101
|
Campbell BC, Nabel EM, Murdock MH, Lao-Peregrin C, Tsoulfas P, Blackmore MG, Lee FS, Liston C, Morishita H, Petsko GA. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc Natl Acad Sci U S A 2020; 117:30710-30721. [PMID: 33208539 PMCID: PMC7720163 DOI: 10.1073/pnas.2000942117] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP. mGreenLantern illuminates neurons in the mouse brain within 72 h, dramatically reducing lag time between viral transduction and imaging, while its high brightness improves detection of neuronal morphology using widefield, confocal, and two-photon microscopy. When virally expressed to projection neurons in vivo, mGreenLantern fluorescence developed four times faster than EYFP and highlighted long-range processes that were poorly detectable in EYFP-labeled cells. Additionally, mGreenLantern retains strong fluorescence after tissue clearing and expansion microscopy, thereby facilitating superresolution and whole-brain imaging without immunohistochemistry. mGreenLantern can directly replace EGFP/EYFP in diverse systems due to its compatibility with GFP filter sets, recognition by EGFP antibodies, and excellent performance in mouse, human, and bacterial cells. Our screening and rational engineering approach is broadly applicable and suggests that greater potential of fluorescent proteins, including biosensors, could be unlocked using a similar strategy.
Collapse
Affiliation(s)
- Benjamin C Campbell
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Elisa M Nabel
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mitchell H Murdock
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Cristina Lao-Peregrin
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Pantelis Tsoulfas
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53211
| | - Murray G Blackmore
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Conor Liston
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
- Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY 10021
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, Cornell University, New York, NY 10021
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gregory A Petsko
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY 10021;
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
102
|
Linghu C, Johnson SL, Valdes PA, Shemesh OA, Park WM, Park D, Piatkevich KD, Wassie AT, Liu Y, An B, Barnes SA, Celiker OT, Yao CC, Yu CCJ, Wang R, Adamala KP, Bear MF, Keating AE, Boyden ES. Spatial Multiplexing of Fluorescent Reporters for Imaging Signaling Network Dynamics. Cell 2020; 183:1682-1698.e24. [PMID: 33232692 DOI: 10.1016/j.cell.2020.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.
Collapse
Affiliation(s)
- Changyang Linghu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Shannon L Johnson
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Pablo A Valdes
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Or A Shemesh
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Won Min Park
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Demian Park
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Kiryl D Piatkevich
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Yixi Liu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Bobae An
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Stephanie A Barnes
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Orhan T Celiker
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Chun-Chen Yao
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Ru Wang
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark F Bear
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Amy E Keating
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Koch Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
103
|
Parra-Damas A, Saura CA. Tissue Clearing and Expansion Methods for Imaging Brain Pathology in Neurodegeneration: From Circuits to Synapses and Beyond. Front Neurosci 2020; 14:914. [PMID: 33122983 PMCID: PMC7571329 DOI: 10.3389/fnins.2020.00914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Studying the structural alterations occurring during diseases of the nervous system requires imaging heterogeneous cell populations at the circuit, cellular and subcellular levels. Recent advancements in brain tissue clearing and expansion methods allow unprecedented detailed imaging of the nervous system through its entire scale, from circuits to synapses, including neurovascular and brain lymphatics elements. Here, we review the state-of-the-art of brain tissue clearing and expansion methods, mentioning their main advantages and limitations, and suggest their parallel implementation for circuits-to-synapses brain imaging using conventional (diffraction-limited) light microscopy -such as confocal, two-photon and light-sheet microscopy- to interrogate the cellular and molecular basis of neurodegenerative diseases. We discuss recent studies in which clearing and expansion methods have been successfully applied to study neuropathological processes in mouse models and postmortem human brain tissue. Volumetric imaging of cleared intact mouse brains and large human brain samples has allowed unbiased assessment of neuropathological hallmarks. In contrast, nanoscale imaging of expanded cells and brain tissue has been used to study the effect of protein aggregates on specific subcellular structures. Therefore, these approaches can be readily applied to study a wide range of brain processes and pathological mechanisms with cellular and subcellular resolution in a time- and cost-efficient manner. We consider that a broader implementation of these technologies is necessary to reveal the full landscape of cellular and molecular mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos A Saura
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
104
|
Edwards SJ, Carannante V, Kuhnigk K, Ring H, Tararuk T, Hallböök F, Blom H, Önfelt B, Brismar H. High-Resolution Imaging of Tumor Spheroids and Organoids Enabled by Expansion Microscopy. Front Mol Biosci 2020; 7:208. [PMID: 33195398 PMCID: PMC7543521 DOI: 10.3389/fmolb.2020.00208] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional cell cultures are able to better mimic the physiology and cellular environments found in tissues in vivo compared to cells grown in two dimensions. In order to study the structure and function of cells in 3-D cultures, light microscopy is frequently used. The preparation of 3-D cell cultures for light microscopy is often destructive, including physical sectioning of the samples, which can result in the loss of 3-D information. In order to probe the structure of 3-D cell cultures at high resolution, we have explored the use of expansion microscopy and compared it to a simple immersion clearing protocol. We provide a practical method for the study of spheroids, organoids and tumor-infiltrating immune cells at high resolution without the loss of spatial organization. Expanded samples are highly transparent, enabling high-resolution imaging over extended volumes by significantly reducing light scatter and absorption. In addition, the hydrogel-like nature of expanded samples enables homogenous antibody labeling of dense epitopes throughout the sample volume. The improved labeling and image quality achieved in expanded samples revealed details in the center of the organoid which were previously only observable following serial sectioning. In comparison to chemically cleared spheroids, the improved signal-to-background ratio of expanded samples greatly improved subsequent methods for image segmentation and analysis.
