaji Y, Kuriki H, Ito Y, Hamanoue H, Takahashi MP. Periodic paralysis due to cumulative effects of rare variants in SCN4A with small functional alterations. Muscle Nerve 2022; 66:757-761. [PMID: 36116128 DOI: 10.1002/mus.27725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION/AIMS Mutations in the SCN4A gene encoding a voltage-gated sodium channel (Nav1.4) cause hyperkalemic periodic paralysis (HyperPP) and hypokalemic periodic paralysis (HypoPP). Typically, both HyperPP and HypoPP are considered as monogenic disorders caused by a missense mutation with a large functional effect. However, a few cases with atypical periodic paralysis phenotype have been caused by multiple mutations in ion-channel genes expressed in skeletal muscles. In this study we investigated the underlying pathogenic mechanisms in such cases. METHODS We clinically assessed two families: proband 1 with HyperPP and proband 2 with atypical periodic paralysis with hypokalemia. Genetic analyses were performed by next-generation sequencing and conventional Sanger sequencing, followed by electrophysiological analyses of the mutant Nav1.4 channels expressed in human embryonic kidney 293T (HEK293T) cells using the whole-cell patch-clamp technique. RESULTS In proband 1, K880del was identified in the SCN4A gene. In proband 2, K880del and a novel mutation, R1639H, were identified in the same allele of the SCN4A gene. Functional analyses revealed that the K880del in SCN4A has a weak functional effect on hNav1.4, increasing the excitability of the sarcolemma, which could represent a potential pathogenic factor. Although R1639H alone did not reveal functional changes strong enough to be pathogenic, Nav1.4 with both K880del and R1639H showed enhanced activation compared with K880del alone, indicating that R1639H may modify the hNav1.4 channel function. DISCUSSION A cumulative effect of variants with small functional alterations may be considered as the underpinning oligogenic pathogenic mechanisms for the unusual phenotype of periodic paralysis.
Collapse
Affiliation(s)
- Maki Shibano
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoya Kubota
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norito Kokubun
- Department of Neurology, Dokkyo Medical University, Shimotsuga, Japan
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroko Kuriki
- Department of Clinical Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuzuru Ito
- Department of Endocrinology and Metabolism, Yokohama City University Medical Center, Yokohama, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masanori P Takahashi
- Clinical Neurophysiology, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
127
|
Siemund AL, Hanewald T, Kowarz E, Marschalek R. MLL-AF4 and a murinized pSer-variant thereof are turning on the nucleolar stress pathway. Cell Biosci 2022; 12:47. [PMID: 35468859 PMCID: PMC9036721 DOI: 10.1186/s13578-022-00781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
Background Recent pathomolecular studies on the MLL-AF4 fusion protein revealed that the murinized version of MLL-AF4, the MLL-Af4 fusion protein, was able to induce leukemia when expressed in murine or human hematopoietic stem/progenitor cells (Lin et al. in Cancer Cell 30:737–749, 2016). In parallel, a group from Japan demonstrated that the pSer domain of the AF4 protein, as well as the pSer domain of the MLL-AF4 fusion is able to bind the Pol I transcription factor complex SL1 (Okuda et al. in Nat Commun 6:8869, 2015). Here, we investigated the human MLL-AF4 and a pSer-murinized version thereof for their functional properties in mammalian cells. Gene expression profiling studies were complemented by intracellular localization studies and functional experiments concerning their biological activities in the nucleolus. Results Based on our results, we have to conclude that MLL-AF4 is predominantly localizing inside the nucleolus, thereby interfering with Pol I transcription and ribosome biogenesis. The murinized pSer-variant is localizing more to the nucleus, which may suggest a different biological behavior. Of note, AF4-MLL seems to cooperate at the molecular level with MLL-AF4 to steer target gene transcription, but not with the pSer-murinized version of it. Conclusion This study provides new insights and a molecular explanation for the described differences between hMLL-hAF4 (not leukemogenic) and hMLL-mAf4 (leukemogenic). While the human pSer domain is able to efficiently recruit the SL1 transcription factor complex, the murine counterpart seems to be not. This has several consequences for our understanding of t(4;11) leukemia which is the most frequent leukemia in infants, childhood and adults suffering from MLL-r acute leukemia. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00781-y.
