101
|
Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus-Host Interactions. Biomolecules 2022; 12:1052. [PMID: 36008946 PMCID: PMC9405953 DOI: 10.3390/biom12081052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.
Collapse
Affiliation(s)
- Athanassios Kakkanas
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Efthymia Ioanna Koufogeorgou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Stathis D. Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 115-21 Athens, Greece;
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Pelagia Foka
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| |
Collapse
|
102
|
Roelle SM, Shukla N, Pham AT, Bruchez AM, Matreyek KA. Expanded ACE2 dependencies of diverse SARS-like coronavirus receptor binding domains. PLoS Biol 2022; 20:e3001738. [PMID: 35895696 PMCID: PMC9359572 DOI: 10.1371/journal.pbio.3001738] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 08/08/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Viral spillover from animal reservoirs can trigger public health crises and cripple the world economy. Knowing which viruses are primed for zoonotic transmission can focus surveillance efforts and mitigation strategies for future pandemics. Successful engagement of receptor protein orthologs is necessary during cross-species transmission. The clade 1 sarbecoviruses including Severe Acute Respiratory Syndrome-related Coronavirus (SARS-CoV) and SARS-CoV-2 enter cells via engagement of angiotensin converting enzyme-2 (ACE2), while the receptor for clade 2 and clade 3 remains largely uncharacterized. We developed a mixed cell pseudotyped virus infection assay to determine whether various clades 2 and 3 sarbecovirus spike proteins can enter HEK 293T cells expressing human or Rhinolophus horseshoe bat ACE2 proteins. The receptor binding domains from BtKY72 and Khosta-2 used human ACE2 for entry, while BtKY72 and Khosta-1 exhibited widespread use of diverse rhinolophid ACE2s. A lysine at ACE2 position 31 appeared to be a major determinant of the inability of these RBDs to use a certain ACE2 sequence. The ACE2 protein from Rhinolophus alcyone engaged all known clade 3 and clade 1 receptor binding domains. We observed little use of Rhinolophus ACE2 orthologs by the clade 2 viruses, supporting the likely use of a separate, unknown receptor. Our results suggest that clade 3 sarbecoviruses from Africa and Europe use Rhinolophus ACE2 for entry, and their spike proteins appear primed to contribute to zoonosis under the right conditions. Knowing which viruses are primed for zoonotic transmission can focus surveillance efforts and mitigation strategies for future pandemics. This study shows that SARS-like coronaviruses identified in bats from Europe and Africa can use a range of horseshoe bat ACE2s for entry. In addition, viruses found in Russia and Kenya also have the ability to at least weakly use human ACE2.
Collapse
Affiliation(s)
- Sarah M. Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anh T. Pham
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anna M. Bruchez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
103
|
Comparative phylogeny and evolutionary analysis of Dicer-like protein family in two plant monophyletic lineages. J Genet Eng Biotechnol 2022; 20:103. [PMID: 35821291 PMCID: PMC9276914 DOI: 10.1186/s43141-022-00380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Small RNAs (sRNAs) that do not get untranslated into proteins exhibit a pivotal role in the expression regulation of their cognate gene(s) in almost all eukaryotic lineages, including plants. Hitherto, numerous protein families such as Dicer, a unique class of Ribonuclease III, have been reported to be involved in sRNAs processing pathways and silencing. In this study, we aimed to investigate the phylogenetic relationship and evolutionary history of the DCL protein family. RESULTS Our results illustrated the DCL family of proteins grouped into four main subfamilies (DCLs 1-4) presented in either Eudicotyledons or Liliopsids. The accurate observation of the phylogenetic trees supports the independent expansion of DCL proteins among the Eudicotyledons and Liliopsids species. They share the common origin, and the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsids split from their ancestral DCL. In addition, shreds of evidence revealed that the divergence happened when multicellularization started and since the need for complex gene regulation considered being a necessity by organisms. At that time, they have evolved independently among the monophyletic lineages. The other finding was that the combination of DCL protein subfamilies bears several highly conserved functional domains in plant species that originated from their ancestor architecture. The conservation of these domains happens to be both lineage-specific and inter lineage-specific. CONCLUSIONS DCL subfamilies (i.e., DCL1-DCL4) distribute in their single clades after diverging from their common ancestor and before emerging into higher plants. Therefore, it seems that the main duplication events for the formation of the DCL subfamilies occurred before the Eudicotyledons/Liliopsida split and before the appearance of moss, and after the single-cell green algae. We also observed the same trends among the main DCL subfamilies from functional unit composition and architecture. Despite the long evolutionary course from the divergence of Liliopsida lineage from the Eudicotyledons, a significant diversifying force to domain composition and orientation was absent. The results of this study provide a deeper insight into DCL protein evolutionary history and possible sequence and structural relationships between DCL protein subfamilies in the main higher plant monophyletic lineages; i.e., Eudicotyledons and Liliopsida.
Collapse
|
104
|
Rigo MM, Fasoulis R, Conev A, Hall-Swan S, Antunes DA, Kavraki LE. SARS-Arena: Sequence and Structure-Guided Selection of Conserved Peptides from SARS-related Coronaviruses for Novel Vaccine Development. Front Immunol 2022; 13:931155. [PMID: 35903104 PMCID: PMC9315150 DOI: 10.3389/fimmu.2022.931155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease, has affected millions of people worldwide. There is constant search for new therapies to either prevent or mitigate the disease. Fortunately, we have observed the successful development of multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein. However, such focused approaches may contribute for the rise of new variants, fueled by the constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses in nature. Therefore, it is important to examine other proteins, preferentially those that are less susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N protein is less accessible to humoral response, peptides from its conserved regions can be presented by class I Human Leukocyte Antigen (HLA) molecules, eliciting an immune response mediated by T-cells. Given the increased number of protein sequences deposited in biological databases daily and the N protein conservation among viral strains, computational methods can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be used by practitioners of different levels of expertise for novel vaccine development. SARS-Arena combines sequence-based methods and structure-based analyses to (i) perform multiple sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook workflows that can help in the identification of new T-cell targets against SARS-CoV viruses. In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide (SPRWYFYYL) recognized by CD8+ T-cells in the context of HLA-B7+. SARS-Arena is available at https://github.com/KavrakiLab/SARS-Arena.
Collapse
Affiliation(s)
| | - Romanos Fasoulis
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Anja Conev
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Sarah Hall-Swan
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Dinler Amaral Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States,*Correspondence: Lydia E. Kavraki, ; Dinler Amaral Antunes,
| | - Lydia E. Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States,*Correspondence: Lydia E. Kavraki, ; Dinler Amaral Antunes,
| |
Collapse
|
105
|
Stejskal L, Kalemera MD, Lewis CB, Palor M, Walker L, Daviter T, Lees WD, Moss DS, Kremyda-Vlachou M, Kozlakidis Z, Gallo G, Bailey D, Rosenberg W, Illingworth CJR, Shepherd AJ, Grove J. An entropic safety catch controls hepatitis C virus entry and antibody resistance. eLife 2022; 11:e71854. [PMID: 35796426 PMCID: PMC9333995 DOI: 10.7554/elife.71854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.
Collapse
Affiliation(s)
- Lenka Stejskal
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Charlotte B Lewis
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Machaela Palor
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Lucas Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Tina Daviter
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
- Shared Research Facilities, The Institute of Cancer ResearchLondonUnited Kingdom
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - David S Moss
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health OrganizationLyonFrance
| | | | | | - William Rosenberg
- Division of Medicine, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Christopher JR Illingworth
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Institut für Biologische Physik, Universität zu KölnCologneGermany
- MRC Biostatistics Unit, University of CambridgeCambridgeUnited Kingdom
| | - Adrian J Shepherd
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| |
Collapse
|
106
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
107
|
Scorpion Neurotoxin Syb-prII-1 Exerts Analgesic Effect through Nav1.8 Channel and MAPKs Pathway. Int J Mol Sci 2022; 23:ijms23137065. [PMID: 35806068 PMCID: PMC9266357 DOI: 10.3390/ijms23137065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common type of peripheral neuralgia in clinical practice, which is usually difficult to cure. Common analgesic drugs are difficult for achieving the desired analgesic effect. Syb-prII-1 is a β-type scorpion neurotoxin isolated from the scorpion venom of Buthus martensi Karsch (BmK). It has an important influence on the voltage-gated sodium channel (VGSCs), especially closely related to Nav1.8 and Nav1.9. To explore whether Syb-prII-1 has a good analgesic effect on TN, we established the Sprague Dawley (SD) rats’ chronic constriction injury of the infraorbital nerve (IoN-CCI) model. Behavioral, electrophysiological, Western blot, and other methods were used to verify the model. It was found that Syb-prII-1 could significantly relieve the pain behavior of IoN-CCI rats. After Syb-prII-1 was given, the phosphorylation level of the mitogen-activated protein kinases (MAPKs) pathway showed a dose-dependent decrease after IoN-CCI injury. Moreover, Syb-prII-1(4.0 mg/kg) could significantly change the steady-state activation and inactivation curves of Nav1.8. The steady-state activation and inactivation curves of Nav1.9 were similar to those of Nav1.8, but there was no significant difference. It was speculated that it might play an auxiliary role. The binding mode, critical residues, and specific interaction type of Syb-prII-1 and VSD2rNav1.8 were clarified with computational simulation methods. Our results indicated that Syb-prII-1 could provide a potential treatment for TN by acting on the Nav1.8 target.
