101
|
Guida N, Laudati G, Anzilotti S, Secondo A, Montuori P, Di Renzo G, Canzoniero LMT, Formisano L. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death. Toxicol Appl Pharmacol 2015; 288:387-98. [PMID: 26307266 DOI: 10.1016/j.taap.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway.
Collapse
Affiliation(s)
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Public Health, 'Federico II' University of Naples, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy
| | - Lorella M T Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131 Naples, Italy; Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
102
|
Kania-Korwel I, Barnhart CD, Lein PJ, Lehmler HJ. Effect of pregnancy on the disposition of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) atropisomers and their hydroxylated metabolites in female mice. Chem Res Toxicol 2015; 28:1774-83. [PMID: 26271003 DOI: 10.1021/acs.chemrestox.5b00241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral PCBs, such as PCB 95, are developmental neurotoxicants that undergo atropisomeric enrichment in nonpregnant adult mice. Because pregnancy is associated with changes in hepatic cytochrome P450 enzyme activity as well as lipid disposition and metabolism, this study investigates the effect of pregnancy on the maternal disposition of chiral PCBs. Female C57BL/6 mice (8 weeks old) were dosed daily beginning 2 weeks prior to conception and continuing throughout gestation and lactation (56 days total) with racemic PCB 95 (0, 0.1, 1.0, or 6.0 mg/kg body wt/day) in peanut butter. Levels and chiral signatures of PCB 95 and its hydroxylated metabolites (OH-PCBs) were determined in adipose, blood, brain, and liver. Tissue levels of PCB 95 increased 4- to 12-fold with increasing dose, with considerable enrichment of the second eluting atropisomer in all tissues (EF range 0.11 to 0.26). OH-PCBs displayed atropisomeric enrichment in blood and liver but were not detected in adipose and brain. Levels of PCB 95 and its metabolites were 2- to 11-fold lower in pregnant dams relative to those previously reported in nonpregnant age-matched female mice; however, PCB 95 and OH-PCB profiles and chiral signatures were similar between both studies. In contrast, human brain samples contained racemic PCB 95 residues (EF = 0.50). These results demonstrate that changes in cytochrome P450 enzyme activity and lipid disposition during pregnancy reduce the PCB body burden in dams but do not affect metabolite profiles or chiral signatures. The differences in chiral signatures between mice and humans suggest species-specific differences in atropisomeric disposition, the toxicological significance of which remains to be determined.
Collapse
Affiliation(s)
- Izabela Kania-Korwel
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, Iowa 52242-5000, United States
| | - Christopher D Barnhart
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California 95616, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California , Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, Iowa 52242-5000, United States
| |
Collapse
|
103
|
Pendergrass SA, Verma A, Okula A, Hall MA, Crawford DC, Ritchie MD. Phenome-Wide Association Studies: Embracing Complexity for Discovery. Hum Hered 2015. [PMID: 26201697 DOI: 10.1159/000381851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The inherent complexity of biological systems can be leveraged for a greater understanding of the impact of genetic architecture on outcomes, traits, and pharmacological response. The genome-wide association study (GWAS) approach has well-developed methods and relatively straight-forward methodologies; however, the bigger picture of the impact of genetic architecture on phenotypic outcome still remains to be elucidated even with an ever-growing number of GWAS performed. Greater consideration of the complexity of biological processes, using more data from the phenome, exposome, and diverse -omic resources, including considering the interplay of pleiotropy and genetic interactions, may provide additional leverage for making the most of the incredible wealth of information available for study. Here, we describe how incorporating greater complexity into analyses through the use of additional phenotypic data and widespread deployment of phenome-wide association studies may provide new insights into genetic factors influencing diseases, traits, and pharmacological response.