Collapse
|
128
|
Horizontal Transfer and Evolutionary Profiles of Two Tc1/DD34E Transposons ( ZB and SB) in Vertebrates. Genes (Basel) 2022; 13:genes13122239. [PMID: 36553507 PMCID: PMC9777934 DOI: 10.3390/genes13122239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Both ZeBrafish (ZB), a recently identified DNA transposon in the zebrafish genome, and SB, a reconstructed transposon originally discovered in several fish species, are known to exhibit high transposition activity in vertebrate cells. Although a similar structural organization was observed for ZB and SB transposons, the evolutionary profiles of their homologs in various species remain unknown. In the present study, we compared their taxonomic ranges, structural arrangements, sequence identities, evolution dynamics, and horizontal transfer occurrences in vertebrates. In total, 629 ZB and 366 SB homologs were obtained and classified into four distinct clades, named ZB, ZB-like, SB, and SB-like. They displayed narrow taxonomic distributions in eukaryotes, and were mostly found in vertebrates, Actinopterygii in particular tended to be the major reservoir hosts of these transposons. Similar structural features and high sequence identities were observed for transposons and transposase, notably homologous to the SB and ZB elements. The genomic sequences that flank the ZB and SB transposons in the genomes revealed highly conserved integration profiles with strong preferential integration into AT repeats. Both SB and ZB transposons experienced horizontal transfer (HT) events, which were most common in Actinopterygii. Our current study helps to increase our understanding of the evolutionary properties and histories of SB and ZB transposon families in animals.
Collapse
|
129
|
Amrhein JA, Berger LM, Tjaden A, Krämer A, Elson L, Tolvanen T, Martinez-Molina D, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Discovery of 3-Amino-1 H-pyrazole-Based Kinase Inhibitors to Illuminate the Understudied PCTAIRE Family. Int J Mol Sci 2022; 23:ijms232314834. [PMID: 36499165 PMCID: PMC9736855 DOI: 10.3390/ijms232314834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20-120 nM and 50-180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Tuomas Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Solnavägen 1, 17177 Solna, Sweden
| | | | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
- Correspondence: (S.K.); (T.H.)
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Correspondence: (S.K.); (T.H.)
| |
Collapse
|
130
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
131
|
Coursier D, Coulette D, Leman H, Grenier E, Ichim G. Live-cell imaging and mathematical analysis of the “community effect” in apoptosis. Apoptosis 2022; 28:326-334. [PMID: 36346539 DOI: 10.1007/s10495-022-01783-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/11/2022]
Abstract
As a cellular intrinsic mechanism leading to cellular demise, apoptosis was thoroughly characterized from a mechanistic perspective. Nowadays there is an increasing interest in describing the non-cell autonomous or community effects of apoptosis, especially in the context of resistance to cancer treatments. Transitioning from cell-centered to cell population-relevant mechanisms adds a layer of complexity for imaging and analyzing an enormous number of apoptotic events. In addition, the community effect between apoptotic and living cells is difficult to be taken into account for complex analysis. We describe here a robust and easy to implement method to analyze the interactions between cancer cells, while under apoptotic pressure. Using this approach we showed as proof-of-concept that apoptosis is insensitive to cellular density, while the proximity to apoptotic cells increases the probability of a given cell to undergo apoptosis.
Collapse
Affiliation(s)
- Diane Coursier
- Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
| | - David Coulette
- ENS-Lyon, UMR CNRS 5669 'UMPA' and INRIA Lyon, Project NUMED, Lyon, 69364, France
| | - Hélène Leman
- ENS-Lyon, UMR CNRS 5669 'UMPA' and INRIA Lyon, Project NUMED, Lyon, 69364, France
| | - Emmanuel Grenier
- ENS-Lyon, UMR CNRS 5669 'UMPA' and INRIA Lyon, Project NUMED, Lyon, 69364, France
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France.