Collapse
|
108
|
Huang JJ, Hu HX, Lu YJ, Bao YD, Zhou JL, Huang M. Computer-Aided Design of α-L-Rhamnosidase to Increase the Synthesis Efficiency of Icariside I. Front Bioeng Biotechnol 2022; 10:926829. [PMID: 35800333 PMCID: PMC9253678 DOI: 10.3389/fbioe.2022.926829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Icariside I, the glycosylation product of icaritin, is a novel effective anti-cancer agent with immunological anti-tumor activity. However, very limited natural icariside I content hinders its direct extraction from plants. Therefore, we employed a computer-aided protein design strategy to improve the catalytic efficiency and substrate specificity of the α-L-rhamnosidase from Thermotoga petrophila DSM 13995, to provide a highly-efficient preparation method. Several beneficial mutants were obtained by expanding the active cavity. The catalytic efficiencies of all mutants were improved 16-200-fold compared with the wild-type TpeRha. The double-point mutant DH was the best mutant and showed the highest catalytic efficiency (k cat /K M : 193.52 s-1 M-1) against icariin, which was a 209.76-fold increase compared with the wild-type TpeRha. Besides, the single-point mutant H570A showed higher substrate specificity than that of the wild-type TpeRha in hydrolysis of different substrates. This study provides enzyme design strategies and principles for the hydrolysis of rhamnosyl natural products.
Collapse
Affiliation(s)
- Jia-Jun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Hao-Xuan Hu
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Yu-Jing Lu
- Golden Health Biotechnology Co., Ltd., Foshan, China
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ya-Dan Bao
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Jin-Lin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
109
|
A Study of Type II ɛ-PL Degrading Enzyme (pldII) in Streptomyces albulus through the CRISPRi System. Int J Mol Sci 2022; 23:ijms23126691. [PMID: 35743134 PMCID: PMC9223678 DOI: 10.3390/ijms23126691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
ε-Poly-L-lysine (ε-PL) is a widely used antibacterial peptide polymerized of 25–35 L-lysine residues. The antibacterial effect of ε-PL is closely related to the polymerization degree. However, the mechanism of ε-PL degradation in S. albulus remains unclear. This study utilized the integrative plasmid pSET152-based CRISPRi system to transcriptionally repress the ε-PL degrading enzyme (pldII). The expression of pldII is regulated by changing the recognition site of dCas9. Through the ε-PL bacteriostatic experiments of repression strains, it was found that the repression of pldII improves the antibacterial effect of the ε-PL product. The consecutive MALDI-TOF-MS results confirmed that the molecular weight distribution of the ε-PL was changed after repression. The repression strain S1 showed a particular peak with a polymerization degree of 44, and other repression strains also generated ε-PL with a polymerization degree of over 40. Furthermore, the homology modeling and substrate docking of pldII, a typical endo-type metallopeptidase, were performed to resolve the degradation mechanism of ε-PL in S. albulus. The hydrolysis of ε-PL within pldII, initiated from the N-terminus by two amino acid-binding residues, Thr194 and Glu281, led to varying levels of polymerization of ε-PL.
Collapse
|
110
|
Wagner AG, Stagnitta RT, Xu Z, Pezzullo JL, Kandel N, Giner JL, Covey DF, Wang C, Callahan BP. Nanomolar, Noncovalent Antagonism of Hedgehog Cholesterolysis: Exception to the "Irreversibility Rule" for Protein Autoprocessing Inhibition. Biochemistry 2022; 61:1022-1028. [PMID: 34941260 PMCID: PMC9382716 DOI: 10.1021/acs.biochem.1c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors. Here, we report an exception to the "irreversibility rule" for autoprocessing inhibition. Using a fluorescence resonance energy transfer-based activity assay for HhC, we screened a focused library of sterol-like analogues for noncovalent inhibitors and identified and validated four structurally related molecules, which were then used for structure-activity relationship studies. The most effective derivative, tBT-HBT, inhibits HhC noncovalently with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing residues from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. The inhibitors described here resemble a family of noncovalent, allosteric inducers of HhC paracatalysis which we have described previously. The inhibition and the induction appear to be mediated by a shared allosteric site on HhC.
Collapse
Affiliation(s)
- Andrew G Wagner
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Robert T Stagnitta
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Zihan Xu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - John L Pezzullo
- Department of Chemistry, SUNY-ESF, Syracuse, New York 13210, United States
| | - Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - José-Luis Giner
- Department of Chemistry, SUNY-ESF, Syracuse, New York 13210, United States
| | - Douglas F Covey
- Department of Developmental Biology, Taylor Family Institute for Innovative Psychiatric Research, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
111
|
The catalytic mechanism of the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2). PLoS Comput Biol 2022; 18:e1010140. [PMID: 35613161 PMCID: PMC9173628 DOI: 10.1371/journal.pcbi.1010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a new drug target that is expressed in cancer cells but not in normal adult cells, which provides an Achilles heel to selectively kill cancer cells. Despite the availability of crystal structures of MTHFD2 in the inhibitor- and cofactor-bound forms, key information is missing due to technical limitations, including (a) the location of absolutely required Mg2+ ion, and (b) the substrate-bound form of MTHFD2. Using computational modeling and simulations, we propose that two magnesium ions are present at the active site whereby (i) Arg233, Asp225, and two water molecules coordinate MgA2+, while MgA2+ together with Arg233 stabilize the inorganic phosphate (Pi); (ii) Asp168 and three water molecules coordinate MgB2+, and MgB2+ further stabilizes Pi by forming a hydrogen bond with two oxygens of Pi; (iii) Arg201 directly coordinates the Pi; and (iv) through three water-mediated interactions, Asp168 contributes to the positioning and stabilization of MgA2+, MgB2+ and Pi. Our computational study at the empirical valence bond level allowed us also to elucidate the detailed reaction mechanisms. We found that the dehydrogenase activity features a proton-coupled electron transfer with charge redistribution connected to the reorganization of the surrounding water molecules which further facilitates the subsequent cyclohydrolase activity. The cyclohydrolase activity then drives the hydration of the imidazoline ring and the ring opening in a concerted way. Furthermore, we have uncovered that two key residues, Ser197/Arg233, are important factors in determining the cofactor (NADP+/NAD+) preference of the dehydrogenase activity. Our work sheds new light on the structural and kinetic framework of MTHFD2, which will be helpful to design small molecule inhibitors that can be used for cancer treatment.
Collapse
|
112
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
113
|
Hong B, Chang Q, Zhai Y, Ren B, Zhang F. Functional Characterization of Odorant Binding Protein PyasOBP2 From the Jujube Bud Weevil, Pachyrhinus yasumatsui (Coleoptera: Curculionidae). Front Physiol 2022; 13:900752. [PMID: 35574498 PMCID: PMC9091336 DOI: 10.3389/fphys.2022.900752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Odorant binding proteins (OBPs) play an important role in insect olfaction. The jujube bud weevil Pachyrhinus yasumatsui (Coleoptera: Curculionidae) is a major pest of Zizyphus jujuba in northern China. In the present study, based on the antennal transcriptome, an OBP gene of P. yasumatsui (PyasOBP2) was cloned by reverse transcription PCR (RT-PCR). Expression profile analyses by quantitative real-time PCR (qRT-PCR) revealed that PyasOBP2 was highly expressed in the antennae of both male and female P. yasumatsui adults, while its expression was negligible in other tissues. PyasOBP2 was prokaryotically expressed, and purified by Ni-NTA resin. The fluorescence competitive binding assays with 38 plant volatiles from Z. jujuba showed that PyasOBP2 could bind with a broad range of plant volatiles, and had strongest binding capacities to host-plant volatiles like ethyl butyrate (Ki = 3.02 μM), 2-methyl-1-phenylpropene (Ki = 4.61 μM) and dipentene (Ki = 5.99 μM). The three dimensional structure of PyasOBP2 was predicted by homology modeling, and the crystal structure of AgamOBP1 (PDB ID: 2erb) was used as a template. The molecular docking results indicated that the amino acid residue Phe114 of PyasOBP2 could form hydrogen bonds or hydrophobic interactions with some specific ligands, so this residue might play a key role in perception of host plant volatiles. Our results provide a basis for further investigation of potential functions of PyasOBP2, and development of efficient monitoring and integrated pest management strategies of P. yasumatsui.
