101
|
The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment. J Transl Med 2020; 18:152. [PMID: 32245498 PMCID: PMC7119166 DOI: 10.1186/s12967-020-02320-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Despite considering vast majority of the transcribed molecules as merely noise RNA in the last decades, recent advances in the field of molecular biology revealed the mysterious role of long non-coding RNAs (lncRNAs), as a massive part of functional non-protein-coding RNAs. As a crucial lncRNA, HOX antisense intergenic RNA (HOTAIR) has been shown to participate in different processes of normal cell development. Aberrant overexpression of this lncRNA contributes to breast cancer progression, through different molecular mechanisms. In this review, we briefly discuss the structure of HOTAIR in the context of genome and impact of this lncRNA on normal human development. We subsequently summarize the potential role of HOTAIR overexpression on different processes of breast cancer development. Ultimately, the relationship of this lncRNA with different therapeutic approaches is discussed.
Collapse
|
102
|
Rajagopal T, Talluri S, Akshaya R, Dunna NR. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin Chim Acta 2020; 503:1-18. [DOI: 10.1016/j.cca.2019.12.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
|
103
|
Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3-c-Myc axis. Oncogene 2020; 39:3926-3938. [PMID: 32203166 DOI: 10.1038/s41388-020-1266-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play crucial roles in cancer long noncoding RNAs (lncRNAs) have been known to play crucial roles in cancer development and progression by regulating chromatin dynamics and gene expression. However, only a few lncRNAs with annotated functions in the progression of colorectal cancer (CRC) have been identified to date. In the present study, the expression of lncCMPK2 was upregulated in CRC tissues and positively correlated with clinical stages and lymphatic metastasis. The overexpression of lncCMPK2 promoted the proliferation and cell cycle transition of CRC cells. Conversely, the silencing of lncCMPK2 restricted cell proliferation both in vitro and in vivo. lncCMPK2 was localized to the nucleus of CRC cells, bound to far upstream element binding protein 3 (FUBP3), and guided FUBP3 to the far upstream element (FUSE) of the c-Myc gene to activate transcription. lncCMPK2 also stabilized FUBP3. These results provide novel insights into the functional mechanism of lncCMPK2 in CRC progression and highlight its potential as a biomarker of advanced CRC and therapeutic target.
Collapse
|
104
|
Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer. Cancer Med 2020; 9:1798-1817. [PMID: 31923354 PMCID: PMC7050084 DOI: 10.1002/cam4.2760] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have important biological functions as competing endogenous RNAs (ceRNAs) in tumors, yet the functions and regulatory mechanisms of lncRNA-related ceRNAs in gastric cancer have not been fully elucidated. In this study, we constructed a lncRNA-miRNA-mRNA ceRNA network and identified potential lncRNA biomarkers in gastric cancer. Basing on the RNA profiles downloaded from The Cancer Genome Atlas (TCGA) platform, the gastric cancer-specific differentially expressed lncRNAs, miRNAs, and mRNAs were screened for constructing a ceRNA network using bioinformatic tools. The enrichment analysis of the biological processes in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathways was performed on the ceRNA-related DEmRNAs. According to the modularization of protein-protein interaction (PPI) network, we extracted a ceRNA subnetwork and analyzed the correlation between the expression of the lncRNAs involved and specific clinical features of patients. Next, the expression of highly up-regulated in liver cancer (HULC) and RP11-314B1.2 showed significant changes in several pathological processes involved in gastric cancer, and nine lncRNAs were found to be correlated with the overall survival of patients with gastric cancer. Through the univariate and multivariate Cox regression analyses, two lncRNAs (LINC00106 and RP11-999E24.3) were identified and utilized to establish a risk score model for assessing the prognosis of patients. The analysis results were also partially verified using quantitative real-time PCR. The findings from this study indicate that HULC, RP11-314B1.2, LINC00106, and RP11-999E24.3 could be considered as potential therapeutic targets or prognostic biomarkers in gastric cancer, and provide a new perspective for cancer pathogenesis research.
Collapse
Affiliation(s)
- Mingran Qi
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
| | - Bingxin Yu
- Department of UltrasoundChina‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Huiyuan Yu
- School of Public HealthJilin UniversityChangchunJilinChina
| | - Fan Li
- Department of PathogenobiologyThe Key Laboratory of ZoonosisChinese Ministry of EducationCollege of Basic MedicineJilin UniversityChangchunJilinChina
- The Key Laboratory for Bionics EngineeringMinistry of EducationJilin UniversityChinaChangchunJilinChina
- Engineering Research Center for Medical Biomaterials of Jilin ProvinceJilin UniversityChangchunJilinChina
- Key Laboratory for Biomedical Materials of Jilin ProvinceJilin UniversityChangchunJilinChina
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaXinjiangChina
| |
Collapse
|
105
|
Cancer stem cell-specific expression profiles reveal emerging bladder cancer biomarkers and identify circRNA_103809 as an important regulator in bladder cancer. Aging (Albany NY) 2020; 12:3354-3370. [PMID: 32065779 PMCID: PMC7066924 DOI: 10.18632/aging.102816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
Bladder cancer stem cells (BCSCs), exhibiting self-renewal and differentiation capacities, may contribute to the tumor initiation, metastasis, recurrence and drug resistance of bladder cancer. However, the underlying functional mechanisms of BCSCs remain to be clarified. In this study, we describe the differentially-expressed mRNAs, lncRNAs, and circRNAs in BCSCs compared with that in bladder cancer non-stem cells (BCNSCs) through the transcriptome microarray data analysis using bladder cancer patients’ specimens. CircRNA_103809, the top one among the highly expressed circRNA identified in BCSCs, promotes the self-renewal, migration and invasion capabilities of bladder cancer by acting as a miR-511 sponge. Additionally, GO and KEGG pathway analysis suggest the differentially expressed genes identified may be involved in the cellular metabolism, differentiation and metastasis regulation of the cancer cells. Co-expression networks of lncRNAs/mRNAs and circRNAs/mRNAs constructed by WGCNA give a picture of the non-coding/coding RNAs regulating patterns in BCSCs. Notably, as core genes in the networks, AHCY, C6orf136 and LRIG1 show high potential to be prognosticators for bladder cancer. Therefore, further studies of non-coding RNA functional mechanisms in BCSCs is valuable for detecting the pathogenic mechanisms and discovering novel biomarkers in bladder cancer.
Collapse
|
106
|
Berry K, Wang J, Lu QR. Epigenetic regulation of oligodendrocyte myelination in developmental disorders and neurodegenerative diseases. F1000Res 2020; 9:F1000 Faculty Rev-105. [PMID: 32089836 PMCID: PMC7014579 DOI: 10.12688/f1000research.20904.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oligodendrocytes are the critical cell types giving rise to the myelin nerve sheath enabling efficient nerve transmission in the central nervous system (CNS). Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are maintained throughout life. Deficits in the generation, proliferation, or differentiation of these cells or their maintenance have been linked to neurological disorders ranging from developmental disorders to neurodegenerative diseases and limit repair after CNS injury. Understanding the regulation of these processes is critical for achieving proper myelination during development, preventing disease, or recovering from injury. Many of the key factors underlying these processes are epigenetic regulators that enable the fine tuning or reprogramming of gene expression during development and regeneration in response to changes in the local microenvironment. These include chromatin remodelers, histone-modifying enzymes, covalent modifiers of DNA methylation, and RNA modification-mediated mechanisms. In this review, we will discuss the key components in each of these classes which are responsible for generating and maintaining oligodendrocyte myelination as well as potential targeted approaches to stimulate the regenerative program in developmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kalen Berry
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
107
|
Chen S, Zhang C, Feng M. Prognostic Value of LncRNA HOTAIR in Colorectal Cancer: A Meta-analysis. Open Med (Wars) 2020; 15:76-83. [PMID: 32104724 PMCID: PMC7029652 DOI: 10.1515/med-2020-0012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is one of the most studied long noncoding RNAs (lncRNAs) and is aberrantly expressed in colorectal cancer (CRC). We thus performed a comprehensive study based on meta-analysis and validation of the TCGA database to investigate clinicopathological and prognostic value of HOTAIR in CRC. Six studies enrolling 629 CRC patients were included in the analysis. The results indicated that high HOTAIR expression predicted worse OS (hazard ratio [HR] = 2.46, 95% confidence interval [CI]: 1.82-3.32, P < 0.01) and RFS (HR = 1.97, 95% CI: 1.27-3.05, P < 0.01) for CRC patients. High HOTAIR expression was also significantly associated with venous invasion (OR = 2.53, 95% CI: 1.12-5.68, P = 0.02), advanced tumor infiltration (OR = 3.35, 95% CI: 1.34-8.42, P = 0.01) and distant metastasis (OR = 5.52, 95% CI: 1.22-25.01, P = 0.03). Then, the results were validated by the TCGA database, showing that the up-regulated expression of HOTAIR was significantly related to poor OS (P = 0.01) and RFS (P = 0.04) in CRC. Our meta-analysis indicated that high HOTAIR expression was closely associated with poor clinical outcomes and could be a reliable prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Shuangqian Chen
- Department of Ultrasonography, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan430071, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan430071, China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan430071, China
| |
Collapse
|
108
|
Li X, Rui B, Cao Y, Gong X, Li H. Long non-coding RNA LINC00152 acts as a sponge of miRNA-193b-3p to promote tongue squamous cell carcinoma progression. Oncol Lett 2020; 19:2035-2042. [PMID: 32194700 DOI: 10.3892/ol.2020.11293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dysregulated expression of long non-coding RNAs has been determined to be important in cancer development; however, their role in tongue squamous cell carcinoma (TSCC) progression and carcinogenesis, to the best of our knowledge, is yet to be elucidated. The present study revealed that long intergenic non-coding RNA 00152 (LINC00152) expression was significantly increased in human TSCC tissues compared with in tissues from matched controls using RT-qPCR. In TSCC cell lines, CAL-27 and SCC-9, LINC00152 was revealed to promote TSCC cell proliferation, enhance cell cycle progression and inhibit cell apoptosis. Additionally, migration and invasion of TSCC cell lines was increased in response to LINC00152 overexpression. Mechanistically, LINC00152 was determined to be localized in the cytoplasm and acted as a microRNA (miR)-193b-3p sponge, and LINC00152 knockdown or miR-193b-3p mimics both inhibited PI3K signaling pathway activation and downstream AKT phosphorylation; therefore, promoting TSCC progression in vitro. Overall, the results of the present study suggested that increased LINC00152 expression in TSCC tissues may act as a sponge of miR-193b-3p to promote cancer progression in vitro.