| |
Collapse
|
132
|
Montaño-Rendón F, Walpole GF, Krause M, Hammond GR, Grinstein S, Fairn GD. PtdIns(3,4)P2, Lamellipodin, and VASP coordinate actin dynamics during phagocytosis in macrophages. J Cell Biol 2022; 221:e202207042. [PMID: 36165850 PMCID: PMC9521245 DOI: 10.1083/jcb.202207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositides are pivotal regulators of vesicular traffic and signaling during phagocytosis. Phagosome formation, the initial step of the process, is characterized by local membrane remodeling and reorganization of the actin cytoskeleton that leads to formation of the pseudopods that drive particle engulfment. Using genetically encoded fluorescent probes, we found that upon particle engagement a localized pool of PtdIns(3,4)P2 is generated by the sequential activities of class I phosphoinositide 3-kinases and phosphoinositide 5-phosphatases. Depletion of this locally generated pool of PtdIns(3,4)P2 blocks pseudopod progression and ultimately phagocytosis. We show that the PtdIns(3,4)P2 effector Lamellipodin (Lpd) is recruited to nascent phagosomes by PtdIns(3,4)P2. Furthermore, we show that silencing of Lpd inhibits phagocytosis and produces aberrant pseudopodia with disorganized actin filaments. Finally, vasodilator-stimulated phosphoprotein (VASP) was identified as a key actin-regulatory protein mediating phagosome formation downstream of Lpd. Mechanistically, our findings imply that a pathway involving PtdIns(3,4)P2, Lpd, and VASP mediates phagocytosis at the stage of particle engulfment.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Glenn F.W. Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Krause
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Gerald R.V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gregory D. Fairn
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
133
|
Clark V, Waters K, Orsburn B, Bumpus NN, Kundu N, Sczepanski JT, Ray P, Arroyo‐Currás N. Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Angew Chem Int Ed Engl 2022; 61:e202211292. [PMID: 35999181 PMCID: PMC9633453 DOI: 10.1002/anie.202211292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/12/2023]
Abstract
Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Kelly Waters
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Ben Orsburn
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Namandjé N. Bumpus
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Nandini Kundu
- Department of ChemistryTexas A&M University College StationTexasTX 77842USA
| | | | - Partha Ray
- Department of SurgeryDivision of Surgical OncologyMoores Cancer CenterDepartment of MedicineDivision of Infectious Diseases and Global Public HealthUniversity of California San Diego HealthSan DiegoCA 92093USA
| | - Netzahualcóyotl Arroyo‐Currás
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| |
Collapse
|
134
|
Karasu OR, Neuner A, Atorino ES, Pereira G, Schiebel E. The central scaffold protein CEP350 coordinates centriole length, stability, and maturation. J Cell Biol 2022; 221:213625. [PMID: 36315013 PMCID: PMC9623370 DOI: 10.1083/jcb.202203081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/11/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
The centriole is the microtubule-based backbone that ensures integrity, function, and cell cycle-dependent duplication of centrosomes. Mostly unclear mechanisms control structural integrity of centrioles. Here, we show that the centrosome protein CEP350 functions as scaffold that coordinates distal-end properties of centrioles such as length, stability, and formation of distal and subdistal appendages. CEP350 fulfills these diverse functions by ensuring centriolar localization of WDR90, recruiting the proteins CEP78 and OFD1 to the distal end of centrioles and promoting the assembly of subdistal appendages that have a role in removing the daughter-specific protein Centrobin. The CEP350-FOP complex in association with CEP78 or OFD1 controls centriole microtubule length. Centrobin safeguards centriole distal end stability, especially in the compromised CEP350-/- cells, while the CEP350-FOP-WDR90 axis secures centriole integrity. This study identifies CEP350 as a guardian of the distal-end region of centrioles without having an impact on the proximal PCM part.
Collapse
Affiliation(s)
- Onur Rojhat Karasu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany,Heidelberg Biosciences International Graduate School, Universität Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany
| | - Enrico Salvatore Atorino
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany,Center of Organismal Studies, Universität Heidelberg, Heidelberg, Germany,Deutsches Krebsforschungszentrum (DKFZ), Molecular Biology of Centrosomes and Cilia Group, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Universität Heidelberg, Heidelberg, Germany,Correspondence to Elmar Schiebel:
| |
Collapse
|
135
|
Cioce A, Calle B, Rizou T, Lowery SC, Bridgeman VL, Mahoney KE, Marchesi A, Bineva-Todd G, Flynn H, Li Z, Tastan OY, Roustan C, Soro-Barrio P, Rafiee MR, Garza-Garcia A, Antonopoulos A, Wood TM, Keenan T, Both P, Huang K, Parmeggian F, Snijders AP, Skehel M, Kjær S, Fascione MA, Bertozzi CR, Haslam SM, Flitsch SL, Malaker SA, Malanchi I, Schumann B. Cell-specific bioorthogonal tagging of glycoproteins. Nat Commun 2022; 13:6237. [PMID: 36284108 PMCID: PMC9596482 DOI: 10.1038/s41467-022-33854-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.
Collapse
Affiliation(s)
- Anna Cioce
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Beatriz Calle
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Tatiana Rizou
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah C Lowery
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Victoria L Bridgeman
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Andrea Marchesi
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ganka Bineva-Todd
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Helen Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Zhen Li
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Omur Y Tastan
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Pablo Soro-Barrio
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Thomas M Wood
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tessa Keenan
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Peter Both
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- R&D Department, Axxence Slovakia s.r.o., 81107, Bratislava, Slovakia
| | - Kun Huang
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Fabio Parmeggian
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milano, Italy
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Carolyn R Bertozzi
- Sarafan ChEM-H, Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sabine L Flitsch
- School of Chemistry & Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UK
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Benjamin Schumann
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK.
