101
|
Stefanowicz K, Szymanska-Chargot M, Truman W, Walerowski P, Olszak M, Augustyniak A, Kosmala A, Zdunek A, Malinowski R. Plasmodiophora brassicae-Triggered Cell Enlargement and Loss of Cellular Integrity in Root Systems Are Mediated by Pectin Demethylation. FRONTIERS IN PLANT SCIENCE 2021; 12:711838. [PMID: 34394168 PMCID: PMC8359924 DOI: 10.3389/fpls.2021.711838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 05/24/2023]
Abstract
Gall formation on the belowground parts of plants infected with Plasmodiophora brassicae is the result of extensive host cellular reprogramming. The development of these structures is a consequence of increased cell proliferation followed by massive enlargement of cells colonized with the pathogen. Drastic changes in cellular growth patterns create local deformities in the roots and hypocotyl giving rise to mechanical tensions within the tissue of these organs. Host cell wall extensibility and recomposition accompany the growth of the gall and influence pathogen spread and also pathogen life cycle progression. Demethylation of pectin within the extracellular matrix may play an important role in P. brassicae-driven hypertrophy of host underground organs. Through proteomic analysis of the cell wall, we identified proteins accumulating in the galls developing on the underground parts of Arabidopsis thaliana plants infected with P. brassicae. One of the key proteins identified was the pectin methylesterase (PME18); we further characterized its expression and conducted functional and anatomic studies in the knockout mutant and used Raman spectroscopy to study the status of pectin in P. brassicae-infected galls. We found that late stages of gall formation are accompanied with increased levels of PME18. We have also shown that the massive enlargement of cells colonized with P. brassicae coincides with decreases in pectin methylation. In pme18-2 knockout mutants, P. brassicae could still induce demethylation; however, the galls in this line were smaller and cellular expansion was less pronounced. Alteration in pectin demethylation in the host resulted in changes in pathogen distribution and slowed down disease progression. To conclude, P. brassicae-driven host organ hypertrophy observed during clubroot disease is accompanied by pectin demethylation in the extracellular matrix. The pathogen hijacks endogenous host mechanisms involved in cell wall loosening to create an optimal cellular environment for completion of its life cycle and eventual release of resting spores facilitated by degradation of demethylated pectin polymers.
Collapse
Affiliation(s)
| | | | - William Truman
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Walerowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Marcin Olszak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Augustyniak
- Centre for Advanced Technology, Adam Mickiewicz University, Poznan, Poland
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
102
|
Exploration of Hypoglycemic Activity of Saccharomyces pastorianus Extract and Evaluation of the Molecular Mechanisms. Molecules 2021; 26:molecules26144232. [PMID: 34299508 PMCID: PMC8305274 DOI: 10.3390/molecules26144232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Although the hypoglycemic potential of brewer’s yeast extract has been reported, there is limited information pertaining to the hypoglycemic ingredients of Saccharomyces pastorianus extract and their mechanisms of action available. This study aimed to investigate the in vivo and in vitro hypoglycemic effect of S. pastorianus extract and to elucidate its molecular mechanisms. S. pastorianus extract was mainly composed of proteins followed by carbohydrates. In diabetic rats, oral administration of S. pastorianus extract significantly reduced the levels of plasma glucose and enhanced the activity of hepatic glucose-6-phosphatase dehydrogenase. Treatment with S. pastorianus extract increased the localization of type 4 glucose transporter (GLUT4), PTP, and insulin receptor at 3T3-L1 cell membranes and raised the levels of P38 MAPK, PI3K, and AKT in the cytosol. In agreement with these results, pretreatment of 3T3-L1 cells with inhibitors of PTP, PI3K, Akt/PKB, and p38 MAPK inhibited glucose uptake induced by application of S. pastorianus extract. Most importantly, a 54 kDa protein with hypoglycemic activity was identified and suggested as the major ingredient contributing to the hypoglycemic activity of S. pastorianus extract. In summary, these results clearly confirm the hypoglycemic activity of S. pastorianus extract and provide critical insights into the underlying molecular mechanisms.
Collapse
|
103
|
Koochak H, Ludwig-Müller J. Physcomitrium patens Mutants in Auxin Conjugating GH3 Proteins Show Salt Stress Tolerance but Auxin Homeostasis Is Not Involved in Regulation of Oxidative Stress Factors. PLANTS 2021; 10:plants10071398. [PMID: 34371602 PMCID: PMC8309278 DOI: 10.3390/plants10071398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022]
Abstract
Salt stress is among the most challenging abiotic stress situations that a plant can experience. High salt levels do not only occur in areas with obvious salty water, but also during drought periods where salt accumulates in the soil. The moss Physcomitrium patens became a model for studying abiotic stress in non-vascular plants. Here, we show that high salt concentrations can be tolerated in vitro, and that auxin homeostasis is connected to the performance of P. patens under these stress conditions. The auxin levels can be regulated by conjugating IAA to amino acids by two members of the family of GH3 protein auxin amino acid-synthetases that are present in P. patens. Double GH3 gene knock-out mutants were more tolerant to high salt concentrations. Furthermore, free IAA levels were differentially altered during the time points investigated. Since, among the mutant lines, an increase in IAA on at least one NaCl concentration tested was observed, we treated wild type (WT) plants concomitantly with NaCl and IAA. This experiment showed that the salt tolerance to 100 mM NaCl together with 1 and 10 µM IAA was enhanced during the earlier time points. This is an additional indication that the high IAA levels in the double GH3-KO lines could be responsible for survival in high salt conditions. While the high salt concentrations induced several selected stress metabolites including phenols, flavonoids, and enzymes such as peroxidase and superoxide dismutase, the GH3-KO genotype did not generally participate in this upregulation. While we showed that the GH3 double KO mutants were more tolerant of high (250 mM) NaCl concentrations, the altered auxin homeostasis was not directly involved in the upregulation of stress metabolites.
Collapse
Affiliation(s)
- Haniyeh Koochak
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-5910, USA
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany;
- Correspondence:
| |
Collapse
|
104
|
Duodenases are a small subfamily of ruminant intestinal serine proteases that have undergone a remarkable diversification in cleavage specificity. PLoS One 2021; 16:e0252624. [PMID: 34048501 PMCID: PMC8162674 DOI: 10.1371/journal.pone.0252624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/28/2021] [Indexed: 12/03/2022] Open
Abstract
Ruminants have a very complex digestive system adapted for the digestion of cellulose rich food. Gene duplications have been central in the process of adapting their digestive system for this complex food source. One of the new loci involved in food digestion is the lysozyme c locus where cows have ten active such genes compared to a single gene in humans and where four of the bovine copies are expressed in the abomasum, the real stomach. The second locus that has become part of the ruminant digestive system is the chymase locus. The chymase locus encodes several of the major hematopoietic granule proteases. In ruminants, genes within the chymase locus have duplicated and some of them are expressed in the duodenum and are therefore called duodenases. To obtain information on their specificities and functions we produced six recombinant proteolytically active duodenases (three from cows, two from sheep and one from pigs). Two of the sheep duodenases were found to be highly specific tryptases and one of the bovine duodenases was a highly specific asp-ase. The remaining two bovine duodenases were dual enzymes with potent tryptase and chymase activities. In contrast, the pig enzyme was a chymase with no tryptase or asp-ase activity. These results point to a remarkable flexibility in both the primary and extended specificities within a single chromosomal locus that most likely has originated from one or a few genes by several rounds of local gene duplications. Interestingly, using the consensus cleavage site for the bovine asp-ase to screen the entire bovine proteome, it revealed Mucin-5B as one of the potential targets. Using the same strategy for one of the sheep tryptases, this enzyme was found to have potential cleavage sites in two chemokine receptors, CCR3 and 7, suggesting a role for this enzyme to suppress intestinal inflammation.
Collapse
|
105
|
Preferent Diaphragmatic Involvement in TK2 Deficiency: An Autopsy Case Study. Int J Mol Sci 2021; 22:ijms22115598. [PMID: 34070501 PMCID: PMC8199166 DOI: 10.3390/ijms22115598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Our goal was to analyze postmortem tissues of an adult patient with late-onset thymidine kinase 2 (TK2) deficiency who died of respiratory failure. Compared with control tissues, we found a low mtDNA content in the patient’s skeletal muscle, liver, kidney, small intestine, and particularly in the diaphragm, whereas heart and brain tissue showed normal mtDNA levels. mtDNA deletions were present in skeletal muscle and diaphragm. All tissues showed a low content of OXPHOS subunits, and this was especially evident in diaphragm, which also exhibited an abnormal protein profile, expression of non-muscular β-actin and loss of GAPDH and α-actin. MALDI-TOF/TOF mass spectrometry analysis demonstrated the loss of the enzyme fructose-bisphosphate aldolase, and enrichment for serum albumin in the patient’s diaphragm tissue. The TK2-deficient patient’s diaphragm showed a more profound loss of OXPHOS proteins, with lower levels of catalase, peroxiredoxin 6, cytosolic superoxide dismutase, p62 and the catalytic subunits of proteasome than diaphragms of ventilated controls. Strong overexpression of TK1 was observed in all tissues of the patient with diaphragm showing the highest levels. TK2 deficiency induces a more profound dysfunction of the diaphragm than of other tissues, which manifests as loss of OXPHOS and glycolytic proteins, sarcomeric components, antioxidants and overactivation of the TK1 salvage pathway that is not attributed to mechanical ventilation.