Collapse
Affiliation(s)
- Steven J Edwards
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Kyra Kuhnigk
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Ring
- Department of Neuroscience, BMC, Uppsala University, Uppsala, Sweden
| | - Tatsiana Tararuk
- Department of Neuroscience, BMC, Uppsala University, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, BMC, Uppsala University, Uppsala, Sweden
| | - Hans Blom
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
105
|
M'Saad O, Bewersdorf J. Light microscopy of proteins in their ultrastructural context. Nat Commun 2020; 11:3850. [PMID: 32737322 PMCID: PMC7395138 DOI: 10.1038/s41467-020-17523-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/03/2020] [Indexed: 11/09/2022] Open
Abstract
Resolving the distribution of specific proteins at the nanoscale in the ultrastructural context of the cell is a major challenge in fluorescence microscopy. We report the discovery of a new principle for an optical contrast equivalent to electron microscopy (EM) which reveals the ultrastructural context of the cells with a conventional confocal microscope. By decrowding the intracellular space through 13 to 21-fold physical expansion while simultaneously retaining the proteins, bulk (pan) labeling of the proteome resolves local protein densities and reveals the cellular nanoarchitecture by standard light microscopy.
Collapse
Affiliation(s)
- Ons M'Saad
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Nanobiology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
106
|
Katoh Y, Chiba S, Nakayama K. Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol Biol Cell 2020; 31:2195-2206. [PMID: 32726175 PMCID: PMC7550703 DOI: 10.1091/mbc.e20-04-0250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are microtubule-based protrusions from the cell surface that are approximately 0.3 µm in diameter and 3 µm in length. Because size approximates the optical diffraction limit, ciliary structures at the subdiffraction level can be observed only by using a superresolution microscope or electron microscope. Expansion microscopy (ExM) is an alternative superresolution imaging technique that uses a swellable hydrogel that enables the physical expansion of specimens. However, the efficacy of ExM has not been fully verified, and further improvements in the method are anticipated. In this study, we applied ExM to the observation of primary cilia and centrioles and compared the acquired images with those obtained using conventional superresolution microscopy. Furthermore, we developed a new tool, called the amplibody, for fluorescence signal amplification, to compensate for the substantial decrease in fluorescence signal per unit volume inherent to physical expansion and for the partial proteolytic digestion of cellular proteins before expansion. We also demonstrate that the combinatorial use of the ExM protocol optimized for amplibodies and Airyscan superresolution microscopy enables the practical observation of cilia and centrioles with high brightness and resolution.
Collapse
Affiliation(s)
- Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Graduate School of Medicine, Osaka City University, Asahi-machi, 1-4-3 Abeno, Osaka 545-8585, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
107
|
Abstract
Optical imaging techniques are often used in neuroscience to understand brain function and discern disease pathogenesis. However, the optical diffraction limit precludes conventional optical imaging approaches from resolving nanoscopic structures with feature sizes smaller than 300 nm. Expansion microscopy (ExM) circumvents this limit by physically expanding preserved tissues embedded in a swellable hydrogel. Biomolecules of interest are covalently linked to a polymer matrix, which is then isotropically expanded at least 100-fold in size in pure water after mechanical homogenization of the tissue-gel. The sample can then be investigated with nanoscale precision using a conventional diffraction-limited microscope. The protocol described here is a variant of ExM that uses regents and equipment found in a typical biology laboratory and has been optimized for imaging proteins in expanded brain tissues. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Expansion microscopy for intact brain tissue.