- Chemical Glycobiology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
136
|
Futamata H, Fukuda M, Umeda R, Yamashita K, Tomita A, Takahashi S, Shikakura T, Hayashi S, Kusakizako T, Nishizawa T, Homma K, Nureki O. Cryo-EM structures of thermostabilized prestin provide mechanistic insights underlying outer hair cell electromotility. Nat Commun 2022; 13:6208. [PMID: 36266333 PMCID: PMC9584906 DOI: 10.1038/s41467-022-34017-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/11/2022] [Indexed: 01/11/2023] Open
Abstract
Outer hair cell elecromotility, driven by prestin, is essential for mammalian cochlear amplification. Here, we report the cryo-EM structures of thermostabilized prestin (PresTS), complexed with chloride, sulfate, or salicylate at 3.52-3.63 Å resolutions. The central positively-charged cavity allows flexible binding of various anion species, which likely accounts for the known distinct modulations of nonlinear capacitance (NLC) by different anions. Comparisons of these PresTS structures with recent prestin structures suggest rigid-body movement between the core and gate domains, and provide mechanistic insights into prestin inhibition by salicylate. Mutations at the dimeric interface severely diminished NLC, suggesting that stabilization of the gate domain facilitates core domain movement, thereby contributing to the expression of NLC. These findings advance our understanding of the molecular mechanism underlying mammalian cochlear amplification.
Collapse
Affiliation(s)
- Haon Futamata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo; Meguro-ku, Tokyo, 153-8503, Japan
| | - Rie Umeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoe Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Takafumi Shikakura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.
| | - Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL, 60608, USA.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
137
|
Henderson J, Havranek O, Ma MCJ, Herman V, Kupcova K, Chrbolkova T, Pacheco-Blanco M, Wang Z, Comer JM, Zal T, Davis RE. Detecting Förster resonance energy transfer in living cells by conventional and spectral flow cytometry. Cytometry A 2022; 101:818-834. [PMID: 34128311 DOI: 10.1002/cyto.a.24472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.
Collapse
Affiliation(s)
- Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Ondrej Havranek
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Vaclav Herman
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Chrbolkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | | | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin M Comer
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
138
|
Pszenny V, Tjhin E, Alves‐Ferreira EV, Spada S, Bouamr F, Nair V, Ganesan S, Grigg ME. Using the Sleeping Beauty (SB) Transposon to Generate Stable Cells Producing Enveloped Virus-Like Particles (eVLPs) Pseudotyped with SARS-CoV-2 Proteins for Vaccination. Curr Protoc 2022; 2:e575. [PMID: 36300895 PMCID: PMC9874545 DOI: 10.1002/cpz1.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Sleeping Beauty (SB) transposon system is an efficient non-viral tool for gene transfer into a variety of cells, including human cells. Through a cut-and-paste mechanism, your favorite gene (YFG) is integrated into AT-rich regions within the genome, providing stable long-term expression of the transfected gene. The SB system is evolving and has become a powerful tool for gene therapy. There are no safety concerns using this system, the handling is easy, and the time required to obtain a stable cell line is significantly reduced compared to other systems currently available. Here, we present a novel application of this system to generate, within 8 days, a stable producer HEK293T cell line capable of constitutively delivering enveloped virus-like particles (eVLPs) for vaccination. We provide step-by-step protocols for generation of the SB transposon constructs, transfection procedures, and validation of the produced eVLPs. We next describe a method to pseudotype the constitutively produced eVLPs using the Spike protein derived from the SARS-CoV-2 virus (by coating the eVLP capsid with the heterologous antigen). We also describe optimization methods to scale up the production of pseudotyped eVLPs in a laboratory setting (from 100 µg to 5 mg). © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Generation of the SB plasmids Basic Protocol 2: Generation of a stable HEK293T cell line constitutively secreting MLV-based eVLPs Basic Protocol 3: Evaluation of the SB constructs by immunofluorescence assay Basic Protocol 4: Validation of eVLPs by denaturing PAGE and western blot Alternate Protocol 1: Analysis of SARS-CoV-2 Spike protein oligomerization using blue native gel electrophoresis and western blot Alternate Protocol 2: Evaluation of eVLP quality by electron microscopy (negative staining) Basic Protocol 5: Small-scale production of eVLPs Alternate Protocol 3: Large-scale production of eVLPs (up to about 1 to 3 mg VLPs) Alternate Protocol 4: Large-scale production of eVLPs (up to about 3 to 5 mg VLPs) Support Protocol: Quantification of total protein concentration by Bradford assay.