Collapse
|
106
|
Naradasu D, Miran W, Sharma S, Takenawa S, Soma T, Nomura N, Toyofuku M, Okamoto A. Biogenesis of Outer Membrane Vesicles Concentrates the Unsaturated Fatty Acid of Phosphatidylinositol in Capnocytophaga ochracea. Front Microbiol 2021; 12:682685. [PMID: 34093510 PMCID: PMC8176214 DOI: 10.3389/fmicb.2021.682685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are spherical lipid bilayer nanostructures released by bacteria that facilitate oral biofilm formation via cellular aggregation and intercellular communication. Recent studies have revealed that Capnocytophaga ochracea is one of the dominant members of oral biofilms; however, their potential for OMV production has yet to be investigated. This study demonstrated the biogenesis of OMVs in C. ochracea associated with the concentration of unsaturated fatty acids of phosphatidylinositol (PI) and characterized the size and protein profile of OMVs produced at growth phases. Transmission electron microscopy showed isolated spherical structures from cells stained with heavy metals, indicating the production of OMVs with a size ranging from 25 to 100 nm. Lipidome analysis revealed the presence of phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, and PI as the main lipids. Some unsaturated fatty acids of PI were present specifically in OMV and little in the outer membrane, suggesting that OMVs are generated from a specific region of the membrane through blebbing rather than a random process such as cell lysis. Furthermore, the lack of similar PI accumulation in the OMV of Porphyromonas gingivalis suggests that C. ochracea has a different biogenesis mechanism. The blebbing mechanism was further supported by higher OMV production occurring at the exponential phase in comparison to the stationary phase, where cell lysis is more likely to occur. Further, comparative protein profile of OMVs isolated under different growth phases may indicate that the OMV cargo does not largely vary with growth phases. The present study provides a basis for further understanding the roles of C. ochracea OMVs in oral biofilms as well as systemic diseases that C. ochracea involves.
Collapse
Affiliation(s)
- Divya Naradasu
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Shruti Sharma
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Satoshi Takenawa
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Takamitsu Soma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
107
|
Monti E, Reggiani C, Franchi MV, Toniolo L, Sandri M, Armani A, Zampieri S, Giacomello E, Sarto F, Sirago G, Murgia M, Nogara L, Marcucci L, Ciciliot S, Šimunic B, Pišot R, Narici MV. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J Physiol 2021; 599:3037-3061. [PMID: 33881176 PMCID: PMC8359852 DOI: 10.1113/jp281365] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Key points Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Abstract Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)‐positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C‐terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross‐sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation–contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading. Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation–contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Sandra Zampieri
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, 35124, Italy
| | - Emiliana Giacomello
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy
| | - Stefano Ciciliot
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, University of Padova, Via Orus 2, Padova, 35129, Italy
| | - Boštjan Šimunic
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, 35131, Italy.,Science and Research Center Koper, Institute for Kinesiology Research, Koper, 6000, Slovenia.,CIR-MYO Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
108
|
Fu Z, Akula S, Thorpe M, Hellman L. Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biol Chem 2021; 402:861-867. [PMID: 33977684 DOI: 10.1515/hsz-2020-0386] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 11/15/2022]
Abstract
In order for the intestinal mucosa to absorb dietary proteins they have to be digested into single amino acids or very short peptides of a length of not more than four amino acids. In order to study the efficiency of the digestive endopeptidases to digest folded proteins we have analyzed several target proteins under different conditions, native proteins, heat denatured and acid treated. The three pancreatic serine proteases, trypsin, chymotrypsin, and pancreatic elastase, were found to be remarkable inefficient in cleaving native folded proteins whereas pepsin, which acts at a very low pH (pH 1.2) was much more efficient, possibly due to the denaturing conditions and thereby better accessibility to internal cleavage sites at the low pH. Heat treatment improved the cleavage considerably by all three pancreatic enzymes, but acid treatment followed by return to neutral pH did not have any major effect. Cleavage at the low pH when the protein is in a denatured state, is apparently very efficient. This indicates that pepsin is the prime enzyme cleaving the properly folded native proteins and that the pancreatic enzymes primarily are involved in generating single amino acids or very short peptides for efficient uptake by the intestinal mucosa.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, S-751 24Uppsala, Sweden
| |
Collapse
|
109
|
Araújo GDS, Lopes LDS, Paula-Marinho SDO, Mesquita RO, Nagano CS, Vasconcelos FR, de Carvalho HH, Moura ADAAN, Marques EC, Gomes-Filho E. H 2O 2 priming induces proteomic responses to defense against salt stress in maize. PLANT MOLECULAR BIOLOGY 2021; 106:33-48. [PMID: 33594577 DOI: 10.1007/s11103-021-01127-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE H2O2 priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress. ABSTACRT Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by H2O2 priming for salt stress tolerance, particularly on proteome modulation. Improving maize cultivation in areas subjected to salinity is imperative for the local economy and food security. Thereby, this study aimed to investigate physiological changes linked with post-translational protein events induced by foliar H2O2 priming of Zea mays plants under salt stress. As expected, salt treatment promoted a considerable accumulation of Na+ ions, a 12-fold increase. It drastically affected growth parameters and relative water content, as well as promoted adverse alteration in the proteome profile, when compared to the absence of salt conditions. Conversely, H2O2 priming was beneficial via specific proteome reprogramming, which promoted better response to salinity by 16% reduction in Na+ content and shoots growth improvement, increasing 61% in dry mass. The identified proteins were associated with photosynthesis and redox homeostasis, critical metabolic pathways for helping plants survive in saline stress by the protection of chloroplasts organization and carbon fixation, as well as state redox. This research provides new proteomic data to improve understanding and forward identifying biotechnological strategies to promote salt stress tolerance.
Collapse
Affiliation(s)
- Gyedre Dos Santos Araújo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Celso Shiniti Nagano
- Department of Fishing Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fábio Roger Vasconcelos
- Federal Institute of Education, Science and Technology of Ceará (IFCE), Boa Viagem, CE, Brazil
| | | | | | - Elton Camelo Marques
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
110
|
Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
111
|
Kangussu LM, Melo-Braga MN, de Souza Lima BS, Santos RAS, de Andrade HM, Campagnole-Santos MJ. Angiotensin-(1-7) Central Mechanisms After ICV Infusion in Hypertensive Transgenic (mRen2)27 Rats. Front Neurosci 2021; 15:624249. [PMID: 33967677 PMCID: PMC8102993 DOI: 10.3389/fnins.2021.624249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 11/14/2022] Open
Abstract
Previous data showed hypertensive rats subjected to chronic intracerebroventricular (ICV) infusion of angiotensin-(1-7) presented attenuation of arterial hypertension, improvement of baroreflex sensitivity, restoration of cardiac autonomic balance and a shift of cardiac renin-angiotensin system (RAS) balance toward Ang-(1-7)/Mas receptor. In the present study, we investigated putative central mechanisms related to the antihypertensive effect induced by ICV Ang-(1-7), including inflammatory mediators and the expression/activity of the RAS components in hypertensive rats. Furthermore, we performed a proteomic analysis to evaluate differentially regulated proteins in the hypothalamus of these animals. For this, Sprague Dawley (SD) and transgenic (mRen2)27 hypertensive rats (TG) were subjected to 14 days of ICV infusion with Ang-(1-7) (200 ng/h) or 0.9% sterile saline (0.5 μl/h) through osmotic mini-pumps. We observed that Ang-(1-7) treatment modulated inflammatory cytokines by decreasing TNF-α levels while increasing the anti-inflammatory IL-10. Moreover, we showed a reduction in ACE activity and gene expression of AT1 receptor and iNOS. Finally, our proteomic evaluation suggested an anti-inflammatory mechanism of Ang-(1-7) toward the ROS modulators Uchl1 and Prdx1.