Collapse
Affiliation(s)
- Sarah A Pendergrass
- Biomedical and Translational Informatics Program, Geisinger Health System, Danville, Pa., USA
| | | | | | | | | | | |
Collapse
|
104
|
Nowack N, Wittsiepe J, Kasper-Sonnenberg M, Wilhelm M, Schölmerich A. Influence of Low-Level Prenatal Exposure to PCDD/Fs and PCBs on Empathizing, Systemizing and Autistic Traits: Results from the Duisburg Birth Cohort Study. PLoS One 2015; 10:e0129906. [PMID: 26066795 PMCID: PMC4466566 DOI: 10.1371/journal.pone.0129906] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are assumed to act as endocrine disruptor chemicals. Prenatal exposure to these pollutants might influence fetal steroid hormone levels, which are thought to be related to sex-typical development and autistic traits. OBJECTIVES We examined associations of prenatal levels of PCDD/Fs and PCBs with autism traits and sex-typical behaviour in childhood. METHODS We measured levels of PCDD/Fs and PCBs in maternal blood samples during pregnancy using gas chromatography/high-resolution mass spectrometry. Sex-typical behaviour was assessed at 9 years of age (n = 96) and autistic traits at 10 years of age using the Social Responsiveness Scale (SRS; n = 100). Multiple regression analyses were conducted to estimate the associations between prenatal exposure and outcome variables. RESULTS Blood concentrations (WHO2005-TEq) of ƩPCDD/Fs ranged from 2.93-46.45 pg/g lipid base (median = 12.91 pg/g lipid base) and concentrations of ƩPCBs were in the range of 1.24-25.47 pg/g lipid base (median = 6.85 pg/g lipid base) which is within the range of German background exposure. We found significant negative associations between PCDD/F levels in maternal blood and SRS scores in the whole group (β = -6.66, p < .05), in girls (β = -10.98, p < .05) and, in one SRS subscale, in boys (β = -6.86, p < .05). For PCB levels, associations with one SRS subscale were significant for the whole study group as were associations with two subscales in girls. We did not find significant associations between PCDD/F or PCB levels and sex-typical behaviour for either sex. CONCLUSIONS In an earlier part of this study, prenatal exposure to PCDD/Fs and PCBs was found to be associated with lower testosterone levels, therefore, our findings are consistent with the idea that autism spectrum conditions are related to fetal androgen levels. Several possible mechanisms, through which PCDD/Fs and PCBs might influence autistic behaviour, are discussed.
Collapse
Affiliation(s)
- Nikola Nowack
- Department of Developmental Psychology, Ruhr-University Bochum, Universitätsstraße 150, D-44801, Bochum, Germany
- * E-mail:
| | - Jürgen Wittsiepe
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Universitätsstraße 150, D-44801, Bochum, Germany
| | - Monika Kasper-Sonnenberg
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Universitätsstraße 150, D-44801, Bochum, Germany
| | - Michael Wilhelm
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Universitätsstraße 150, D-44801, Bochum, Germany
| | - Axel Schölmerich
- Department of Developmental Psychology, Ruhr-University Bochum, Universitätsstraße 150, D-44801, Bochum, Germany
| |
Collapse
|
105
|
Wu X, Barnhart C, Lein P, Lehmler HJ. Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:616-25. [PMID: 25420130 PMCID: PMC4291784 DOI: 10.1021/es504766p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.