Collapse
Affiliation(s)
- Viviana Pszenny
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Erick Tjhin
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Eliza V.C. Alves‐Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Stephanie Spada
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Fadila Bouamr
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Vinod Nair
- Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonMontana
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMaryland
| |
Collapse
|
139
|
Ong CEB, Cheng Y, Siddle HV, Lyons AB, Woods GM, Flies AS. Class II transactivator induces expression of MHC-I and MHC-II in transmissible Tasmanian devil facial tumours. Open Biol 2022; 12:220208. [PMID: 36259237 PMCID: PMC9579919 DOI: 10.1098/rsob.220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
MHC-I and MHC-II molecules are critical components of antigen presentation and T cell immunity to pathogens and cancer. The two monoclonal transmissible devil facial tumours (DFT1, DFT2) exploit MHC-I pathways to overcome immunological anti-tumour and allogeneic barriers. This exploitation underpins the ongoing transmission of DFT cells across the wild Tasmanian devil population. We have previously shown that the overexpression of NLRC5 in DFT1 and DFT2 cells can regulate components of the MHC-I pathway but not MHC-II, establishing the stable upregulation of MHC-I on the cell surface. As MHC-II molecules are crucial for CD4+ T cell activation, MHC-II expression in tumour cells is beginning to gain traction in the field of immunotherapy and cancer vaccines. The overexpression of Class II transactivator in transfected DFT1 and DFT2 cells induced the transcription of several genes of the MHC-I and MHC-II pathways. This was further supported by the upregulation of MHC-I protein on DFT1 and DFT2 cells, but interestingly MHC-II protein was upregulated only in DFT1 cells. This new insight into the regulation of MHC-I and MHC-II pathways in cells that naturally overcome allogeneic barriers can inform vaccine, immunotherapy and tissue transplant strategies for human and veterinary medicine.
Collapse
Affiliation(s)
- Chrissie E. B. Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hannah V. Siddle
- Department of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK,Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| | - Andrew S. Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| |
Collapse
|
140
|
Shi Y, Kim H, Hamann CA, Rhea EM, Brunger JM, Lippmann ES. Nuclear receptor ligand screening in an iPSC-derived in vitro blood-brain barrier model identifies new contributors to leptin transport. Fluids Barriers CNS 2022; 19:77. [PMID: 36131285 PMCID: PMC9494897 DOI: 10.1186/s12987-022-00375-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The hormone leptin exerts its function in the brain to reduce food intake and increase energy expenditure to prevent obesity. However, most obese subjects reflect the resistance to leptin even with elevated serum leptin. Considering that leptin must cross the blood-brain barrier (BBB) in several regions to enter the brain parenchyma, altered leptin transport through the BBB might play an important role in leptin resistance and other biological conditions. Here, we report the use of a human induced pluripotent stem cell (iPSC)-derived BBB model to explore mechanisms that influence leptin transport. METHODS iPSCs were differentiated into brain microvascular endothelial cell (BMEC)-like cells using standard methods. BMEC-like cells were cultured in Transwell filters, treated with ligands from a nuclear receptor agonist library, and assayed for leptin transport using an enzyme-linked immune sorbent assay. RNA sequencing was further used to identify differentially regulated genes and pathways. The role of a select hit in leptin transport was tested with the competitive substrate assay and after gene knockdown using CRISPR techniques. RESULTS Following a screen of 73 compounds, 17β-estradiol was identified as a compound that could significantly increase leptin transport. RNA sequencing revealed many differentially expressed transmembrane transporters after 17β-estradiol treatment. Of these, cationic amino acid transporter-1 (CAT-1, encoded by SLC7A1) was selected for follow-up analyses due to its high and selective expression in BMECs in vivo. Treatment of BMEC-like cells with CAT-1 substrates, as well as knockdown of CAT-1 expression via CRISPR-mediated epigenome editing, yielded significant increases in leptin transport. CONCLUSIONS A major female sex hormone, as well as an amino acid transporter, were revealed as regulators of leptin BBB transport in the iPSC-derived BBB model. Outcomes from this work provide insights into regulation of hormone transport across the BBB.