Collapse
Affiliation(s)
- Lucas M Kangussu
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcella Nunes Melo-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Robson A S Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria José Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
112
|
Dittmer KE, Pradhan P, Tompkins QC, Brittingham A, Wilson WA. Cloning and characterization of glycogen branching and debranching enzymes from the parasitic protist Trichomonas vaginalis. Biochimie 2021; 186:59-72. [PMID: 33895247 DOI: 10.1016/j.biochi.2021.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 11/15/2022]
Abstract
The protist Trichomonas vaginalis is an obligate parasite of humans and the causative agent of trichomoniasis, a common sexually transmitted infection. The organism has long been known to accumulate glycogen, a branched polymer of glucose, and to mobilize this reserve in response to carbohydrate limitation. However, the enzymes required for the synthesis and degradation of glycogen by T. vaginalis have been little studied. Previously, we characterized T. vaginalis glycogen synthase and glycogen phosphorylase, the key enzymes of glycogen synthesis and degradation, respectively. We determined that their regulatory properties differed from those of well-characterized animal and fungal enzymes. Here, we turn our attention to how glycogen attains its branched structure. We first determined that the glycogen from T. vaginalis resembled that from a related organism, T. gallinae. To determine how the branched structure of T. vaginalis glycogen arose, we identified open reading frames encoding putative T. vaginalis branching and debranching enzymes. When the open reading frames TVAG_276310 and TVAG_330630 were expressed recombinantly in bacteria, the resulting proteins exhibited branching and debranching activity, respectively. Specifically, recombinant TVAG_276310 had affinity for polysaccharides with long outer branches and could add branches to both amylose and amylopectin. TVAG_330630 displayed both 4-α-glucanotransferase and α1,6-glucosidase activity and could efficiently debranch phosphorylase limit dextrin. Furthermore, expression of TVAG_276310 and TVAG_330630 in yeast cells lacking endogenous glycogen branching or debranching enzyme activity, restored normal glycogen accumulation and branched structure. We now have access to the suite of enzymes required for glycogen synthesis and degradation in T. vaginalis.
Collapse
Affiliation(s)
- Karoline E Dittmer
- Departments of Biochemistry & Nutrition, and Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Prajakta Pradhan
- Departments of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Quentin C Tompkins
- Departments of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Andrew Brittingham
- Departments of Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA
| | - Wayne A Wilson
- Departments of Biochemistry & Nutrition, and Microbiology & Immunology, Des Moines University, Des Moines, IA, 50312, USA.
| |
Collapse
|
113
|
Miłek M, Bocian A, Kleczyńska E, Sowa P, Dżugan M. The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021; 26:molecules26092423. [PMID: 33919361 PMCID: PMC8122680 DOI: 10.3390/molecules26092423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Many imported honeys distributed on the Polish market compete with local products mainly by lower price, which can correspond to lower quality and widespread adulteration. The aim of the study was to compare honey samples (11 imported honey blends and 5 local honeys) based on their antioxidant activity (measured by DPPH, FRAP, and total phenolic content), protein profile obtained by native PAGE, soluble protein content, diastase, and acid phosphatase activities identified by zymography. These indicators were correlated with standard quality parameters (water, HMF, pH, free acidity, and electrical conductivity). It was found that raw local Polish honeys show higher antioxidant and enzymatic activity, as well as being more abundant in soluble protein. With the use of principal component analysis (PCA) and stepwise linear discriminant analysis (LDA) protein content and diastase number were found to be significant (p < 0.05) among all tested parameters to differentiate imported honey from raw local honeys.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (E.K.); (M.D.)
- Correspondence: ; Tel.: +48-17-872-1730
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Ewelina Kleczyńska
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (E.K.); (M.D.)
| | - Patrycja Sowa
- Department of Bioenergetics Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklinskiej 2D, 35-601 Rzeszów, Poland;
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (E.K.); (M.D.)
| |
Collapse
|
114
|
Ünsaldı E, Kurt-Kızıldoğan A, Özcan S, Becher D, Voigt B, Aktaş C, Özcengiz G. Proteomic analysis of a hom-disrupted, cephamycin C overproducing Streptomyces clavuligerus. Protein Pept Lett 2021; 28:205-220. [PMID: 32707026 DOI: 10.2174/0929866527666200723163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Servet Özcan
- Department of Biology, Erciyes University, Kayseri 38280, Turkey
| | - Dörte Becher
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Birgit Voigt
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Caner Aktaş
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
115
|
Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int J Mol Sci 2021; 22:ijms22073719. [PMID: 33918442 PMCID: PMC8038311 DOI: 10.3390/ijms22073719] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.
Collapse
|
116
|
Lagrutta LC, Layerenza JP, Bronsoms S, Trejo SA, Ves-Losada A. Nuclear-lipid-droplet proteome: carboxylesterase as a nuclear lipase involved in lipid-droplet homeostasis. Heliyon 2021; 7:e06539. [PMID: 33817385 PMCID: PMC8010399 DOI: 10.1016/j.heliyon.2021.e06539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
Nuclear-lipid droplets (nLD)—a dynamic cellular organelle that stores neutral lipids, within the nucleus of eukaryotic cells—consists of a hydrophobic triacylglycerol –cholesterol-ester core enriched in oleic acid (OA) surrounded by a monolayer of polar lipids, cholesterol, and proteins. nLD are probably involved in nuclear-lipid homeostasis serving as an endonuclear buffer that provides or incorporates lipids and proteins participating in signaling pathways, as transcription factors and enzymes of lipid metabolism and nuclear processes. In the present work, we analyzed the nLD proteome and hypothesized that nLD-monolayer proteins could be involved in processes similar as the ones occurring in the cLD including lipid metabolism and other cellular functions. We evaluated the rat-liver–nLD proteome under physiological and nonpathological conditions by GeLC-MS2. Since isolated nLD are highly diluted, a protein-concentrating isolation protocol was designed. Thirty-five proteins were identified within the functional categories: cytoskeleton and structural, transcription and translation, histones, protein-folding and posttranslational modification, cellular proliferation and/or cancer, lipid metabolism, and transport. Purified nLD contained an enzyme from the lipid-metabolism pathway, carboxylesterase 1d (Ces1d/Ces3). Nuclear Carboxylesterase localization was confirmed by Western blotting. By in-silico analyses rat Ces1d/Ces3 secondary and tertiary structure predicted would be equivalent to human CES1. These results—the first nLD proteome—demonstrate that a tandem-GeLC-MS2-analysis protocol facilitates studies like these on rat-liver nuclei. A diversity of cellular-protein function was identified indicating the direct or indirect nLD participation and involving Ces1d/Ces3 in the LD-population homeostasis.
Collapse
Affiliation(s)
- Lucía C. Lagrutta
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP-CCT-La Plata-CONICET-UNLP), La Plata, Argentina
| | - Juan P. Layerenza
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP-CCT-La Plata-CONICET-UNLP), La Plata, Argentina
| | - Silvia Bronsoms
- Servei de Proteómica i Biología Estructural de la Universitat Autonma de Barcelona, Barcelona, Spain
| | - Sebastián A. Trejo
- Servei de Proteómica i Biología Estructural de la Universitat Autonma de Barcelona, Barcelona, Spain
- Corresponding author.
| | - Ana Ves-Losada
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP-CCT-La Plata-CONICET-UNLP), La Plata, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Corresponding author.
| |
Collapse
|
117
|
Carvalho MG, Silva KM, Aristizabal VHV, Ortiz PEO, Paranzini CS, Melchert A, Amaro JL, Souza FF. Effects of Obesity and Diabetes on Sperm Cell Proteomics in Rats. J Proteome Res 2021; 20:2628-2642. [PMID: 33705140 DOI: 10.1021/acs.jproteome.0c01044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infertility caused by male factors is potentially associated with metabolic disorders such as obesity and/or diabetes. This experimental study was conducted in a male rodent model to assess the effects of different diseases on semen quality and sperm proteomics. Ten Wistar rats were used for each treatment. Rats were fed commercial food provided controllably to the control group and the diabetic group, and a hypercaloric diet supplemented with 5% sucrose in water was provided ad libitum to the obese group for 38 weeks. Diabetes was induced with 35 mg/kg streptozotocin. After euthanasia, testicles, spermatozoa, fat, and blood (serum) samples were collected. Spermatozoa were evaluated for quality and subjected to proteomics analyses. Histology and cytology of the testis, and serum leptin, adiponectin, interleukin 8 (IL-8), blood glucose, and testosterone levels, were also assessed. Body weight, retroperitoneal and testicular fat, and the Lee index were also measured. Obesity and diabetes were induced. The diabetic group showed noticeable changes in spermatogenesis and sperm quality. The mass spectrometry proteomics data have been deposited in Mendeley Data (doi: 10.17632/rfp7kfjcsd.5). Fifteen proteins varied in abundance between groups, especially proteins related to energy production and structural function of the spermatozoa, suggesting disturbances in energy production with a subsequent alteration in sperm motility in both groups, but with a compensatory response in the obese group.
Collapse
Affiliation(s)
- Marcos G Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Kelry M Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Viviana H V Aristizabal
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Pablo E O Ortiz
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| | - Cristiane S Paranzini
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil.,Envol Biomedical, Immokalee, Florida 34143, United States
| | - Alessandra Melchert
- Department of Veterinary Clinical, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, 18618-681 Botucatu, São Paulo, Brazil
| | - João L Amaro
- Department of Surgical Specialties and Anesthesiology, Urology, School of Medicine, São Paulo State University ̈Júlio de Mesquita Filho"-UNESP, 18618-687 Botucatu, São Paulo, Brazil
| | - Fabiana F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho"-UNESP, Rua Prof. Dr. Walter Maurício Correa, s/n, Rubião Junior, 18681-681 Botucatu, São Paulo, Brazil
| |
Collapse
|
118
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
119
|
Changes in the Flower and Leaf Proteome of Common Buckwheat ( Fagopyrum esculentum Moench) under High Temperature. Int J Mol Sci 2021; 22:ijms22052678. [PMID: 33800930 PMCID: PMC7961373 DOI: 10.3390/ijms22052678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023] Open
Abstract
Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.