Collapse
Affiliation(s)
- Bo Hong
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Qing Chang
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Yingyan Zhai
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| | - Bowen Ren
- Shaanxi Academy of Forestry, Xi'an, China
| | - Feng Zhang
- Bio-Agriculture Institute of Shaanxi, Xi'an, China
| |
Collapse
|
114
|
Zhao L, Ai X, Pan F, Zhou N, Zhao L, Cai S, Tang X. Novel peptides with xanthine oxidase inhibitory activity identified from macadamia nuts: integrated in silico and in vitro analysis. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04028-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
115
|
Cross AR, Roy S, Vivoli Vega M, Rejzek M, Nepogodiev SA, Cliff M, Salmon D, Isupov MN, Field RA, Prior JL, Harmer NJ. Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases. J Biol Chem 2022; 298:101903. [PMID: 35398092 PMCID: PMC9095892 DOI: 10.1016/j.jbc.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.
Collapse
Affiliation(s)
- Alice R Cross
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Sumita Roy
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mirella Vivoli Vega
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Matthew Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Debbie Salmon
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Michail N Isupov
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom; Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Joann L Prior
- Dstl, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Nicholas J Harmer
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Department of Biosciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
116
|
Guo B, Deng Z, Meng F, Wang Q, Zhang Y, Yuan Z, Rao Y. Enhancement of Rebaudioside M Production by Structure-Guided Engineering of Glycosyltransferase UGT76G1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5088-5094. [PMID: 35417157 DOI: 10.1021/acs.jafc.2c01209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to zero-calorie and advanced organoleptic properties similar to sucrose, the plant-derived rebaudioside M (Reb M) has been considered as a next generation sweetener. However, a low content of Reb M in Stevia rebaudiana Bertoni and low enzymatic activity of UGT76G1, which is an uridine diphosphate glucose (UDPG)-dependent glycosyltransferase with the ability to glycosylate rebaudioside D (Reb D) to produce Reb M through the formation of β-1,3 glycosidic bond, restrict its commercial usage. To improve the catalytic activity of UGT76G1, a variant UGT76G1-T284S/M88L/L200A was obtained by structure-guided evolution, whose catalytic activity toward Reb D increased by 2.38 times compared with UGT76G1-T284S. This allowed us to prepare Reb M on a large-scale with a great yield of 90.50%. Moreover, molecular dynamics simulation illustrated that UGT76G1-T284S/M88L/L200A reduced distances from Reb D to catalytic residues and UDPG. Hence, we report an efficient method for the potential scale production of Reb M in this study.
Collapse
Affiliation(s)
- Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Fei Meng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, P. R. China
| | - Qingfu Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
117
|
Yuan O, Ugale A, de Marchi T, Anthonydhason V, Konturek-Ciesla A, Wan H, Eldeeb M, Drabe C, Jassinskaja M, Hansson J, Hidalgo I, Velasco-Hernandez T, Cammenga J, Magee JA, Niméus E, Bryder D. A somatic mutation in moesin drives progression into acute myeloid leukemia. SCIENCE ADVANCES 2022; 8:eabm9987. [PMID: 35442741 PMCID: PMC9020775 DOI: 10.1126/sciadv.abm9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.
Collapse
Affiliation(s)
- Ouyang Yuan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Amol Ugale
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- Department of Microbiology, Immunobiology and Genetics, Center for Molecular Biology of the University of Vienna, Max F. Perutz Laboratories, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Tommaso de Marchi
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
| | - Vimala Anthonydhason
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Medicinaregatan 1F, 413 90, Gothenburg, Sweden
| | - Anna Konturek-Ciesla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Haixia Wan
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Mohamed Eldeeb
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Caroline Drabe
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Maria Jassinskaja
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
- York Biomedical Research Institute, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | | | - Jörg Cammenga
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma Niméus
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Lund University, Solvegatan 19, 223 62, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Entrégatan 7, 222 42 Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medical, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
118
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
119
|
Mandal MK, Kronenberger T, Zulka MI, Windshügel B, Schiermeyer A. Structure-based discovery of small molecules improving stability of human broadly-neutralizing anti-HIV antibody 2F5 in plant suspension cells. Biotechnol J 2022; 17:e2100266. [PMID: 35075794 DOI: 10.1002/biot.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
The production of biopharmaceuticals in engineered plant-based systems is a promising technology that has proven its suitability for the production of various recombinant glyco-proteins that are currently undergoing clinical trials. However, compared to mammalian cell lines, the productivity of plant-based systems still requires further improvement. A major obstacle is the proteolytic degradation of recombinant target proteins by endogenous plant proteases mainly from the subtilisin family of serine proteases. In the present study, the authors screened for putative small molecule inhibitors for subtilases that are secreted from tobacco BY-2 suspension cells using an in silico approach. The effectiveness of the substances identified in this screen was subsequently tested in degradation assays using the human broadly-neutralizing anti-HIV monoclonal antibody 2F5 (mAb2F5) and spent BY-2 culture medium as a model system. Among 16 putative inhibitors identified by in silico studies, three naphthalene sulfonic acid derivatives showed inhibitory activity in in vitro degradation assays and are similar to or even more effective than phenylmethylsulfonyl fluoride (PMSF), a classical inhibitor of serine proteases, which served as positive control.
Collapse
Affiliation(s)
- Manoj K Mandal
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| | - Thales Kronenberger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | - Marie I Zulka
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
120
|
Sensing the Messenger: Potential Roles of Cyclic-di-GMP in Rickettsial Pathogenesis. Int J Mol Sci 2022; 23:ijms23073853. [PMID: 35409212 PMCID: PMC8999164 DOI: 10.3390/ijms23073853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogenic bacteria causing human rickettsioses, transmitted in nature by arthropod vectors, primarily infect vascular endothelial cells lining the blood vessels, resulting in 'endothelial activation' and onset of innate immune responses. Nucleotide second messengers are long presumed to be the stimulators of type I interferons, of which bacterial cyclic-di-GMP (c-di-GMP) has been implicated in multiple signaling pathways governing communication with other bacteria and host cells, yet its importance in the context of rickettsial interactions with the host has not been investigated. Here, we report that all rickettsial genomes encode a putative diguanylate cyclase pleD, responsible for the synthesis of c-di-GMP. In silico analysis suggests that although the domain architecture of PleD is apparently well-conserved among different rickettsiae, the protein composition and sequences likely vary. Interestingly, cloning and sequencing of the pleD gene from virulent (Sheila Smith) and avirulent (Iowa) strains of R. rickettsii reveals a nonsynonymous substitution, resulting in an amino acid change (methionine to isoleucine) at position 236. Additionally, a previously reported 5-bp insertion in the genomic sequence coding for pleD (NCBI accession: NC_009882) was not present in the sequence of our cloned pleD from R. rickettsii strain Sheila Smith. In vitro infection of HMECs with R. rickettsii (Sheila Smith), but not R. rickettsii (Iowa), resulted in dynamic changes in the levels of pleD up to 24 h post-infection. These findings thus provide the first evidence for the potentially important role(s) of c-di-GMP in the determination of host-cell responses to pathogenic rickettsiae. Further studies into molecular mechanisms through which rickettsial c-di-GMP might regulate pathogen virulence and host responses should uncover the contributions of this versatile bacterial second messenger in disease pathogenesis and immunity to human rickettsioses.
Collapse
|
121
|
Khan FI, Lobb KA, Lai D. The Molecular Basis of the Effect of Temperature on the Structure and Function of SARS-CoV-2 Spike Protein. Front Mol Biosci 2022; 9:794960. [PMID: 35463957 PMCID: PMC9019816 DOI: 10.3389/fmolb.2022.794960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
The remarkable rise of the current COVID-19 pandemic to every part of the globe has raised key concerns for the current public healthcare system. The spike (S) protein of SARS-CoV-2 shows an important part in the cell membrane fusion and receptor recognition. It is a key target for vaccine production. Several researchers studied the nature of this protein under various environmental conditions. In this work, we applied molecular modeling and extensive molecular dynamics simulation approaches at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the influence of temperatures on the structure, function, and dynamics of the S protein of SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S protein are not accessible to solvent at high temperature. Furthermore, there was no unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other temperatures. Our findings revealed that higher temperatures have little or no influence on the stability and folding of the SARS-CoV-2 S protein.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Kevin A. Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Dakun Lai, ; Kevin A. Lobb,
| |
Collapse
|
122
|
Ren Y, Li Y, Wang Y, Wen T, Lu X, Chang S, Zhang X, Shen Y, Yang X. Cryo-EM structure of the heptameric calcium homeostasis modulator 1 channel. J Biol Chem 2022; 298:101838. [PMID: 35339491 PMCID: PMC9035704 DOI: 10.1016/j.jbc.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca2+-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.2 Å and 2.9 Å, respectively, and one D. rerio CALHM1 octamer with flexible long C-terminal helices at a resolution of 3.5 Å. Structural analysis shows that the heptameric CALHM1s are in an ATP-nonconducting state with a central pore diameter of approximately 6.6 Å. Compared with those inside the octameric CALHM1, the N-helix inside the heptameric CALHM1 is in the “down” position to avoid steric clashing with the adjacent TM1 helix. Molecular dynamics simulations show that as the N-helix moves from the “down” position to the “up” position, the pore size of ATP molecule permeation increases significantly. Our results provide important information for elucidating the mechanism of ATP molecule permeation in the CALHM1 channel.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yaojie Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China.