Collapse
Affiliation(s)
- Xiuhua Li
- Department of Stomatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China.,School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Bing Rui
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yongbing Cao
- School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaojian Gong
- School of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Hongjiao Li
- Department of Stomatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
109
|
Chen X, Sun YZ, Guan NN, Qu J, Huang ZA, Zhu ZX, Li JQ. Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genomics 2020; 18:58-82. [PMID: 30247501 DOI: 10.1093/bfgp/ely031] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023] Open
Abstract
From transcriptional noise to dark matter of biology, the rapidly changing view of long non-coding RNA (lncRNA) leads to deep understanding of human complex diseases induced by abnormal expression of lncRNAs. There is urgent need to discern potential functional roles of lncRNAs for further study of pathology, diagnosis, therapy, prognosis, prevention of human complex disease and disease biomarker detection at lncRNA level. Computational models are anticipated to be an effective way to combine current related databases for predicting most potential lncRNA functions and calculating lncRNA functional similarity on the large scale. In this review, we firstly illustrated the biological function of lncRNAs from five biological processes and briefly depicted the relationship between mutations or dysfunctions of lncRNAs and human complex diseases involving cancers, nervous system disorders and others. Then, 17 publicly available lncRNA function-related databases containing four types of functional information content were introduced. Based on these databases, dozens of developed computational models are emerging to help characterize the functional roles of lncRNAs. We therefore systematically described and classified both 16 lncRNA function prediction models and 9 lncRNA functional similarity calculation models into 8 types for highlighting their core algorithm and process. Finally, we concluded with discussions about the advantages and limitations of these computational models and future directions of lncRNA function prediction and functional similarity calculation. We believe that constructing systematic functional annotation systems is essential to strengthen the prediction accuracy of computational models, which will accelerate the identification process of novel lncRNA functions in the future.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ze-Xuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
110
|
Ye DM, Xu G, Ma W, Li Y, Luo W, Xiao Y, Liu Y, Zhang Z. Significant function and research progress of biomarkers in gastric cancer. Oncol Lett 2020; 19:17-29. [PMID: 31897111 PMCID: PMC6924079 DOI: 10.3892/ol.2019.11078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the most common gastrointestinal tumor types, and the incidence and mortality rates are higher in men compared with women. Various studies have revealed that gastric cancer is a spectrum of tumor types, which have biological and genetic diversity. It has proven to be difficult to improve the overall survival and disease-free survival of patients with gastric cancer through the use of traditional surgery and chemoradiation, as gastric cancer is usually identified at an advanced stage. In consequence, the outcome is frequently poor. Thus, novel biomarkers and anticancer targets are required to improve the outcome. As the identification of biomarkers has increased due to advances in research and the greater availability of bioinformatics and functional genomics, the potential therapeutic regimens available have also increased concurrently. These advances have also improved the ability to predict responses to chemotherapy, targeted therapy and immunotherapy, whilst other biomarkers predict post-treatment survival and recurrence based on their expression. This review focuses closely on the important functions of biomarkers in the timely diagnosis and treatment of gastric cancer, in addition to the advances in the study of certain novel markers in gastric cancer.
Collapse
Affiliation(s)
- Dong Mei Ye
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gaosheng Xu
- Department of Surgery, Yueyang Maternal and Child Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Wei Ma
- Department of Surgery, Yueyang Maternal and Child Health Hospital, Yueyang, Hunan 414000, P.R. China
| | - Yuxuan Li
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiru Luo
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yiyang Xiao
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Liu
- Department of Pathology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
111
|
Han L, Wang B, Wang R, Wang Z, Gong S, Chen G, Telemacque D, Feng Y, Xu W. Prognostic and Clinicopathological Significance of Long Non-coding RNA PANDAR Expression in Cancer Patients: A Meta-Analysis. Front Oncol 2019; 9:1337. [PMID: 31850222 PMCID: PMC6901660 DOI: 10.3389/fonc.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Long non-coding RNA PANDAR is an emerging non-coding RNA mapping to 6p21.2. It underlies metastatic progression and chromosomal instability in a variety of cancers. Despite the fact that recent studies have revealed that lncRNA PANDAR may be a potential prognostic biomarker for patients with cancer, there has still been controversy on the prognostic value of PANDAR. Methods: Databases of PubMed, Embase, SinoMed, and Web of Science were carefully searched and the literature which investigated the prognostic value of PANDAR expression among human cancers was collected for further analysis. Odds ratios (ORs) or hazards ratios (HRs) with 95% confidence intervals (CIs) were pooled to estimate the relation between PANDAR expression and survival or clinicopathological characteristics of cancer patients. Results: There were 13 eligible studies in total, with 1,465 patients enlisted in this meta-analysis. All the eligible studies complied with the case-control study. The outcome showed that the elevated expression level of PANDAR was significantly related to poor overall survival (OS) (pooled HR 1.72, 95%CI 1.14-2.60). However, high or low expression of PANDAR did not differ in the prediction of event-free survival (EFS). Moreover, we discovered that high PANDAR expression was closely related to decreased OS in colorectal cancer (pooled HR 3.43, 95%CI 2.06-5.72) and reduced expression level of PANDAR was markedly related to poor OS (pooled HR 0.65, 95%CI 0.45-0.88) in non-small cell lung cancer. However, the expression level of PANDAR had no significant association with OS in renal cell carcinoma (pooled HR 1.19, 95%CI 0.56-2.50). Moreover, after analysis, we discovered that the high expression level of PANDAR was associated closely with the depth of invasion (pooled OR 3.95, 95%CI 2.36-6.63), lymph node metastasis (pooled OR 1.92, 95%CI 0.93-3.98), tumor stage (pooled OR 2.05, 95%CI 0.99-4.27), and distant metastasis (pooled OR 2.87, 95%CI 1.60-5.16). Conclusions: Our study revealed that increased PANDAR expression may serve as an adverse prognostic biomarker for cancer patients, thus helping the clinical decision-making process.
Collapse
Affiliation(s)
- Lizhi Han
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Wang
- Department of Orthopedics, Xiangyang Central Hospital Affiliated Hubei University of Arts and Science, Xiangyang, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dionne Telemacque
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
112
|
Wang S, Cui Z, Li H, Li J, Lv X, Yang Z, Gao M, Bi Y, Zhang Z, Zhou B, Yin Z. LncRNA NEAT1 polymorphisms and lung cancer susceptibility in a Chinese Northeast Han Population: A case-control study. Pathol Res Pract 2019; 215:152723. [DOI: 10.1016/j.prp.2019.152723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/26/2019] [Indexed: 01/23/2023]
|
113
|
Integrative Analysis of the lncRNA and mRNA Transcriptome Revealed Genes and Pathways Potentially Involved in the Anther Abortion of Cotton ( Gossypium hirsutum L.). Genes (Basel) 2019; 10:genes10120947. [PMID: 31756984 PMCID: PMC6947465 DOI: 10.3390/genes10120947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.
Collapse
|
114
|
lncRNA SNHG5 Modulates Endometrial Cancer Progression via the miR-25-3p/BTG2 Axis. JOURNAL OF ONCOLOGY 2019; 2019:7024675. [PMID: 31885582 PMCID: PMC6925730 DOI: 10.1155/2019/7024675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Endometrial carcinoma (EC) is one of the most common malignancies of the female genital tract, although the mechanisms of EC initiation and development remain incompletely understood. In this study, we demonstrated that the noncoding RNA SNHG5 can inhibit the proliferation, migration, and invasion of EC cells by suppressing the expression of its putative target miR-25-3p. Overexpression of miR-25-3p significantly promoted the proliferation, migration, and invasion of EC cells. In addition, we showed that miR-25-3p represses the expression of BTG2 by directly binding to the 3′-UTR of BTG2 mRNA. Furthermore, increased miR-25-3p expression and decreased SNHG5 and BTG2 expression were observed in EC tissues, and the expression of SNHG5 was negatively correlated to that of miR-25-3p but positively correlated to that of BTG2. In summary, for the first time, we report that the SNHG5/miR-25-3p/BTG2 axis plays an important role in EC progression and is of great potential clinical significance for EC diagnosis and therapy.