Collapse
|
120
|
Alves GG, Gonçalves LA, Assis RA, Oliveira Júnior CAD, Silva ROS, Heneine LGD, Lobato FCF. Production and purification of Clostridium perfringens type D epsilon toxin and IgY antitoxin. Anaerobe 2021; 69:102354. [PMID: 33675994 DOI: 10.1016/j.anaerobe.2021.102354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/09/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
The aim of this study was to purify Clostridium perfringens type D epsilon toxin and produce and purify anti-epsilon chicken immunoglobulin Y (IgY). A single-step ion exchange chromatography resulted in a high-yield and high-purity toxin, while ion exchange chromatography followed by gel filtration resulted in the highest purity of the toxin, but at a lower yield. Purified and inactivated epsilon toxin were then administered in chickens via four inoculations and IgY was obtained at a high purity and yield, with an antibody titer of 50 IU/mL and high levels of avidity (73.2%). In summary, C. perfringens type D epsilon toxin and chicken anti-epsilon IgY were successfully produced and purified, and may be used for the diagnosis of enterotoxemia caused by the epsilon toxin, as well as in potency tests of existing and future vaccines against enterotoxemia.
Collapse
Affiliation(s)
- Guilherme Guerra Alves
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Luciana Aramuni Gonçalves
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Ronnie Antunes Assis
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Carlos Augusto de Oliveira Júnior
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | | | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil.
| |
Collapse
|
121
|
Sadjjadi FS, Ahmadi N, Rezaie-Tavirani M, Zali H. Following up of Surgical Treated Human Liver Cystic Echinococcosis: A Proteomics Approach. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:11-22. [PMID: 33786043 PMCID: PMC7988678 DOI: 10.18502/ijpa.v16i1.5507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Cystic echinococcosis (CE) is one of the most important parasitic zoonosis in the world. Post-surgery follow up in CE patients is an important non-solved problem up to now. Therefore, the investigations on this problematic issue would be very applicable in the view of CE clinical treatment. Methods: A total of 24 confirmed liver CE patients sera including eight sera before surgery (BS), eight sera three months post-surgery (3MPS), and eight sera six months post-surgery (6MPS) were used in the present study. Proteomics methods including 2DE and LC-MS/MS were performed on the specimens followed by bioinformatics analysis such as Gene Ontology (GO) and Protein-Protein Interaction (PPI) network analysis. Results: A total of 235 proteins were detected of which 12 differentially expressed proteins (DEP) were identified by LC-MS/MS in all sera. The proteins were presented in BS and suppressed after surgery as follows: HPX, SERPINA1, SERPINC1, CP, HBD, and HBA2. Comparisons of the protein expression in sera of patients BS, 3MPS, and 6MPS revealed that GC, IGJ, AHSG, CD5L, FGG, and APOC3 have been overexpressed in 3MPS and 6MPS. PPI network analysis demonstrated that SERPINC1 and AHSG with more connection in the network could be considered as hub proteins and potential prognostic biomarkers in response to surgical treatment of liver CE. Conclusion: Application of proteomics methods on patient’s sera could be used as a novel biomarker tool for following-up liver CE patients. In this regards, proteomics and, application of bioinformatics analysis including GO and PPI showed that SERPINC1, AHSG and HPX are of more value as a potential follow up biomarkers in response to surgical treatment.
Collapse
Affiliation(s)
- Fatemeh Sadat Sadjjadi
- Department of Basic Sciences, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayebali Ahmadi
- Proteomics Research Center, Department of Medical Lab Technology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaie-Tavirani
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
122
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
123
|
Frey J, Kaßner S, Spiteller D, Mergelsberg M, Boll M, Schleheck D, Schink B. Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria. BMC Microbiol 2021; 21:50. [PMID: 33593288 PMCID: PMC7888143 DOI: 10.1186/s12866-021-02112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Jasmin Frey
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Sophie Kaßner
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Dieter Spiteller
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Mario Mergelsberg
- Institute of Biology, Albert-Ludwigs-Universität, Freiburg, 79104, Freiburg, Germany
| | - Matthias Boll
- Institute of Biology, Albert-Ludwigs-Universität, Freiburg, 79104, Freiburg, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, 78457, Constance, Germany.
| |
Collapse
|
124
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
125
|
Escobar MR, Feussner I, Valle EM. Mitochondrial Small Heat Shock Proteins Are Essential for Normal Growth of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:600426. [PMID: 33643342 PMCID: PMC7902927 DOI: 10.3389/fpls.2021.600426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/04/2021] [Indexed: 05/24/2023]
Abstract
Mitochondria play important roles in the plant stress responses and the detoxification of the reactive oxygen species generated in the electron transport chain. Expression of genes encoding stress-related proteins such as the mitochondrial small heat shock proteins (M-sHSP) is upregulated in response to different abiotic stresses. In Arabidopsis thaliana, three M-sHSPs paralogous genes were identified, although their function under physiological conditions remains elusive. The aim of this work is to uncover the in vivo function of all three M-sHSPs at the whole plant level. To accomplish this goal, we analyzed the phenotype, proteomic, and metabolic profiles of Arabidopsis knock-down lines of M-sHSPs (single, double, and triple knock-down lines) during normal plant growth. The triple knock-down plants showed the most prominent altered phenotype at vegetative and reproductive stages without any externally applied stress. They displayed chlorotic leaves, growth arrest, and low seed production. Concomitantly, they exhibited increased levels of sugars, proline, and citric, malic, and ascorbic acid, among other metabolites. In contrast, single and double knock-down plants displayed a few changes in their phenotype. A redundant function among the three M-sHSPs is indicated by the impairment in vegetative and reproductive growth associated with the simultaneous loss of all three M-sHSPs genes. The triple knock-down lines showed alteration of proteins mainly involved in photosynthesis and antioxidant defense compared to the control plants. On the other hand, heat stress triggered a distinct cytosolic response pattern and the upregulation of other sHSP members, in the knock-down plants. Overall, depletion of all three M-sHSPs in Arabidopsis severely impacted fundamental metabolic processes, leading to alterations in the correct plant growth and development. These findings expand our knowledge about the contribution of organelle-specific M-sHSPs to healthy plant growth under non-stress conditions.
Collapse
Affiliation(s)
- Mariela R. Escobar
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Estela M. Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario, Argentina
| |
Collapse
|
126
|
Ferrero RL, Soto-Maldonado C, Weinstein-Oppenheimer C, Cabrera-Muñoz Z, Zúñiga-Hansen ME. Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts. Foods 2021; 10:309. [PMID: 33546198 PMCID: PMC7913290 DOI: 10.3390/foods10020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted rapeseed meal (DRM) is a sub-valorized agro-industrial by-product, with a high protein content whose peptides could have potential anticancer activity against cancer cell lines. The objective of the present study is to obtain an enzymatic hydrolysate of rapeseed protein that inhibits proliferation on a breast cancer cell line (MCF-7), but not healthy human fibroblast cells. The DRM was solubilized in an alkaline medium to obtain an alkaline rapeseed extract (RAE). Acid precipitation of the proteins contained in RAE recovered a rapeseed protein isolate (RPI). To produce protein hydrolysates, two alkaline protease and different enzyme/substrate ratios were used. All the protein hydrolysates showed antiproliferative activity on MCF-7 cells. However, only the hydrolysate recovered from the enzymatic hydrolysis of RPI (Degree of hydrolysis (DH ) between 8.5 and 9% (DH1)) did not affect human fibroblast cells, inhibiting 83.9% of MCF-7 cells' proliferation and showing a mass yield of 22.9% (based on the initial DRM). The SDS-PAGE gel revealed that DH1 was composed mainly of 10 kDa peptides and, to a lesser extent, 5 and 2 kDa. It is concluded that DH1 is a promising peptide extract for future research as a putative anti-breast cancer agent.