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
123
|
Reddy UV, Weber DK, Wang S, Larsen EK, Gopinath T, De Simone A, Robia S, Veglia G. A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca 2+-ATPase. Structure 2022; 30:360-370.e6. [PMID: 34875216 PMCID: PMC8897251 DOI: 10.1016/j.str.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
SERCA is a P-type ATPase embedded in the sarcoplasmic reticulum and plays a central role in muscle relaxation. SERCA's function is regulated by single-pass membrane proteins called regulins. Unlike other regulins, dwarf open reading frame (DWORF) expressed in cardiac muscle has a unique activating effect. Here, we determine the structure and topology of DWORF in lipid bilayers using a combination of oriented sample solid-state NMR spectroscopy and replica-averaged orientationally restrained molecular dynamics. We found that DWORF's structural topology consists of a dynamic N-terminal domain, an amphipathic juxtamembrane helix that crosses the lipid groups at an angle of 64°, and a transmembrane C-terminal helix with an angle of 32°. A kink induced by Pro15, unique to DWORF, separates the two helical domains. A single Pro15Ala mutant significantly decreases the kink and eliminates DWORF's activating effect on SERCA. Overall, our findings directly link DWORF's structural topology to its activating effect on SERCA.
Collapse
Affiliation(s)
- U. Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK,Department of Pharmacy, University of Naples “Federico II”, Naples, 80131, Italy
| | - Seth Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
124
|
Benzerara K, Duprat E, Bitard-Feildel T, Caumes G, Cassier-Chauvat C, Chauvat F, Dezi M, Diop SI, Gaschignard G, Görgen S, Gugger M, López-García P, Millet M, Skouri-Panet F, Moreira D, Callebaut I. A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria. Genome Biol Evol 2022; 14:evac026. [PMID: 35143662 PMCID: PMC8890360 DOI: 10.1093/gbe/evac026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/12/2022] Open
Abstract
Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elusive. Here, using comparative genomics, we identify a new gene (ccyA) and protein family (calcyanin) possibly associated with cyanobacterial iACC biomineralization. Proteins of the calcyanin family are composed of a conserved C-terminal domain, which likely adopts an original fold, and a variable N-terminal domain whose structure allows differentiating four major types among the 35 known calcyanin homologs. Calcyanin lacks detectable full-length homologs with known function. The overexpression of ccyA in iACC-lacking cyanobacteria resulted in an increased intracellular Ca content. Moreover, ccyA presence was correlated and/or colocalized with genes involved in Ca or HCO3- transport and homeostasis, supporting the hypothesis of a functional role of calcyanin in iACC biomineralization. Whatever its function, ccyA appears as diagnostic of intracellular calcification in cyanobacteria. By searching for ccyA in publicly available genomes, we identified 13 additional cyanobacterial strains forming iACC, as confirmed by microscopy. This extends our knowledge about the phylogenetic and environmental distribution of cyanobacterial iACC biomineralization, especially with the detection of multicellular genera as well as a marine species. Moreover, ccyA was probably present in ancient cyanobacteria, with independent losses in various lineages that resulted in a broad but patchy distribution across modern cyanobacteria.
Collapse
Affiliation(s)
- Karim Benzerara
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Géraldine Caumes
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Manuela Dezi
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Seydina Issa Diop
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Geoffroy Gaschignard
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Sigrid Görgen
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Muriel Gugger
- Institut Pasteur, Université de Paris, Collection of Cyanobacteria, Paris, France
| | - Purificación López-García
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maxime Millet
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Fériel Skouri-Panet
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - David Moreira
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| |
Collapse
|
125
|
Stsiapanava A, Xu C, Nishio S, Han L, Yamakawa N, Carroni M, Tunyasuvunakool K, Jumper J, de Sanctis D, Wu B, Jovine L. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat Struct Mol Biol 2022; 29:190-193. [PMID: 35273390 PMCID: PMC8930769 DOI: 10.1038/s41594-022-00729-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy. AlphaFold2 predictions, X-ray crystallography and cryo-EM analyses reveal how related human glycoproteins GP2 and uromodulin catch pathogenic bacteria by presenting a high-mannose glycan that acts as a decoy for fimbrial adhesin FimH.
Collapse
Affiliation(s)
- Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nao Yamakawa
- US 41-UMS 2014-PLBS, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
126
|
Rajpoot S, Srivastava G, Siddiqi MI, Saqib U, Parihar SP, Hirani N, Baig MS. Identification of novel inhibitors targeting TIRAP interactions with BTK and PKCδ in inflammation through an in silico approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:141-166. [PMID: 35174746 DOI: 10.1080/1062936x.2022.2035817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Advanced computational tools focusing on protein-protein interaction (PPI) based drug development is a powerful platform to accelerate the therapeutic development of small lead molecules and repurposed drugs. Toll/interleukin-1 receptor (TIR) domain-containing adapter protein (TIRAP) and its interactions with other proteins in macrophages signalling are crucial components of severe or persistent inflammation. TIRAP activation through Bruton's tyrosine kinase (BTK) and Protein Kinase C delta (PKCδ) is essential for downstream inflammatory signalling. We created homology-based structural models of BTK and PKCδ in MODELLER 9.24. TIRAP interactions with BTK and PKCδ in its non-phosphorylated and phosphorylated states were determined by multiple docking tools including HADDOCK 2.4, pyDockWEB and ClusPro 2.0. Food and Drug Administration (FDA)-approved drugs were virtually screened through Discovery Studio LibDock and Autodock Vina tools to target the common TIR domain residues of TIRAP, which interact with both BTK and PKC at the identified interfacial sites of the complexes. Four FDA-approved drugs were identified and found to have stable interactions over a range of 100 ns MD simulation timescales. These drugs block the interactions of both kinases with TIRAP in silico. Hence, these drugs have the potential to dampen downstream inflammatory signalling and inflammation-mediated disease.
Collapse
Affiliation(s)
- S Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - G Srivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute (CSIR-CDRI), Jankipuram Extension, Sitapur Road, Lucknow, India
| | - U Saqib
- Department of Chemistry, Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - S P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - N Hirani
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - M S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
127
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
128
|
Luttens A, Gullberg H, Abdurakhmanov E, Vo DD, Akaberi D, Talibov VO, Nekhotiaeva N, Vangeel L, De Jonghe S, Jochmans D, Krambrich J, Tas A, Lundgren B, Gravenfors Y, Craig AJ, Atilaw Y, Sandström A, Moodie LWK, Lundkvist Å, van Hemert MJ, Neyts J, Lennerstrand J, Kihlberg J, Sandberg K, Danielson UH, Carlsson J. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J Am Chem Soc 2022; 144:2905-2920. [PMID: 35142215 PMCID: PMC8848513 DOI: 10.1021/jacs.1c08402] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.
Collapse
Affiliation(s)
- Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Hjalmar Gullberg
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Eldar Abdurakhmanov
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Duy Duc Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | | | - Natalia Nekhotiaeva
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Janina Krambrich
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay Facility, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Ylva Gravenfors
- Science for Life Laboratory, Drug Discovery & Development Platform, Department of Organic Chemistry, Stockholm University, Solna, SE-17121 Stockholm, Sweden
| | - Alexander J Craig
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Yoseph Atilaw
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Lindon W K Moodie
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden.,Uppsala Antibiotic Centre, Uppsala University, SE-75123 Uppsala, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - Martijn J van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium.,Global Virus Network, Baltimore, Maryland 21201, United States
| | - Johan Lennerstrand
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristian Sandberg
- Department of Medicinal Chemistry, Uppsala University, SE-75123 Uppsala, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.,Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden
| | - U Helena Danielson
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
129
|
Ku Z, Xie X, Lin J, Gao P, El Sahili A, Su H, Liu Y, Ye X, Li X, Fan X, Goh BC, Xiong W, Boyd H, Muruato AE, Deng H, Xia H, Jing Z, Kalveram BK, Menachery VD, Zhang N, Lescar J, Shi PY, An Z. Engineering SARS-CoV-2 cocktail antibodies into a bispecific format improves neutralizing potency and breadth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35132410 PMCID: PMC8820655 DOI: 10.1101/2022.02.01.478504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce antibody resistance. We engineered two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) increases antigen-binding and virus-neutralizing activities and spectrum against multiple SARS-CoV-2 variants including the Omicron, than the cocktail. X-ray crystallography and computational simulations reveal distinct neutralizing mechanisms for individual cocktail antibodies and suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and the Beta, Gamma, and Delta variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.