Collapse
Affiliation(s)
- Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Brendan Gallagher
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
108
|
Wen G, Vanheusden M, Acke A, Valli D, Neely RK, Leen V, Hofkens J. Evaluation of Direct Grafting Strategies via Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. ACS NANO 2020; 14:7860-7867. [PMID: 32176475 DOI: 10.1021/acsnano.9b09259] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Super-resolution fluorescence microscopy is a key tool in the elucidation of biological fine structures, providing insights into the distribution and interactions of biomolecular complexes down to the nanometer scale. Expansion microscopy is a recently developed approach for achieving nanoscale resolution on a conventional microscope. Here, biological samples are embedded in an isotropically swollen hydrogel. This physical expansion of the sample allows imaging with resolutions down to the tens-of-nanometers. However, because of the requirement that fluorescent labels are covalently bound to the hydrogel, standard, small-molecule targeting of fluorophores has proven incompatible with expansion microscopy. Here, we show a chemical linking approach that enables direct, covalent grafting of a targeting molecule and fluorophore to the hydrogel in expansion microscopy. We show application of this series of molecules in the antibody-free targeting of the cell cytoskeleton and in an example of lipid membrane staining for expansion microscopy. Furthermore, using this trivalent linker strategy, we demonstrate the benefit of introducing fluorescent labels post-expansion by visualizing an immunostaining through fluorescent oligonucleotide hybridization after expanding the polymer. Our probes allow different labeling approaches that are compatible with expansion microscopy.
Collapse
Affiliation(s)
- Gang Wen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | | | - Aline Acke
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Donato Valli
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Volker Leen
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Leuven, 3001, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
109
|
A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature. J Neurosci 2020; 40:6503-6521. [PMID: 32661024 DOI: 10.1523/jneurosci.3006-19.2020] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Microglia, a resident CNS macrophage, are dynamic cells, constantly extending and retracting their processes as they contact and functionally regulate neurons and other glial cells. There is far less known about microglia-vascular interactions, particularly under healthy steady-state conditions. Here, we use the male and female mouse cerebral cortex to show that a higher percentage of microglia associate with the vasculature during the first week of postnatal development compared with older ages and that the timing of these associations is dependent on the fractalkine receptor (CX3CR1). Similar developmental microglia-vascular associations were detected in the human brain. Using live imaging in mice, we found that juxtavascular microglia migrated when microglia are actively colonizing the cortex and became stationary by adulthood to occupy the same vascular space for nearly 2 months. Further, juxtavascular microglia at all ages associate with vascular areas void of astrocyte endfeet, and the developmental shift in microglial migratory behavior along vessels corresponded to when astrocyte endfeet more fully ensheath vessels. Together, our data provide a comprehensive assessment of microglia-vascular interactions. They support a mechanism by which microglia use the vasculature to migrate within the developing brain parenchyma. This migration becomes restricted on the arrival of astrocyte endfeet such that juxtavascular microglia become highly stationary and stable in the mature cortex.SIGNIFICANCE STATEMENT We report the first extensive analysis of juxtavascular microglia in the healthy, developing, and adult brain. Live imaging revealed that juxtavascular microglia within the cortex are highly motile and migrate along vessels as they are colonizing cortical regions. Using confocal, expansion, super-resolution, and electron microscopy, we determined that microglia associate with the vasculature at all ages in areas lacking full astrocyte endfoot coverage and motility of juxtavascular microglia ceases as astrocyte endfeet more fully ensheath the vasculature. Our data lay the fundamental groundwork to investigate microglia-astrocyte cross talk and juxtavascular microglial function in the healthy and diseased brain. They further provide a potential mechanism by which vascular interactions facilitate microglial colonization of the brain to later regulate neural circuit development.
Collapse
|
110
|
Abstract
Expansion microscopy (ExM) physically magnifies specimens, allowing to obtain super-resolution images using a conventional diffraction-limited microscope such as confocal microscopy. By optimizing several steps of this method, we demonstrated that the cell ultrastructure can be preserved after expansion and thus reveals details that were previously only accessible by transmission electron microscopy. As a result, we called this method ultrastructure expansion microscopy (U-ExM). Here we describe the step-by-step U-ExM protocol, as well as pitfalls and how to avoid them. We explain which steps may be modified in order to optimize the expansion and preservation of the structure of interest. Finally, we are demonstrating that U-ExM can be successfully applied to isolated macromolecular structures, unicellular organisms and human cells in culture.
Collapse
Affiliation(s)
- Davide Gambarotto
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland.