Collapse
|
115
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
116
|
Xiao H, Ding N, Liao H, Yao Z, Cheng X, Zhang J, Zhao M. Prediction of relapse and prognosis by expression levels of long noncoding RNA PEG10 in glioma patients. Medicine (Baltimore) 2019; 98:e17583. [PMID: 31702614 PMCID: PMC6855493 DOI: 10.1097/md.0000000000017583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long noncoding RNA paternally expressed 10 (lncRNA PEG10) is highly expressed in a variety of human cancers and related to the clinical prognosis of patients. However, to date there has been no previous study evaluating the prognostic significance of lncRNA PEG10 in gliomas. In the present study, we investigated the expression levels of lncRNA PEG10 to determine the prognostic value of this oncogene in human gliomas. METHODS Expression levels of lncRNA PEG10 were detected by real-time polymerase chain reaction in a hospital-based study cohort of 147 glioma patients and 23 cases of patients with craniocerebral trauma tissues. Associations of lncRNA PEG10 expression with clinicopathological variables and clinical outcome of glioma patients were investigated. RESULTS The results indicated that expression levels of lncRNA PEG10 were significantly increased in human gliomas compared to normal control brain tissues. In addition, lncRNA PEG10 expression was progressively increased from pathologic grade I to IV (P = .009) and correlated with the Karnofsky performance status (P = .018) in glioma patients. Furthermore, we also found that glioma patients with increased expression of lncRNA PEG10 had a higher risk to relapse and a statistically significant shorter overall survival (OS) than patients with reduced expression of lncRNA PEG10. In multivariate analysis, expression level of lncRNA PEG10 was found to be an independent prognostic factor for both progression-free survival and OS in glioma patients. CONCLUSIONS LncRNA PEG10 served as an oncogene and played crucial roles in the progression of glioma. Molecular therapy targeted on lncRNA PEG10 might bring significant benefits to the clinical outcome of malignant glioma.
Collapse
Affiliation(s)
| | - Ning Ding
- Outpatient Department, The Second Hospital of Shandong University, Shandong University
| | - Hang Liao
- Clinical laboratory, The Second Blood Insurance Center of Jinan
| | - Zhigang Yao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Xiankui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| | - Jian Zhang
- School of Life Science, Shandong Universit, Qingdao, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan
| |
Collapse
|
117
|
Paço A, Freitas R. HOX genes as transcriptional and epigenetic regulators during tumorigenesis and their value as therapeutic targets. Epigenomics 2019; 11:1539-1552. [PMID: 31556724 DOI: 10.2217/epi-2019-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Several HOX genes are aberrantly expressed in a wide range of cancers interfering with their development and resistance to treatment. This seems to be often caused by alterations in the methylation profiles of their promoters. The role of HOX gene products in cancer is highly 'tissue specific', relying ultimately on their ability to regulate oncogenes or tumor-suppressor genes, directly as transcriptional regulators or indirectly interfering with the levels of epigenetic regulators. Nowadays, different strategies have been tested the use of HOX genes as therapeutic targets for cancer diagnosis and treatment. Here, we trace the history of the research concerning the involvement of HOX genes in cancer, their connection with epigenetic regulation and their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Ana Paço
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, 7006-554 Évora, Portugal
| | - Renata Freitas
- I3S - Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal.,IBMC - Institute for Molecular & Cell Biology, University of Porto, 4200-135 Porto, Portugal.,ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
118
|
Zhou H, Sun L, Wan F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol Lett 2019; 18:4393-4402. [PMID: 31611948 PMCID: PMC6781668 DOI: 10.3892/ol.2019.10848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences >200 nucleotides in length that have no protein-coding capacity. lncRNAs serve key roles in multiple biological processes, such as tumorigenesis and tumor progression. Taurine upregulated 1 (TUG1) is a novel lncRNA that has been associated with human cancer. TUG1 has attracted increasing attention in recent years and has been documented to be abnormally expressed in different types of cancer. Numerous studies indicate that TUG1 may be significantly associated with tumor development and cell metabolism by regulating cell proliferation, invasion, metastasis, apoptosis, differentiation and drug resistance. TUG1 exerts its function via recruiting specific RNA-binding proteins, promoting target gene expression, influencing tumor angiogenesis and by functioning as a competing endogenous RNA (ceRNA). An increasing number of studies have demonstrated that ceRNAs serve a role in cancer development. TUG1 is considered to be a biomarker or a novel therapeutic target for the diagnosis and prognosis of different cancer types. The present review focuses on recent developments in the major underlying molecular mechanisms of TUG1 in cancer, including its role in cell proliferation, apoptosis, migration, invasion and drug resistance. Also discussed in the present review is the current knowledge regarding the regulation of TUG1.
Collapse
Affiliation(s)
- Hui Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lina Sun
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fusheng Wan
- Department of Biochemistry and Molecular Biology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
119
|
Liu H, Wan J, Chu J. Long non-coding RNAs and endometrial cancer. Biomed Pharmacother 2019; 119:109396. [PMID: 31505425 DOI: 10.1016/j.biopha.2019.109396] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/11/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies. In spite of the advance in chemotherapy, radiotherapy or surgical techniques for EC in recent years, the survival rate of advanced stage EC patients remains unsatisfactory. Long non-coding RNAs (lncRNAs) are known as transcripts longer than 200 nucleotides exhibiting no or limited protein-coding potential. Growing evidence suggested lncRNAs may be a critical class of pervasive genes involved in cancer progression. However, the function and biological relevance between lncRNAs and EC remain not yet fully understood. Accumulating evidence has indicated that lncRNAs are dysregulated in EC, and closely related to tumorigenesis, metastasis and chemoresistance. In this review, we summarize the known regulation and functional roles of lncRNAs in EC. Besides, we will discuss the potential of lncRNAs as diagnostic biomarkers and therapeutic targets in EC.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jie Chu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| |
Collapse
|
120
|
Ramnarine VR, Kobelev M, Gibb EA, Nouri M, Lin D, Wang Y, Buttyan R, Davicioni E, Zoubeidi A, Collins CC. The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. Eur Urol 2019; 76:546-559. [PMID: 31445843 DOI: 10.1016/j.eururo.2019.07.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT It is increasingly evident that non-protein-coding regions of the genome can give rise to transcripts that form functional layers of the cancer genome. One of most abundant classes in these regions is long noncoding RNAs (lncRNAs). They have gained increasing attention in prostate cancer (PCa) and paved the way for a greater understanding of these cryptic regulators in cancer. OBJECTIVE To review current research exploring the functional biology of lncRNAs in PCa over the past three decades. EVIDENCE ACQUISITION A systematic review was performed using PubMed to search for reports with terms "long noncoding RNA", "prostate", and "cancer" over the past 30 yr (1988-2018). EVIDENCE SYNTHESIS We comprehensively surveyed the literature collected and summarise experiments leading to the characterisation of lncRNAs in PCa. A historical timeline of lncRNA identification is described, where each lncRNA is categorised mechanistically and within the primary areas of carcinogenesis: tumour risk and initiation, tumour promotion, tumour suppression, and tumour treatment resistance. We describe select lncRNAs that exemplify these areas. We also review whether these lncRNAs have a clinical utility in PCa diagnosis, prognosis, and prediction, and as therapeutic targets. CONCLUSIONS The biology of lncRNA is multifaceted, demonstrating a complex array of molecular and cellular functions. These studies reveal that lncRNAs are involved in every stage of PCa. Their clinical utility for diagnosis, prognosis, and prediction of PCa is well supported, but further evaluation for their therapeutic candidacy is needed. We provide a detailed resource and view inside the lncRNA landscape for other cancer biologists, oncologists, and clinicians. PATIENT SUMMARY In this study, we review current knowledge of the non-protein-coding genome in prostate cancer (PCa). We conclude that many of these regions are functional and a source of accurate biomarkers in PCa. With a strong research foundation, they hold promise as future therapeutic targets, yet clinical trials are necessary to determine their intrinsic value to PCa disease management.
Collapse
Affiliation(s)
- Varune Rohan Ramnarine
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Maxim Kobelev
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ewan A Gibb
- Decipher Biosciences Inc., Vancouver, BC, Canada
| | - Mannan Nouri
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
121
|
Cheng D, Jiang S, Chen J, Li J, Ao L, Zhang Y. Upregulated long noncoding RNA Linc00261 in pre-eclampsia and its effect on trophoblast invasion and migration via regulating miR-558/TIMP4 signaling pathway. J Cell Biochem 2019; 120:13243-13253. [PMID: 30891826 DOI: 10.1002/jcb.28598] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality but the exact underlying mechanisms of PE pathogenesis remain elusive. Accumulated data suggested that the long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of PE. The present study identified the changes of lncRNA Linc00261 in PE and its effects on trophoblasts invasion and migration. Our results showed that the expression of Linc00261 was upregulated in placental tissues of PE women compared with those of healthy pregnant women. Overexpression of Linc00261 suppressed cell invasion and migration, induced cell apoptosis, and caused cell-cycle arrest at G0 /G1 phase of HTR-8/SVneo cells; while knockdown of Linc00261 had the opposite effects on the HTR-8/SVneo cells. Mechanistic studies showed Linc00261 functioned as a competing endogenous RNA for miR-558 in HTR-8/SVneo cells, and miR-558 was negatively regulated by Linc00261. The expression level of miR-558 in the PE group was significantly lower than the control group, and the expression level of Linc00261 was negatively correlated with the expression level of miR-558 in the placental tissues of women with PE. Furthermore, miR-558 was found to negatively regulate the expression of TIMP metallopeptidase inhibitor 4 (TIMP4) via targeting the 3' untranslated region in the HTR-8/SVneo cells. Overexpression of miR-558 increased HTR-8/SVneo cell invasion and migration, which was attenuated by TIMP4 overexpression. More importantly, both overexpression of miR-558 and knockdown of TIMP4 partially reversed the suppressive effects of Linc00261 overexpression on cell invasion and migration of HTR-8/SVneo cells. Collectively, our results for the first time showed the upregulation of Linc00261 in the placental tissues of severe PE patients. The mechanistic results indicated that Linc00261 exerted the suppressive effects on the trophoblast invasion and migration via targeting miR-558/TIMP4 axis, which may involve in the pathogenesis of PE.
