101
|
Famiglietti EV. Synaptic organization of complex ganglion cells in rabbit retina: type and arrangement of inputs to directionally selective and local-edge-detector cells. J Comp Neurol 2005; 484:357-91. [PMID: 15770656 DOI: 10.1002/cne.20433] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The type and topographic distribution of synaptic inputs to a directionally selective (DS) rabbit retinal ganglion cell (GC) were examined and were compared with those received by two other complex GC types. The percentage of cone bipolar cell (BC) input, presumably an index of sustained responses and simple receptive field properties, is much higher than expected for complex GCs in reference to previous reports in other species: approximately 20% for the type 1 bistratified ON-OFF DS GC and for a multistratified GC, and approximately 40% for the small-tufted local-edge-detector GC. Consistent with a previous study (Famiglietti [1991] J. Comp. Neurol. 309:40-70), no ultrastructural evidence is found for inhibitory synapses from starburst amacrine cells to the ON-OFF DS GC. The density of inputs to the ON-OFF DS GC is high and rather evenly distributed over the dendritic tree. Clustering of inputs brings excitatory and inhibitory inputs into proximity, but the strict on-path condition of more proximal inhibitory inputs, favoring shunting inhibition, is not satisfied. Prominent BC input and its regional variation suggest that BCs play key roles in DS neural circuitry, both pre- and postsynaptic to the ON-OFF DS GC, according to a bilayer model (Famiglietti [1993] Invest. Ophthalmol. Vis. Sci. 34:S985). Asymmetry of inhibitory amacrine cell input may signify a region on the preferred side of the receptive field, the inhibition-free zone (Barlow and Levick [1965] J. Physiol. (Lond.) 178:477-504), supporting a role for postsynaptic integration in the DS mechanism. Prominent BC input to the local-edge-detector, often without accompanying amacrine cell input, indicates presynaptic integration in forming its trigger feature.
Collapse
Affiliation(s)
- Edward V Famiglietti
- Department of Ophthalmology, Rhode Island Hospital, Providence, Rhode Island 02903, USA.
| |
Collapse
|
102
|
Strang CE, Andison ME, Amthor FR, Keyser KT. Rabbit retinal ganglion cells express functional alpha7 nicotinic acetylcholine receptors. Am J Physiol Cell Physiol 2005; 289:C644-55. [PMID: 15872006 DOI: 10.1152/ajpcell.00633.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that cholinergic agents affect ganglion cell (GC) firing rates and light responses in the retinas of many species, but the specific receptor subtypes involved in mediating these effects have been only partially characterized. We sought to determine whether functional alpha(7) nicotinic acetylcholine receptors (nAChRs) contribute to the responses of specific retinal GC classes in rabbit retina. We used electrophysiology, pharmacology, immunohistochemistry, and reverse transcriptase-polymerase chain reaction to determine the pharmacological properties and expression of nAChR subtypes by specific rabbit retinal GC classes. Choline was used as an alpha(7) nAChR agonist. Methyllycaconitine (MLA) was used as a competitive alpha(7) nAChR antagonist. The application of choline before synaptic blockade resulted in changes in retinal GC activity, including increases or decreases in maintained firing and/or enhancement or suppression of light responses. Many physiologically identified GC types, including sustained off, sustained on, transient off, and transient on cells, demonstrated responses to choline application while under synaptic blockade. The choline-induced responses could be blocked with MLA, confirming alpha(7) nAChR activation. Individual choline-responsive GCs displayed mRNA transcripts consistent with the expression of functional alpha(7) nAChRs. Other GCs demonstrated physiological responses and mRNA expression consistent with the expression of both alpha(7) and non-alpha(7) nAChRs. Thus mRNA is present for multiple nAChR subunits in whole retina extracts, and functional alpha(7) nAChRs are capable of modulating the responses of GCs in adult rabbit retina. We also demonstrate through physiological responses that subsets of GCs express more than one nAChR subtype.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Science, University of Alabama, Birmingham, AL 35294-4390, USA
| | | | | | | |
Collapse
|
103
|
Xu Y, Dhingra NK, Smith RG, Sterling P. Sluggish and brisk ganglion cells detect contrast with similar sensitivity. J Neurophysiol 2005; 93:2388-95. [PMID: 15601731 PMCID: PMC2829294 DOI: 10.1152/jn.01088.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Roughly half of all ganglion cells in mammalian retina belong to the broad class, termed "sluggish." Many of these cells have small receptive fields and project via lateral geniculate nuclei to visual cortex. However, their possible contributions to perception have been largely ignored because sluggish cells seem to respond weakly compared with the more easily studied "brisk" cells. By selecting small somas under infrared DIC optics and recording with a loose seal, we could routinely isolate sluggish cells. When a spot was matched spatially and temporally to the receptive field center, most sluggish cells could detect the same low contrasts as brisk cells. Detection thresholds for the two groups determined by an "ideal observer" were similar: threshold contrast for sluggish cells was 4.7 +/- 0.5% (mean +/- SE), and for brisk cells was 3.4 +/- 0.3% (Mann-Whitney test: P > 0.05). Signal-to-noise ratios for the two classes were also similar at low contrast. However, sluggish cells saturated at somewhat lower contrasts (contrast for half-maximum response was 14 +/- 1 vs. 19 +/- 2% for brisk cells) and were less sensitive to higher temporal frequencies (when the stimulus frequency was increased from 2 to 4 Hz, the response rate fell by 1.6-fold). Thus the sluggish cells covered a narrower dynamic range and a narrower temporal bandwidth, consistent with their reported lower information rates. Because information per spike is greater at lower firing rates, sluggish cells may represent "cheaper" channels that convey less urgent visual information at a lower energy cost.
Collapse
Affiliation(s)
- Ying Xu
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | | | | | |
Collapse
|
104
|
DeBoer DJ, Vaney DI. Gap-junction communication between subtypes of direction-selective ganglion cells in the developing retina. J Comp Neurol 2005; 482:85-93. [PMID: 15612016 DOI: 10.1002/cne.20351] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The On-Off direction-selective ganglion cells (DSGCs) in the rabbit retina comprise four distinct subtypes that respond preferentially to image motion in four orthogonal directions; each subtype forms a regular territorial array, which is overlapped by the other three arrays. In this study, ganglion cells in the developing retina were injected with Neurobiotin, a gap-junction-permeable tracer, and the DSGCs were identified by their characteristic type 1 bistratified (BiS1) morphology. The complex patterns of tracer coupling shown by the BiS1 ganglion cells changed systematically during the course of postnatal development. BiS1 cells appear to be coupled together around the time of birth, but, over the next 10 days, BiS1 cells decouple from each other, leading to the mature pattern in which only one subtype is coupled. At about postnatal day 5, before the ganglion cells become visually responsive, each of the BiS1 cells commonly showed tracer coupling both to a regular array of neighboring BiS1 cells, presumably destined to be DSGCs of the same subtype, and to a regular array of overlapping BiS1 cells, presumably destined to be DSGCs of a different subtype. The gap-junction intercellular communication between subtypes of DSGCs with different preferred directions may play an important role in the differentiation of their synaptic connectivity, with respect to either the inputs that DSGCs receive from retinal interneurons or the outputs that DSGCs make to geniculate neurons.
Collapse
Affiliation(s)
- Darrell J DeBoer
- Vision, Touch and Hearing Research Centre, Queensland Brain Institute, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
105
|
Reed BT, Keyser KT, Amthor FR. MLA-sensitive cholinergic receptors involved in the detection of
complex moving stimuli in retina. Vis Neurosci 2005; 21:861-72. [PMID: 15733341 DOI: 10.1017/s0952523804216066] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Indexed: 11/07/2022]
Abstract
Acetylcholine, acting through nicotinic acetylcholine receptors,
mediates the response properties of many ganglion cells in the rabbit
retina, including those that are directionally selective (DS; Ariel
& Daw, 1982a,b). For example, Grzywacz et al. (1998) showed that cholinergic input is necessary
for DS responses to drifting gratings, a form of textured stimulus.