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland.
| |
Collapse
|
111
|
Pavlou G, Touquet B, Vigetti L, Renesto P, Bougdour A, Debarre D, Balland M, Tardieux I. Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma. ACS NANO 2020; 14:7121-7139. [PMID: 32432851 DOI: 10.1021/acsnano.0c01893] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Among the eukaryotic cells that navigate through fully developed metazoan tissues, protozoans from the Apicomplexa phylum have evolved motile developmental stages that move much faster than the fastest crawling cells owing to a peculiar substrate-dependent type of motility, known as gliding. Best-studied models are the Plasmodium sporozoite and the Toxoplasma tachyzoite polarized cells for which motility is vital to achieve their developmental programs in the metazoan hosts. The gliding machinery is shared between the two parasites and is largely characterized. Localized beneath the cell surface, it includes actin filaments, unconventional myosin motors housed within a multimember glideosome unit, and apically secreted transmembrane adhesins. In contrast, less is known about the force mechanisms powering cell movement. Pioneered biophysical studies on the sporozoite and phenotypic analysis of tachyzoite actin-related mutants have added complexity to the general view that force production for parasite forward movement directly results from the myosin-driven rearward motion of the actin-coupled adhesion sites. Here, we have interrogated how forces and substrate adhesion-de-adhesion cycles operate and coordinate to allow the typical left-handed helical gliding mode of the tachyzoite. By combining quantitative traction force and reflection interference microscopy with micropatterning and expansion microscopy, we unveil at the millisecond and nanometer scales the integration of a critical apical anchoring adhesion with specific traction and spring-like forces. We propose that the acto-myoA motor directs the traction force which allows transient energy storage by the microtubule cytoskeleton and therefore sets the thrust force required for T. gondii tachyzoite vital helical gliding capacity.
Collapse
Affiliation(s)
- Georgios Pavlou
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Bastien Touquet
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Luis Vigetti
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Patricia Renesto
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
- TIMC-IMAG UMR 5525 - UGA CNRS, 38700 Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions & Immunity to Infections, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| | - Delphine Debarre
- Laboratoire Interdisciplinaire de Physique, UMR CNRS, 5588, Université Grenoble Alpes, Grenoble 38402, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, UMR CNRS, 5588, Université Grenoble Alpes, Grenoble 38402, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Team Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, 38700 Grenoble, France
| |
Collapse
|
112
|
Markey FB, Parashar V, Batish M. Methods for spatial and temporal imaging of the different steps involved in RNA processing at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1608. [PMID: 32543077 DOI: 10.1002/wrna.1608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
RNA plays a quintessential role as a messenger of information from genotype (DNA) to phenotype (proteins), as well as acts as a regulatory molecule (noncoding RNAs). All steps in the journey of RNA from synthesis (transcription), splicing, transport, localization, translation, to its eventual degradation, comprise important steps in gene expression, thereby controlling the fate of the cell. This lifecycle refers to the majority of RNAs (primarily mRNAs), but not other RNAs such as tRNAs. Imaging these processes in fixed cells and in live cells has been an important tool in developing an understanding of the regulatory steps in RNAs journey. Single-cell and single-molecule imaging techniques enable a much deeper understanding of cellular biology, which is not possible with bulk studies involving RNA isolated from a large pool of cells. Classic techniques, such as fluorescence in situ hybridization (FISH), as well as more recent aptamer-based approaches, have provided detailed insights into RNA localization, and have helped to predict the functions carried out by many RNA species. However, there are still certain processing steps that await high-resolution imaging, which is an exciting and upcoming area of research. In this review, we will discuss the methods that have revolutionized single-molecule resolution imaging in general, the steps of RNA processing in which these methods have been used, and new emerging technologies. This article is categorized under: RNA Export and Localization > RNA Localization RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions.
Collapse
Affiliation(s)
- Fatu Badiane Markey
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vijay Parashar
- Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| | - Mona Batish
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Medical and Molecular Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
113
|
Jacquemet G, Carisey AF, Hamidi H, Henriques R, Leterrier C. The cell biologist's guide to super-resolution microscopy. J Cell Sci 2020; 133:133/11/jcs240713. [PMID: 32527967 DOI: 10.1242/jcs.240713] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluorescence microscopy has become a ubiquitous method to observe the location of specific molecular components within cells. However, the resolution of light microscopy is limited by the laws of diffraction to a few hundred nanometers, blurring most cellular details. Over the last two decades, several techniques - grouped under the 'super-resolution microscopy' moniker - have been designed to bypass this limitation, revealing the cellular organization down to the nanoscale. The number and variety of these techniques have steadily increased, to the point that it has become difficult for cell biologists and seasoned microscopists alike to identify the specific technique best suited to their needs. Available techniques include image processing strategies that generate super-resolved images, optical imaging schemes that overcome the diffraction limit and sample manipulations that expand the size of the biological sample. In this Cell Science at a Glance article and the accompanying poster, we provide key pointers to help users navigate through the various super-resolution methods by briefly summarizing the principles behind each technique, highlighting both critical strengths and weaknesses, as well as providing example images.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland .,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, 1102 Bates Street, Houston 77030 TX, USA
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Ricardo Henriques
- University College London, London WC1E 6BT, UK .,The Francis Crick Institute, London NW1 1AT, UK
| | | |
Collapse
|
114
|
Zwettler FU, Reinhard S, Sauer M. Ex-dSTORM and automated quantitative image analysis of expanded filamentous structures. Methods Cell Biol 2020; 161:317-340. [PMID: 33478695 DOI: 10.1016/bs.mcb.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter provides a step-by-step protocol how to prepare expansion microcoscopy (ExM) treated biological samples for imaging with single-molecule localization microscopy (SMLM). For this purpose, the protocol describes the stabilization of expanded hydrogels that enables addition of photoswitching buffer without shrinkage of the sample. In addition, a guide for automated image analysis and expansion factor determination of expanded fiber-like structures is provided at the end of the chapter.