Collapse
Affiliation(s)
- Dan Cheng
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Shan Jiang
- Department of Dermatology, Wuhan University Renmin Hospital, Wuhan, Hubei, China
| | - Jiao Chen
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Jie Li
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Liangfei Ao
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ying Zhang
- Center for Reproductive Medicine, Wuhan University Renmin Hospital, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| |
Collapse
|
122
|
Liu W, Wang Z, Wang C, Ai Z. Long non-coding RNA MIAT promotes papillary thyroid cancer progression through upregulating LASP1. Cancer Cell Int 2019; 19:194. [PMID: 31372094 PMCID: PMC6659215 DOI: 10.1186/s12935-019-0913-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play an important role in initiation and development of thyroid cancer. However, the underlying molecular mechanism remains elusive. Methods To explore potential oncogenic and tumor suppressive lncRNAs in papillary thyroid cancer (PTC), we performed RNA sequencing to discover differentially expression lncRNAs between PTC tissues and matched normal tissues. RT-qPCR was used to validate differentially expressed lncRNAs. Bioinformatic analysis was performed to predicted potential miRNA and gene which might be regulated by MIAT. Cell proliferation, invasion and cycle assay were conducted to study the function of MIAT and LASP1 in PTC. Results Through analysis of RNA sequencing, we observed that lncRNA-MIAT was overexpressed in PTC tissues. The upregulation of MIAT was further confirmed in 40 pairs of PTC tissues and normal tissues we collected. In the function assays, results suggested that MIAT silencing led to inhibition of cell proliferation, invasion and disruption of cell cycle progression in PTC cells. Mechanistically, MIAT directly bound to miR-324-3p and upregulated LASP1 expression in PTC cells. In addition, expression of MIAT was positively correlated with LASP1 mRNA expression in samples collected from patients with PTC. More importantly, transfection of recombinant LASP1 attenuated MIAT silencing induced inhibition of cell proliferation, invasion and disruption of cell cycle progression in PTC cells. Conclusions In conclusion, the findings suggest that lncRNA-MIAT may promote PTC proliferation and invasion through physically binding miR-324-3p and upregulation of LASP1. Electronic supplementary material The online version of this article (10.1186/s12935-019-0913-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Zhilong Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
123
|
Zhang P, Wu W, Chen Q, Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform 2019; 16:/j/jib.2019.16.issue-3/jib-2019-0027/jib-2019-0027.xml. [PMID: 31301674 PMCID: PMC6798851 DOI: 10.1515/jib-2019-0027] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic genomes are pervasively transcribed. Besides protein-coding RNAs, there are different types of non-coding RNAs that modulate complex molecular and cellular processes. RNA sequencing technologies and bioinformatics methods greatly promoted the study of ncRNAs, which revealed ncRNAs' essential roles in diverse aspects of biological functions. As important key players in gene regulatory networks, ncRNAs work with other biomolecules, including coding and non-coding RNAs, DNAs and proteins. In this review, we discuss the distinct types of ncRNAs, including housekeeping ncRNAs and regulatory ncRNAs, their versatile functions and interactions, transcription, translation, and modification. Moreover, we summarize the integrated networks of ncRNA interactions, providing a comprehensive landscape of ncRNAs regulatory roles.
Collapse
Affiliation(s)
- Peijing Zhang
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenyi Wu
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Chen
- Department of Bioinformatics, State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
124
|
Dornelles-Wawruk H, Soledad Heredia R, de Paula-Junior MR, Cardoso MTO, Bonadio RS, Dos Reis BF, Pic-Taylor A, de Oliveira SF, Mazzeu JF. A Balanced Reciprocal Translocation t(2;9)(p25;q13) Disrupting the LINC00299 Gene in a Patient with Intellectual Disability. Mol Syndromol 2019; 10:234-238. [PMID: 31602198 DOI: 10.1159/000500397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) are a class of noncoding RNAs implicated in several biological processes. LincRNA 299 (LINC00299) maps to 2p25.1 and its function is still unknown. However, this gene has been proposed as a candidate for intellectual disability (ID) in a patient with a balanced translocation where the breakpoint disrupted its ORF. Here, we describe a new case of LINC00299 disruption associated with ID. The individual, a 42-year-old woman, was referred to the clinical geneticist because of her son who had severe syndromic ID. G-banding and chromosomal microarray analysis were performed. Karyotyping of the boy revealed an extranumerary derivative chromosome identified as an unbalanced translocation between chromosomes 2 and 9 of maternal origin. The mother's karyotype showed a balanced translocation 46,XX,t(2;9)(p25;q13). Chromosomal microarray indicated a disruption of LINC00299. These data corroborate the role of LINC00299 as a causative gene for ID and broadens the spectrum of LINC00299-related phenotypes.
Collapse
Affiliation(s)
| | - Romina Soledad Heredia
- Hospital de Apoio de Brasília, Secretaria de Estado de Saúde do Distrito Federal, Brasilia, Brazil.,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasilia, Brazil
| | | | | | - Raphael S Bonadio
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Bianca F Dos Reis
- Hospital de Apoio de Brasília, Secretaria de Estado de Saúde do Distrito Federal, Brasilia, Brazil
| | - Aline Pic-Taylor
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Silviene F de Oliveira
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Brazil
| | - Juliana F Mazzeu
- Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasilia, Brazil.,Programa de Pós-graduação em Ciências Médicas, Universidade de Brasília, Brasilia, Brazil.,Faculdade de Medicina, Universidade de Brasília, Brasilia, Brazil
| |
Collapse
|
125
|
Expression profile analysis of long non-coding RNA in skeletal muscle of osteoporosis by microarray and bioinformatics. J Biol Eng 2019; 13:50. [PMID: 31164921 PMCID: PMC6544974 DOI: 10.1186/s13036-019-0180-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 12/02/2022] Open
Abstract
Background Osteoporosis (OP) is a condition featured by bone mass loss and bone tissue microarchitectural alterations due to impaired tissue homeostasis favoring excessive bone resorption versus deposition. The trigger of such an impairment and the downstream molecular pathways involved are yet to be clarified. Long non-coding RNA (lncRNA) plays a role in gene transcription, protein expression and epigenetic regulation; and altered expression results in immune or metabolism related desease development. To determine whether lncRNAs are involved in osteoporosis, we analyzed the expression profile of lncRNAs and mRNAs in osteoporosis. Method Three pairs of osteoporosis patients (OP group) and healthy people controls (NC group) were screened by microarray. Quantitative polymerase chain reaction (qRT-PCR) was performed to confirm dysregulated lncRNA expressions in 5 pairs of OP and NC group tissues samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to construct the lncRNA-mRNA co-expression network. Result Through co-expression analysis, differently expressed transcripts were divided into modules, and lncRNAs were functionally annotated. We further analyzed the clinical significance of crucial lncRNAs from modules in public data. Finally, the expression of five lncRNAs, CUST_44695_PI430048170-GeneSymbol:CTA-384D8.35;CUST_39447_PI430048170,CUST_73298_PI430048170,CUST_108340_PI430048170,CUST_118927_PI430048170,this four lncRNAs have not been annotation genes and have not found GeneSymbols, and by quantitative RT-PCR, which may be associated with osteoporosis patients’ overall survival. Conclusion Analysis of this study revealed that dysregulated lncRNAs and mRNAs in osteoporosis patients and health people controls could affect the immune or metabolism system and musculoskeletal cell differentiation. The biological functions of those lncRNAs need to be further validated.
Collapse
|
126
|
SNHG15 is a bifunctional MYC-regulated noncoding locus encoding a lncRNA that promotes cell proliferation, invasion and drug resistance in colorectal cancer by interacting with AIF. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:172. [PMID: 31014355 PMCID: PMC6480895 DOI: 10.1186/s13046-019-1169-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/07/2019] [Indexed: 02/08/2023]
Abstract
Background Thousands of long noncoding RNAs (lncRNAs) are aberrantly expressed in various types of cancers, however our understanding of their role in the disease is still very limited. Methods We applied RNAseq analysis from patient-derived data with validation in independent cohort of patients. We followed these studies with gene regulation analysis as well as experimental dissection of the role of the identified lncRNA by multiple in vitro and in vivo methods. Results We analyzed RNA-seq data from tumors of 456 CRC patients compared to normal samples, and identified SNHG15 as a potentially oncogenic lncRNA that encodes a snoRNA in one of its introns. The processed SNHG15 is overexpressed in CRC tumors and its expression is highly correlated with poor survival of patients. Interestingly, SNHG15 is more highly expressed in tumors with high levels of MYC expression, while MYC protein binds to two E-box motifs on SNHG15 sequence, indicating that SNHG15 transcription is directly regulated by the oncogene MYC. The depletion of SNHG15 by siRNA or CRISPR-Cas9 inhibits cell proliferation and invasion, decreases colony formation as well as the tumorigenic capacity of CRC cells, whereas its overexpression leads to opposite effects. Gene expression analysis performed upon SNHG15 inhibition showed changes in multiple relevant genes implicated in cancer progression, including MYC, NRAS, BAG3 or ERBB3. Several of these genes are functionally related to AIF, a protein that we found to specifically interact with SNHG15, suggesting that the SNHG15 acts, at least in part, by regulating the activity of AIF. Interestingly, ROS levels, which are directly regulated by AIF, show a significant reduction in SNHG15-depleted cells. Moreover, knockdown of SNHG15 increases the sensitiveness of the cells to 5-FU, while its overexpression renders them more resistant to the chemotherapeutic drug. Conclusion Altogether, these results describe an important role of SNHG15 in promoting colon cancer and mediating drug resistance, suggesting its potential as prognostic marker and target for RNA-based therapies. Electronic supplementary material The online version of this article (10.1186/s13046-019-1169-0) contains supplementary material, which is available to authorized users.