However, the identities and locations of the neuronal acetylcholine
receptor (nAChR) subtypes that mediate this input are not clear (Keyser et al., 2000). We investigated the role of
methyllycaconitine-sensitive, α7-like nAChRs in mediating DS
responses to textured stimuli and apparent motion. We recorded
extracellularly from On–Off DS ganglion cells in rabbit retina
using everted eyecup preparations. Our data provide evidence that
MLA-sensitive nAChRs are involved in mediating directionally selective
responses to apparent motion and to a variety of complex, textured
stimuli such as drifting square-wave gratings, transparent motion, and
second-order motion.
Collapse
Affiliation(s)
- B T Reed
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, AL 35294-4390, USA
| | | | | |
Collapse
|
106
|
Abstract
On average, in chicks, the total number of retinal ganglion cells is 4.9 x 10(6) and the cell density is 10400 cells/mm2. Two high-density areas, namely the central area (CA) and the dorsal area (DA), are located in the central and dorsal retinas, respectively, in post-hatching day 8 (P8) chicks (19000 cells/mm2 in the CA; 12800 cells/mm2 in the DA). Thirty percent of total cells in the ganglion cell layer are resistant to axotomy of the optic nerve. The distribution of the axotomy resistant cells shows two high-density areas in the central and dorsal retinas, corresponding to the CA (5800 cells/mm2) and DA (3200 cells/mm2). The number of presumptive ganglion cells in P8 chicks is estimated to be 4 x 10(6) (8600 cells/mm2 on average) and the density is 13500 and 10200 cells/mm2 in the CA and DA, respectively, and 4300 cell/mm2 in the temporal periphery (TP). The somal area of presumptive ganglion cells is small in the CA and DA (mean (+/- SD) 35.7 +/- 9.1 and 40.0 +/- 11.3 microm2, respectively) and their size increases towards the periphery (63.4 +/- 29.7 microm2 in the TP), accompanied by a decrease in cell density. Chick ganglion cells are classified according to dendritic field, somal size and branching density of the dendrites as follows: group Ic, Is, IIc, IIs, Ills, IVc. The density of branching points of dendrites is approximately 10-fold higher in the complex type (c) than in the simple type (s) in each group. The chick inner plexiform layer is divided into eight sublayers according to the dendritic strata of retinal ganglion cells and 26 stratification patterns are discriminated.
Collapse
Affiliation(s)
- Jumpei Naito
- Department of Animal Sciences, School of Science and Engineering, Teikyo University of Science and Technology, Uenohara, Japan.
| | | |
Collapse
|
107
|
Koch K, McLean J, Berry M, Sterling P, Balasubramanian V, Freed MA. Efficiency of information transmission by retinal ganglion cells. Curr Biol 2005; 14:1523-30. [PMID: 15341738 DOI: 10.1016/j.cub.2004.08.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/12/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Different types of retinal ganglion cells convey different messages to the brain. Messages are in the form of spike patterns, and the number of possible patterns per second sets the coding capacity. We asked if different ganglion cell types make equally efficient use of their coding capacity or whether efficiency depends on the message conveyed. RESULTS We recorded spike trains from retinal ganglion cells in an in vitro preparation of the guinea pig retina. By calculating, for the observed spike rate, the number of possible spike patterns per second, we calculated coding capacity, and by counting the actual number of patterns, we estimated information rate. Cells with "brisk" responses, i.e., high firing rates, and a general message transmitted information at high rates (21 +/- 9 bits s(-1)). Cells with "sluggish" responses, i.e., lower firing rates, and specific messages (direction of motion, local-edge) transmitted information at lower rates (13 +/- 7 bits s(-1)). Yet, for every type of ganglion cell examined, the information rate was about one-third of coding capacity. For every ganglion cell, information rate was very close (within 4%) to that predicted from Poisson noise and the cell's actual time-modulated rate. CONCLUSIONS Different messages are transmitted with similar efficiency. Efficiency is limited by temporal correlations, but correlations may be essential to improve decoding in the presence of irreducible noise.
Collapse
Affiliation(s)
- Kristin Koch
- University of Pennsylvania, Department of Neuroscience, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
108
|
Zheng JJ, Lee S, Zhou ZJ. A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 2005; 44:851-64. [PMID: 15572115 DOI: 10.1016/j.neuron.2004.11.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 08/26/2004] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
Dual patch-clamp recording and Ca2+ uncaging revealed Ca2+-dependent corelease of ACh and GABA from, and the presence of reciprocal nicotinic and GABAergic synapses between, starburst cells in the perinatal rabbit retina. With maturation, the nicotinic synapses between starburst cells dramatically diminished, whereas the GABAergic synapses remained and changed from excitatory to inhibitory, indicating a coordinated conversion of the starburst network excitability from an early hyperexcitatory to a mature nonepileptic state. We show that this transition allows the starburst cells to use their neurotransmitters for two completely different functions. During early development, the starburst network mediates recurrent excitation and spontaneous retinal waves, which are important for visual system development. After vision begins, starburst cells release GABA in a prolonged and Ca2+-dependent manner and inhibit each other laterally via direct GABAergic synapses, which may be important for visual integration, such as the detection of motion direction.
Collapse
Affiliation(s)
- Ji-Jian Zheng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
109
|
Badea TC, Nathans J. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 2004; 480:331-51. [PMID: 15558785 DOI: 10.1002/cne.20304] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An alkaline phosphatase (AP) reporter has been used to visualize detailed morphologies for all major classes of retinal neurons in the adult mouse. The analysis was performed on retinas in which AP expression was activated by Cre-mediated DNA recombination in a small fraction of cells. Recombination was controlled pharmacologically and, to a first approximation, appears to have occurred randomly. The morphologies of 794 inner retinal neurons have been analyzed by measuring arbor area, stratification level, and neurite branching patterns. When analyzed in this multidimensional parametric space, the cells can be clustered into subgroups by visual inspection and by using the Ward's and K-means algorithms. One application of this cell morphology data set and cluster analysis is as a standard for comparison with the retinas of genetically altered mice. This work illustrates the utility and feasibility of genetically directed marking methods for large-scale surveys of neuronal morphology.
Collapse
Affiliation(s)
- Tudor Constantin Badea
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
110
|
Weng S, Sun W, He S. Identification of ON-OFF direction-selective ganglion cells in the mouse retina. J Physiol 2004; 562:915-23. [PMID: 15564281 PMCID: PMC1665532 DOI: 10.1113/jphysiol.2004.076695] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We identified the ON-OFF direction-selective ganglion cells (DSGCs) in the mouse retina and characterized their physiological, morphological and pharmacological properties. These cells showed transient responses to the onset and termination of a stationary flashing spot, and strong directional selectivity to a moving rectangle. Application of various pharmacological reagents demonstrated that the ON-OFF DSGCs in the mouse retina utilize a similar array of transmitters and receptors to compute motion direction to their counterparts in the rabbit retina. Voltage clamp recording showed that ON-OFF DSGCs in the mouse retina receive a larger inhibitory input when the stimulus is moving in the null direction and a larger excitatory input when the stimulus is moving in the preferred direction. Finally, intracellular infusion of neurobiotin revealed a bistratified dendritic field with recursive dendrites forming loop-like structures, previously classified as RG(D2) by morphology. Overall, the ON-OFF DSGCs in the mouse retina exhibit almost identical properties to their counterparts in the rabbit retina, indicating that the mechanisms for computing motion direction are conserved from mouse to rabbit, and probably also to higher mammals. This first detailed characterization of ON-OFF DSGCs in the mouse retina provides fundamental information for further study of maturation and regulation of the neuronal circuitry underlying computation of direction.