Collapse
Affiliation(s)
- Fabian U Zwettler
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
115
|
Enhanced expansion microscopy to measure nanoscale structural and biochemical remodeling in single cells. Methods Cell Biol 2020; 161:147-180. [PMID: 33478687 DOI: 10.1016/bs.mcb.2020.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resolution is a key feature in microscopy which allows the visualization of the fine structure of cells. Much of the life processes within these cells depend on the three-dimensional (3D) complexity of these structures. Optical super-resolution microscopies are currently the preferred choice of molecular and cell biologists who seek to visualize the organization of specific protein species at the nanometer scale. Traditional super-resolution microscopy techniques have often been limited by sample thickness, axial resolution, specialist optical instrumentation and computationally-demanding software for assembling the images. In this chapter we detail the protocol, "enhanced expansion microscopy" (EExM), which combines X10 expansion microscopy with Airyscan confocal microscopy. EExM enables 15nm lateral (and 35nm axial) resolution, and is a relatively cheap, accessible option allowing single protein resolution for the non-specialist optical microscopists. We illustrate how EExM has been utilized for mapping the 3D topology of intracellular protein arrays at sample depths which are not always compatible with some of the traditional super-resolution techniques. We demonstrate that antibody markers can recognize and map post-translational modifications of individual proteins in addition to their 3D positions. Finally, we discuss the current uncertainties and validations in EExM which include the isotropy in gel expansion and assessment of the expansion factor (of resolution improvement).
Collapse
|
116
|
Kohara K, Inoue A, Nakano Y, Hirai H, Kobayashi T, Maruyama M, Baba R, Kawashima C. BATTLE: Genetically Engineered Strategies for Split-Tunable Allocation of Multiple Transgenes in the Nervous System. iScience 2020; 23:101248. [PMID: 32629613 PMCID: PMC7322263 DOI: 10.1016/j.isci.2020.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 11/26/2022] Open
Abstract
Elucidating fine architectures and functions of cellular and synaptic connections requires development of new flexible methods. Here, we created a concept called the “battle of transgenes,” based on which we generated strategies using genetically engineered battles of multiple recombinases. The strategies enabled split-tunable allocation of multiple transgenes. We demonstrated the versatility of these strategies and technologies in inducing strong and multi-sparse allocations of multiple transgenes. Furthermore, the combination of our transgenic strategy and expansion microscopy enabled three-dimensional high-resolution imaging of whole synaptic structures in the hippocampus with simultaneous visualizations of endogenous synaptic proteins. These strategies and technologies based on the battle of genes may accelerate the analysis of whole synaptic and cellular connections in diverse life science fields. Generation of BATTLE-recombinase systems for allocation of multiple transgenes Split-tunable allocation in BATTLE-1 and multi-sparse allocation in BATTLE-2 Clear and strong labeling of dendrites and axons using BATTLE-2 3D high-resolution imaging of whole synapses in hippocampus in BATTLE-1EX
Collapse
Affiliation(s)
- Keigo Kohara
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.
| | - Akitoshi Inoue
- Department of Medical Chemistry, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan
| | - Yousuke Nakano
- Department of Anatomy, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8512, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan; Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Masato Maruyama
- Department of Anatomy, Kansai Medical University, Graduate School of Medicine, Hirakata, Osaka 573-1010, Japan; Faculty of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Ryosuke Baba
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Chiho Kawashima
- Department of Cellular and Functional Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan; Department of Bioscience, Osaka College of High Technology, Osaka 532-003, Japan
| |
Collapse
|
117
|
Abstract
The mitotic spindle is a dynamic and complex cellular structure made of microtubules and associated proteins. Although the general localization of most proteins has been identified, the arrangement of the microtubules in the mitotic spindle and precise localization of various proteins are still under intensive research. However, techniques used previously to decipher such puzzles are resolution limited or require complex microscopy systems. On the other hand, expansion microscopy is a novel super-resolution microscopy technique that uses physical expansion of fixed specimens to allow features closer than the diffraction limit of light (~250nm) to become resolvable in the expanded specimen on a conventional confocal microscope. This chapter focuses on expansion microscopy of the mitotic spindle, specifically using tubulin labeling to visualize all microtubule subpopulations within the spindle. Furthermore, we discuss a protocol for expansion of GFP-tagged proteins, such as protein regulator of cytokinesis 1 (PRC1). We also discuss various approaches for image analysis pointing out main advantages of expansion microscopy when compared to previously used techniques. This approach is currently used in our laboratory to study the architecture of the microtubules in the mitotic spindle after perturbations of various proteins important for the structural and dynamical properties of the mitotic spindle.