Collapse
|
127
|
Fan H, Lv Z, Gan L, Ning C, Li Z, Yang M, Zhang B, Song B, Li G, Tang D, Gao J, Yan S, Wang Y, Liu J, Guo Y. A Novel lncRNA Regulates the Toll-Like Receptor Signaling Pathway and Related Immune Function by Stabilizing FOS mRNA as a Competitive Endogenous RNA. Front Immunol 2019; 10:838. [PMID: 31057556 PMCID: PMC6478817 DOI: 10.3389/fimmu.2019.00838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as new regulatory molecules with diverse functions in regulating gene expression and significant roles in the immune response. However, the function of many unknown lncRNAs is still unclear. By studying the regulatory effect of daidzein (DA) on immunity, we identified a novel lncRNA with an immune regulatory function: lncRNA- XLOC_098131. In vivo, DA treatment upregulated the expression of lncRNA- XLOC_098131, FOS, and JUN in chickens and affected the expression of activator protein 1 (AP-1) to regulate MAPK signaling, Toll-like receptor signaling, and related mRNA expression. It also enhanced macrophage activity and increased the numbers of blood neutrophils and mononuclear cells, which can improve the body's ability to respond to stress and bacterial and viral infections. Furthermore, DA treatment also reduced B lymphocyte apoptosis and promoted the differentiation of B lymphocytes into plasma cells, which in turn resulted in the production of more immunoglobulins and the promotion of antigen presentation. In vitro, using HEK293FT cells, we demonstrated that mir-548s could bind to and decrease the expression of both FOS and lncRNA- XLOC_098131. LncRNA- XLOC_098131 served as a competitive endogenous RNA to stabilize FOS by competitively binding to miR-548s and thereby reducing its inhibitory effect of FOS expression. Therefore, we concluded that the novel lncRNA XLOC_098131 acts as a key regulatory molecule that can regulate the Toll-like receptor signaling pathway and related immune function by serving as a competitive endogenous RNA to stabilize FOS mRNA expression.
Collapse
Affiliation(s)
- Hao Fan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zengpeng Lv
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liping Gan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Zhui Li
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Beibei Zhang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bochen Song
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Li
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dazhi Tang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinxin Gao
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaojia Yan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Youli Wang
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture, Beijing, China
| | - Yuming Guo
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
128
|
Gao C, Wu X, Zhai J, Shen J, Wang S, Shen L. Long non-coding RNA SNHG17 promotes gastric cancer progression by inhibiting P15 and P16. Transl Cancer Res 2019; 8:520-531. [PMID: 35116784 PMCID: PMC8798068 DOI: 10.21037/tcr.2019.04.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dysregulated long non-coding RNA (lncRNA) small nucleolar RNA host genes (SNHGs) have been demonstrated to be involved in gastric carcinogenesis and progression; however, the role of SNHG17 in gastric carcinoma remains to be investigated. We aimed to ascertain the expression of SNHG17 in gastric carcinoma tissues and cell lines, and to investigate its mechanistic role in this malignancy. METHODS The expression levels of SNHG17, P15, P16, P18, P19 and cyclin dependent kinases-4 (CDK4) were determined by real-time quantitative polymerase chain reaction (RT-qPCR) and/or western blotting in human gastric cancer tissues and cell lines. Correlations between SNHG17 levels and clinicopathological features were evaluated. siRNAs were used to silence SNHG17 in cell lines, and then Cell Counting Kit-8, colony formation, and transwell migration assays were used to assess proliferation, clonogenic potential, and migration, respectively. Flow cytometry was used to analyze cell cycle distributions and apoptosis. In vivo tumorigenicity was evaluated using xenografts in nude mice. RESULTS Analysis of The Cancer Genome Atlas (TCGA) database revealed that SNHG17 expression was remarkably higher in gastric carcinoma tissues than normal stomach mucosae (P=4.85×10-10). We confirmed that SNHG17 was overexpressed in gastric cancer tissues (P<0.0001) and cell lines (P<0.01) compared with corresponding noncancerous tissues and gastric epithelial cell line, respectively. Furthermore, SNHG17 levels in tumor tissues were associated with lymph node metastasis (P=0.0006), pTNM stage (P=0.0061), and lymphovascular invasion (P=0.0005), but were not associated with overall survival (OS) (P=0.888). Loss-of-function studies indicated that SNHG17 promoted gastric carcinoma cell proliferation in vitro and in vivo (P<0.01), and that SNHG17 enhanced gastric cancer cell migration (P<0.01). Mechanistically, we found that SNHG17 inhibited P15 and P16, and enhanced CDK4 expression, resulting in a G0/G1 cell cycle arrest, and that SNHG17 inhibited cell apoptosis. CONCLUSIONS These preliminary findings highlight the role of SNHG17 in gastric cancer, and suggest that it may be a novel indicator and/or a potential therapeutic target for diagnosing and/or treating gastric cancer.
Collapse
Affiliation(s)
- Cheng Gao
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of General Surgery, Affiliated Hai'an Hospital, Nantong University, Nantong 226600, China
| | - Xinqian Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Zhai
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiajia Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Shoulin Wang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
129
|
Han Y, Chen D, Li H, Wang X, Zhang M, Yang Y. [Long chain non-coding RNA MALAT-1 gene knockdown inhibits growth and migration and promotes apoptosis of human laryngeal squamous cell carcinoma Hep-2 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:923-930. [PMID: 30187883 DOI: 10.3969/j.issn.1673-4254.2018.08.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the effect of knocking down long chain non-coding RNA MALAT-1 gene on the biologicalbehaviors of human laryngeal squamous cell carcinoma Hep-2 cells. METHODS With immortalized nasopharyngeal epithelial(NPE) cell line NP-69 as the reference, MALAT1 expression in FaDu, Hep-2 and nasopharyngeal carcinoma CNE-2Z cells weredetected using real-time PCR. Hep-2 cells were transfected with shmalat1 lentivirus and the expression of MALAT1 wasdetected. MTT assay, flow cytometry, Transwell assay and M Atrigel invasiveness test were used to evaluate the effect ofMALAT-1 knockdown on the proliferation, cell cycle, cell apoptosis, migration, and invasiveness of Hep-2 cells. RESULTS Compared with NP-69 cells, Hep-2 cells, FaDu cells, and CNE-2Z cells all showed significantly increased MALAT-1expression. In Hep-2 cells, knockdown of MALAT-1 significantly inhibited the cell proliferation, increased the cell percentagein S phase (P < 0.01), decreased the cell percentage in G2/M phase (P < 0.01), and attenuated the migration and invasiveness of thecells. CONCLUSIONS MALAT-1 is over-expressed in laryngeal squamous cell carcinoma, and knocking down MALAT-1 gene cansignificantly suppress the proliferation, invasion and migration and promotes apoptosis of the cancer cells.