Collapse
Affiliation(s)
- Shijun Weng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|
111
|
Wright LL, Vaney DI. The type 1 polyaxonal amacrine cells of the rabbit retina: A
tracer-coupling study. Vis Neurosci 2004; 21:145-55. [PMID: 15259566 DOI: 10.1017/s0952523804042063] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing
amacrine cell whose soma commonly occupies an interstitial position in
the inner plexiform layer; the proximal branches of the sparse
dendritic tree produce 1–4 axon-like processes, which form an
extensive axonal arbor that is concentric with the smaller dendritic
tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular
injections of Neurobiotin have revealed the complete dendritic and
axonal morphology of the PA1 cells in the rabbit retina, as well as
labeling the local array of PA1 cells through homologous tracer
coupling. The dendritic-field area of the PA1 cells increased from a
minimum of 0.15 mm2 (0.44-mm equivalent diameter) on the
visual streak to a maximum of 0.67 mm2 (0.92-mm diameter) in
the far periphery; the axonal-field area also showed a 3-fold variation
across the retina, ranging from 3.1 mm2 (2.0-mm diameter) to
10.2 mm2 (3.6-mm diameter). The increase in dendritic- and
axonal-field size was accompanied by a reduction in cell density, from
60 cells/mm2 in the visual streak to 20
cells/mm2 in the far periphery, so that the PA1 cells
showed a 12 times overlap of their dendritic fields across the retina
and a 200–300 times overlap of their axonal fields. Consequently,
the axonal plexus was much denser than the dendritic plexus, with each
square millimeter of retina containing ∼100 mm of dendrites and
∼1000 mm of axonal processes. The strong homologous tracer coupling
revealed that ∼45% of the PA1 somata were located in the inner
nuclear layer, ∼50% in the inner plexiform layer, and ∼5% in
the ganglion cell layer. In addition, the Neurobiotin-injected PA1
cells sometimes showed clear heterologous tracer coupling to a regular
array of small ganglion cells, which were present at half the density
of the PA1 cells. The PA1 cells were also shown to contain elevated
levels of γ-aminobutyric acid (GABA), like other axon-bearing
amacrine cells.
Collapse
Affiliation(s)
- Layne L Wright
- Vision, Touch & Hearing Research Centre, School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia
| | | |
Collapse
|
112
|
Strang CE, Amthor FR, Keyser KT. Rabbit retinal ganglion cell responses to nicotine can be mediated by beta2-containing nicotinic acetylcholine receptors. Vis Neurosci 2004; 20:651-62. [PMID: 15088718 DOI: 10.1017/s0952523803206076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Acetylcholine (ACh) affects the response properties of many retinal ganglion cells (GCs) through the activation of nicotinic acetylcholine receptors (nAChRs). To date there have been few studies directly correlating the expression of specific nAChR subtypes with the physiological and morphological characteristics of specific retinal GCs. This study was designed to correlate responses to nicotine application with immunohistochemical evidence of nAChR expression in physiologically and morphologically identified ganglion cells. Extracellular recordings were used to physiologically identify rabbit retinal GCs, based on responses to light stimulation. Cells were then tested for responses to nicotine application and/or for expression of nAChRs, as judged by immunoreactivity to mAb210, an nAChR antibody. The morphologies of many physiologically identified cells were also determined by dye injection. More than three-fourths of ganglion cells tested responded to nicotine application under cobalt-induced synaptic blockade. The nicotine sensitivity was consistent with nAChR immunoreactivity and was also correlated with specific morphological subgroups of GCs. Overall, approximately two-thirds of all physiologically identified GCs that were processed for immunohistochemistry displayed immunoreactivity. In total, 18 of 22 physiologically identified cells demonstrated both sensitivity to nicotine application under synaptic blockade and mAb210 immunoreactivity (mAb210-IR). Thus, mAb210-IR is likely to represent functional nAChRs that can modulate retinal information processing and visual functioning via direct excitation of a number of GC classes.
Collapse
|
113
|
Kim IB, Lee EJ, Kang TH, Chung JW, Chun MH. Morphological analysis of the hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) immunoreactive bipolar cells in the rabbit retina. J Comp Neurol 2004; 467:389-402. [PMID: 14608601 DOI: 10.1002/cne.10957] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hyperpolarization-activated cation currents (I(h)) have been identified in neurons in the central nervous system, including the retina. There is growing evidence that these currents, mediated by the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN), may play important roles in visual processing in the retina. This study was conducted to identify and characterize HCN1-immunoreactive (IR) bipolar cells by immunocytochemistry, quantitative analysis, and electron microscopy. The HCN1-IR bipolar cells were a subtype of OFF-type cone bipolar cells and comprised 10% of the total number of cone bipolar cells. The axons of the HCN1-IR cone bipolar cells ramified narrowly in the border of strata 1 and 2 of the inner plexiform layer (IPL). These cells formed a regular distribution, with a density of 1,825 cells/mm(2) at a position 1 mm ventral to the visual streak, falling to 650 cells/mm(2) in the ventral periphery. Double-labeling experiments demonstrated that their axons stratified narrowly within and slightly proximal to the OFF-starburst amacrine cell processes. In the IPL, they were presynaptic to amacrine cell processes. The most frequent postsynaptic dyads formed of HCN1-IR bipolar cell axon terminals are pairs composed of both amacrine cell processes. These results suggest that these HCN1-IR cone bipolar cells might be the same as the DAPI-Ba1 bipolar population, and might therefore be involved in a direction-selective mechanism, providing inputs to the OFF-starburst amacrine cells and/or the OFF-plexus of the ON-OFF ganglion cells.
Collapse
Affiliation(s)
- In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | |
Collapse
|
114
|
Diao L, Sun W, Deng Q, He S. Development of the mouse retina: Emerging morphological diversity of the ganglion cells. ACTA ACUST UNITED AC 2004; 61:236-49. [PMID: 15389605 DOI: 10.1002/neu.20041] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The time course and regulatory mechanisms of dendritic development are subjects of intense interest. We approached these problems by investigating dendritic morphology of retinal ganglion cells (RGCs) at four early postnatal stages. The RGCs develop from a diffusely stratified and poorly differentiated group at birth (P0), to 16 distinct, morphologically well-defined subtypes before eye opening (P13). Even before bipolar cells make synaptic contacts with the RGCs (P8), most adultlike RGC subtypes are already present. Similar to previous studies in other mammalian species, our results indicate that the initiation of the RGC morphological maturation is independent of light stimulation and of formation of glutamatergic synapses. This study narrowed down the window of RGCs morphological maturation and highlighted a few early postnatal events as potential factors controlling the developmental process. Because mouse is the most popular mammalian model for genetic manipulation, this study provided a foundation for further exploring regulatory mechanisms of RGC dendritic development.
Collapse
Affiliation(s)
- Ling Diao
- Institute of Neuroscience and Shanghai Research Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
115
|
Naito J, Chen Y. Morphologic analysis and classification of ganglion cells of the chick retina by intracellular injection of lucifer yellow and retrograde labeling with DiI. J Comp Neurol 2004; 469:360-76. [PMID: 14730588 DOI: 10.1002/cne.11010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinal ganglion cells (RGCs) of chicks were labeled by using the techniques of intracellular filling with Lucifer Yellow and retrograde axonal labeling with carbocyanine dye (DiI). Labeled RGCs were morphologically analyzed and classified into four major groups: Group I cells (57.1%) with a small somal area (77.5 microm(2) on average) and narrow dendritic field (17,160 microm(2) on average), Group II cells (28%) with a middle-sized somal area (186 microm(2)) and middle-sized dendritic field (48,800 microm(2)), Group III cells (9.9%) with a middle-sized somal area (203 microm(2)) and wide dendritic field (114,000 microm(2)), and Group IV cells (5%) with a large somal area (399 microm(2)) and wide dendritic field (117,000 microm(2)). Of the four groups, Groups I and II were further subdivided into two types, simple and complex, on the basis of dendritic arborization: Groups Is, Ic, and Groups IIs, IIc. However, Group III and IV showed either a simple or complex type, Group IIIs and Group IVc, respectively. The density of branching points of dendrites was approximately 10 times higher in the complex types (18,350, 6,190, and 3,520 points/mm(2) in Group Ic, IIc, and IVc, respectively) than in the simple types (1,890, 640, and 480 points/mm(2) in Group Is, IIs, and IIIs). The branching density of Group I cells was extremely high in the central zone. The chick inner plexiform layer was divided into eight sublayers by dendritic strata of RGCs and 26 stratification patterns were discriminated. The central and peripheral retinal zones were characterized by branching density of dendrites and composition of RGC groups, respectively.