Collapse
Affiliation(s)
- Xianai Wu
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Christopher Barnhart
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Pamela
J. Lein
- Department
of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Phone: 319 335-4310. Fax: 319 335-4290. E-mail: . Corresponding author address:
Department of Occupational and Environmental
Health, The University of Iowa, University of Iowa Research Park,
#221 IREH, Iowa City, IA 52242-5000
| |
Collapse
|
106
|
Abstract
DNA copy number variation is long associated with highly penetrant genomic disorders, but it was not until recently that the widespread occurrence of copy number variation among phenotypically normal individuals was realized as a considerable source of genetic variation. It is also now appreciated that copy number variants (CNVs) play a role in the onset of complex diseases. Many of the complex diseases in which CNVs are associated are reported to be influenced by yet to be identified environmental factors. It is hypothesized that exposure to environmental chemicals generates CNVs and influences disease onset and pathogenesis. In this study a proof of principle experiment was completed with ethyl methanesulfonate (EMS) and cytosine arabinoside (Ara-C) to investigate the generation of CNVs using array comparative genomic hybridization (CGH) and the zebrafish vertebrate model system. Exposure to both chemicals resulted in CNVs. CNVs were detected in similar genomic regions among multiple exposure concentrations with EMS and five CNVs were common among both chemicals. Furthermore, CNVs were correlated to altered gene expression. This study suggests that chemical exposure generates CNVs with impacts on gene expression warranting further investigation of this phenomenon with environmental chemicals.
Collapse
|
107
|
Byun HM, Benachour N, Zalko D, Frisardi MC, Colicino E, Takser L, Baccarelli AA. Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology 2014; 328:152-9. [PMID: 25533936 DOI: 10.1016/j.tox.2014.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/26/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are known endocrine disrupting chemicals used commonly as flame retardants in everything from electronics to furniture. Exposure to PBDEs during early development has been linked to neurodevelopmental delays. Despite mounting evidence of neurological harm from PBDE exposure, the molecular mechanisms underlying these effects on brain function remain unknown. We examined the effects of perinatal exposure to BDE-47, the most biologically active and prevalent BDE congener in North America, on epigenetic patterns in the frontal lobe of Wistar rats. Dams were gavaged with BDE-47 (0.002 and 0.2mg/kg body weight) at gestation days 9 and 16, and postnatal days 1, 8, and 15. Frontal lobes from offspring at postnatal day 41 were collected to measure 5-methylcytosine (5mC) in mitochondrial cytochrome c oxidase genes (Mt-co1, Mt-co2, and Mt-co3), global nuclear 5-hydroxymethylcytosine (5hmC) content, 5mC in repetitive elements L1Rn, and 5mC in nuclear genes (Bdnf, Crhr1, Mc2r, Nr3c1, and Snca) related to behavioral and brain functions in the nuclear genome. We observed a significant decrease in %5mC in Mt-co2 (difference from control=-0.68%, p=0.01 at the 0.2mg/kg BDE-47). 5mC in repetitive elements L1Rn decreased at 0.002 mg/kg BDE-47 (difference=-1.23%, p=0.02). Decreased nuclear 5mC was observed in Bdnf and Nr3c1 in BDE-47 exposed rats. However, we did not observe significant effects of PBDE toxicity on DNA methylation patterns for the majority of genes in the brain.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Nora Benachour
- Département Pédiatrie, Faculté de Médecine, Université de Sherbrooke, QC J1H 5N4, Canada.
| | - Daniel Zalko
- Institut National de la Recherche Agronomique, UMR1331, TOXALIM (Research Centre in Food Toxicology), Toulouse, France.
| | - Maria Chiara Frisardi
- Department of Statistics, University of Milano-Bicocca, Milan 20126, Italy; Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Elena Colicino
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Larissa Takser
- Département Pédiatrie, Faculté de Médecine, Université de Sherbrooke, QC J1H 5N4, Canada.