Collapse
Affiliation(s)
- Yuefeng Han
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Deshang Chen
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Hui Li
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiaomin Wang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Mingjie Zhang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yang Yang
- Department of Otolaryngology, Head and Neck surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
130
|
Chang L, Xu W, Zhang Y, Gong F. Long non-coding RNA-NEF targets glucose transportation to inhibit the proliferation of non-small-cell lung cancer cells. Oncol Lett 2019; 17:2795-2801. [PMID: 30854054 DOI: 10.3892/ol.2019.9919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNA (lncRNA)-NEF is a newly discovered lncRNA, which exhibits an inhibitory function on the metastasis of hepatocellular carcinoma, while its involvement in other types of malignancy are unknown. In the present study, tumor and adjacent healthy tissues were obtained from patients with non-small-cell lung cancer (NSCLC), and blood was obtained from patients with NSCLC and healthy individuals. Expression levels of lncRNA-NEF in tumor tissue samples, healthy tissue samples and serum were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic curve analysis and survival curve analysis were performed to evaluate the diagnostic and prognostic value of serum lncRNA-NEF for NSCLC. The effects of lncRNA-NEF overexpression in NSCLC cell lines on tumor cell proliferation, glucose uptake, glucose transporter 1 (GLUT1) protein expression and mRNA expression were investigated by Cell Counting kit-8 assay, glucose uptake assay, western blot analysis and RT-qPCR, respectively. It was identified that lncRNA-NEF was downregulated in NSCLC tissues, compared with healthy controls, and the serum level of lncRNA-NEF was negatively associated with primary tumor stage. Therefore, serum lncRNA-NEF may be a sensitive diagnostic and prognostic marker for NSCLC. Overexpression of lncRNA-NEF inhibited NSCLC cell proliferation and glucose uptake, and downregulated GLUT1 expression. Therefore, it can be concluded that lncRNA-NEF can target glucose transportation to inhibit the proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fangchao Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
131
|
Xu Y, Zhang G, Zou C, Gong Z, Wang S, Liu J, Ma G, Liu X, Zhang W, Jiang P. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol 2018; 234:11999-12010. [PMID: 30515803 DOI: 10.1002/jcp.27861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Long noncoding RNA (lncRNA) DiGeorge syndrome critical region gene 5 (DGCR5) has been reported to correlate with a variety of cancers, with its expression pattern and potential mechanism not clarified in gastric cancer (GC). In this study, we demonstrated that DGCR5 was downregulated in cancerous tissues and plasma samples from patients with GC, and its downregulation was associated with advanced TNM stage and positive lymphatic metastasis. Plasma DGCR5 had an area under the receiver operating characteristic curve (AUC) of 0.722 for diagnosis of GC. Gain- and loss-of-function of DGCR5 revealed that DGCR5 functioned as a competing endogenous RNA for miR-23b to suppress GC cell proliferation, invasion and migration, and facilitate apoptosis by regulating PTEN and BTG1 in vitro. Furthermore, the overexpression of DGCR5 suppressed tumor growth, and inhibited the expression of miR-23b and proliferation antigen Ki-67, but increased the expression of PTEN and BTG1 in vivo. In conclusion, our results show that DGCR5 is a tumor-suppressive lncRNA that regulates PTEN and BTG1 expression through directly binding to miR-23b. This mechanism may contribute to a better understanding of GC pathogenesis and provide a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ying Xu
- Department of Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Guohua Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Zou
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zhigang Gong
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Sijia Wang
- Department of Basic Medicine, Air Force Medical University, Xian, China
| | - Jun Liu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Gui Ma
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaogu Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenbo Zhang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pengcheng Jiang
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
132
|
Zhong Z, Hou J, Zhang Q, Li B, Li C, Liu Z, Yang M, Zhong W, Zhao P. Differential expression of circulating long non-coding RNAs in patients with acute myocardial infarction. Medicine (Baltimore) 2018; 97:e13066. [PMID: 30572424 PMCID: PMC6320201 DOI: 10.1097/md.0000000000013066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts regulating various critical physiological and pathological processes, yet limited information is available about lncRNAs expression in acute myocardial infarction (AMI). We aimed to identified differentially expressed lncRNAs in blood samples of patients with AMI to assess their diagnostic value. Differential expression of lncRNAs in peripheral blood mononuclear cells (PBMC) of patients with non-ST-elevation myocardial infarction (NSTEMI) and ST-elevation myocardial infarction (STEMI) was compared by RNA sequencing method and validated by real-time polymerase chain reaction (PCR). The area under the receiver operating characteristic curve (ROC) was used to evaluate diagnostic accuracy. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of lncRNA-coexpressed mRNAs were conducted to determine the related biological modules and pathological pathways. RNA sequencing data showed that 58 lncRNAs were differentially expressed between NSTEMI patients and STEMI patients, including 42 upregulated lncRNAs and 16 down-regulated lncRNAs. The ROC curves showed that ENST00000508020.2, LNC_001265, LNC_001526, and LNC_002674 could distinguish AMI patients with preferable sensitivity and specificity. GO enrichment analysis of lncRNA-coexpressed mRNAs indicated that the biological modules were correlated with cell adhesion, calcium ion homeostasis, complement receptor mediated signaling pathway, and immune system process. KEGG pathway analysis indicated that the lncRNAs-co-expressed mRNAs were involved in the regulation of peroxisome proliferators-activated receptors (PPAR) signaling pathway, mTOR signaling pathway, Insulin signaling pathway, HIF-1 signaling, and chemokin signaling pathway. Our results are in line with the previous findings, suggesting that differential expression of lncRNAs would be helpful to understand the molecular mechanism of AMI and might be useful biomarkers for noninvasive diagnostic application. Further studies are still needed to verify our findings and hypothesis.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Jingyuan Hou
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| | - Qifeng Zhang
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Bin Li
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Cunren Li
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Zhidong Liu
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Min Yang
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Wei Zhong
- Center for Cardiovascular Diseases
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
| | - Pingsen Zhao
- Guangdong Provincial Engineering
- Center for Precision Medicine
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P.R. China
| |
Collapse
|
133
|
Wen F, Cao YX, Luo ZY, Liao P, Lu ZW. LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 2018; 507:1-8. [DOI: 10.1016/j.bbrc.2018.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
134
|
Xu F, Jin L, Jin Y, Nie Z, Zheng H. Long noncoding RNAs in autoimmune diseases. J Biomed Mater Res A 2018; 107:468-475. [PMID: 30478988 DOI: 10.1002/jbm.a.36562] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
With the completion of the human genome project and further development of high-throughput genomic technologies, interest in long noncoding RNAs (lncRNAs), which are defined as non-protein-coding RNAs at least 200 nucleotides in length, has strongly increased, and lncRNAs have become a major research direction. Increasing evidence demonstrates that lncRNAs are closely related to human growth and development and to disease occurrence via various mechanisms. lncRNAs also play crucial roles in the differentiation and activation of immune cells, and their relationships with human autoimmune diseases have received increasing attention. The development of biotechnology has led to the gradual discovery of many potential lncRNA functions. In this review, we discuss various lncRNAs that have been implicated in different human autoimmune diseases, focusing on their clinical applications as potential biomarkers and therapeutic targets in the pathologies of diverse human autoimmune diseases. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 468-475, 2019.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Lei Jin
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yueling Jin
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Zhiyan Nie
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hong Zheng
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| |
Collapse
|
135
|
LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep 2018; 8:15670. [PMID: 30353135 PMCID: PMC6199307 DOI: 10.1038/s41598-018-33722-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as major regulators of a variety of cell signaling processes. Many lncRNAs are expressed in immune cells and appear to play critical roles in the regulation of immune response. Here, we have investigated the potential role of a well-known lncRNA, HOTAIR, in inflammatory and immune response. Our studies demonstrate that HOTAIR expression is induced in immune cells (macrophages) upon treatment with lipopolysaccharide (LPS). Knockdown of HOTAIR reduces NF-κB-mediated inflammatory gene and cytokine expression in macrophages. Inhibition of NF-κB resulted in down-regulation of LPS-induced expression of HOTAIR as well as IL-6 and iNOS expression. We further demonstrated that HOTAIR regulates activation of NF-κB and its target genes (IL-6 and iNOS) expression via facilitating the degradation of IκBα. HOTAIR knockdown reduces the expression of NF-κB target gene expression via inhibiting the recruitment of NF-κB and associated cofactors at the target gene promoters. Taken together, our findings suggest that HOTAIR is a critical player in NF-κB activation in macrophages suggesting its potential functions in inflammatory and immune response.
Collapse
|
136
|
George L, Indig FE, Abdelmohsen K, Gorospe M. Intracellular RNA-tracking methods. Open Biol 2018; 8:rsob.180104. [PMID: 30282659 PMCID: PMC6223214 DOI: 10.1098/rsob.180104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
RNA tracking allows researchers to visualize RNA molecules in cells and tissues, providing important spatio-temporal information regarding RNA dynamics and function. Methods such as fluorescent in situ hybridization (FISH) and molecular beacons rely on complementary oligonucleotides to label and view endogenous transcripts. Other methods create artificial chimeric transcripts coupled with bacteriophage-derived coat proteins (e.g. MS2, λN) to tag molecules in live cells. In other approaches, endogenous RNAs are recognized by complementary RNAs complexed with noncatalytic Cas proteins. Each technique has its own set of strengths and limitations that must be considered when planning an experiment. Here, we discuss the mechanisms, advantages, and weaknesses of in situ hybridization, molecular beacons, MS2 tagging and Cas-derived systems, as well as how RNA tracking can be employed to study various aspects of molecular biology.
Collapse
Affiliation(s)
- Logan George
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.,Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fred E Indig
- Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
137
|
Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc Natl Acad Sci U S A 2018; 115:E9802-E9811. [PMID: 30279181 DOI: 10.1073/pnas.1801471115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although many long noncoding RNAs (lncRNAs) have been identified in muscle, their physiological function and regulatory mechanisms remain largely unexplored. In this study, we systematically characterized the expression profiles of lncRNAs during C2C12 myoblast differentiation and identified an intronic lncRNA, SYISL (SYNPO2 intron sense-overlapping lncRNA), that is highly expressed in muscle. Functionally, SYISL promotes myoblast proliferation and fusion but inhibits myogenic differentiation. SYISL knockout in mice results in significantly increased muscle fiber density and muscle mass. Mechanistically, SYISL recruits the enhancer of zeste homolog 2 (EZH2) protein, the core component of polycomb repressive complex 2 (PRC2), to the promoters of the cell-cycle inhibitor gene p21 and muscle-specific genes such as myogenin (MyoG), muscle creatine kinase (MCK), and myosin heavy chain 4 (Myh4), leading to H3K27 trimethylation and epigenetic silencing of target genes. Taken together, our results reveal that SYISL is a repressor of muscle development and plays a vital role in PRC2-mediated myogenesis.
Collapse
|
138
|
Feng Y, Chen S, Xu J, Zhu Q, Ye X, Ding D, Yao W, Lu Y. Dysregulation of lncRNAs GM5524 and GM15645 involved in high‑glucose‑induced podocyte apoptosis and autophagy in diabetic nephropathy. Mol Med Rep 2018; 18:3657-3664. [PMID: 30132544 PMCID: PMC6131585 DOI: 10.3892/mmr.2018.9412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is an important microvascular complication of diabetes, and one of the leading causes of end‑stage kidney disease. However, the mechanism of the DN pathogenic process remains unclear. Recently, long non‑coding (lnc)RNA dysregulation has been regarded to cause the occurrence and development of various human diseases, although the functions of lncRNAs in human DN are poorly understood. The authors' previous study using microarray analysis identified hundreds of dysregulated lncRNAs in DN, although the functions of these lncRNAs were not demonstrated. Out of those dysregulated lncRNAs, Gm5524 was significantly upregulated in response to DN, while Gm15645 was significantly downregulated in response to DN. In the present study, this result was further validated by reverse transcription‑quantitative polymerase chain reaction assays, and downregulating or overexpressing Gm5524 and Gm15645 in mouse podocytes. Notably, knockdown of Gm5524 and overexpression of Gm15645 induced mouse podocyte apoptosis and decreased cell autophagy in high‑glucose culture conditions. In conclusion, the results of the present study revealed the roles of lncRNAs Gm5524 and Gm15645 in high‑glucose induced podocyte apoptosis and autophagy during DN, which may further the understanding of the involvement of lncRNAs in DN, and provide a potential novel therapeutic target for this disease.