Collapse
Affiliation(s)
- Jumpei Naito
- Laboratory of Animal Morphology and Function, Division of Biofunction Development, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
116
|
Carcieri SM, Jacobs AL, Nirenberg S. Classification of retinal ganglion cells: a statistical approach. J Neurophysiol 2003; 90:1704-13. [PMID: 12966177 DOI: 10.1152/jn.00127.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have shown that retinal ganglion cells exhibit an array of responses to visual stimuli. This has led to the idea that these cells can be sorted into distinct physiological classes, such as linear versus nonlinear or on versus off. Although many classification schemes are widely accepted, few studies have provided statistical support to favor one scheme over another. Here we test whether some of the most widely used classification schemes can be statistically verified, using the mouse retina as the model system. We used a cluster analysis approach and focused on 4 standard response parameters: 1) response latency, 2) response duration, 3) relative amplitude of the on and off responses, and 4) degree of nonlinearity in the stimulus-to-response transformation. For each parameter, we plotted its distribution and tested quantitatively, using a bootstrap method, whether it divided into distinct clusters. Our analysis showed that mouse ganglion cells clustered into several groups based on response latency, duration, and relative amplitude of the on and off responses, but did not cluster into more than one group based on degree of nonlinearity-the latter formed a single, large, continuous group. Thus while some well-known schemes for classifying ganglion cells could be statistically verified, others could not. Knowledge of which schemes can be confirmed is important for building models of how retinal output is processed and how retinal circuits are built. Finally, this cluster analysis approach is general and can be used to test other classification proposals as well, both physiological and anatomical.
Collapse
Affiliation(s)
- Stephen M Carcieri
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | |
Collapse
|
117
|
Freed MA, Smith RG, Sterling P. Timing of quantal release from the retinal bipolar terminal is regulated by a feedback circuit. Neuron 2003; 38:89-101. [PMID: 12691667 DOI: 10.1016/s0896-6273(03)00166-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cells. In about one-third of these cells, sEPSCs were temporally correlated, arriving in brief bursts (10-55 ms) more often than expected from a Poisson process. Correlations were suppressed by antagonizing the GABA(C) receptor (expressed on bipolar terminals), and correlations were induced by raising extracellular calcium or osmolarity. Simulations of the feedback circuit produced "bursty" release when the bipolar cell escaped intermittently from inhibition. Correlations of similar duration were present in the light-evoked sEPSCs and spike trains of sluggish-type ganglion cells. These correlations were suppressed by antagonizing GABA(C) receptors, indicating that glutamate bursts from bipolar terminals induce spike bursts in ganglion cells.
Collapse
Affiliation(s)
- Michael A Freed
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
118
|
Douglass JK, Strausfeld NJ. Retinotopic pathways providing motion-selective information to the lobula from peripheral elementary motion-detecting circuits. J Comp Neurol 2003; 457:326-44. [PMID: 12561074 DOI: 10.1002/cne.10575] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recordings from afferent channels from the medulla supplying deep neuropils of the fly's optic lobes reveal different filter properties among the three classes of afferent neurons: transmedullary cells, T2 neurons, and Y cells. Whereas transmedullary cells respond to local flicker stimuli without discriminating these from directional or oriented motion, the T2 afferent neurons show clear motion orientation selectivity, which corresponds closely with a morphological bias in the orientation of their dendrites and could also be influenced by systems of local recurrent neurons in the medulla. A Y cell having a clearly defined terminal in the lobula, but having dendrite-like processes in the medulla and, possibly, the lobula plate, discriminates the direction of motion and its orientation. These results demonstrate unambiguously that the lobula receives information about motion and that the channels carrying it are distinct from those supplying wide-field motion-selective neurons in the lobula plate. Furthermore, recordings from a newly identified recurrent neuron linking the lobula back to the inner medulla demonstrate that the lobula discriminates nondirectional edge motion from flicker, thereby reflecting a property of this neuropil that is comparable with that of primary visual cortex in cats. The present findings support the proposal that elementary motion detecting circuits supply several parallel channels through the medulla, which segregate to, but are not shared by, the lobula and the lobula plate. The results are discussed in the context of other intracellular recordings from retinotopic neurons and with analogous findings from mammalian visual systems.
Collapse
Affiliation(s)
- John K Douglass
- Division of Neurobiology, Arizona Research Laboratories, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
119
|
Cuenca N, Deng P, Linberg KA, Fisher SK, Kolb H. Choline acetyltransferase is expressed by non-starburst amacrine cells in the ground squirrel retina. Brain Res 2003; 964:21-30. [PMID: 12573509 DOI: 10.1016/s0006-8993(02)04049-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have used immunostaining techniques to reveal a new type of amacrine cell that is immunoreactive for choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the Ground Squirrel (Spermophilus beecheyi) retina. Cryostat sections and double immunostained wholemount preparations were examined by confocal microscopy. This new ChAT type III cell is distinct in morphology and neurotransmitter content from the well know 'starburst' amacrine cells (types I and II) that are so well represented in the ground squirrel retina [J. Comp. Neurol. 365 (1996) 173-216]. The type III cell colocalizes glycine with the acetylcholine and does not appear to be GABAergic or exhibit calcium-binding proteins like the well-known starburst type. As well, type III cells do not occur as a mirror-symmetric pair with normally placed and displaced varieties. The type III cell is probably a small field amacrine type branching broadly in upper sublamina b of the inner plexiform layer, and is most likely A6 of the Ground Squirrel retina [J. Comp. Neurol. 365 (1996) 173-216]. Type III cells are ideally placed in the architecture of the Ground Squirrel retina to influence ON directionally selective ganglion cell types.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain.
| | | | | | | | | |
Collapse
|
120
|
Dacheux RF, Chimento MF, Amthor FR. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. J Comp Neurol 2003; 456:267-78. [PMID: 12528191 DOI: 10.1002/cne.10521] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A physiologically identified on-off directionally selective (DS) ganglion cell with its preferred-null axis defined was stained with horseradish peroxidase (HRP) and prepared for electron microscopy. A continuous series of thin sections were used to examine the cell's synaptology. Although the DS cell dendrite received the majority of its synaptic input from a heterogeneous population of amacrine cell processes, a frequently observed synaptic profile consisted of a DS cell dendrite receiving synapses from a cluster of several amacrine cell processes. These clusters of processes were assumed to be from a fascicle of amacrine cells, most of which probably belonged to several different cholinergic starburst amacrine cells. The most frequently observed presynaptic profile within the clusters consisted of a synaptic couplet in which two processes synapsed with each other before one of them finally synapsed with the DS ganglion cell dendrite; occasionally, a chain of three serial synapses was seen. In addition, a specific microcircuit that has the potential to exert lateral feedforward inhibition was also observed. This microcircuit consisted of two cone bipolar cell terminal dyad synapses where one dyad contained an amacrine cell process making a reciprocal synapse and a DS ganglion cell dendrite receiving direct excitation; the other dyad synapse, found lateral to the first dyad, contained two amacrine cell processes that both made reciprocal synapses, but one fed forward to make a putative inhibitory synapse with the DS cell dendrite.
Collapse
Affiliation(s)
- Ramon F Dacheux
- Department of Ophthalmology, University of Alabama at Birmingham, Callahan Eye Foundation Hospital, 35294-0009, USA.
| | | | | |
Collapse
|
121
|
Clifford CWG, Ibbotson MR. Fundamental mechanisms of visual motion detection: models, cells and functions. Prog Neurobiol 2002; 68:409-37. [PMID: 12576294 DOI: 10.1016/s0301-0082(02)00154-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taking a comparative approach, data from a range of visual species are discussed in the context of ideas about mechanisms of motion detection. The cellular basis of motion detection in the vertebrate retina, sub-cortical structures and visual cortex is reviewed alongside that of the insect optic lobes. Special care is taken to relate concepts from theoretical models to the neural circuitry in biological systems. Motion detection involves spatiotemporal pre-filters, temporal delay filters and non-linear interactions. A number of different types of non-linear mechanism such as facilitation, inhibition and division have been proposed to underlie direction selectivity. The resulting direction-selective mechanisms can be combined to produce speed-tuned motion detectors. Motion detection is a dynamic process with adaptation as a fundamental property. The behavior of adaptive mechanisms in motion detection is discussed, focusing on the informational basis of motion adaptation, its phenomenology in human vision, and its cellular basis. The question of whether motion adaptation serves a function or is simply the result of neural fatigue is critically addressed.