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
108
|
Marek R, Thorne PS, DeWall J, Hornbuckle KC. Variability in PCB and OH-PCB serum levels in children and their mothers in urban and rural U.S. communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13459-67. [PMID: 25300024 PMCID: PMC4238695 DOI: 10.1021/es502490w] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Environmental exposures that affect accumulation of polychlorinated biphenyls (PCBs) in humans are complex and not fully understood. One challenge in linking environmental exposure to accumulation is determining variability of PCB concentrations in samples collected from the same person at different times. We hypothesized that PCBs in human blood serum are consistent from year to year in people who live in the same environment between sampling. We analyzed blood serum from children and their mothers from urban and rural U.S. communities (n = 200) for all 209 PCBs (median ∑PCBs = 45 ng/g lw) and 12 hydroxylated PCBs (median ∑OH-PCBs = 0.09 ng/g fw). A subset of these participants (n = 155) also had blood PCB and OH-PCB concentrations analyzed during the previous calendar year. Although many participants had similar levels of PCBs and OH-PCBs in their blood from one year to the next, some participants had surprisingly different levels. Year-to-year variability in ∑PCBs ranged from -87% to 567% and in ∑OH-PCBs ranged from -51 to 358% (5th-95th percentile). This is the first study to report variability of all PCBs and major metabolites in two generations of people and suggests short-term exposures to PCBs may be a significant component of what is measured in human serum.
Collapse
Affiliation(s)
- Rachel
F. Marek
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S. Thorne
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- (P. S. T.) Phone: (319)
335-4216; fax: (319) 384-4138; e-mail:
| | - Jeanne DeWall
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Department
of Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- IIHR-Hydroscience
and Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- (K. C. H.) Phone: (319)
384-0789; fax: (319) 335-5660; e-mail:
| |
Collapse
|
109
|
Ibhazehiebo K, Koibuchi N. Impact of endocrine-disrupting chemicals on thyroid function and brain development. Expert Rev Endocrinol Metab 2014; 9:579-591. [PMID: 30736196 DOI: 10.1586/17446651.2014.950227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are synthetic or natural substances in the environment. EDCs have been shown to disrupt reproductive, developmental and other homeostatic systems by interfering with the synthesis, secretion, transport, metabolism and action of endogenous hormones including the thyroid hormone (TH) system. Since TH plays a critical role in brain development, the exposure to TH-system disrupting EDCs during development may have serious consequences. In this article, representative previous studies showing the effect of representative EDCs on the TH system are summarized. Then, the molecular mechanisms of action of polychlorinated biphenyls and polybrominated diphenyl ethers on the TH system are discussed further. Particularly, the effect of polychlorinated biphenyls and polybrominated diphenyl ethers on TH-mediated brain development is discussed. Our recent studies may provide a novel idea regarding the effect of EDCs on the TH system.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- a Department of Medical Genetics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Noriyuki Koibuchi
- b Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
110
|
Kalkbrenner AE, Schmidt RJ, Penlesky AC. Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence. Curr Probl Pediatr Adolesc Health Care 2014; 44:277-318. [PMID: 25199954 PMCID: PMC4855851 DOI: 10.1016/j.cppeds.2014.06.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
In the past decade, the number of epidemiological publications addressing environmental chemical exposures and autism has grown tremendously. These studies are important because it is now understood that environmental factors play a larger role in causing autism than previously thought and because they address modifiable risk factors that may open up avenues for the primary prevention of the disability associated with autism. In this review, we covered studies of autism and estimates of exposure to tobacco, air pollutants, volatile organic compounds and solvents, metals (from air, occupation, diet, dental amalgams, and thimerosal-containing vaccines), pesticides, and organic endocrine-disrupting compounds such as flame retardants, non-stick chemicals, phthalates, and bisphenol A. We included studies that had individual-level data on autism, exposure measures pertaining to pregnancy or the 1st year of life, valid comparison groups, control for confounders, and adequate sample sizes. Despite the inherent error in the measurement of many of these environmental exposures, which is likely to attenuate observed associations, some environmental exposures showed associations with autism, especially traffic-related air pollutants, some metals, and several pesticides, with suggestive trends for some volatile organic compounds (e.g., methylene chloride, trichloroethylene, and styrene) and phthalates. Whether any of these play a causal role requires further study. Given the limited scope of these publications, other environmental chemicals cannot be ruled out, but have not yet been adequately studied. Future research that addresses these and additional environmental chemicals, including their most common routes of exposures, with accurate exposure measurement pertaining to several developmental windows, is essential to guide efforts for the prevention of the neurodevelopmental damage that manifests in autism symptoms.