Collapse
|
118
|
Abstract
Expansion microscopy is a recently developed super-resolution imaging technique, which provides an alternative to optics-based methods such as deterministic approaches (e.g. STED) or stochastic approaches (e.g. PALM/STORM). The idea behind expansion microscopy is to embed the biological sample in a swellable gel, and then to expand it isotropically, thereby increasing the distance between the fluorophores. This approach breaks the diffraction barrier by simply separating the emission point-spread-functions of the fluorophores. The resolution attainable in expansion microscopy is thus directly dependent on the separation that can be achieved, i.e. on the expansion factor. The original implementation of the technique achieved an expansion factor of fourfold, for a resolution of 70-80nm. The subsequently developed X10 method achieves an expansion factor of 10-fold, for a resolution of 25-30nm. This technique can be implemented with minimal technical requirements on any standard fluorescence microscope, and is more easily applied for multi-color imaging than either deterministic or stochastic super-resolution approaches. This renders X10 expansion microscopy a highly promising tool for new biological discoveries, as discussed here, and as demonstrated by several recent applications.
Collapse
Affiliation(s)
- Sven Truckenbrodt
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria.
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
119
|
Burger CA, Alevy J, Casasent AK, Jiang D, Albrecht NE, Liang JH, Hirano AA, Brecha NC, Samuel MA. LKB1 coordinates neurite remodeling to drive synapse layer emergence in the outer retina. eLife 2020; 9:e56931. [PMID: 32378514 PMCID: PMC7237215 DOI: 10.7554/elife.56931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 12/04/2022] Open
Abstract
Structural changes in pre and postsynaptic neurons that accompany synapse formation often temporally and spatially overlap. Thus, it has been difficult to resolve which processes drive patterned connectivity. To overcome this, we use the laminated outer murine retina. We identify the serine/threonine kinase LKB1 as a key driver of synapse layer emergence. The absence of LKB1 in the retina caused a marked mislocalization and delay in synapse layer formation. In parallel, LKB1 modulated postsynaptic horizontal cell refinement and presynaptic photoreceptor axon growth. Mislocalized horizontal cell processes contacted aberrant cone axons in LKB1 mutants. These defects coincided with altered synapse protein organization, and horizontal cell neurites were misdirected to ectopic synapse protein regions. Together, these data suggest that LKB1 instructs the timing and location of connectivity in the outer retina via coordinate regulation of pre and postsynaptic neuron structure and the localization of synapse-associated proteins.
Collapse
Affiliation(s)
- Courtney A Burger
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Anna K Casasent
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Danye Jiang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Justine H Liang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| | - Arlene A Hirano
- Department of Neurobiology, David Geffen School of Medicine at UCLALos AngelesUnited States
- United States Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesUnited States
| | - Nicholas C Brecha
- Department of Neurobiology, David Geffen School of Medicine at UCLALos AngelesUnited States
- United States Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesUnited States
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Huffington Center on Aging, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
120
|
Chong WM, Wang WJ, Lo CH, Chiu TY, Chang TJ, Liu YP, Tanos B, Mazo G, Tsou MFB, Jane WN, Yang TT, Liao JC. Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages. eLife 2020; 9:53580. [PMID: 32242819 PMCID: PMC7173962 DOI: 10.7554/elife.53580] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.
Collapse
Affiliation(s)
- Weng Man Chong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Chien-Hui Lo
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Tzu-Yuan Chiu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - You-Pi Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Barbara Tanos
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Gregory Mazo
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - T Tony Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
121
|
Bucur O, Fu F, Calderon M, Mylvaganam GH, Ly NL, Day J, Watkin S, Walker BD, Boyden ES, Zhao Y. Nanoscale imaging of clinical specimens using conventional and rapid-expansion pathology. Nat Protoc 2020; 15:1649-1672. [PMID: 32238952 DOI: 10.1038/s41596-020-0300-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022]
Abstract
In pathology, microscopy is an important tool for the analysis of human tissues, both for the scientific study of disease states and for diagnosis. However, the microscopes commonly used in pathology are limited in resolution by diffraction. Recently, we discovered that it was possible, through a chemical process, to isotropically expand preserved cells and tissues by 4-5× in linear dimension. We call this process expansion microscopy (ExM). ExM enables nanoscale resolution imaging on conventional microscopes. Here we describe protocols for the simple and effective physical expansion of a variety of human tissues and clinical specimens, including paraffin-embedded, fresh frozen and chemically stained human tissues. These protocols require only inexpensive, commercially available reagents and hardware commonly found in a routine pathology laboratory. Our protocols are written for researchers and pathologists experienced in conventional fluorescence microscopy. The conventional protocol, expansion pathology, can be completed in ~1 d with immunostained tissue sections and 2 d with unstained specimens. We also include a new, fast variant, rapid expansion pathology, that can be performed on <5-µm-thick tissue sections, taking <4 h with immunostained tissue sections and <8 h with unstained specimens.