Collapse
Affiliation(s)
- C W G Clifford
- Colour, Form and Motion Laboratory, Visual Perception Unit, School of Psychology, The University of Sydney, Sydney 2006, NSW, Australia.
| | | |
Collapse
|
122
|
Abstract
Five hundred twenty ganglion cells in an isolated whole-mount preparation of the mouse retina were labeled using the "DiOlistic" method (Gan et al. [2000] Neuron 27:219-225) and were classified according to their morphological properties. Tungsten particles coated with a lipophilic dye (DiI) were propelled into the whole-mount retina using a gene gun. When a dye-coated particle contacted the cell membrane, the entire cell was labeled. The ganglion cells were classified into four groups based on their soma size, dendritic field size, and pattern and level of stratification. Broadly monostratified cells were classified into three groups: RG(A) cells (large soma, large dendritic field), RG(B) cells (small to medium-sized soma, small to medium-sized dendritic field), and RG(C) cells (small to medium-sized size soma, medium-sized to large dendritic field). Bistratified cells were classified as RG(D). This study represents the most complete morphological classification of mouse retinal ganglion cells available to date and provides a foundation for further understanding of the correlation of physiology and morphology and ganglion cell function with genetically manipulated animals.
Collapse
Affiliation(s)
- Wenzhi Sun
- Institute of Neuroscience and Shanghai Research Center for Life Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | |
Collapse
|
123
|
Stasheff SF, Masland RH. Functional inhibition in direction-selective retinal ganglion cells: spatiotemporal extent and intralaminar interactions. J Neurophysiol 2002; 88:1026-39. [PMID: 12163551 DOI: 10.1152/jn.2002.88.2.1026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded from ON-OFF direction-selective ganglion cells (DS cells) in the rabbit retina to investigate in detail the inhibition that contributes to direction selectivity in these cells. Using paired stimuli moving sequentially across the cells' receptive fields in the preferred direction, we directly confirmed the prediction of that a wave of inhibition accompanies any moving excitatory stimulus on its null side, at a fixed spatial offset. Varying the interstimulus distance, stimulus size, luminance, and speed yielded a spatiotemporal map of the strength of inhibition within this region. This "null" inhibition was maximal at an intermediate distance behind a moving stimulus: 1/2 to 11/2 times the width of the receptive field. The strength of inhibition depended more on the distance behind the stimulus than on stimulus speed, and the inhibition often lasted 1-2 s. These spatial and temporal parameters appear to account for the known spatial frequency and velocity tuning of ON-OFF DS cells to drifting contrast gratings. Stimuli that elicit distinct ON and OFF responses to leading and trailing edges revealed that an excitatory response of either polarity could inhibit a subsequent response of either polarity. For example, an OFF response inhibited either an ON or OFF response of a subsequent stimulus. This inhibition apparently is conferred by a neural element or network spanning the ON and OFF sublayers of the inner plexiform layer, such as a multistratified amacrine cell. Trials using a stationary flashing spot as a probe demonstrated that the total amount of inhibition conferred on the DS cell was equivalent for stimuli moving in either the null or preferred direction. Apparently the cell does not act as a classic "integrate and fire" neuron, summing all inputs at the soma. Rather, computation of stimulus direction likely involves interactions between excitatory and inhibitory inputs in local regions of the dendrites.
Collapse
Affiliation(s)
- Steven F Stasheff
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston 02115, USA.
| | | |
Collapse
|
124
|
Jeon CJ, Kong JH, Strettoi E, Rockhill R, Stasheff SF, Masland RH. Pattern of synaptic excitation and inhibition upon direction-selective retinal ganglion cells. J Comp Neurol 2002; 449:195-205. [PMID: 12115689 DOI: 10.1002/cne.10288] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The distributions of excitatory and inhibitory synapses upon the dendritic arbor of a direction-selective retinal ganglion cell were compared by triple-labeling techniques. The dendrites were visualized by confocal microscopy after injection of Lucifer yellow. Excitatory inputs from bipolar cells were located by using antibodies against kinesin II, a component of synaptic ribbons. Inhibitory inputs were identified by antibodies against gamma-aminobutyric acid-A receptors. The combined images were examined by visual inspection and by formal, automated analyses, in a search for anisotropies that might contribute to a directional preference of the ganglion cell. Within the limits of our analysis, none was found. If an anatomic specialization underlies direction selectivity, it appears to lie in the geometry and spatial positioning of the neurons afferent to the ganglion cell and/or the microcircuitry among its afferent synapses.
Collapse
Affiliation(s)
- Chang-Jin Jeon
- Department of Biology, Kyungpook National University, 702-701 Taegu, Korea
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
We report a survey of the population of ganglion cells in the rabbit retina. A random sample of 301 neurons in the ganglion cell layer was targeted for photofilling, a method in which the arbors of the chosen neurons are revealed by diffusion of a photochemically induced fluorescent product from their somas. An additional 129 cells were labeled by microinjection of Lucifer yellow. One hundred and thirty-eight cells were visualized by expression of the gene encoding a green fluorescent protein, introduced by particle-mediated gene transfer. One hundred and sixty-six cells were labeled by particle-mediated introduction of DiI. In the total population of 734 neurons, we could identify 11 types of retinal ganglion cell. An analysis based on retinal coverage shows that this number of ganglion cell types would not exceed the available total number of ganglion cells. Although some uncertainties remain, this sample appears to account for the majority of the ganglion cells present in the rabbit retina. Some known physiological types could easily be mapped onto structural types, but half of them could not; a large set of poorly known codings of the visual input is transmitted to the brain.
Collapse
|
126
|
Troy JB, Shou T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research. Prog Retin Eye Res 2002; 21:263-302. [PMID: 12052385 DOI: 10.1016/s1350-9462(02)00002-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies on the receptive field properties of cat retinal ganglion cells over the past half-century are reviewed within the context of the role played by the receptive field in visual information processing. Emphasis is placed on the work conducted within the past 20 years, but a summary of key contributions from the 1950s to 1970s is provided. We have sought to review aspects of the ganglion cell receptive field that have not been featured prominently in previous review articles. Our review of the receptive field properties of X- and Y-cells focuses on quantitative studies and includes consideration of the function of the receptive field in visual signal processing. We discuss the non-classical as well as the classical receptive field. Attention is also given to the receptive field properties of the less well-studied cat ganglion cells-the W-cells-and the effect of pathology on cat ganglion cell properties. Although work from our laboratories is highlighted, we hope that we have given a reasonably balanced view of the current state of the field.
Collapse
Affiliation(s)
- J B Troy
- Department of Biomedical Engineering & Neuroscience Institute, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
127
|
Abstract
Classifying all of the ganglion cells in the mammalian retina has long been a goal of anatomists, physiologists, and cell biologists. The rabbit retinal ganglion cell layer was phenotyped using intrinsic small molecule signals (aspartate, glutamate, glycine, glutamine, GABA, and taurine) and glutamate receptor-gated 1-amino-4-guanidobutane excitation signals as the clustering dimensions for formal classification. Intrinsic signals alone yielded 7 ganglion cell superclasses and 1 amacrine cell superclass; the addition of excitation signals ultimately resolved 14 natural ganglion cell classes and 3 amacrine cell classes. Ganglion cells comprise two-thirds to three-quarters of the cells in the ganglion cell layer and exhibited distinct metabolic, coupling, and excitation phenotypes, as well as characteristic sizes, population fractions, and patterns. Metabolic signatures (mixtures of glutamate, aspartate, glutamine, and GABA) chemically discriminated ganglion from amacrine cells. Coupling signatures reflected heterologous coupling states across ganglion cells: (1) uncoupled, (2) coupled to GABAergic amacrine cells, and (3) coupled to glycinergic amacrine cells. Excitation signatures reflected differential channel permeation rates across classes after AMPA activation. Extraction of unique size and patterning features from the data sets further validated the robustness of the classification. Because the classifications were explicitly blinded to structure, this is strong evidence that molecular phenotype classes are natural classes. Correspondences of molecular phenotype classes to functional classes were inferred from size, coupling, encounter, and physiological attributes. Ganglion cell classes display markedly different ionotropic drives, which may partly explain the physiological brisk-sluggish spectrum of ganglion cell spiking patterns.