Collapse
|
130
|
Martí D, Alemán C, Ainsley J, Ahumada O, Torras J. IgG1-b12-HIV-gp120 Interface in Solution: A Computational Study. J Chem Inf Model 2022; 62:359-371. [PMID: 34971312 PMCID: PMC8790758 DOI: 10.1021/acs.jcim.1c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.
Collapse
Affiliation(s)
- Didac Martí
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jon Ainsley
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Evotec
Campus Curie, 195 Rte d’Espagne, 31100 Toulouse, Occitanie, France
| | - Oscar Ahumada
- Mecwins
S.L., Parque Científico de Madrid PTM, C/Santiago Grisolía 2,
Tres Cantos, Madrid 28760, Spain
| | - Juan Torras
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
131
|
Schorcht A, Cottrell CA, Pugach P, Ringe RP, Han AX, Allen JD, van den Kerkhof TLGM, Seabright GE, Schermer EE, Ketas TJ, Burger JA, van Schooten J, LaBranche CC, Ozorowski G, de Val N, Bader DLV, Schuitemaker H, Russell CA, Montefiori DC, van Gils MJ, Crispin M, Klasse PJ, Ward AB, Moore JP, Sanders RW. The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. J Virol 2022; 96:e0155221. [PMID: 34669426 PMCID: PMC8754230 DOI: 10.1128/jvi.01552-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/14/2021] [Indexed: 01/15/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Schorcht
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Rajesh P. Ringe
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Alvin X. Han
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Joel D. Allen
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Tom L. G. M. van den Kerkhof
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Gemma E. Seabright
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Edith E. Schermer
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Jelle van Schooten
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel L. V. Bader
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A. Russell
- Laboratory of Applied Evolutionary Biology, Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Crispin
- Centre for Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, England, United Kingdom
| | - P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection & Immunity Institute (AI&AII), Amsterdam UMC, Location Meibergdreef, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
132
|
Pándy-Szekeres G, Esguerra M, Hauser AS, Caroli J, Munk C, Pilger S, Keserű G, Kooistra A, Gloriam D. The G protein database, GproteinDb. Nucleic Acids Res 2022; 50:D518-D525. [PMID: 34570219 PMCID: PMC8728128 DOI: 10.1093/nar/gkab852] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Two-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine. The G protein database is accessible at https://gproteindb.org.
Collapse
Affiliation(s)
- Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Mauricio Esguerra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Steven Pilger
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
133
|
Maschietto F, Gheeraert A, Piazzi A, Batista VS, Rivalta I. Distinct allosteric pathways in imidazole glycerol phosphate synthase from yeast and bacteria. Biophys J 2022; 121:119-130. [PMID: 34864045 PMCID: PMC8758406 DOI: 10.1016/j.bpj.2021.11.2888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the relationship between protein structures and their function is still an open question that becomes very challenging when allostery plays an important functional role. Allosteric proteins, in fact, exploit different ranges of motions (from sidechain local fluctuations to long-range collective motions) to effectively couple distant binding sites, and of particular interest is whether allosteric proteins of the same families with similar functions and structures also necessarily share the same allosteric mechanisms. Here, we compared the early dynamics initiating the allosteric communication of a prototypical allosteric enzyme from two different organisms, i.e., the imidazole glycerol phosphate synthase (IGPS) enzymes from the thermophilic bacteria and the yeast, working at high and room temperatures, respectively. By combining molecular dynamics simulations and network models derived from graph theory, we found rather distinct early allosteric dynamics in the IGPS from the two organisms, involving significatively different allosteric pathways in terms of both local and collective motions. Given the successful prediction of key allosteric residues in the bacterial IGPS, whose mutation disrupts its allosteric communication, the outcome of this study paves the way for future experimental studies on the yeast IGPS that could foster therapeutic applications by exploiting the control of IGPS enzyme allostery.
Collapse
Affiliation(s)
| | - Aria Gheeraert
- Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, Lyon Cedex 07, France
| | - Andrea Piazzi
- Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum, Università di Bologna, Bologna, Italia
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, Connecticut,Corresponding author
| | - Ivan Rivalta
- Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, Lyon Cedex 07, France,Dipartimento di Chimica Industriale “Toso Montanari”, Alma Mater Studiorum, Università di Bologna, Bologna, Italia,Corresponding author
| |
Collapse
|
134
|
Meseguer A, Bota P, Fernández-Fuentes N, Oliva B. Prediction of Protein-Protein Binding Affinities from Unbound Protein Structures. Methods Mol Biol 2022; 2385:335-351. [PMID: 34888728 DOI: 10.1007/978-1-0716-1767-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proteins are the workhorses of cells to carry out sophisticated and complex cellular processes. Such processes require a coordinated and regulated interactions between proteins that are both time and location specific. The strength, or binding affinity, of protein-protein interactions ranges between the micro- and the nanomolar association constant, often dictating the molecular mechanisms underlying the interaction and the longevity of the complex, i.e., transient or permanent. In consequence, there is a need to quantify the strength of protein-protein interactions for biological, biomedical, and biotechnological applications. While experimental methods are labor intensive and costly, computational ones are useful tools to predict the affinity of protein-protein interactions. In this chapter, we review the methods developed by us to address this question. We briefly present two methods to comprehend the structure of the protein complex derived by either comparative modeling or docking. Then we introduce BADOCK, a method to predict the binding energy without requiring the structure of the protein complex, thus overcoming one of the major limitations of structure-based methods for the prediction of binding affinity. BADOCK utilizes the structure of unbound proteins and the protein docking sampling space to predict protein-protein binding affinities. We present step-by-step protocols to utilize these methods, describing the inputs and potential pitfalls as well as their respective strengths and limitations.
Collapse
Affiliation(s)
- Alberto Meseguer
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Bota
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia, Spain
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Catalonia, Spain
| | - Narcis Fernández-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Catalonia, Spain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
135
|
Landim-Vieira M, Childers MC, Wacker AL, Garcia MR, He H, Singh R, Brundage EA, Johnston JR, Whitson BA, Chase PB, Janssen PML, Regnier M, Biesiadecki BJ, Pinto JR, Parvatiyar MS. Post-translational modification patterns on β-myosin heavy chain are altered in ischemic and nonischemic human hearts. eLife 2022; 11:74919. [PMID: 35502901 PMCID: PMC9122498 DOI: 10.7554/elife.74919] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/01/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation and acetylation of sarcomeric proteins are important for fine-tuning myocardial contractility. Here, we used bottom-up proteomics and label-free quantification to identify novel post-translational modifications (PTMs) on β-myosin heavy chain (β-MHC) in normal and failing human heart tissues. We report six acetylated lysines and two phosphorylated residues: K34-Ac, K58-Ac, S210-P, K213-Ac, T215-P, K429-Ac, K951-Ac, and K1195-Ac. K951-Ac was significantly reduced in both ischemic and nonischemic failing hearts compared to nondiseased hearts. Molecular dynamics (MD) simulations show that K951-Ac may impact stability of thick filament tail interactions and ultimately myosin head positioning. K58-Ac altered the solvent-exposed SH3 domain surface - known for protein-protein interactions - but did not appreciably change motor domain conformation or dynamics under conditions studied. Together, K213-Ac/T215-P altered loop 1's structure and dynamics - known to regulate ADP-release, ATPase activity, and sliding velocity. Our study suggests that β-MHC acetylation levels may be influenced more by the PTM location than the type of heart disease since less protected acetylation sites are reduced in both heart failure groups. Additionally, these PTMs have potential to modulate interactions between β-MHC and other regulatory sarcomeric proteins, ADP-release rate of myosin, flexibility of the S2 region, and cardiac myofilament contractility in normal and failing hearts.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Matthew C Childers
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Amanda L Wacker
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| | - Michelle Rodriquez Garcia
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Rakesh Singh
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States,Translational Science Laboratory, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Bryan A Whitson
- Department of Surgery, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - P Bryant Chase
- Department of Biological Science, The Florida State UniversityTallahasseeUnited States
| | - Paul ML Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Michael Regnier