Collapse
Affiliation(s)
- Romina L. Ferrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
| | - Carmen Soto-Maldonado
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
- Centro Regional de Estudio en Alimentos Saludables, R17A10001, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Santa Marta 183, Playa Ancha, Valparaíso 2360134, Chile
| | - Zaida Cabrera-Muñoz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
- Centro Regional de Estudio en Alimentos Saludables, R17A10001, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| |
Collapse
|
127
|
Cysteine-Rich Angiogenic Inducer 61: Pro-Survival Function and Role as a Biomarker for Disseminating Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13030563. [PMID: 33540545 PMCID: PMC7867178 DOI: 10.3390/cancers13030563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Metastasis is the leading cause of death in breast cancer, and it can be predicted by the detection of circulating tumor cells in the blood and disseminated tumor cells in the bone marrow, which are usually detected by epithelial marker proteins. However, tumor cells with mesenchymal attributes down-regulate the expression of epithelial marker proteins, and are therefore difficult to detect. Here, we found that the protein-cysteine–rich angiogenetic inducer 61 (Cyr61) is strongly expressed in tumor cells with mesenchymal attributes. Cyr61 expression was undetectable in normal blood cells, suggesting that Cyr61 might represent a tumor-associated protein. Functional experiments showed that the loss of Cyr61 reduces the viability of breast tumor cells. Thus, Cyr61 might represent an interesting anti-metastatic target that needs to be explored in future studies. Abstract (1) Background: the early detection of cancer cells in the blood or bone marrow of breast cancer patients improves the understanding of metastasis. Disseminating tumor cells in the bone marrow with a pronounced manifestation of mesenchymal markers (mDTC) are difficult to detect by epithelial markers, but they are relevant in the initiation of metastasis. (2) Methods: the breast cancer mDTC cell line BC-M1 was analyzed by mass spectrometry, which revealed high levels of the protein-cysteine–rich angiogenic inducer 61 (Cyr61). The function of Cyr61 was investigated using shRNA and hypoxia. Peripheral blood samples from 35 breast cancer patients were investigated for CTCs defined as cytokeratin-positive/CD45-negative cells. (3) Results: the Cyr61 levels are elevated in mDTC lines from breast, lung, and prostate cancer patients. The loss of Cyr61 resulted in the diminished expression of hypoxia-inducible factor 1-alpha, and increased apoptosis. Cyr61 was present in 47 (43%) of the 109 detected circulating tumor cells (CTCs), while the blood and bone marrow cells from healthy controls were Cyr61-negative. (4) Conclusions: Cyr61 is expressed in mDTC lines, supports the viability of cancer cells, and classifies a new subset of cytokeratin-positive CTCs, which deserves further investigation.
Collapse
|
128
|
Fialho Junior L, da Fonseca Pires S, Burchmore R, McGill S, Weidt S, Ruiz JC, Guimarães FG, Chapeourouge A, Perales J, de Andrade HM. Proteomic analysis reveals differentially abundant proteins probably involved in the virulence of amastigote and promastigote forms of Leishmania infantum. Parasitol Res 2021; 120:679-692. [PMID: 33415401 DOI: 10.1007/s00436-020-07020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/13/2020] [Indexed: 01/12/2023]
Abstract
Owing to the importance and clinical diversity of Leishmania infantum, studying its virulence factors is promising for understanding the relationship between parasites and hosts. In the present study, differentially abundant proteins from strains with different degrees of virulence in promastigote and amastigote forms were compared using two quantitative proteomics techniques, differential gel electrophoresis and isobaric mass tag labeling, followed by identification by mass spectrometry. A total of 142 proteins were identified: 96 upregulated and 46 downregulated proteins in the most virulent strain compared to less virulent. The interaction between the proteins identified in each evolutionary form was predicted. The results showed that in the amastigote form of the most virulent strain, there was a large group of proteins related to glycolysis, heat shock, and ribosomal proteins, whereas in the promastigote form, the group consisted of stress response, heat shock, and ribosomal proteins. In addition, biological processes related to metabolic pathways, ribosomes, and oxidative phosphorylation were enriched in the most virulent strain (BH400). Finally, we noted several proteins previously found to play important roles in L. infantum infection, which showed increased abundance in the virulent strain, such as ribosomal proteins, HSP70, enolase, fructose 1,6-biphosphate aldolase, peroxidoxin, and tryparedoxin peroxidase, many of which interact with each other.
Collapse
Affiliation(s)
- Luiz Fialho Junior
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Simone da Fonseca Pires
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Suzanne McGill
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Stefan Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, Scotland, G12 1QH, UK
| | - Jeronimo Conceição Ruiz
- Grupo Informática de Biossistemas e Genômica, Programa de Pós- Graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico Goncalves Guimarães
- Grupo Informática de Biossistemas e Genômica, Programa de Pós- Graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Chapeourouge
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil
| | - Hélida Monteiro de Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
129
|
Parison K, Gies-Elterlein J, Trncik C, Einsle O. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii. Methods Mol Biol 2021; 2353:97-121. [PMID: 34292546 DOI: 10.1007/978-1-0716-1605-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogenases are the sole enzymes known to mediate biological nitrogen fixation, an essential process for sustaining life on earth. Among the three known variants, molybdenum nitrogenase is the best-studied to date. Recent work on the alternative vanadium nitrogenase provided important insights into the mechanism of nitrogen fixation since this enzyme differs from its molybdenum counterpart in some important aspects. Here, we present a protocol to obtain unmodified vanadium nitrogenase in high yield and purity from the paradigmatic diazotroph Azotobacter vinelandii, including procedures for cell cultivation, purification, and protein characterization.
Collapse
Affiliation(s)
- Katharina Parison
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
130
|
Occurrence of quantitative genetic polymorphism at the caprine β-CN locus, as determined by a proteomic approach. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
131
|
Abstract
Two-dimensional gel electrophoresis has been instrumental in the development of proteomics. Although it is no longer the exclusive scheme used for proteomics, its unique features make it a still highly valuable tool, especially when multiple quantitative comparisons of samples must be made, and even for large samples series. However, quantitative proteomics using two-dimensional gels is critically dependent on the performances of the protein detection methods used after the electrophoretic separations. This chapter therefore examines critically the various detection methods, (radioactivity, dyes, fluorescence, and silver) as well as the data analysis issues that must be taken into account when quantitative comparative analysis of two-dimensional gels is performed.
Collapse
|
132
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
133
|
Gierse LC, Meene A, Schultz D, Schwaiger T, Karte C, Schröder C, Wang H, Wünsche C, Methling K, Kreikemeyer B, Fuchs S, Bernhardt J, Becher D, Lalk M, Study Group K, Urich T, Riedel K. A Multi-Omics Protocol for Swine Feces to Elucidate Longitudinal Dynamics in Microbiome Structure and Function. Microorganisms 2020; 8:microorganisms8121887. [PMID: 33260576 PMCID: PMC7760263 DOI: 10.3390/microorganisms8121887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Swine are regarded as promising biomedical models, but the dynamics of their gastrointestinal microbiome have been much less investigated than that of humans or mice. The aim of this study was to establish an integrated multi-omics protocol to investigate the fecal microbiome of healthy swine. To this end, a preparation and analysis protocol including integrated sample preparation for meta-omics analyses of deep-frozen feces was developed. Subsequent data integration linked microbiome composition with function, and metabolic activity with protein inventories, i.e., 16S rRNA data and expressed proteins, and identified proteins with corresponding metabolites. 16S rRNA gene amplicon and metaproteomics analyses revealed a fecal microbiome dominated by Prevotellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae and Clostridiaceae. Similar microbiome compositions in feces and colon, but not ileum samples, were observed, showing that feces can serve as minimal-invasive proxy for porcine colon microbiomes. Longitudinal dynamics in composition, e.g., temporal decreased abundance of Lactobacillaceae and Streptococcaceae during the experiment, were not reflected in microbiome function. Instead, metaproteomics and metabolomics showed a rather stable functional state, as evident from short-chain fatty acids (SCFA) profiles and associated metaproteome functions, pointing towards functional redundancy among microbiome constituents. In conclusion, our pipeline generates congruent data from different omics approaches on the taxonomy and functionality of the intestinal microbiome of swine.
Collapse
Affiliation(s)
- Laurin Christopher Gierse
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Claudia Karte
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Südufer 10, 17493 Greifswald, Germany; (T.S.); (C.K.); (C.S.)
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18055 Rostock, Germany;
| | - Stephan Fuchs
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute Wernigerode, Burgstraße 37, 38855 Wernigerode, Germany;
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany; (D.S.); (K.M.); (M.L.)
| | | | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; (L.C.G.); (A.M.); (H.W.); (C.W.); (J.B.); (D.B.)
- Correspondence: (T.U.); (K.R.); Tel.: +49-3834-420-5904 (T.U.); +49-3834-420-5900 (K.R.)
| |
Collapse
|
134
|
Berglund P, Akula S, Fu Z, Thorpe M, Hellman L. Extended Cleavage Specificity of the Rat Vascular Chymase, a Potential Blood Pressure Regulating Enzyme Expressed by Rat Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21228546. [PMID: 33198413 PMCID: PMC7697883 DOI: 10.3390/ijms21228546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Serine proteases constitute the major protein content of the cytoplasmic granules of several hematopoietic cell lineages. These proteases are encoded from four different loci in mammals. One of these loci, the chymase locus, has in rats experienced a massive expansion in the number of functional genes. The human chymase locus encodes 4 proteases, whereas the corresponding locus in rats contains 28 such genes. One of these new genes has changed tissue specificity and has been found to be expressed primarily in vascular smooth muscle cells, and therefore been named rat vascular chymase (RVC). This β-chymase has been claimed to be a potent angiotensin-converting enzyme by cleaving angiotensin (Ang) I into Ang II and thereby having the potential to regulate blood pressure. To further characterize this enzyme, we have used substrate phage display and a panel of recombinant substrates to obtain a detailed quantitative view of its extended cleavage specificity. RVC was found to show a strong preference for Phe and Tyr in the P1 position, but also to accept Leu and Trp in this position. A strong preference for Ser or Arg in the P1’ position, just C-terminally of the cleavage site, and a preference for aliphatic amino acids in most other positions surrounding the cleavage site was also seen. Interesting also was a relatively strict preference for Gly in positions P3’ and P4’. RVC thereby shares similarity in its specificity to the mouse mucosal mast cell chymase mMCP-1, which efficiently converts Ang I to Ang II. This similarity adds support for the role of β-chymases as potent angiotensin converters in rodents, as their α-chymases, which have the capacity to efficiently convert Ang I into Ang II in other mammalian lineages, have become elastases. However, interestingly we found that RVC cleaved both after Arg2 and Phe8 in Ang I. Furthermore this cleavage was more than two hundred times less efficient than the consensus site obtained from the phage display analysis, indicating that RVC has a very low ability to cleave Ang I, raising serious doubts about its role in Ang I conversion.