Collapse
|
128
|
Abstract
The receptive field (RF) of retinal ganglion cells (RGCs) consists of an excitatory central region, the RF center, and an inhibitory peripheral region, the RF surround. It is still unknown in detail which inhibitory interneurons (horizontal or amacrine cells) and which inhibitory circuits (presynaptic or postsynaptic) generate the RF surround. To study surround inhibition, light-evoked whole-cell currents were recorded from RGCs of the isolated, intact rabbit retina. The RFs were stimulated with light or dark spots of increasing diameters and with annular light stimuli. Direct inhibitory currents could be isolated by voltage clamping ganglion cells close to the Na(+)/K(+) reversal potential. They mostly represent an input from GABAergic amacrine cells that contribute to the inhibitory surround of ganglion cells. This direct inhibitory input and its physiological function were also investigated by recording light-evoked action potentials of RGCs in the current-clamp mode and by changing the intracellular Cl(-) concentration. The excitatory input of the ganglion cells could be isolated by voltage clamping ganglion cells at the Cl(-) reversal potential. Large light spots and annular light stimuli caused a strong attenuation of the excitatory input. Both GABA(A) receptors and GABA(C) receptors contributed to this inhibition, and picrotoxinin was able to completely block it. Together, these results show that the RF surround of retinal ganglion cells is mediated by a combination of direct inhibitory synapses and presynaptic surround inhibition.
Collapse
|
129
|
Kolb H, Nelson R, Ahnelt P, Cuenca N. Cellular organization of the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:3-26. [PMID: 11420950 DOI: 10.1016/s0079-6123(01)31005-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Kolb
- John Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
130
|
Linberg K, Cuenca N, Ahnelt P, Fisher S, Kolb H. Comparative anatomy of major retinal pathways in the eyes of nocturnal and diurnal mammals. PROGRESS IN BRAIN RESEARCH 2001; 131:27-52. [PMID: 11420947 DOI: 10.1016/s0079-6123(01)31006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- K Linberg
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | | | |
Collapse
|
131
|
Werblin F, Roska B, Balya D. Parallel processing in the mammalian retina: lateral and vertical interactions across stacked representations. PROGRESS IN BRAIN RESEARCH 2001; 131:229-38. [PMID: 11420943 DOI: 10.1016/s0079-6123(01)31019-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- F Werblin
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, 145 LSA, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
132
|
Abstract
In this review, we summarize the main stages of structural and functional development of retinal ganglion cells (RGCs). We first consider the various mechanisms that are involved in restructuring of dendritic trees. To date, many mechanisms have been implicated including target-dependent factors, interactions from neighboring RGCs, and afferent signaling. We also review recent evidence showing how rapidly such dendritic remodeling might occur, along with the intracellular signaling pathways underlying these rearrangements. Concurrent with such structural changes, the functional responses of RGCs also alter during maturation, from sub-threshold firing to reliable spiking patterns. Here we consider the development of intrinsic membrane properties and how they might contribute to the spontaneous firing patterns observed before the onset of vision. We then review the mechanisms by which this spontaneous activity becomes correlated across neighboring RGCs to form waves of activity. Finally, the relative importance of spontaneous versus light-evoked activity is discussed in relation to the emergence of mature receptive field properties.
Collapse
Affiliation(s)
- E Sernagor
- Department of Neurobiology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
133
|
Brown SP, Masland RH. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 2001; 4:44-51. [PMID: 11135644 DOI: 10.1038/82888] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human visual perception and many visual system neurons adapt to the luminance and contrast of the stimulus. Here we describe a form of contrast adaptation that occurs in the retina. This adaptation had a local scale smaller than the dendritic or receptive fields of single ganglion cells and was insensitive to pharmacological manipulation of amacrine cell function. These results implicate the bipolar cell pathway as a site of contrast adaptation. The time required for contrast adaptation varied with stimulus size, ranging from approximately 100 ms for the smallest stimuli, to seconds for stimuli the size of the receptive field. The differing scales and time courses of these effects suggest that multiple types of contrast adaptation are used in viewing natural scenes.
Collapse
Affiliation(s)
- S P Brown
- Program in Neuroscience, Goldenson 228, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
134
|
He S, Levick WR. Spatial-temporal response characteristics of the ON-OFF direction selective ganglion cells in the rabbit retina. Neurosci Lett 2000; 285:25-8. [PMID: 10788699 DOI: 10.1016/s0304-3940(00)01030-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We studied the response properties of the ON-OFF direction selective (DS) ganglion cells in the rabbit retina. The activities of the ganglion cells were recorded extracellularly with tungsten-in-glass electrodes. Drifting sine-wave gratings with various spatial and temporal frequencies were used to stimulate the ON-OFF DS cells. Individual ON-OFF DS cell yielded strongest response to a particular spatial frequency irrespective of temporal frequency. The optimal spatial wavelength increased with increasing eccentricity and its half-width approximately matched the size of the receptive field. The optimal spatial frequency implies that the directional inhibition is effective over a range of about a receptive field diameter. The characteristics of the ON-OFF DS cells suggest that they might function as local motion detectors.
Collapse
Affiliation(s)
- S He
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | |
Collapse
|
135
|
|
136
|
Abstract
We define a new bistratified ganglion cell type of cat retina using intracellular staining in vitro. The theta cell has a small soma, slender axon, and delicate, highly branched dendritic arbor. Dendritic fields are intermediate in size among cat ganglion cells, with diameters typically two to three times those of beta cells. Fields increase in size with distance from the area centralis, ranging in diameter from 70 to 150 microns centrally to a maximum of 700 microns in the periphery. Theta cells have markedly smaller dendritic fields within the nasal visual streak than above or below it and smaller fields nasally than temporally. Dendritic arbors are narrowly bistratified. The outer arbor lies in the lower part of sublamina a (OFF sublayer) of the inner plexiform layer where it costratifies with the dendrites of OFF alpha cells. The inner arbor occupies the upper part of sublamina b (ON sublayer), where it costratifies with ON alpha dendrites. The outer and inner arbors are composed of many relatively short segments and are densely interconnected by branches that traverse the a/b sublaminar border. Experiments combining retrograde labeling with intracellular staining indicate that theta cells project to the superior colliculus and to two components of the dorsal lateral geniculate nucleus (the C laminae and medial interlaminar nucleus). Theta cells project contralaterally from the nasal retina and ipsilaterally from the temporal retina. They apparently correspond to a sluggish transient or phasic W-cell with an ON-OFF receptive field center.
Collapse
Affiliation(s)
- T Isayama
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
137
|
Cook JE, Podugolnikova TA, Kondrashev SL. Species-dependent variation in the dendritic stratification of apparently homologous retinal ganglion cell mosaics in two neoteleost fishes. Vision Res 1999; 39:2615-31. [PMID: 10492825 DOI: 10.1016/s0042-6989(98)00327-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Large retinal ganglion cells of the marine neoteleost Bathymaster derjugini were labeled with horseradish peroxidase and studied in flatmounts. Four types formed regular, independent mosaics, of which three (biplexiform, alpha-a, alpha-c) resembled those in several other teleosts. The fourth (alpha-ab) appeared novel in one significant respect. Whereas we originally described similar cells in another neoteleost, Oreochromis spilurus, as monostratified in sublamina b of the inner plexiform layer, these were very clearly bistratified in a and b. Detailed re-analysis of our Oreochromis flatmounts showed that the difference is of one degree only: many Oreochromis cells do send fine dendrites into a. These observations strengthen the evidence that all four mosaics are homologous across a wide range of fishes, and clear away an obstacle to our earlier proposals that the alpha-a, alpha-ab and alpha-c mosaics of fishes, frogs, and perhaps other nonmammalian jawed vertebrates too, may all be homologous.
Collapse
Affiliation(s)
- J E Cook
- Department of Anatomy and Developmental Biology, University College London, UK.
| | | | | |
Collapse
|
138
|
|
139
|
Brown SP, Masland RH. Costratification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990524)408:1<97::aid-cne7>3.0.co;2-p] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
140
|
|
141
|
Abstract
A ganglion cell's receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina using multiple electrodes have challenged this view of independent firing by showing that neighboring ganglion cells have an increased tendency to fire together within +/-5 ms. However, there is still uncertainty about which types of ganglion cells fire together, the mechanisms that produce coordinated spikes, and the overall function of coordinated firing. To address these issues, the responses of up to 80 rabbit retinal ganglion cells were recorded simultaneously using a multielectrode array. Of the 11 classes of rabbit ganglion cells previously identified, coordinated firing was observed in five. Plots of the spike train cross-correlation function suggested that coordinated firing occurred through two mechanisms. In the first mechanism, a spike in an interneuron diverged to produce simultaneous spikes in two ganglion cells. This mechanism predominated in four of the five classes including the ON brisk transient cells. In the second mechanism, ganglion cells appeared to activate each other reciprocally. This was the predominant pattern of correlated firing in OFF brisk transient cells. By comparing the receptive field profiles of ON and OFF brisk transient cells, a peripheral extension of the OFF brisk transient cell receptive field was identified that might be produced by lateral spike spread. Thus an individual OFF brisk transient cell can respond both to a light stimulus directed at the center of its receptive field and to stimuli that activate neighboring OFF brisk transient cells through their receptive field centers.