- Department of Bioengineering, College of Medicine, University of WashingtonSeattleUnited States
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, The Florida State UniversityTallahasseeUnited States
| | - Michelle S Parvatiyar
- Department of Nutrition and Integrative Physiology, The Florida State UniversityTallahasseeUnited States
| |
Collapse
|
136
|
Prats-Ejarque G, Lorente H, Villalba C, Anguita R, Lu L, Vázquez-Monteagudo S, Fernández-Millán P, Boix E. Structure-Based Design of an RNase Chimera for Antimicrobial Therapy. Int J Mol Sci 2021; 23:95. [PMID: 35008522 PMCID: PMC8745102 DOI: 10.3390/ijms23010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial resistance to antibiotics urges the development of alternative therapies. Based on the structure-function of antimicrobial members of the RNase A superfamily, we have developed a hybrid enzyme. Within this family, RNase 1 exhibits the highest catalytic activity and the lowest cytotoxicity; in contrast, RNase 3 shows the highest bactericidal action, alas with a reduced catalytic activity. Starting from both parental proteins, we designed a first RNase 3/1-v1 chimera. The construct had a catalytic activity much higher than RNase 3, unfortunately without reaching an equivalent antimicrobial activity. Thus, two new versions were created with improved antimicrobial properties. Both of these versions (RNase 3/1-v2 and -v3) incorporated an antimicrobial loop characteristic of RNase 3, while a flexible RNase 1-specific loop was removed in the latest construct. RNase 3/1-v3 acquired both higher antimicrobial and catalytic activities than previous versions, while retaining the structural determinants for interaction with the RNase inhibitor and displaying non-significant cytotoxicity. Following, we tested the constructs' ability to eradicate macrophage intracellular infection and observed an enhanced ability in both RNase 3/1-v2 and v3. Interestingly, the inhibition of intracellular infection correlates with the variants' capacity to induce autophagy. We propose RNase 3/1-v3 chimera as a promising lead for applied therapeutics.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Helena Lorente
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Clara Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Raúl Anguita
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China
| | - Sergi Vázquez-Monteagudo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| |
Collapse
|
137
|
Xu J, Zhao L, Peng S, Chu H, Liang R, Tian M, Connell PP, Li G, Chen C, Wang HW. Mechanisms of distinctive mismatch tolerance between Rad51 and Dmc1 in homologous recombination. Nucleic Acids Res 2021; 49:13135-13149. [PMID: 34871438 PMCID: PMC8682777 DOI: 10.1093/nar/gkab1141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/03/2022] Open
Abstract
Homologous recombination (HR) is a primary DNA double-strand breaks (DSBs) repair mechanism. The recombinases Rad51 and Dmc1 are highly conserved in the RecA family; Rad51 is mainly responsible for DNA repair in somatic cells during mitosis while Dmc1 only works during meiosis in germ cells. This spatiotemporal difference is probably due to their distinctive mismatch tolerance during HR: Rad51 does not permit HR in the presence of mismatches, whereas Dmc1 can tolerate certain mismatches. Here, the cryo-EM structures of Rad51-DNA and Dmc1-DNA complexes revealed that the major conformational differences between these two proteins are located in their Loop2 regions, which contain invading single-stranded DNA (ssDNA) binding residues and double-stranded DNA (dsDNA) complementary strand binding residues, stabilizing ssDNA and dsDNA in presynaptic and postsynaptic complexes, respectively. By combining molecular dynamic simulation and single-molecule FRET assays, we identified that V273 and D274 in the Loop2 region of human RAD51 (hRAD51), corresponding to P274 and G275 of human DMC1 (hDMC1), are the key residues regulating mismatch tolerance during strand exchange in HR. This HR accuracy control mechanism provides mechanistic insights into the specific roles of Rad51 and Dmc1 in DNA double-strand break repair and may shed light on the regulatory mechanism of genetic recombination in mitosis and meiosis.
Collapse
Affiliation(s)
- Jingfei Xu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lingyun Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sijia Peng
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Rui Liang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Tian
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60615, USA
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
138
|
Hernández G, Ferrer-Cortès X, Venturi V, Musri M, Pilquil MF, Torres PMM, Rodríguez IH, Mínguez MÀR, Kelleher NJ, Pelucchi S, Piperno A, Alberca EP, Ricós GG, Giró EC, Pérez-Montero S, Tornador C, Villà-Freixa J, Sánchez M. New Mutations in HFE2 and TFR2 Genes Causing Non HFE-Related Hereditary Hemochromatosis. Genes (Basel) 2021; 12:1980. [PMID: 34946929 PMCID: PMC8702017 DOI: 10.3390/genes12121980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023] Open
Abstract
Hereditary hemochromatosis (HH) is an iron metabolism disease clinically characterized by excessive iron deposition in parenchymal organs such as liver, heart, pancreas, and joints. It is caused by mutations in at least five different genes. HFE hemochromatosis is the most common type of hemochromatosis, while non-HFE related hemochromatosis are rare cases. Here, we describe six new patients of non-HFE related HH from five different families. Two families (Family 1 and 2) have novel nonsense mutations in the HFE2 gene have novel nonsense mutations (p.Arg63Ter and Asp36ThrfsTer96). Three families have mutations in the TFR2 gene, one case has one previously unreported mutation (Family A-p.Asp680Tyr) and two cases have known pathogenic mutations (Family B and D-p.Trp781Ter and p.Gln672Ter respectively). Clinical, biochemical, and genetic data are discussed in all these cases. These rare cases of non-HFE related hereditary hemochromatosis highlight the importance of an earlier molecular diagnosis in a specialized center to prevent serious clinical complications.
Collapse
Affiliation(s)
- Gonzalo Hernández
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain; (G.H.); (X.F.-C.); (V.V.)
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| | - Xenia Ferrer-Cortès
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain; (G.H.); (X.F.-C.); (V.V.)
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| | - Veronica Venturi
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain; (G.H.); (X.F.-C.); (V.V.)
| | - Melina Musri
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| | - Martin Floor Pilquil
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; (M.F.P.); (P.M.M.T.); (J.V.-F.)
- Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic—Universitat Central de Catalunya, 08500 Vic, Spain
| | - Pau Marc Muñoz Torres
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; (M.F.P.); (P.M.M.T.); (J.V.-F.)
| | | | - Maria Àngels Ruiz Mínguez
- Department of Laboratory Medicine/Fundació Hospital de l’Esperit Sant, 08923 Santa Coloma de Gramenet, Spain;
| | | | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (S.P.); (A.P.)
| | - Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy; (S.P.); (A.P.)
- Medical Genetics—ASST-Monza, S. Gerardo Hospital, 20900 Monza, Italy
- Centre for Rare Diseases—Disorders of Iron Metabolism—ASST-Monza, San Gerardo Hospital, 20900 Monza, Italy
| | - Esther Plensa Alberca
- Hematologia i Hemoteràpia, Consorci Sanitari del Maresme, Institut Català d’Oncologia, 08304 Mataró, Spain; (E.P.A.); (G.G.R.); (E.C.G.)
| | - Georgina Gener Ricós
- Hematologia i Hemoteràpia, Consorci Sanitari del Maresme, Institut Català d’Oncologia, 08304 Mataró, Spain; (E.P.A.); (G.G.R.); (E.C.G.)
| | - Eloi Cañamero Giró
- Hematologia i Hemoteràpia, Consorci Sanitari del Maresme, Institut Català d’Oncologia, 08304 Mataró, Spain; (E.P.A.); (G.G.R.); (E.C.G.)
| | - Santiago Pérez-Montero
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| | - Cristian Tornador
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| | - Jordi Villà-Freixa
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain; (M.F.P.); (P.M.M.T.); (J.V.-F.)
- Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic—Universitat Central de Catalunya, 08500 Vic, Spain
| | - Mayka Sánchez
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain; (G.H.); (X.F.-C.); (V.V.)
- BloodGenetics S.L., Diagnostics in Inherited Blood Diseases, 08950 Esplugues de Llobregat, Spain; (M.M.); (S.P.-M.); (C.T.)
| |
Collapse
|
139
|
Santamaria S, Buemi F, Nuti E, Cuffaro D, De Vita E, Tuccinardi T, Rossello A, Howell S, Mehmood S, Snijders AP, de Groot R. Development of a fluorogenic ADAMTS-7 substrate. J Enzyme Inhib Med Chem 2021; 36:2160-2169. [PMID: 34587841 PMCID: PMC8494430 DOI: 10.1080/14756366.2021.1983808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular protease ADAMTS-7 has been identified as a potential therapeutic target in atherosclerosis and associated diseases such as coronary artery disease (CAD). However, ADAMTS-7 inhibitors have not been reported so far. Screening of inhibitors has been hindered by the lack of a suitable peptide substrate and, consequently, a convenient activity assay. Here we describe the first fluorescence resonance energy transfer (FRET) substrate for ADAMTS-7, ATS7FP7. ATS7FP7 was used to measure inhibition constants for the endogenous ADAMTS-7 inhibitor, TIMP-4, as well as two hydroxamate-based zinc chelating inhibitors. These inhibition constants match well with IC50 values obtained with our SDS-PAGE assay that uses the N-terminal fragment of latent TGF-β-binding protein 4 (LTBP4S-A) as a substrate. Our novel fluorogenic substrate ATS7FP7 is suitable for high throughput screening of ADAMTS-7 inhibitors, thus accelerating translational studies aiming at inhibition of ADAMTS-7 as a novel treatment for cardiovascular diseases such as atherosclerosis and CAD.