Collapse
Affiliation(s)
- Yamin Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Sheng Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiarong Xu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Qun Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaolong Ye
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Weihao Yao
- Department of Endocrinology, Baoying People's Hospital, Yangzhou, Jiangsu 225800, P.R. China
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
139
|
Zhao C, Zou H, Wang J, Shen J, Liu H. A Three Long Noncoding RNA-Based Signature for Oral Squamous Cell Carcinoma Prognosis Prediction. DNA Cell Biol 2018; 37:888-895. [PMID: 30234381 DOI: 10.1089/dna.2018.4317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Despite relative high 5-year survival rate, delayed diagnosis still hampers its prognosis improvement. Long noncoding RNA (lncRNA) has recently been demonstrated to involve in development of various cancers. This study aimed to identify a lncRNA-based signature by which we could accurately predict OSCC prognosis. We first downloaded the RNA sequencing datasets for OSCC from The Cancer Genome Atlas (TCGA) and divided samples into training set and validation set. Associations between lncRNAs' expression and OSCC overall survival (OS) were evaluated in training set. Further screening through Random Survival Forest (RSF) method identified a prognostic signature composed of three lncRNAs, including AC013268.5, RP11.65 L3.4, and RP11.15A1.7, and by which OSCC samples in training set could be divided into high-risk and low-risk group with significantly different OS (p < 0.001, hazard ratio [HR] = 1.873). Besides, reliability of the prognostic signature was confirmed in the validation set (p < 0.01, HR = 2.14). Receiver operating characteristic curve analysis showed the superiority of the signature in OSCC prognosis prediction than other clinical characteristics. Gene set enrichment analysis indicated that high-risk score was closely associated with metabolism and spliceosome related pathways. Our findings suggest that lncRNA should be an important biomarker for prognosis of OSCC patients.
Collapse
Affiliation(s)
- Chenguang Zhao
- 1 Department of Emergency, Tianjin Stomatological Hospital , Tianjin, China
| | - Huiru Zou
- 2 Central Laboratory of Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University , Tianjin, China
| | - Jinhui Wang
- 1 Department of Emergency, Tianjin Stomatological Hospital , Tianjin, China
| | - Jun Shen
- 3 Department of Oral and Maxillofacial, Tianjin Stomatological Hospital , Tianjin, China
| | - Hao Liu
- 3 Department of Oral and Maxillofacial, Tianjin Stomatological Hospital , Tianjin, China
| |
Collapse
|
140
|
Yin Z, Cui Z, Li H, Li J, Zhou B. Polymorphisms in the H19 gene and the risk of lung Cancer among female never smokers in Shenyang, China. BMC Cancer 2018; 18:893. [PMID: 30219045 PMCID: PMC6139161 DOI: 10.1186/s12885-018-4795-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/04/2018] [Indexed: 11/21/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) H19 is a hot spot in tumor development, progression and metastasis. This study assessed the association between H19 genetic polymorphisms and the susceptibility of lung cancer. Methods The case-control study was conducted to evaluate the association between four selected single nucleotide polymorphisms (rs217727, rs2107425, rs2735469 and rs17658052) in H19 gene and the risk of lung cancer. There were 556 female never smoking lung cancer patients and 395 cancer-free controls. Unconditional logistic regression analysis was used to analyze the associations between four SNPs and lung cancer risks by calculating the odds ratios and their 95% confidence intervals. The gene-environment interactions were assessed on both additive and multiplicative scales. Results Compared with carriers carrying homozygous CC genotype, there was a statistically significant increased risk of lung cancer for carriers of the rs2107425 TT genotype (odds ratio = 1.599, 95%CI = 1.106–2.313, P = 0.013). In both dominant and recessive models, significant associations were found between rs2107425 and lung cancer risk, and the corresponding odds ratios were 1.346 (1.022–1.774) and 1.400 (1.011–1.937), with P values 0.035 and 0.043, respectively. There was no significant correlation between lung cancer risk and rs2735469, rs217727 and rs17658052. Interaction analysis showed that their combined effects had a greater impact on lung cancer than individual effects of polymorphism and cooking smoke exposure. However, further analysis showed that the both additive model and the multiplicative model were not statistically significant. Conclusion The polymorphism rs2107425 in H19 gene was associated with the risk of lung cancer among female who never smokes in Shenyang, China. Electronic supplementary material The online version of this article (10.1186/s12885-018-4795-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihua Yin
- Department of Epidemiology, China Medical University, No. 77, Puhe Road, Shenyang North District, Shenyang, 110122, People's Republic of China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hang Li
- Department of Epidemiology, China Medical University, No. 77, Puhe Road, Shenyang North District, Shenyang, 110122, People's Republic of China
| | - Juan Li
- Department of Epidemiology, China Medical University, No. 77, Puhe Road, Shenyang North District, Shenyang, 110122, People's Republic of China
| | - Baosen Zhou
- Department of Epidemiology, China Medical University, No. 77, Puhe Road, Shenyang North District, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
141
|
Zhao H, Yu H, Zheng J, Ning N, Tang F, Yang Y, Wang Y. Lowly-expressed lncRNA GAS5 facilitates progression of ovarian cancer through targeting miR-196-5p and thereby regulating HOXA5. Gynecol Oncol 2018; 151:345-355. [PMID: 30201235 DOI: 10.1016/j.ygyno.2018.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE This investigation was aimed at extrapolating whether and how lncRNA GAS5, miR-196a-5p and HOXA5 altered progression of ovarian cancer (OA). METHOD Totally 195 pairs of OA tissues and adjacent normal tissues were collected. Also si-GAS5, pcDNA-GAS5, miR-196a-5p mimic, miR-196a-5p inhibitor and negative control (NC) were, respectively, transfected into OA cells. Besides, dual-luciferase reporter gene assay was performed to validate the targeted relationships between GAS5 and miR-196a-5p, as well as between miR-196a-5p and HOXA5. The impacts of GAS5, miR-196a-5p and HOXA5 on viability, proliferation and apoptosis of OA cells were appraised via conduction of colony formation assay, MTT assay and flow cytometry assay. RESULT Lower GAS5 expression and higher miR-196a-5p expression were associated with larger tumor size (≥5 cm) and more advanced FIGO stage (III-IV) of OA patients (P < 0.05). Transfection of si-GAS5, miR-196a-5p mimic or si-HOXA5 conferred OA cells with stronger viability, faster proliferation and smaller percentage of apoptosis (P < 0.05). After injecting mice models with si-GAS5, miR-196a-5p mimic or si-HOXA5, a larger tumor size was also observed within the rats (P < 0.05). GAS5 was indicated to directly target miR-196a-5p and modify its expression, and the targeted relationship also seemed to exist between miR-196a-5p and HOXA5 (P < 0.05). The HOXA5 was found to reverse the effects imposed by miR-196a-5p on viability, proliferation and apoptosis of OA cells (P < 0.05). CONCLUSION LncRNA GAS5 depressed OA development by targeting miR-196a-5p and thereby down-regulating HOXA5 expression, providing substance for developing lncRNA-based strategies to treat OA.
Collapse
Affiliation(s)
- Hongmin Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Hongli Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Ning Ning
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Fanglan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, China.
| |
Collapse
|
142
|
Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res 2018; 3:108-117. [PMID: 30175284 PMCID: PMC6114262 DOI: 10.1016/j.ncrna.2018.03.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, long noncoding RNAs (lncRNAs) have been identified as significant players in gene regulation. They are often differentially expressed and widely-associated with a majority of cancer types. The aberrant expression of these transcripts has been linked to tumorigenesis, metastasis, cancer stage progression and patient survival. Despite their apparent link to cancer, it has been challenging to gain a mechanistic understanding of how they contribute to cancer, partially due the difficulty in discriminating functional RNAs from other noncoding transcription events. However, there are several well-studied lncRNAs where specific mechanisms have been more clearly defined, leading to new discoveries into how these RNAs function. One major observation that has come to light is the context-dependence of lncRNA mechanisms, where they often have unique function in specific cell types and environment. Here, we review the molecular mechanisms of lncRNAs with a focus on cancer pathways, illustrating a few informative examples. Together, this type of detailed insight will lead to a greater understanding of the potential for the application of lncRNAs as targets of cancer therapies and diagnostics.