Collapse
Affiliation(s)
- Octavian Bucur
- Department of Pathology and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Ludwig Center at Harvard Medical School, Boston, MA, USA.,Institute of Biochemistry of the Romanian Academy, Bucharest, Romania.,QPathology, Boston, MA, USA
| | - Feifei Fu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mike Calderon
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT and Harvard and Harvard University Center for AIDS Research, Cambridge, MA, USA.,Massachussetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT and Harvard and Harvard University Center for AIDS Research, Cambridge, MA, USA.,Massachussetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jimmy Day
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Watkin
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard and Harvard University Center for AIDS Research, Cambridge, MA, USA.,Massachussetts General Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Yongxin Zhao
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA. .,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
122
|
Nucleocytoplasmic Proteomic Analysis Uncovers eRF1 and Nonsense-Mediated Decay as Modifiers of ALS/FTD C9orf72 Toxicity. Neuron 2020; 106:90-107.e13. [PMID: 32059759 DOI: 10.1016/j.neuron.2020.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/08/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide repeat expansion in C9orf72 (C9-HRE). While RNA and dipeptide repeats produced by C9-HRE disrupt nucleocytoplasmic transport, the proteins that become redistributed remain unknown. Here, we utilized subcellular fractionation coupled with tandem mass spectrometry and identified 126 proteins, enriched for protein translation and RNA metabolism pathways, which collectively drive a shift toward a more cytosolic proteome in C9-HRE cells. Among these was eRF1, which regulates translation termination and nonsense-mediated decay (NMD). eRF1 accumulates within elaborate nuclear envelope invaginations in patient induced pluripotent stem cell (iPSC) neurons and postmortem tissue and mediates a protective shift from protein translation to NMD-dependent mRNA degradation. Overexpression of eRF1 and the NMD driver UPF1 ameliorate C9-HRE toxicity in vivo. Our findings provide a resource for proteome-wide nucleocytoplasmic alterations across neurodegeneration-associated repeat expansion mutations and highlight eRF1 and NMD as therapeutic targets in C9orf72-associated ALS and/or FTD.
Collapse
|
123
|
SAHABANDU N, KONG D, MAGIDSON V, NANJUNDAPPA R, SULLENBERGER C, MAHJOUB M, LONCAREK J. Expansion microscopy for the analysis of centrioles and cilia. J Microsc 2019; 276:145-159. [PMID: 31691972 PMCID: PMC6972531 DOI: 10.1111/jmi.12841] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Centrioles are vital cellular structures that organise centrosomes and cilia. Due to their subresolutional size, centriole ultrastructural features have been traditionally analysed by electron microscopy. Here we present an adaptation of magnified analysis of the proteome expansion microscopy method, to be used for a robust analysis of centriole number, duplication status, length, structural abnormalities and ciliation by conventional optical microscopes. The method allows the analysis of centriole's structural features from large populations of adherent and nonadherent cells and multiciliated cultures. We validate the method using EM and superresolution microscopy and show that it can be used as an affordable and reliable alternative to electron microscopy in the analysis of centrioles and cilia in various cell cultures. LAY DESCRIPTION: Centrioles are microtubule-based structures organised as ninefold symmetrical cylinders which are, in human cells, ∼500 nm long and ∼230 nm wide. Centrioles assemble dozens of proteins around them forming centrosomes, which nucleate microtubules and organise spindle poles in mitosis. Centrioles, in addition, assemble cilia and flagella, two critically important organelles for signalling and motility. Due to centriole small size, electron microscopy has been a major imaging technique for the analysis of their ultrastructural features. However, being technically demanding, electron microscopy it is not easily available to the researchers and it is rarely used to collect large datasets. Expansion microscopy is an emerging approach in which biological specimens are embedded in a swellable polymer and isotopically expanded several fold. Physical separation of cellular structures allows the analysis of, otherwise unresolvable, structures by conventional optical microscopes. We present an adaptation of expansion microscopy approach, specifically developed for a robust analysis of centrioles and cilia. Our protocol can be used for the analysis of centriole number, duplication status, length, localisation of various centrosomal components and ciliation from large populations of cultured adherent and nonadherent cells and multiciliated cultures. We validate the method against electron microscopy and superresolution microscopy and demonstrate that it can be used as an accessible and reliable alternative to electron microscopy.