Collapse
Affiliation(s)
| | - Frederic Buemi
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Elena De Vita
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Shahid Mehmood
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Rens de Groot
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
140
|
Zhang H, Eerland J, Horn V, Schellevis R, van Ingen H. Mapping the electrostatic potential of the nucleosome acidic patch. Sci Rep 2021; 11:23013. [PMID: 34837025 PMCID: PMC8626509 DOI: 10.1038/s41598-021-02436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022] Open
Abstract
The nucleosome surface contains an area with negative electrostatic potential known as the acidic patch, which functions as a binding platform for various proteins to regulate chromatin biology. The dense clustering of acidic residues may impact their effective pKa and thus the electronegativity of the acidic patch, which in turn could influence nucleosome-protein interactions. We here set out to determine the pKa values of residues in and around the acidic patch in the free H2A-H2B dimer using NMR spectroscopy. We present a refined solution structure of the H2A-H2B dimer based on intermolecular distance restraints, displaying a well-defined histone-fold core. We show that the conserved histidines H2B H46 and H106 that line the acidic patch have pKa of 5.9 and 6.5, respectively, and that most acidic patch carboxyl groups have pKa values well below 5.0. For H2A D89 we find strong evidence for an elevated pKa of 5.3. Our data establish that the acidic patch is highly negatively charged at physiological pH, while protonation of H2B H106 and H2B H46 at slightly acidic pH will reduce electronegativity. These results will be valuable to understand the impact of pH changes on nucleosome-protein interactions in vitro, in silico or in vivo.
Collapse
Affiliation(s)
- Heyi Zhang
- grid.5132.50000 0001 2312 1970Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands ,grid.5477.10000000120346234NMR Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Jelmer Eerland
- grid.5132.50000 0001 2312 1970Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Velten Horn
- grid.5132.50000 0001 2312 1970Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Raymond Schellevis
- grid.5477.10000000120346234NMR Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hugo van Ingen
- NMR Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| |
Collapse
|
141
|
Zhou J, Imani S, Shasaltaneh MD, Liu S, Lu T, Fu J. PIK3CA hotspot mutations p. H1047R and p. H1047L sensitize breast cancer cells to thymoquinone treatment by regulating the PI3K/Akt1 pathway. Mol Biol Rep 2021; 49:1799-1816. [PMID: 34816327 DOI: 10.1007/s11033-021-06990-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L. METHODS AND RESULTS Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114-359 and 797-1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells. CONCLUSIONS These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.
Collapse
Affiliation(s)
- Ju Zhou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Saber Imani
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | | | - Shuguang Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Lu
- Research Center for Science, Chengdu Medical College, Chengdu, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
142
|
Proux-Gillardeaux V, Advedissian T, Perin C, Gelly JC, Viguier M, Deshayes F. Identification of a new regulation pathway of EGFR and E-cadherin dynamics. Sci Rep 2021; 11:22705. [PMID: 34811416 PMCID: PMC8609017 DOI: 10.1038/s41598-021-02042-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
E-cadherin and EGFR are known to be closely associated hence regulating differentiation and proliferation notably in epithelia. We have previously shown that galectin-7 binds to E-cadherin and favors its retention at the plasma membrane. In this study, we shed in light that galectin-7 establishes a physical link between E-cadherin and EGFR. Indeed, our results demonstrate that galectin-7 also binds to EGFR, but unlike the binding to E-cadherin this binding is sugar dependent. The establishment of E-cadherin/EGFR complex and the binding of galectin-7 to EGFR thus lead to a regulation of its signaling and intracellular trafficking allowing cell proliferation and migration control. In vivo observations further support these results since an epidermal thickening is observed in galectin-7 deficient mice. This study therefore reveals that galectin-7 controls epidermal homeostasis through the regulation of E-cadherin/EGFR balance.
Collapse
Affiliation(s)
| | - Tamara Advedissian
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, UMR3691, CNRS, 75015, Paris, France
| | - Charlotte Perin
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Jean-Christophe Gelly
- Université de Paris, UMR_S1134, BIGR, Inserm, 75006, Paris, France.,Institut National de Transfusion Sanguine, 75015, Paris, France
| | - Mireille Viguier
- CNRS, Institut Jacques Monod, Université de Paris, F-75013, Paris, France
| | | |
Collapse
|
143
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
144
|
Bustamante A, Rivera R, Floor M, Babul J, Baez M. Single-molecule optical tweezers reveals folding steps of the domain swapping mechanism of a protein. Biophys J 2021; 120:4809-4818. [PMID: 34555362 PMCID: PMC8595740 DOI: 10.1016/j.bpj.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Domain swapping is a mechanism of protein oligomerization by which two or more subunits exchange structural elements to generate an intertwined complex. Numerous studies support a diversity of swapping mechanisms in which structural elements can be exchanged at different stages of the folding pathway of a subunit. Here, we used single-molecule optical tweezers technique to analyze the swapping mechanism of the forkhead DNA-binding domain of human transcription factor FoxP1. FoxP1 populates folded monomers in equilibrium with a swapped dimer. We generated a fusion protein linking two FoxP1 domains in tandem to obtain repetitive mechanical folding and unfolding trajectories. Thus, by stretching the same molecule several times, we detected either the independent folding of each domain or the elusive swapping step between domains. We found that a swapped dimer can be formed directly from fully or mostly folded monomer. In this situation, the interaction between the monomers in route to the domain-swapped dimer is the rate-limiting step. This approach is a useful strategy to test the different proposed domain swapping mechanisms for proteins with relevant physiological functions.
Collapse
Affiliation(s)
- Andres Bustamante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Martin Floor
- Bioinformatics and Medical Statistics Group, Faculty of Science and Technology, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain; Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
145
|
Price OM, Thakur A, Ortolano A, Towne A, Velez C, Acevedo O, Hevel JM. Naturally occurring cancer-associated mutations disrupt oligomerization and activity of protein arginine methyltransferase 1 (PRMT1). J Biol Chem 2021; 297:101336. [PMID: 34688662 PMCID: PMC8592882 DOI: 10.1016/j.jbc.2021.101336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.
Collapse
Affiliation(s)
- Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Ariana Ortolano
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Arianna Towne
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Caroline Velez
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA.
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
146
|
Ammerman L, Mertz SB, Park C, Wise JG. Transport Dynamics of MtrD: An RND Multidrug Efflux Pump from Neisseria gonorrheae. Biochemistry 2021; 60:3098-3113. [PMID: 34609833 DOI: 10.1021/acs.biochem.1c00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MtrCDE system confers multidrug resistance to Neisseria gonorrheae, the causative agent of gonorrhea. Using free and directed molecular dynamics (MD) simulations, we analyzed the interactions between MtrD and azithromycin, a transport substrate of MtrD, and a last-resort clinical treatment for multidrug-resistant gonorrhea. We then simulated the interactions between MtrD and streptomycin, an apparent nonsubstrate of MtrD. Using known conformations of MtrD homologues, we simulated a potential dynamic transport cycle of MtrD using targeted MD techniques (TMD), and we noted that forces were not applied to ligands of interest. In these TMD simulations, we observed the transport of azithromycin and the rejection of streptomycin. In an unbiased, long-time scale simulation of AZY-bound MtrD, we observed the spontaneous diffusion of azithromycin through the periplasmic cleft. Our simulations show how the peristaltic motions of the periplasmic cleft facilitate the transport of substrates by MtrD. Our data also suggest that multiple transport pathways for macrolides may exist within the periplasmic cleft of MtrD.