Collapse
Affiliation(s)
| | | | | | | | - Lars Hellman
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
135
|
Côrtes LMDC, de Pita-Pereira D, Farani PSG, Pereira BAS, Dias-Lopes G, da Silva FS, Corrêa PR, Silva RMM, Côrte-Real S, Bello FJ, Mendonça-Lima L, Moreira ODC, Waghabi MC, Alves CR. Insights into the proteomic profile and gene expression of Lutzomyia longipalpis-derived Lulo cell line. Mem Inst Oswaldo Cruz 2020; 115:e200113. [PMID: 33111757 PMCID: PMC7586444 DOI: 10.1590/0074-02760200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Lutzomyia longipalpis-derived cell line (Lulo) has been suggested as a model for studies of interaction between sandflies and Leishmania. OBJECTIVES Here, we present data of proteomic and gene expression analyses of Lulo cell related to interactions with Leishmania (Viannia) braziliensis. METHODS Lulo cell protein extracts were analysed through a combination of two-dimensional gel electrophoresis and mass spectrometry and resulting spots were further investigated in silico to identify proteins using Mascot search and, afterwards, resulting sequences were applied for analysis with VectorBase. RESULTS Sixty-four spots were identified showing similarities to other proteins registered in the databases and could be classified according to their biological function, such as ion-binding proteins (23%), proteases (14%), cytoskeletal proteins (11%) and interactive membrane proteins (9.5%). Effects of interaction with L. (V.) braziliensis with the expression of three genes (enolase, tubulin and vacuolar transport protein) were observed after an eight-hour timeframe and compared to culture without parasites, and demonstrated the impact of parasite interaction with the expression of the following genes: LLOJ000219 (1.69-fold), LLOJ000326 (1.43-fold) and LLOJ006663 (2.41-fold). CONCLUSIONS This set of results adds relevant information regarding the usefulness of the Lulo cell line for studies with Leishmania parasites that indicate variations of protein expression.
Collapse
Affiliation(s)
- Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Daniela de Pita-Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Priscila Silva Grijó Farani
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Franklin Souza da Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Paloma Resende Corrêa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Roger Magno Macedo Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Plataforma de Microscopia Eletrônica Rudolf Barth, Rio de Janeiro, RJ, Brasil
| | - Suzana Côrte-Real
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Estrutural, Rio de Janeiro, RJ, Brasil
| | - Felio Jesus Bello
- Facultad de Ciencias Agropecuarias, Programa de Medicina Veterinaria, Universidad de La Salle, Bogotá, Colombia
| | - Leila Mendonça-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Otacilio da Cruz Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Mariana Caldas Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
136
|
Lima BSDS, Esteves BB, Fialho-Júnior LC, Mendes TADO, Pires SDF, Chapeourouge A, Perales J, de Andrade HM. Study of the differentially abundant proteins among Leishmania amazonensis, L. braziliensis, and L. infantum. PLoS One 2020; 15:e0240612. [PMID: 33057350 PMCID: PMC7561129 DOI: 10.1371/journal.pone.0240612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Leishmaniasis has been considered as emerging and re-emerging disease, and its increasing global incidence has raised concerns. The great clinical diversity of the disease is mainly determined by the species. In several American countries, tegumentary leishmaniasis (TL) is associated with both Leishmania amazonensis and L. braziliensis, while visceral leishmaniasis (VL) is associated with L. (L.) infantum. The major molecules that determine the most diverse biological variations are proteins. In the present study, through a DIGE approach, we identified differentially abundant proteins among the species mentioned above. We observed a variety of proteins with differential abundance among the studied species; and the biological networks predicted for each species showed that many of these proteins interacted with each other. The prominent proteins included the heat shock proteins (HSPs) and the protein network involved in oxide reduction process in L. amazonensis, the protein network of ribosomes in L. braziliensis, and the proteins involved in energy metabolism in L. infantum. The important proteins, as revealed by the PPI network results, enrichment categories, and exclusive proteins analysis, were arginase, HSPs, and trypanothione reductase in L. amazonensis; enolase, peroxidoxin, and tryparedoxin1 in L. braziliensis; and succinyl-CoA ligase [GDP -forming] beta-chain and transaldolase in L. infantum.
Collapse
Affiliation(s)
- Bruna Soares de Souza Lima
- Departamento de Medicina, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, Minas Gerais, Brazil
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Beiral Esteves
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Carlos Fialho-Júnior
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Simone da Fonseca Pires
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helida Monteiro de Andrade
- Departamento de Parasitologia, Laboratório de Leishmanioses, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
137
|
Xie X, Spiteller D, Huhn T, Schink B, Müller N. Desulfatiglans anilini Initiates Degradation of Aniline With the Production of Phenylphosphoamidate and 4-Aminobenzoate as Intermediates Through Synthases and Carboxylases From Different Gene Clusters. Front Microbiol 2020; 11:2064. [PMID: 33013754 PMCID: PMC7500099 DOI: 10.3389/fmicb.2020.02064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 01/22/2023] Open
Abstract
The anaerobic degradation of aniline was studied in the sulfate-reducing bacterium Desulfatiglans anilini. Our aim was to identify the genes and their proteins that are required for the initial activation of aniline as well as to characterize intermediates of this reaction. Aniline-induced genes were revealed by comparison of the proteomes of D. anilini grown with different substrates (aniline, 4-aminobenzoate, phenol, and benzoate). Most genes encoding proteins that were highly abundant in aniline- or 4-aminobenzoate-grown D. anilini cells but not in phenol- or benzoate-grown cells were located in the putative gene clusters ani (aniline degradation), hcr (4-hydroxybenzoyl-CoA reductase) and phe (phenol degradation). Of these putative gene clusters, only the phe gene cluster has been studied previously. Based on the differential proteome analysis, four candidate genes coding for kinase subunits and carboxylase subunits were suspected to be responsible for the initial conversion of aniline to 4-aminobenzoate. These genes were cloned and overproduced in E. coli. The recombinant proteins were obtained in inclusion bodies but could be refolded successfully. Two subunits of phenylphosphoamidate synthase and two carboxylase subunits converted aniline to 4-aminobenzoate with phenylphosphoamidate as intermediate under consumption of ATP. Only when both carboxylase subunits, one from gene cluster ani and the other from gene cluster phe, were combined, phenylphosphoamidate was converted to 4-aminobenzoate in vitro, with Mn2+, K+, and FMN as co-factors. Thus, aniline is degraded by the anaerobic bacterium D. anilini only by recruiting genes for the enzymatic machinery from different gene clusters. We conclude, that D. anilini carboxylates aniline to 4-aminobenzoate via phenylphosphoamidate as an energy rich intermediate analogous to the degradation of phenol to 4-hydroxybenzoate via phenylphosphate.
Collapse
Affiliation(s)
- Xiaoman Xie
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Dieter Spiteller
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Thomas Huhn
- Konstanz Research School Chemical Biology, Konstanz, Germany.,Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
138
|
Besic V, Habibolahi F, Noël B, Rupp S, Genovesio A, Lebreton A. Coordination of transcriptional and translational regulations in human epithelial cells infected by Listeria monocytogenes. RNA Biol 2020; 17:1492-1507. [PMID: 32584699 PMCID: PMC7549700 DOI: 10.1080/15476286.2020.1777380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The invasion of mammalian cells by intracellular bacterial pathogens reshuffles their gene expression and functions; however, we lack dynamic insight into the distinct control levels that shape the host response. Here, we have addressed the respective contribution of transcriptional and translational regulations during a time-course of infection of human intestinal epithelial cells by an epidemic strain of Listeria monocytogenes, using transcriptome analysis paralleled with ribosome profiling. Upregulations were dominated by early transcriptional activation of pro-inflammatory genes, whereas translation inhibition appeared as the major driver of downregulations. Instead of a widespread but transient shutoff, translation inhibition affected specifically and durably transcripts encoding components of the translation machinery harbouring a 5'-terminal oligopyrimidine motif. Pre-silencing the most repressed target gene (PABPC1) slowed down the intracellular multiplication of Listeria monocytogenes, suggesting that the infected host cell can benefit from the repression of genes involved in protein synthesis and thereby better control infection.