Collapse
Affiliation(s)
- S H DeVries
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
142
|
Abstract
We define a new morphological type of ganglion cell in cat retina by using intracellular staining in vitro. The zeta cell has a small soma, slender axon, and compact, tufted, unistratified dendritic arbor. Dendritic fields were intermediate in size among cat ganglion cells, typically twice the diameter of beta cell fields. They were smallest in the nasal visual streak (<280 microm diameter), especially near the area centralis (60-150 microm diameter), and largest in the nonstreak periphery (maximum diameter 570 microm). Fields sizes were symmetric about the nasotemporal raphe except near the visual streak, where nasal fields were smaller than temporal ones. Zeta-cell dendrites ramified near the boundary between sublaminae a and b (OFF and ON sublayers) of the inner plexiform layer, occupying the narrow gap separating the dendrites of ON and OFF alpha cells. There was no evidence for separate ON and OFF types of zeta cell. Retrograde labeling studies revealed that both nasally and temporally located zeta cells project to the contralateral superior colliculus, whereas few project to the ipsilateral colliculus or to any subdivision of the dorsal lateral geniculate nucleus. The zeta cell's morphology and projection patterns suggest that it corresponds to the ON-OFF phasic W-cell (also known as the local edge detector) of physiological studies. Zeta cells have particularly small dendritic fields in the visual streak, presumably because they are disproportionately represented in the streak in comparison with other ganglion cell types. These conditions are consistent with optimal spatial resolution along the retinal projection of the visual horizon rather than principally at the center of gaze. Strong commonalities with similar ganglion cell types in ferret, rabbit, and monkey suggest that "zeta-like" cells may be a universal feature of the mammalian retina.
Collapse
Affiliation(s)
- D M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
143
|
Rivera N, Lugo N. Four retinal ganglion cell types that project to the superior colliculus in the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). J Comp Neurol 1998; 396:105-20. [PMID: 9623890 DOI: 10.1002/(sici)1096-9861(19980622)396:1<105::aid-cne8>3.0.co;2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphology of retinal ganglion cells projecting to the superior colliculus (SC) of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus) was studied after retrogradely labeling the cells with cholera toxin subunit B. On the basis of previous reports, labeled cells were classified as small (6-10 microm in soma diameter), medium (11-14 microm), or large (>14 microm). A total of 3,427 cells were studied. Small cells constituted 78% of the population, 21% were medium cells, and only 1% were classified as large. The morphology of medium-sized cells was studied in more detail because large cells were few in number and the staining of the dendritic tree of small cells was not optimal. The best labeled medium-sized cells were classified on the basis of the shape and size of their dendritic tree and the pattern of dendritic ramification. Four types were identified among the medium-sized ganglion cells. Two types were classified as symmetric delta-like and asymmetric delta-like cells considering the relative symmetric or asymmetric distribution of their dendritic branches and their similarities with the delta type of the cat. Approximately 52% of all the medium-sized cells studied were symmetrical delta-like, and 19% were classified as asymmetrical delta-like. These cells were also very similar to the symmetrical and asymmetrical directionally selective ganglion cells described in rabbit retina. Other cells were termed beta-like. They had the smallest dendritic tree diameter, and their tree size seemed to be related to retinal eccentricity. Medium beta-like cells comprised approximately 21% of all cells projecting to the SC. The fourth type was termed "acute angle" because most of their dendritic branches were relatively straight and formed acute angles (10-45 degrees) at their branching points. These cells were few in number (approximately 8% of all medium-sized cells studied) and did not resemble any reported previously in cats. Thus, a variety of morphological types of retinal ganglion cells projected to the SC. Of these, the symmetrical and asymmetrical delta-like cells appeared to correspond to the directionally selective type described in the ground squirrel (Michael, C.R. [1968] J. Neurophysiol. 31:257-267) and reported in the rabbit retina.
Collapse
Affiliation(s)
- N Rivera
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico, San Juan 00901, USA
| | | |
Collapse
|
144
|
Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond) 1998; 11 ( Pt 6):904-23. [PMID: 9537156 DOI: 10.1038/eye.1997.230] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since amacrine cells are important interneurons of the inner retina and their activity may be detected in certain waveforms of the electroretinogram, this paper reviews their morphologies, classification, mosaics, neurotransmitter content, neural circuitry and physiological responses to light. Nine different amacrine cell types of cat, rabbit and human retinas are presently quite well studied in terms of the aforementioned aspects and are described in detail in this paper.
Collapse
Affiliation(s)
- H Kolb
- Department of Ophthalmology, John Moran Eye Center, University of Utah School of Medicine, Salt Lake City 84132, USA
| |
Collapse
|
145
|
Devries SH, Baylor DA. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 1997; 78:2048-60. [PMID: 9325372 DOI: 10.1152/jn.1997.78.4.2048] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The arrangement of ganglion cell receptive fields on the retinal surface should constrain several properties of vision, including spatial resolution. Anatomic and physiological studies on the mammalian retina have shown that the receptive fields of several types of ganglion cells tile the retinal surface, with the degree of receptive field overlap apparently being similar for the different classes. It has been difficult to test the generality of this arrangement, however, because it is hard to sample many receptive fields in the same preparation with conventional single-unit recording. In our experiments, the response properties and receptive fields of up to 80 neighboring ganglion cells in the isolated rabbit retina were characterized simultaneously by recording with a multielectrode array. The cells were divided into 11 classes on the basis of their characteristic light responses and the temporal structures of their impulse trains. The mosaic arrangement of receptive fields for cells of a given class was examined after the spatial profile of each receptive field was fitted with a generalized Gaussian surface. For eight cell classes the mosaic arrangement was similar: the profiles of neighboring cells approached each other at the 1-sigma border. Thus field centers were 2 sigma apart. The layout of fields for the remaining three classes was not well characterized because the fields were poorly fitted by a single Gaussian or because the cells responded selectively to movement. The 2-sigma center-center spacing may be a general principle of functional organization that minimizes spatial aliasing and confers a uniform spatial sensitivity on the ganglion cell population.
Collapse
Affiliation(s)
- S H Devries
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
146
|
Abstract
We examined the tracer coupling pattern of more than 15 morphological types of amacrine and ganglion cells in the rabbit retina. Individual cells were injected intracellularly with the biotinylated tracer Neurobiotin, which was then allowed to diffuse across gap junctions to label neighboring neurons. We found that homologous and/or heterologous tracer coupling was common for most proximal neurons. In fact, the starburst amacrine cell was the only amacrine cell type that showed no evidence of coupling. The remaining types of amacrine cell were coupled exclusively to other amacrines, either homologously or, more often, through a combination of homologous and heterologous junctions. In only one case did we visualize labeled ganglion cells following injection of Neurobiotin into an amacrine cell. In contrast, injection of Neurobiotin into ganglion cells almost always resulted in the labeling of amacrine cells. Taken together, these results suggest a directionality to the movement of tracer across gap junctions connecting amacrine and ganglion cells. We found that the coupling pattern for a given morphological type of cell was generally stereotypic and consistent across retinas. The notable exceptions to this finding were alpha ganglion cells and cells with morphology corresponding to that of on-off direction selective ganglion cells. In both cases, individual cells showed either extensive coupling to both amacrine and ganglion cells or no coupling at all. A notable finding was that, in every case, the neighboring cells within a tracer-coupled array were always within one gap junction of the injected neuron. Furthermore, in many cases, the array formed by the somata of tracer-coupled cells was almost perfectly coincident with the dendritic arbor of the injected cell. Thus, our results indicate that whereas coupling is extensive within the proximal retina, individual cells partake in coupled networks that are stereotypic and highly circumscribed.