Collapse
Affiliation(s)
- Yajuan Shi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catherine A Hamann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth M Rhea
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
141
|
Saunderson SC, Hosseini-Rad SMA, McLellan AD. Noise-Reduction and Sensitivity-Enhancement of a Sleeping Beauty-Based Tet-On System. Genes (Basel) 2022; 13:genes13101679. [PMID: 36292564 PMCID: PMC9602432 DOI: 10.3390/genes13101679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Tetracycline-inducible systems are widely used control elements for mammalian gene expression. Despite multiple iterations to improve inducibility, their use is still compromised by basal promoter activity in the absence of tetracyclines. In a mammalian system, we previously showed that the introduction of the G72V mutation in the rtTA-M2 tetracycline activator lowers the basal level expression and increases the fold-induction of multiple genetic elements in a long chimeric antigen receptor construct. In this study, we confirmed that the G72V mutation was effective in minimising background expression in the absence of an inducer, resulting in an increase in fold-expression. Loss of responsiveness due to the G72V mutation was compensated through the incorporation of four sensitivity enhancing (SE) mutations, without compromising promoter tightness. However, SE mutations alone (without G72V) led to undesirable leakiness. Although cryptic splice site removal from rtTA did not alter the inducible control of the luciferase reporter gene in this simplified vector system, this is still recommended as a precaution in more complex multi-gene elements that contain rtTA. The optimized expression construct containing G72V and SE mutations currently provides the best improvement of fold-induction mediated by the rtTA-M2 activator in a mammalian system.
Collapse
Affiliation(s)
- Sarah C. Saunderson
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| | - SM Ali Hosseini-Rad
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
- Centre of Excellence in Immunology and Immune-Mediated Diseases, University of Chulalongkorn, Bangkok 10330, Thailand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
142
|
Yang EY, Howard GR, Brock A, Yankeelov TE, Lorenzo G. Mathematical characterization of population dynamics in breast cancer cells treated with doxorubicin. Front Mol Biosci 2022; 9:972146. [PMID: 36172049 PMCID: PMC9510895 DOI: 10.3389/fmolb.2022.972146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The development of chemoresistance remains a significant cause of treatment failure in breast cancer. We posit that a mathematical understanding of chemoresistance could assist in developing successful treatment strategies. Towards that end, we have developed a model that describes the cytotoxic effects of the standard chemotherapeutic drug doxorubicin on the MCF-7 breast cancer cell line. We assume that treatment with doxorubicin induces a compartmentalization of the breast cancer cell population into surviving cells, which continue proliferating after treatment, and irreversibly damaged cells, which gradually transition from proliferating to treatment-induced death. The model is fit to experimental data including variations in drug concentration, inter-treatment interval, and number of doses. Our model recapitulates tumor cell dynamics in all these scenarios (as quantified by the concordance correlation coefficient, CCC > 0.95). In particular, superior tumor control is observed with higher doxorubicin concentrations, shorter inter-treatment intervals, and a higher number of doses (p < 0.05). Longer inter-treatment intervals require adapting the model parameterization after each doxorubicin dose, suggesting the promotion of chemoresistance. Additionally, we propose promising empirical formulas to describe the variation of model parameters as functions of doxorubicin concentration (CCC > 0.78). Thus, we conclude that our mathematical model could deepen our understanding of the cytotoxic effects of doxorubicin and could be used to explore practical drug regimens achieving optimal tumor control.