Collapse
Affiliation(s)
- Vinko Besic
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fatemeh Habibolahi
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benoît Noël
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sebastian Rupp
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Auguste Genovesio
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alice Lebreton
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
| |
Collapse
|
139
|
Extraction and Preparation of Listeria monocytogenes Subproteomes for Mass Spectrometry Analysis. Methods Mol Biol 2020. [PMID: 32975772 DOI: 10.1007/978-1-0716-0982-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proteomics has become an essential tool to answer biologists' questions. For bacteriologists, the proteome of bacteria is much less complex than that of eukaryotic organisms. However, not all the different cell "compartments" are easily accessible, and the analysis of cell envelope proteins is particularly challenging. For the Gram-positive bacterium Listeria monocytogenes, one of the main foodborne pathogen microorganisms, the study of surface proteins is crucial to better understand the mechanisms of pathogenicity, as well as adaptation/resistance to and persistence in hostile environments. The evolution of proteomic techniques, and particularly the possibility of separating and analyzing complex protein samples by off-gel (LC-MS/MS) versus in-gel (two-dimensional electrophoresis) approach, has opened the doors to new extraction and preparation methods to target the different subproteomes. Here, we describe three procedures to prepare and analyze intracellular, exocellular, and cell surface proteins: (1) the cell fractionation, based on cell broken and separation of protein subfractions by differential centrifugation; (2) the biotinylation, based on the labeling of cell surface proteins and their selective extraction; and (3) the enzymatic shaving by the action of trypsin on intact cells. These complementary methods allow to encompass all L. monocytogenes subproteomes for general profiling or target studies and could be applicable to other Gram-positive bacteria.
Collapse
|
140
|
Yuzugullu Karakus Y, Kahveci B, Acemi A, Kocak G. Application of three-phase partitioning to the purification and characterization of polyphenol oxidase from antioxidant rosemary (Rosmarinus officinalis L.). INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolyphenol oxidase (PPO) has been purified from the rosemary plant (Rosmarinus officinalis L.) through three-phase partitioning (TPP) and has been biochemically characterized. The optimized TPP consisted of 50% (w/v) ammonium sulfate and equal volumes of crude extract and tert-butanol prepared at pH 6.5 and room temperature. Using this system, PPO was purified 14-fold, with 230% recovery of activity from the middle phase. The partitioned enzyme had a molecular mass of 53 kDa. The highest enzyme activity was detected at 30 °C and pH 7.0 against catechol. In substrate specificity tests, the enzyme displayed activity towards catechol, 4-methylcatechol, caffeic acid, hydroquinone, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), pyrogallol, syringaldezine, and 3,4-dihydroxy-L-phenylalanine but no activity towards L-tyrosine. The enzyme was inhibited by the common PPO inhibitors; salicylhydroxamic acid (SHAM), cetyltrimethylammonium bromide (CTAB), polyvinylpyrrolidone (PVP), and the organic solvent dimethyl sulfoxide (DMSO). Enzyme activity increased in the presence of the organic solvents acetone, ethanol, and methanol.
Collapse
Affiliation(s)
- Yonca Yuzugullu Karakus
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey
| | - Busra Kahveci
- Department of Biology, Institute of Natural and Applied Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey
| | - Arda Acemi
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey
| | - Gulden Kocak
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingöl University, 12000, Bingöl, Turkey
| |
Collapse
|
141
|
Baghalabadi V, Doucette AA. Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation. Anal Chim Acta 2020; 1138:38-48. [PMID: 33161983 DOI: 10.1016/j.aca.2020.08.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/01/2022]
Abstract
Solvent-based protein precipitation provides exceptional recovery, particularly when the ionic strength of the solution is controlled. While precipitation is ideally suited for intact protein purification ahead of mass-spectrometry, low molecular weight (LMW) proteins and peptides are considered less susceptible to aggregation in organic solvent. As the combination of salt and organic solvent (i.e. acetone) has yet to be exploited to precipitate LMW proteins, we herein determine the low mass limit for solvent-based protein precipitation. We establish optimized conditions for high recovery precipitation of LMW proteins and peptides. Our results demonstrate a strong dependence on the type of salt to recover LMW components from complex mixtures. Inclusion of 100 mM ZnSO4 with 97% acetone provides near quantitative recovery of all peptides down to 2 kDa, and continues to exceed 90% yield for peptides at a molecular weight of 1 kDa. A detailed characterization of the precipitated peptides resulting from trypsin and pepsin digestion of complex systems is provided by bottom-up mass spectrometry.
Collapse
Affiliation(s)
- Venus Baghalabadi
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box 53714-161, Tabriz, Iran
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
142
|
Oliveira FDBD, Miranda RDS, Araújo GDS, Coelho DG, Lobo MDP, Paula-Marinho SDO, Lopes LDS, Monteiro-Moreira ACO, Carvalho HHD, Gomes-Filho E. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:723-734. [PMID: 32763797 DOI: 10.1016/j.plaphy.2020.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the proteome modulation and physiological responses of Sorghum bicolor plants grown in nutrient solutions containing nitrate (NO3-) or ammonium (NH4+) at 5.0 mM, and subjected to salinity with 75 mM NaCl for ten days. Salinity promoted significant reductions in leaf area, root and shoot dry mass of sorghum plants, regardless of nitrogen source; however, higher growth was observed in ammonium-grown plants. The better performance of ammonium-fed stressed plants was associated with low hydrogen peroxide accumulation, and improved CO2 assimilation and K+/Na+ homeostasis under salinity. Proteomic study revealed a nitrogen source-induced differential modulation in proteins related to photosynthesis/carbon metabolism, energy metabolism, response to stress and other cellular processes. Nitrate-fed plants induced thylakoidal electron transport chain proteins and structural and carbon assimilation enzymes, but these mechanisms seemed to be insufficient to mitigate salt damage in photosynthetic performance. In contrast, the greater tolerance to salinity of ammonium-grown plants may have arisen from: i.) de novo synthesis or upregulation of enzymes from photosynthetic/carbon metabolism, which resulted in better CO2 assimilation rates under NaCl-stress; ii.) activation of proteins involved in energy metabolism which made available energy for salt responses, most likely by proton pumps and Na+/H+ antiporters; and iii.) reprogramming of proteins involved in response to stress and other metabolic processes, constituting intricate pathways of salt responses. Overall, our findings not only provide new insights of molecular basis of salt tolerance in sorghum plants induced by ammonium nutrition, but also give new perspectives to develop biotechnological strategies to generate more salt-tolerant crops.
Collapse
Affiliation(s)
| | - Rafael de Souza Miranda
- Programa de Pós-graduação em Ciências Agrárias, Campus Professora Cinobelina Elvas, Universidade Federal do Piauí, Bom Jesus, Brazil.
| | - Gyedre Dos Santos Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Daniel Gomes Coelho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | - Lineker de Sousa Lopes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | | | - Enéas Gomes-Filho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal), Fortaleza, Brazil.
| |
Collapse
|
143
|
Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes. Int J Mol Sci 2020; 21:ijms21165817. [PMID: 32823634 PMCID: PMC7461106 DOI: 10.3390/ijms21165817] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker’s asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.
Collapse
|
144
|
Akbarian M, Kianpour M, Yousefi R, Moosavi-Movahedi AA. Characterization of insulin cross-seeding: the underlying mechanism reveals seeding and denaturant-induced insulin fibrillation proceeds through structurally similar intermediates. RSC Adv 2020; 10:29885-29899. [PMID: 35518209 PMCID: PMC9056291 DOI: 10.1039/d0ra05414c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/29/2020] [Indexed: 02/01/2023] Open
Abstract
Insulin rapidly fibrillates in the presence of amyloid seeds from different sources. To address its cross-reactivity we chose the seeds of seven model proteins and peptides along with the seeds of insulin itself. Model candidates were selected/designed according to their size, amino acid sequence, and hydrophobicity. We found while some seeds provided catalytic ends for inducing the formation of non-native insulin conformers and increase fibrillation, others attenuated insulin fibrillation kinetics. We also observed competition between the intermediate insulin conformers which formed with urea and amyloid seeds in entering the fibrillogenic pathway. Simultaneous incubation of insulin with urea and amyloid seeds resulted in the formation of nearly similar insulin intermediate conformers which synergistically enhance insulin fibrillation kinetics. Given these results, it is highly likely that, structurally, there is a specific intermediate in different pathways of insulin fibrillation that governs fibrillation kinetics and morphology of the final mature fibril. Overall, this study provides a novel mechanistic insight into insulin fibrillation and gives new information on how seeds of different proteins are capable of altering insulin fibrillation kinetics and morphology. This report, for the first time, tries to answer an important question that why fibrillation of insulin is either accelerated or attenuated in the presence of amyloid fibril seeds from different sources.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University Shiraz Iran
| | - Maryam Kianpour
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University Shiraz Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University Shiraz Iran
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), The University of Tehran Tehran Iran +98 71 32280916 +98 71 36137617
| |
Collapse
|
145
|
Scarfì S, Pozzolini M, Oliveri C, Mirata S, Salis A, Damonte G, Fenoglio D, Altosole T, Ilan M, Bertolino M, Giovine M. Identification, Purification and Molecular Characterization of Chondrosin, a New Protein with Anti-tumoral Activity from the Marine Sponge Chondrosia Reniformis Nardo 1847. Mar Drugs 2020; 18:409. [PMID: 32748866 PMCID: PMC7459819 DOI: 10.3390/md18080409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
: Chondrosia reniformis is a common marine demosponge showing many peculiarities, lacking silica spicules and with a body entirely formed by a dense collagenous matrix. In this paper, we have described the identification of a new cytotoxic protein (chondrosin) with selective activity against specific tumor cell lines, from C. reniformis, collected from the Liguria Sea. Chondrosin was extracted and purified using a salting out approach and molecular weight size exclusion chromatography. The cytotoxic fractions were then characterized by two-dimensional gel electrophoresis and mass spectrometry analysis and matched the results with C. reniformis transcriptome database. The procedure allowed for identifying a full-length cDNA encoding for a 199-amino acids (aa) polypeptide, with a signal peptide of 21 amino acids. The mature protein has a theoretical molecular weight of 19611.12 and an IP of 5.11. Cell toxicity assays showed a selective action against some tumor cell lines (RAW 264.7 murine leukemia cells in particular). Cell death was determined by extracellular calcium intake, followed by cytoplasmic reactive oxygen species overproduction. The in silico modelling of chondrosin showed a high structural homology with the N-terminal region of the ryanodine receptor/channel and a short identity with defensin. The results are discussed suggesting a possible specific interaction of chondrosin with the Cav 1.3 ion voltage calcium channel expressed on the target cell membranes.