Collapse
Affiliation(s)
- D Xin
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
147
|
Kittila CA, Massey SC. Pharmacology of directionally selective ganglion cells in the rabbit retina. J Neurophysiol 1997; 77:675-89. [PMID: 9065840 DOI: 10.1152/jn.1997.77.2.675] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this report we describe extracellular recordings made from ON and ON-OFF directionally selective (DS) ganglion cells in the rabbit retina during perfusion with agonists and antagonists to acetylcholine (ACh), glutamate, and gamma-aminobutyric acid (GABA). Nicotinic ACh agonists strongly excited DS ganglion cell in a dose-dependent manner. Dose-response curves showed a wide range of potencies, with (+/-)-exo-2-(6-chloro-3pyridinyl)-7-azabicyclo[2.2.1] heptane dihydrochloride (epibatidine) > > > nicotine > 1,1-dimethyl-4-phenylpiperazinium iodide = carbachol. In addition, the mixed cholinergic agonist carbachol produced a small excitation, mediated by muscarinic receptors, that could be blocked by atropine. The specific nicotinic antagonists hexamethonium bromide (100 microM), dihydro-beta-erythroidine (50 microM), mecamylamine (50 microM), and tubocurarine (50 microM) blocked the responses to nicotinic agonists. In addition, nicotinic antagonists reduced the light-driven input to DS ganglion cells by approximately 50%. However, attenuated responses were still DS. We deduce that cholinergic input is not required for directional selectivity. These experiments reveal the importance of bipolar cell input mediated by glutamate. N-methyl-D-aspartic acid (NMDA) excited DS ganglion cells, but NMDA antagonists did not abolish directional selectivity. However, a combined cholinergic and NMDA blockade reduced the responses of DS ganglion cells by > 90%. This indicates that most of the noncholinergic excitatory input appears to be mediated by NMDA receptors, with a small residual made up by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate (KA) receptors. Responses to AMPA and KA were highly variable and often evoked a mixture of excitation and inhibition due to the release of ACh and GABA. Under cholinergic blockade AMPA/KA elicited a strong GABA-mediated inhibition in DS ganglion cells. AMPA/KA antagonists, such as 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F)quinoxaline dione and GYKI-53655, promoted null responses and abolished directional selectivity due to the blockade of GABA release. We conclude that GABA release, mediated by non-NMDA glutamate receptors, is an essential part of the mechanism of directional selectivity. The source of the GABA is unknown, but may arise from starburst amacrine cells.
Collapse
Affiliation(s)
- C A Kittila
- Department of Ophthalmology and Visual Science, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
148
|
Grzywacz NM, Tootle JS, Amthor FR. Is the input to a GABAergic or cholinergic synapse the sole asymmetry in rabbit's retinal directional selectivity? Vis Neurosci 1997; 14:39-54. [PMID: 9057267 DOI: 10.1017/s0952523800008749] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined contrast, direction of motion, and concentration dependencies of the effects of GABAergic and cholinergic antagonists, and anticholinesterases on responses to movement of On-Off directionally selective (DS) ganglion cells of the rabbit's retina. The drugs tested were curare and hexamethonium bromide (cholinergic antagonists), physostigmine (anticholinesterase), and picrotoxin (GABAergic antagonist). They all reduced the cells' directional selectivity, while maintaining their preferred-null axis. However, cholinergic antagonists did not block directional selectivity completely even at saturating concentrations. The failure to eliminate directional selectivity was probably not due to an incomplete blockade of cholinergic receptors. In a extension of a Masland and Ames (1976) experiment, saturating concentrations of antagonists blocked the effects of exogenous acetylcholine or nicotine applied during synaptic blockade. Consequently, a noncholinergic pathway may be sufficient to account for at least some directional selectivity. This putative pathway interacts with the cholinergic pathway before spike generation, since physostigmine eliminated directional selectivity at contrasts lower than those saturating responses. This elimination apparently resulted from cholinergic-induced saturation, since reduction of contrast restored directional selectivity. Under picrotoxin, directional selectivity was lost in 33% of the cells regardless of contrast. However, 47% maintained their preferred direction despite saturating concentrations of picrotoxin, and 20% reversed the preferred and null directions. Therefore, models based solely on a GABAergic implementation of Barlow and Levick's asymmetric-inhibition model or solely on a cholinergic implementation of asymmetric-excitation models are not complete models of directional selectivity in the rabbit. We propose an alternate model for this retinal property.
Collapse
Affiliation(s)
- N M Grzywacz
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
149
|
Optical recordings of the effects of cholinergic ligands on neurons in the ganglion cell layer of mammalian retina. J Neurosci 1996. [PMID: 8756436 DOI: 10.1523/jneurosci.16-16-05060.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic regulation of the activity of rabbit retinal ganglion cells and displaced amacrine cells was investigated using optical recording of changes in intracellular free calcium ([Ca2+]i). Labeling of neurons in the mature retina was achieved by injecting calcium green-1 dextran (CaGD) into the isolated retina. Nicotine increased ganglion cell [Ca2+]i, affecting every loaded cell in some preparations; the pharmacology of nicotine was consistent with an action at neuronal nicotinic receptors, and specifically it was kappa-(neuronal-)bungarotoxin-sensitive but alpha-bungarotoxin-insensitive. Muscarine also raised [Ca2+]i, but it was less potent than nicotine, affecting only a subpopulation of ganglion cells, with an M1-like muscarinic receptor pharmacology. Neither the nicotine- nor muscarine-induced increases of ganglion cell [Ca2+]i were blocked by the glutamate receptor antagonists 6,7-dinitroquinoxaline-2,3-dione and aminophosphonopentanoic acid. Therefore, the effects of cholinergic agonists on ganglion cell [Ca2+]i were not attributable to an indirect effect mediated by glutamatergic bipolar cells. The effects of nicotine and muscarine were abolished in calcium-free solution, indicating that the responses depend on calcium influx. Displaced (Cb) cholinergic amacrine cells were also loaded with CaGD and were identified by selective labeling with the nuclear dye 4',6-diamidino-2-phenyl-indole. Cb amacrine cells did not respond to either nicotine or muscarine, but responded vigorously to the glutamate receptor agonist kainic acid. There is anatomical evidence indicating that cholinergic amacrine cells make synaptic contact with each other, but the present results do not support the hypothesis that communication between these cells is cholinergic.
Collapse
|
150
|
Sernagor E, Grzywacz NM. Influence of spontaneous activity and visual experience on developing retinal receptive fields. Curr Biol 1996; 6:1503-8. [PMID: 8939611 DOI: 10.1016/s0960-9822(96)00755-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The role played by early neural activity in shaping retinal functions has not yet been established. In the developing vertebrate retina, ganglion cells fire spontaneous bursts of action potentials before the onset of visual experience. This spontaneous bursting disappears shortly after birth or eye opening. In the present study, we have investigated whether the outgrowth of receptive fields in turtle retinal ganglion cells is affected by early spontaneous bursting or by early visual experience. RESULTS Ganglion cells normally stop bursting spontaneously 2-4 weeks post-hatching, the time when receptive-field areas reach adult size. When turtles are reared in the dark, the spontaneous bursting persists. Concomitantly, receptive-field areas expand to more than twice those observed in normal adults. To test whether chronic blockade of spontaneous bursting inhibits the expansion of developing receptive-field areas, we have exposed the retina to curare, a nicotinic cholinergic antagonist, because spontaneous bursting by ganglion cells requires acetylcholine. Curare was released from Elvax, a slow-release polymer that was implanted in the eye. When spontaneous bursting was chronically blocked with curare in hatchlings, dark-induced expansion of receptive fields was abolished. Moreover, receptive fields of ganglion cells exposed to curare in hatchlings reared in normal light and dark cycles were smaller than normal. CONCLUSIONS These results strongly suggest that early, acetylcholine-dependent spontaneous bursts of activity control the outgrowth of receptive-field areas in retinal ganglion cells. The onset of visual experience induces the disappearance of the immature spontaneous bursts, resulting in the stabilization of receptive-field areas to their mature size.
Collapse
Affiliation(s)
- E Sernagor
- Department of Child Health, Medical School, University of Newcastle upon Tyne, UK.
| | | |
Collapse
|