Collapse
Affiliation(s)
- Emily Y. Yang
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Grant R. Howard
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Interdisciplinary Life Sciences Program, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
- *Correspondence: Guillermo Lorenzo, ,
| |
Collapse
|
143
|
Nagpal N, Tai AK, Nandakumar J, Agarwal S. Domain specific mutations in dyskerin disrupt 3' end processing of scaRNA13. Nucleic Acids Res 2022; 50:9413-9425. [PMID: 36018809 PMCID: PMC9458449 DOI: 10.1093/nar/gkac706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in DKC1 (encoding dyskerin) cause telomere diseases including dyskeratosis congenita (DC) by decreasing steady-state levels of TERC, the non-coding RNA component of telomerase. How DKC1 mutations variably impact numerous other snoRNAs remains unclear, which is a barrier to understanding disease mechanisms in DC beyond impaired telomere maintenance. Here, using DC patient iPSCs, we show that mutations in the dyskerin N-terminal extension domain (NTE) dysregulate scaRNA13. In iPSCs carrying the del37L NTE mutation or engineered to carry NTE mutations via CRISPR/Cas9, but not in those with C-terminal mutations, we found scaRNA13 transcripts with aberrant 3' extensions, as seen when the exoribonuclease PARN is mutated in DC. Biogenesis of scaRNA13 was rescued by repair of the del37L DKC1 mutation by genome-editing, or genetic or pharmacological inactivation of the polymerase PAPD5, which counteracts PARN. Inspection of the human telomerase cryo-EM structure revealed that in addition to mediating intermolecular dyskerin interactions, the NTE interacts with terminal residues of the associated snoRNA, indicating a role for this domain in 3' end definition. Our results provide mechanistic insights into the interplay of dyskerin and the PARN/PAPD5 axis in the biogenesis and accumulation of snoRNAs beyond TERC, broadening our understanding of ncRNA dysregulation in human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital; Pediatric Oncology, Dana-Farber Cancer Institute; Harvard Stem Cell Institute; Department of Pediatrics, Harvard Medical School; Manton Center for Orphan Disease Research; Harvard Initiative in RNA Medicine; Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Data Intensive Studies Center, Tufts University, Medford, MA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Suneet Agarwal
- To whom correspondence should be addressed. Tel: +1 617 919 4610; Fax: +1 617 919 3359;
| |
Collapse
|
144
|
Külp M, Diehl L, Bonig H, Marschalek R. Co-culture of primary human T cells with leukemia cells to measure regulatory T cell expansion. STAR Protoc 2022; 3:101661. [PMID: 36097388 PMCID: PMC9471457 DOI: 10.1016/j.xpro.2022.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
The expansion of regulatory T cells (Tregs) is known to be mediated by cytokines including IL-10 and TGFβ but has additionally been shown to depend on the interaction of the immune receptors ICOSLG and ICOS. Here, we describe a co-culture system which enables quantification of the ability of leukemia cells to induce Treg expansion through secreted cytokines and direct receptor interactions. The protocol is applicable for MHC-matched and -unmatched experiments and allows assessment of Treg expansion without using a mouse model. For complete details on the use and execution of this protocol, please refer to Külp et al. (2022). MHC-unmatched co-culture of primary T cells with leukemia cells Quantification of the ability of leukemia cells to induce regulatory T-cell expansion Investigation of ICOSLG-mediated regulatory T-cell induction Regulatory T-cell characterization using flow cytometry and ELISA
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
145
|
Bloom MJ, Song PN, Virostko J, Yankeelov TE, Sorace AG. Quantifying the Effects of Combination Trastuzumab and Radiation Therapy in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14174234. [PMID: 36077773 PMCID: PMC9454606 DOI: 10.3390/cancers14174234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Trastuzumab induces cell cycle arrest in HER2-overexpressing cells and demonstrates potential in radiosensitizing cancer cells. The purpose of this study is to quantify combination trastuzumab and radiotherapy to determine their synergy. Methods: In vitro, HER2+ cancer cells were treated with trastuzumab, radiation, or their combination, and imaged to evaluate treatment kinetics. In vivo, HER2+ tumor-bearing mice were treated with trastuzumab and radiation, and assessed longitudinally. An additional cohort was treated and sacrificed to quantify CD45, CD31, α-SMA, and hypoxia. Results: The interaction index revealed the additive effects of trastuzumab and radiation in vitro in HER2+ cell lines. Furthermore, the results revealed significant differences in tumor response when treated with radiation (p < 0.001); however, no difference was seen in the combination groups when trastuzumab was added to radiotherapy (p = 0.56). Histology revealed increases in CD45 staining in tumors receiving trastuzumab (p < 0.05), indicating potential increases in immune infiltration. Conclusions: The in vitro results showed the additive effect of combination trastuzumab and radiotherapy. The in vivo results showed the potential to achieve similar efficacy of radiotherapy with a reduced dose when combined with trastuzumab. If trastuzumab and low-dose radiotherapy induce greater tumor kill than a higher dose of radiotherapy, combination therapy can achieve a similar reduction in tumor burden.