Collapse
Affiliation(s)
- Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
- RNA Bioscience Initiative, University of Colorado Denver Anschutz Medical Campus 12801 East 17th Ave., Aurora, CO, United States
| |
Collapse
|
143
|
Cui Z, Gao M, Yin Z, Yan L, Cui L. Association between lncRNA CASC8 polymorphisms and the risk of cancer: a meta-analysis. Cancer Manag Res 2018; 10:3141-3148. [PMID: 30214306 PMCID: PMC6124472 DOI: 10.2147/cmar.s170783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To explore the relationship between single-nucleotide polymorphisms (SNPs) in one of the long noncoding RNA (lncRNA), cancer susceptibility candidate 8 (CASC8) gene and the risk of cancer. Materials and methods A meta-analysis was conducted to summarize the relationship between common SNPs (rs10505477 and rs7837328) in the lncRNA CASC8 gene and the risk of cancer. The relevant references were retrieved from several authoritative databases. Rigorous inclusion and exclusion criteria were adopted to ensure the credibility of the results. The fixed effects or random effects model was used to calculate the OR and 95% CI. We tested for publication bias. Results Fifteen articles containing 20 datasets (24,504 cases and 22,969 controls) were finally included in the meta-analysis. Compared to the individuals carrying the rs10505477 TT genotype, those with the TC or CC genotype had a decreased risk of cancer (TC vs TT: OR 0.876, 95% CI 0.832–0.923, P<0.001; CC vs TT: OR 0.748, 95% CI 0.703–0.795, P<0.001). Allele C of rs10505477 might be a protective factor for decreasing susceptibility to cancer (OR 0.866, 95% CI 0.840–0.893, P<0.001). As for rs7837328, the GA and AA genotypes were associated with increased risks of cancer as compared to the GG genotype (ORs 1.209 and 1.336; 95% CIs 1.127–1.298 and 1.202–1.484, respectively); its A allele could significantly increase the risk of cancer compared with the G allele (OR 1.169, 95% CI 1.114–1.227, P<0.001). Conclusion The rs10505477 and rs7837328 polymorphisms might be associated with risk of cancer.
Collapse
Affiliation(s)
- Zhigang Cui
- Department of Medical Informatics, China Medical University, Shenyang, People's Republic of China, .,School of Nursing, China Medical University, Shenyang, People's Republic of China.,Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Lei Yan
- Department of Medical Informatics, China Medical University, Shenyang, People's Republic of China,
| | - Lei Cui
- Department of Medical Informatics, China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
144
|
Wu L, Yin JH, Guan YY, Liu HL, Shen HL, Wang XJ, Han BH, Zhou MW, Gu XD. A long noncoding RNA MAP3K1-2 promotes proliferation and invasion in gastric cancer. Onco Targets Ther 2018; 11:4631-4639. [PMID: 30122954 PMCID: PMC6086095 DOI: 10.2147/ott.s168819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been implicated in several human cancers. The expression profile and underlying mechanism of the lncRNA MAP3K1-2 in gastric cancer (GC) are poorly understood. Methods Sixty-one patients with GC were recruited from Shanghai Baoshan Luo Dian Hospital (Shanghai, China). Tumor tissues and paired normal tissues (5 cm adjacent to the tumor) were obtained. Expression of lncRNA MAP3K1-2 in GC cell lines was examined using quantitative real-time polymerase chain reaction. Protein expression was detected using Western blot. Cell cycle analysis was assessed using flow cytometry. Cell proliferation was assessed using soft agar assays, and cell invasion was assessed using Transwell assays. Results The expression level of lncRNA MAP3K1-2 was upregulated in GC cells and markedly higher in poorly differentiated cell lines. Silencing treatment of lncRNA MAP3K1-2 significantly inhibited cell proliferation and invasion in GC. In addition, knockdown of lncRNA MAP3K1-2 significantly inhibited the function of important genes in the MAPK signaling pathway. Higher expression of lncRNA MAP3K1-2 was often associated with poorer prognosis in patients with GC. Conclusions lncRNA MAP3K1-2 is a critical effector in GC tumorigenesis and progression, representing novel therapeutic targets. High lncRNA MAP3K1-2 expression may serve as a novel independent prognostic marker for predicting the outcome of GC.
Collapse
Affiliation(s)
- Lei Wu
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Jia-Huan Yin
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Yu-Yu Guan
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Hai-Long Liu
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Hai-Long Shen
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Xiao-Jie Wang
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Bao-Hua Han
- Department of General Surgery, Shanghai Baoshan Luo Dian Hospital, Shanghai 201908, China
| | - Min-Wei Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China, ;
| | - Xiao-Dong Gu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China, ;
| |
Collapse
|
145
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
146
|
Jiang LY, Jiang YH, Qi YZ, Shao LL, Yang CH. Integrated analysis of long noncoding RNA and mRNA profiling ox-LDL-induced endothelial dysfunction after atorvastatin administration. Medicine (Baltimore) 2018; 97:e10949. [PMID: 29851839 PMCID: PMC6392538 DOI: 10.1097/md.0000000000010949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play a key role in the development of endothelial dysfunction. However, few lncRNAs associated with endothelial dysfunction after atorvastatin administration have been reported. METHODS In the present study, differentially expressed (DE) genes in ox-LDL versus control and ox-LDL + atorvastatin versus control were detected. Bioinformatics analysis and integrated analysis of mRNAs and lncRNAs were conducted to study the mechanisms of endothelial dysfunction after atorvastatin administration and to explore the regulation functions of lncRNAs. RESULTS Here, 532 DE mRNAs and 532 DE lncRNAs were identified (among them, 195 mRNAs and 298 lncRNAs were upregulated, 337 mRNAs and 234 lncRNAs were downregulated) after ox-LDL treatment for 24 hours (fold change ≥2.0, P < .05). After ox-LDL treatment following atorvastatin administration, 750 DE mRNAs and 502 DE lncRNAs were identified (among them, 149 mRNAs and 218 lncRNAs were upregulated and 601 mRNAs and 284 lncRNAs were downregulated). After atorvastatin administration, 167 lncRNAs and 262 mRNAs were still DE. Q-PCR validated the results of microarrays. CONCLUSION Chronic inflammatory response, nitric oxide biosynthetic process, microtubule cytoskeleton, cell proliferation and cell migration are regulated by lncRNAs, which also participated in the mainly molecular function and biological processes underlying endothelial dysfunction. Atorvastatin partly improved endothelial dysfunction, but the aspects beyond recovery were mainly concentrated in cell cycle, mitosis, and metabolism. Further exploration is required to explicit the mechanism by which lncRNAs participate in endothelial dysfunction.
Collapse
Affiliation(s)
- Ling-Yu Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Yue-Hua Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Zi Qi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Lin-Lin Shao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Chuan-Hua Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
147
|
Integrated analysis of non-coding RNAs for the identification of promising biomarkers in interstitial lung diseases. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
148
|
Baek J, Lee B, Kwon S, Yoon S. LncRNAnet: long non-coding RNA identification using deep learning. Bioinformatics 2018; 34:3889-3897. [DOI: 10.1093/bioinformatics/bty418] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Junghwan Baek
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
| | - Byunghan Lee
- Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sunyoung Kwon
- Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sungroh Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea
- Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
149
|
Significant association between lncRNA H19 polymorphisms and cancer susceptibility: a meta-analysis. Oncotarget 2018; 8:45143-45153. [PMID: 28404885 PMCID: PMC5542173 DOI: 10.18632/oncotarget.16658] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/19/2017] [Indexed: 12/19/2022] Open
Abstract
Previous epidemiological research suggests polymorphisms in long non-coding RNA (lncRNA) H19 are associated with an increased risk of cancer, but the results are inconsistent. We therefore conducted a meta-analysis to more accurately determine the association between lncRNA H19 polymorphisms and cancer risk. The PubMed, Embase, and Science Citation Index online databases were searched and 11 relevant studies involving a total of 33,209 participants were identified. Odds ratios (ORs) and corresponding 95% confidence interval (CIs) from these studies were used to detect associations between H19 polymorphisms and cancer risk using five genetic models. The pooled result suggested that the rs2839698 G>A polymorphism was associated with digestive cancer risk in all five models. Moreover, a protective effect against cancer development was observed for the T allele variant of the rs2107425 C>T polymorphism, especially in Caucasian patient populations. No significant associations were found between lncRNA H19 rs217727 G>A polymorphism and cancer risk. In summary, the rs2839698 G>A and rs2107425 C>T polymorphisms in lncRNA H19 may therefore play opposing roles during cancer development, and their effects may vary depending on cancer type and patient ethnicity.
Collapse
|
150
|
Ren GJ, Fan XC, Liu TL, Wang SS, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs during Cryptosporidium baileyi infection. BMC Genomics 2018; 19:356. [PMID: 29747577 PMCID: PMC5946474 DOI: 10.1186/s12864-018-4754-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/02/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cryptosporidium baileyi is the most common Cryptosporidium species in birds. However, effective prevention measures and treatment for C. baileyi infection were still not available. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) play important roles in regulating occurrence and progression of many diseases and are identified as effective biomarkers for diagnosis and prognosis of several diseases. In the present study, the expression profiles of host mRNAs, lncRNAs and circRNAs associated with C. baileyi infection were investigated for the first time. Results The tracheal tissues of experimental (C. baileyi infection) and control chickens were collected for deep RNA sequencing, and 545,479,934 clean reads were obtained. Of them, 1376 novel lncRNAs were identified, including 1161 long intergenic non-coding RNAs (lincRNAs) and 215 anti-sense lncRNAs. A total of 124 lncRNAs were found to be significantly differentially expressed between the experimental and control groups. Additionally, 14,698 mRNAs and 9085 circRNAs were identified, and significantly different expressions were observed for 1317 mRNAs and 104 circRNAs between two groups. Bioinformatic analyses of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for their targets and source genes suggested that these dysregulated genes may be involved in the interaction between the host and C. baileyi. Conclusions The present study revealed the expression profiles of mRNAs, lncRNAs and circRNAs during C. baileyi infection for the first time, and sheds lights on the roles of lncRNAs and circRNAs underlying the pathogenesis of Cryptosporidium infection. Electronic supplementary material The online version of this article (10.1186/s12864-018-4754-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guan-Jing Ren
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Sha-Sha Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|