Collapse
Affiliation(s)
- N. SAHABANDU
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMarylandU.S.A.
| | - D. KONG
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMarylandU.S.A.
| | - V. MAGIDSON
- Optical Microscopy and Analysis LaboratoryFrederick National Laboratory for Cancer ResearchFrederickMarylandU.S.A.
| | - R. NANJUNDAPPA
- Division of Nephrology, Department of MedicineWashington UniversitySt LouisMissouriU.S.A.
| | - C. SULLENBERGER
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMarylandU.S.A.
| | - M.R. MAHJOUB
- Division of Nephrology, Department of MedicineWashington UniversitySt LouisMissouriU.S.A.
| | - J. LONCAREK
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMarylandU.S.A.
| |
Collapse
|
124
|
Achimovich AM, Ai H, Gahlmann A. Enabling technologies in super-resolution fluorescence microscopy: reporters, labeling, and methods of measurement. Curr Opin Struct Biol 2019; 58:224-232. [PMID: 31175034 PMCID: PMC6778497 DOI: 10.1016/j.sbi.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Super-resolution fluorescence microscopy continues to experience a period of extraordinary development. New instrumentation and fluorescent labeling strategies provide access to molecular and cellular processes that occur on length scales ranging from nanometers to millimeters and on time scales ranging from milliseconds to hours. At the shortest length scales, single-molecule imaging methods now allow measurement of nanoscale localization, motion, and binding kinetics of individual biomolecules. At cellular and intercellular length scales, super-resolution microscopy allows structural and functional imaging of individual cells in tissues and even in whole animals. Here, we review recent advances that have enabled entirely new types of experiments and greatly potentiated existing technologies.
Collapse
Affiliation(s)
- Alecia Marie Achimovich
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Huiwang Ai
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Andreas Gahlmann
- Department of Molecular Physiology & Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
125
|
|
126
|
Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE, Liu TL, Singh V, Graves A, Huynh GH, Zhao Y, Bogovic J, Colonell J, Ott CM, Zugates C, Tappan S, Rodriguez A, Mosaliganti KR, Sheu SH, Pasolli HA, Pang S, Xu CS, Megason SG, Hess H, Lippincott-Schwartz J, Hantman A, Rubin GM, Kirchhausen T, Saalfeld S, Aso Y, Boyden ES, Betzig E. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 2019; 363:eaau8302. [PMID: 30655415 PMCID: PMC6481610 DOI: 10.1126/science.aau8302] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Abstract
Optical and electron microscopy have made tremendous inroads toward understanding the complexity of the brain. However, optical microscopy offers insufficient resolution to reveal subcellular details, and electron microscopy lacks the throughput and molecular contrast to visualize specific molecular constituents over millimeter-scale or larger dimensions. We combined expansion microscopy and lattice light-sheet microscopy to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain. These included synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly brain region. The technology should enable statistically rich, large-scale studies of neural development, sexual dimorphism, degree of stereotypy, and structural correlations to behavior or neural activity, all with molecular contrast.
Collapse
Affiliation(s)
- Ruixuan Gao
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shoh M Asano
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Srigokul Upadhyayula
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Igor Pisarev
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ved Singh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Austin Graves
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Grace H Huynh
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Yongxin Zhao
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Christopher Zugates
- arivis AG, 1875 Connecticut Avenue NW, 10th floor, Washington, DC 20009, USA
| | - Susan Tappan
- MBF Bioscience, 185 Allen Brook Lane, Suite 101, Williston, VT 05495, USA
| | - Alfredo Rodriguez
- MBF Bioscience, 185 Allen Brook Lane, Suite 101, Williston, VT 05495, USA
| | - Kishore R Mosaliganti
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Shu-Hsien Sheu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Adam Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tom Kirchhausen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Edward S Boyden
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
- Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
127
|
Wassie AT, Zhao Y, Boyden ES. Expansion microscopy: principles and uses in biological research. Nat Methods 2018; 16:33-41. [PMID: 30573813 DOI: 10.1038/s41592-018-0219-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
Many biological investigations require 3D imaging of cells or tissues with nanoscale spatial resolution. We recently discovered that preserved biological specimens can be physically expanded in an isotropic fashion through a chemical process. Expansion microscopy (ExM) allows nanoscale imaging of biological specimens with conventional microscopes, decrowds biomolecules in support of signal amplification and multiplexed readout chemistries, and makes specimens transparent. We review the principles of how ExM works, advances in the technology made by our group and others, and its applications throughout biology and medicine.
Collapse
Affiliation(s)
- Asmamaw T Wassie
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongxin Zhao
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|