Collapse
Affiliation(s)
- Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
- Centro 3R, Interuniversitary Center for the Promotion of the Principles of the 3Rs in Teaching and Research, Via Caruso 16, 56122 Pisa, Italy
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Daniela Fenoglio
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Tiziana Altosole
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
| | - Micha Ilan
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| |
Collapse
|
146
|
Determination of pK a Values in Intrinsically Disordered Proteins. Methods Mol Biol 2020. [PMID: 32696365 DOI: 10.1007/978-1-0716-0524-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Electrostatic interactions in intrinsically disordered proteins (IDPs) and regions (IDRs) can strongly influence their conformational sampling. Side chain pKa values provide information on the electrostatic interaction energies of individual side chains and are required to accurately determine the molecular net charge and charge distribution. Nuclear magnetic resonance (NMR) spectroscopy is the premier method for measuring side chain pKa values as it can detect the ionization states of individual side chains in an IDP or IDR simultaneously. In this section, we outline the use of NMR spectroscopy to determine side chain-specific pKas for each of the nine aspartates, five glutamates, and one histidine contained in a highly acidic 35-residue intrinsically disordered peptide.
Collapse
|
147
|
Okay S, Yildirim V, Büttner K, Becher D, Özcengiz G. Dynamic proteomic analysis of Phanerochaete chrysosporium under copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110694. [PMID: 32388186 DOI: 10.1016/j.ecoenv.2020.110694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/12/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The model white rot fungus Phanerochaete chrysosporium is frequently preferred for heavy metal accumulation studies due to its high resistance to heavy metals, including copper (Cu). Here, the response of P. chrysosporium under Cu stress at different time points was investigated for the first time by a detailed proteomic analysis using 2DE MALDI-TOF/MS and nanoLC-MS/MS techniques. A total of 123 Cu-responsive protein spots were determined using 2DE approach, and 104 of them were corresponded to 73 distinct open reading frames (ORFs). Of identified ones, 88 spots were over-, and 16 spots were underrepresented. The majority of these proteins showed to the strongest response at 8th h of Cu exposure. Using nanoLC-MS/MS analysis, a total of 167 differentially produced proteins were identified from Cu-exposed cultures after enrichment of the membrane proteins followed by SILAC. Seventy four, 66, and 69 overrepresented, and 56, 71, and 64 underrepresented proteins were identified at 2 h, 4 h, and 8 h of Cu exposure, respectively. The bioinformatic analysis of these proteins revealed that intracellular trafficking proteins such as Ran GTPase and a p24 family protein, and certain proteins involved in posttranslational modification, protein turnover and folding were Cu-responsive. Three important transcription factors (TFs), NAC, BTF3, and homeobox TFs, 40S and 60S ribosomal proteins, chaperones such as Hsp26/Hsp42 and mortalin, as well as 20S proteasome, 14-3-3 proteins and Hsp90 involve in Cu-stress response of P. chrysosporium. Moreover, certain elements of translation machinery, the proteins related with aspartate, methionine, and pyruvate metabolisms, transketolase, and trehalase related with carbohydrate metabolism, citrate synthase, fumarase, V-ATPase, and F0F1-type ATPase playing role in energy production and conversion, transport proteins such as multidrug resistance and p24 family proteins as well as actin-related proteins involved in cytoskeleton remodeling were determined to be Cu-responsive. The present proteome analysis revealed that P. chrysosporium mainly regulates translational and posttranslational processes, certain transport processes, many metabolic pathways and cytoskeleton to overcome the Cu-induced oxidative stress.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Turkey
| | - Volkan Yildirim
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey; Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Knut Büttner
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
148
|
Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. Int J Mol Sci 2020; 21:ijms21144870. [PMID: 32660160 PMCID: PMC7402289 DOI: 10.3390/ijms21144870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1–M3), middle (M4–M7), and late (M8–M9) seed maturation, and early (G1–G3) and late (G4–G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6–M7) in cotyledons and at late ones (M8–M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.
Collapse
|
149
|
Vanani FR, Shabani L, Sabzalian MR, Dehghanian F, Winner L. Comparative physiological and proteomic analysis indicates lower shock response to drought stress conditions in a self-pollinating perennial ryegrass. PLoS One 2020; 15:e0234317. [PMID: 32555744 PMCID: PMC7302502 DOI: 10.1371/journal.pone.0234317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/22/2020] [Indexed: 12/05/2022] Open
Abstract
We investigated the physiological and proteomic changes in the leaves of three Lolium perenne genotypes, one Iranian putative self-pollinating genotype named S10 and two commercial genotypes of Vigor and Speedy, subjected to drought stress conditions. The results of this study indeed showed higher RWC (relative water content), SDW (shoot dry weight), proline, ABA (abscisic acid), nitrogen and amino acid contents, and antioxidant enzymes activities of S10 under drought stress in comparison with the two other genotypes. A total of 915 proteins were identified using liquid chromatography-mass spectrometry (LC/MS) analysis, and the number of differentially abundant proteins between normal and stress conditions was 467, 456, and 99 in Vigor, Speedy, and S10, respectively. Proteins involved in carbon and energy metabolism, photosynthesis, TCA cycle, redox, and transport categories were up-regulated in the two commercial genotypes. We also found that some protein inductions, including those involved in amino acid and ABA metabolisms, aquaporin, HSPs, photorespiration, and increases in the abundance of antioxidant enzymes, are essential responses of the two commercial genotypes to drought stress. In contrast, we observed only slight changes in the protein profile of the S10 genotype under drought stress. Higher homozygosity due to self-pollination in the genetic background of the S10 genotype may have led to a lower variation in response to drought stress conditions.
Collapse
Affiliation(s)
- Fatemeh Raeisi Vanani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Science, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Mohammad R. Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Lisa Winner
- Core Facility Proteomics, Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| |
Collapse
|
150
|
Alzyoud JAM, Abdelall ST, Al-Shudiefat AARS, Khalyaila DM, Al Najjar SA. HAPTOGLOBIN POLYMORPHISM AND CHRONIC TENDINOPATHY. JOURNAL OF MUSCULOSKELETAL RESEARCH 2020; 23:2050008. [DOI: 10.1142/s0218957720500086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Introduction: Tendinopathy is a pathology of tendons of multifactorial origin displayed clinically as chronic degenerative tissue resulting in dysfunction and painful musculoskeletal system. Genetic implications in tendinopathy are not fully elucidated. Haptoglobin (Hp) polymorphism has been investigated for potential role in several diseases such as cardiovascular diseases. This study aims at investigating Hp polymorphism potential association with chronic tendinopathy in Jordan. Materials and Methods: A hospital-based case-control study, of 101 patients diagnosed with chronic tendinopathy and 104 age and gender matched controls, was employed and Hpphenotypes distributions were determined using Sodium Dodecyl Sulphate Polyacrylamide gel electrophoresis technique. Results: showed a significant association between tendinopathy cases and controls in relation to Hpphenotypes frequencies (Fisher’s Exact Test, [Formula: see text]). Odd ratios showed that the odds of tendinopathy cases in Hp2.1 group were reduced while odds in Hp2.2 and Hp1.1 were increased by 3.22 and 7.34 times, respectively, as likely compared to the controls. Conclusion: Results suggested that Hppolymorphism might play a role in chronic tendinopathy genesis.
Collapse
Affiliation(s)
- Jihad A. M. Alzyoud
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Seham T. Abdelall
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | | | - Saleh A. Al Najjar
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|