Collapse
Affiliation(s)
- Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - Sarah B Mertz
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - Chanyang Park
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| | - John G Wise
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Research Computing, Southern Methodist University, Dallas, Texas 75275-0376, United States.,Center for Drug Discovery, Design and Delivery, Southern Methodist University, Dallas, Texas 75275-0376, United States
| |
Collapse
|
147
|
Mammoliti O, Jansen K, El Bkassiny S, Palisse A, Triballeau N, Bucher D, Allart B, Jaunet A, Tricarico G, De Wachter M, Menet C, Blanc J, Letfus V, Rupčić R, Šmehil M, Poljak T, Coornaert B, Sonck K, Duys I, Waeckel L, Lecru L, Marsais F, Jagerschmidt C, Auberval M, Pujuguet P, Oste L, Borgonovi M, Wakselman E, Christophe T, Houvenaghel N, Jans M, Heckmann B, Sanière L, Brys R. Discovery and Optimization of Orally Bioavailable Phthalazone and Cinnolone Carboxylic Acid Derivatives as S1P2 Antagonists against Fibrotic Diseases. J Med Chem 2021; 64:14557-14586. [PMID: 34581584 DOI: 10.1021/acs.jmedchem.1c01066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease. Current treatments only slow down disease progression, making new therapeutic strategies compelling. Increasing evidence suggests that S1P2 antagonists could be effective agents against fibrotic diseases. Our compound collection was mined for molecules possessing substructure features associated with S1P2 activity. The weakly potent indole hit 6 evolved into a potent phthalazone series, bearing a carboxylic acid, with the aid of a homology model. Suboptimal pharmacokinetics of a benzimidazole subseries were improved by modifications targeting potential interactions with transporters, based on concepts deriving from the extended clearance classification system (ECCS). Scaffold hopping, as a part of a chemical enablement strategy, permitted the rapid exploration of the position adjacent to the carboxylic acid. Compound 38, with good pharmacokinetics and in vitro potency, was efficacious at 10 mg/kg BID in three different in vivo mouse models of fibrotic diseases in a therapeutic setting.
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Koen Jansen
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Adeline Palisse
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Denis Bucher
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Brigitte Allart
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Alex Jaunet
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Maxim De Wachter
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Javier Blanc
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Vatroslav Letfus
- Fidelta Ltd., Prilaz Baruna Filipovića 29, ZagrebHR-10000, Croatia
| | - Renata Rupčić
- Fidelta Ltd., Prilaz Baruna Filipovića 29, ZagrebHR-10000, Croatia
| | - Mario Šmehil
- Fidelta Ltd., Prilaz Baruna Filipovića 29, ZagrebHR-10000, Croatia
| | - Tanja Poljak
- Fidelta Ltd., Prilaz Baruna Filipovića 29, ZagrebHR-10000, Croatia
| | | | - Kathleen Sonck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Inge Duys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Ludovic Waeckel
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Lola Lecru
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Florence Marsais
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | | | - Marielle Auberval
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Philippe Pujuguet
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | | | | | | | - Mia Jans
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Laurent Sanière
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| |
Collapse
|
148
|
Hegron A, Huh E, Deupi X, Sokrat B, Gao W, Le Gouill C, Canouil M, Boissel M, Charpentier G, Roussel R, Balkau B, Froguel P, Plouffe B, Bonnefond A, Lichtarge O, Jockers R, Bouvier M. Identification of Key Regions Mediating Human Melatonin Type 1 Receptor Functional Selectivity Revealed by Natural Variants. ACS Pharmacol Transl Sci 2021; 4:1614-1627. [PMID: 34661078 PMCID: PMC8507577 DOI: 10.1021/acsptsci.1c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Melatonin is a hormone mainly produced by the pineal gland and MT1 is one of the two G protein-coupled receptors (GPCRs) mediating its action. Despite an increasing number of available GPCR crystal structures, the molecular mechanism of activation of a large number of receptors, including MT1, remains poorly understood. The purpose of this study is to elucidate the structural elements involved in the process of MT1's activation using naturally occurring variants affecting its function. Thirty-six nonsynonymous variants, including 34 rare ones, were identified in MTNR1A (encoding MT1) from a cohort of 8687 individuals and their signaling profiles were characterized using Bioluminescence Resonance Energy Transfer-based sensors probing 11 different signaling pathways. Computational analysis of the experimental data allowed us to group the variants in clusters according to their signaling profiles and to analyze the position of each variant in the context of the three-dimensional structure of MT1 to link functional selectivity to structure. MT1 variant signaling profiles revealed three clusters characterized by (1) wild-type-like variants, (2) variants with selective defect of βarrestin-2 recruitment, and (3) severely defective variants on all pathways. Our structural analysis allows us to identify important regions for βarrestin-2 recruitment as well as for Gα12 and Gα15 activation. In addition to identifying MT1 domains differentially controlling the activation of the various signaling effectors, this study illustrates how natural variants can be used as tools to study the molecular mechanisms of receptor activation.
Collapse
Affiliation(s)
- Alan Hegron
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Eunna Huh
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas 77030, United States of America
| | - Xavier Deupi
- Laboratory
of Biomolecular Research, Paul Scherrer
Institute (PSI), 5232 Villigen, Switzerland
- Condensed
Matter Theory group, Paul Scherrer Institute
(PSI), 5232 Villigen, Switzerland
| | - Badr Sokrat
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Wenwen Gao
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Christian Le Gouill
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Mickaël Canouil
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
| | - Mathilde Boissel
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
| | - Guillaume Charpentier
- Centre d’Étude et de Recherche pour l’Intensification
du Traitement du Diabète, 91000, Evry, France
| | - Ronan Roussel
- Department
of Diabetology Endocrinology Nutrition, Hôpital Bichat, DHU FIRE, Assistance Publique Hôpitaux
de Paris, 75004 Paris, France
- Inserm U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- UFR de Médecine, University Paris
Diderot, Sorbonne Paris Cité, 75006 Paris, France
| | - Beverley Balkau
- Inserm U1018, Center for Research in Epidemiology and Population
Health, 94805 Villejuif, France
- University
Paris-Saclay, University Paris-Sud, 94270 Villejuif, France
| | - Philippe Froguel
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
- Department
of Metabolism, Imperial College London, London, W12 0NN, United Kingdom
| | - Bianca Plouffe
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Amélie Bonnefond
- Inserm
UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, 59000, France
- University
of Lille, Lille University
Hospital, Lille, 59000, France
- Department
of Metabolism, Imperial College London, London, W12 0NN, United Kingdom
| | - Olivier Lichtarge
- Department
of Pharmacology and Chemical Biology, Baylor
College of Medicine, Houston, Texas 77030, United States of America
- Department
of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Ralf Jockers
- Université
de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Michel Bouvier
- Department
of Biochemistry and Molecular Medicine, University de Montréal, Montreal, Quebec, H3T 1J4 Canada
- Institute
for Research in Immunology and Cancer, University
of Montreal, Montreal, Quebec, H3T 1J4 Canada
| |
Collapse
|
149
|
Castaño JD, Zhou M, Schilling J. Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach. Appl Biochem Biotechnol 2021; 193:3287-3300. [PMID: 34125378 DOI: 10.1007/s12010-021-03594-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Trichoderma reesei is a "workhorse" fungus that produces glycosyl hydrolases (e.g., cellulases) at high titers for use in industrial bioprocessing. In this study, we focused on α-L-arabinofuranosidase, an enzyme important for the treatment of lignocellulosic biomass, but susceptible to oxidative damage that can occur during industrial processing. The molecular details that render this enzyme inactive have not yet been identified. To approach this issue, we used proteomics to identify amino acid residues that were oxidized after a relevant oxidative treatment (Fenton reaction). These oxidative modifications were included in the 3D protein structures, and using molecular dynamics simulations, we then studied the behaviors of non-modified and oxidized enzymes. These simulations showed significant alterations of the conformational stability of the protein when oxidized, as evidenced by changes in root mean square deviation (RMSD) and principal component analyses (PCA) trajectories. Likewise, enzyme-ligand interactions such as hydrogen bonds were greatly reduced in quantity and quality in the oxidized protein. Finally, free energy landscape plots showed that there was a more rugged energy surface in the oxidized protein, implying a less favorable reaction pathway. These results reveal the basis for loss of function in this carbohydrate active enzyme (CAZY) in the commercially relevant fungus T. reesei.
Collapse
Affiliation(s)
- Jesus D Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
- Marine and Coastal Research Institute, INVEMAR, Santa Marta, Colombia, 470006
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jonathan Schilling
- Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
150
|
Greene D, Barton M, Luchko T, Shiferaw Y. Computational Analysis of Binding Interactions between the Ryanodine Receptor Type 2 and Calmodulin. J Phys Chem B 2021; 125:10720-10735. [PMID: 34533024 DOI: 10.1021/acs.jpcb.1c03896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to a variety of cardiac arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). RyR2 is regulated by calmodulin (CaM), and mutations that disrupt their interaction can cause aberrant calcium release, leading to an arrhythmia. It was recently shown that increasing the RyR2-CaM binding affinity could rescue a defective CPVT-related RyR2 channel to near wild-type behavior. However, the interactions that determine the binding affinity at the RyR2-CaM binding interface are not well understood. In this study, we identify the key domains and interactions, including several new interactions, involved in the binding of CaM to RyR2. Also, our comparison between the wild-type and V3599K mutant suggests how the RyR2-CaM binding affinity can be increased via a change in the central and N-terminal lobe binding contacts for CaM. This computational approach provides new insights into the effect of a mutation at the RyR2-CaM binding interface, and it may find utility in drug design for the future treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Michael Barton
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Tyler Luchko
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California 91330, United States
| |
Collapse
|