Collapse
Affiliation(s)
- Meghan J. Bloom
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Patrick N. Song
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
| | - John Virostko
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
- LiveSTRONG Cancer Institutes, The University of Texas, Austin, TX 78713, USA
- Department of Oncology, The University of Texas Dell Medical School, Austin, TX 78701, USA
- Department of Diagnostic Medicine, The University of Texas, Austin, TX 78712, USA
- Oden Institute for Computational and Engineering Sciences, The University of Texas, Austin, TX 78712, USA
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, The University of Alabama, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
146
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
147
|
Battulin N, Korablev A, Ryzhkova A, Smirnov A, Kabirova E, Khabarova A, Lagunov T, Serova I, Serov O. The human EF1a promoter does not provide expression of the transgene in mice. Transgenic Res 2022; 31:525-535. [PMID: 35960480 PMCID: PMC9372930 DOI: 10.1007/s11248-022-00319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
Collapse
Affiliation(s)
- Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090. .,Institute of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia, 630090.
| | - Alexey Korablev
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anastasia Ryzhkova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anna Khabarova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Timofey Lagunov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Oleg Serov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| |
Collapse
|
148
|
Programmable DARPin-based receptors for the detection of thrombotic markers. Nat Chem Biol 2022; 18:1125-1134. [PMID: 35941237 PMCID: PMC9512699 DOI: 10.1038/s41589-022-01095-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022]
Abstract
Cellular therapies remain constrained by the limited availability of sensors for disease markers. Here we present an integrated target-to-receptor pipeline for constructing a customizable advanced modular bispecific extracellular receptor (AMBER) that combines our generalized extracellular molecule sensor (GEMS) system with a high-throughput platform for generating designed ankyrin repeat proteins (DARPins). For proof of concept, we chose human fibrin degradation products (FDPs) as markers with high clinical relevance and screened a DARPin library for FDP binders. We built AMBERs equipped with 19 different DARPins selected from 160 hits, and found 4 of them to be functional as heterodimers with a known single-chain variable fragments binder. Tandem receptors consisting of combinations of the validated DARPins are also functional. We demonstrate applications of these AMBER receptors in vitro and in vivo by constructing designer cell lines that detect pathological concentrations of FDPs and respond with the production of a reporter and a therapeutic anti-thrombotic protein. ![]()
Merging the generalized extracellular molecule sensor (GEMS) system with screening designed ankyrin repeat proteins (DARPins) identifies an advanced modular bispecific extracellular receptor (AMBER) for detection of fibrinogen degradation products.
Collapse
|
149
|
Identification of Estradiol Benzoate as an Inhibitor of HBx Using Inducible Stably Transfected HepG2 Cells Expressing HiBiT Tagged HBx. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155000. [PMID: 35956950 PMCID: PMC9370419 DOI: 10.3390/molecules27155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
HBx plays a significant role in the cccDNA epigenetic modification regulating the hepatitis B virus (HBV) life cycle and in hepatocyte proliferation and carcinogenesis. By using the sleeping-beauty transposon system, we constructed a tetracycline-induced HBx-expressing stable cell line, SBHX21. HBx with a HiBiT tag can be quickly detected utilizing a NanoLuc-based HiBiT detection system. By screening a drug library using SBHX21 cells, we identified estradiol benzoate as a novel anti-HBx agent. Estradiol benzoate also markedly reduced the production of HBeAg, HBsAg, HBV pgRNA, and HBV DNA in a dose-dependent manner, suggesting that estradiol benzoate could be an anti-HBV agent. Docking model results revealed that estradiol benzoate binds to HBx at TRP87 and TRP107. Collectively, our results suggest that estradiol benzoate inhibits the HBx protein and HBV transcription and replication, which may serve as a novel anti-HBV molecular compound for investigating new treatment strategies for HBV infection.
Collapse
|
150
|
López-Muñoz AD, Kosik I, Holly J, Yewdell JW. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. SCIENCE ADVANCES 2022; 8:eabp9770. [PMID: 35921414 PMCID: PMC9348789 DOI: 10.1126/sciadv.abp9770] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SARS-CoV-2 nucleocapsid protein (N) induces strong antibody (Ab) and T cell responses. Although considered to be localized in the cytosol, we readily detect N on the surface of live cells. N released by SARS-CoV-2-infected cells or N-expressing transfected cells binds to neighboring cells by electrostatic high-affinity binding to heparan sulfate and heparin, but not other sulfated glycosaminoglycans. N binds with high affinity to 11 human chemokines, including CXCL12β, whose chemotaxis of leukocytes is inhibited by N from SARS-CoV-2, SARS-CoV-1, and MERS-CoV. Anti-N Abs bound to the surface of N-expressing cells activate Fc receptor-expressing cells. Our findings indicate that cell surface N manipulates innate immunity by sequestering chemokines and can be targeted by Fc-expressing innate immune cells. This, in combination with its conserved antigenicity among human CoVs, advances its candidacy for vaccines that induce cross-reactive B and T cell immunity to SARS-CoV-2 variants and other human CoVs, including novel zoonotic strains.
Collapse
|