Collapse
Affiliation(s)
- Amy E Kalkbrenner
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA
| | - Annie C Penlesky
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| |
Collapse
|
111
|
Sadowski RN, Wise LM, Park PY, Schantz SL, Juraska JM. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014; 279:122-31. [PMID: 25193849 DOI: 10.1016/j.neuroscience.2014.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/26/2022]
Abstract
Previous work has shown that exposure to bisphenol A (BPA) during early development can alter sexual differentiation of the brain in rodents, although few studies have examined effects on areas of the brain associated with cognition. The current study examined if developmental BPA exposure alters the total number of neurons and glia in the medial prefrontal cortex (mPFC) in adulthood. Pregnant Long-Evans rats were orally exposed to 0, 4, 40, or 400-μg/kg BPA in corn oil throughout pregnancy. From postnatal days 1 to 9, pups were given daily oral doses of oil or BPA, at doses corresponding to those given during gestation. Brains were examined in adulthood, and the volume of layers 2/3 and layers 5/6 of the mPFC was parcellated. The density of neurons and glia in these layers was quantified stereologically with the optical disector, and density was multiplied by volume for each animal. Males exposed to 400-μg/kg BPA were found to have increased numbers of neurons and glia in layers 5/6. Although there were no significant effects of BPA in layers 2/3, the pattern of increased neuron number in males exposed to 400-μg/kg BPA was similar to that seen in layers 5/6. No effects of BPA were seen in females or in males exposed to the other doses of BPA. This study indicates that males are more susceptible to the long-lasting effects of BPA on anatomy of the mPFC, an area implicated in neurological disorders.
Collapse
Affiliation(s)
- R N Sadowski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - L M Wise
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - P Y Park
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - S L Schantz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - J M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States.
| |
Collapse
|
112
|
Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjödin A, Hauser R, Webster GM, Chen A, Lanphear BP. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:513-20. [PMID: 24622245 PMCID: PMC4014765 DOI: 10.1289/ehp.1307261] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/20/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) may be involved in the etiology of autism spectrum disorders, but identifying relevant chemicals within mixtures of EDCs is difficult. OBJECTIVE Our goal was to identify gestational EDC exposures associated with autistic behaviors. METHODS We measured the concentrations of 8 phthalate metabolites, bisphenol A, 25 polychlorinated biphenyls (PCBs), 6 organochlorine pesticides, 8 brominated flame retardants, and 4 perfluoroalkyl substances in blood or urine samples from 175 pregnant women in the HOME (Health Outcomes and Measures of the Environment) Study (Cincinnati, OH). When children were 4 and 5 years old, mothers completed the Social Responsiveness Scale (SRS), a measure of autistic behaviors. We examined confounder-adjusted associations between 52 EDCs and SRS scores using a two-stage hierarchical analysis to account for repeated measures and confounding by correlated EDCs. RESULTS Most of the EDCs were associated with negligible absolute differences in SRS scores (≤ 1.5). Each 2-SD increase in serum concentrations of polybrominated diphenyl ether-28 (PBDE-28) (β = 2.5; 95% CI: -0.6, 5.6) or trans-nonachlor (β = 4.1; 95% CI: 0.8-7.3) was associated with more autistic behaviors. In contrast, fewer autistic behaviors were observed among children born to women with detectable versus nondetectable concentrations of PCB-178 (β = -3.0; 95% CI: -6.3, 0.2), β-hexachlorocyclohexane (β = -3.3; 95% CI: -6.1, -0.5), or PBDE-85 (β = -3.2; 95% CI: -5.9, -0.5). Increasing perfluorooctanoate (PFOA) concentrations were also associated with fewer autistic behaviors (β = -2.0; 95% CI: -4.4, 0.4). CONCLUSIONS Some EDCs were associated with autistic behaviors in this cohort, but our modest sample size precludes us from dismissing chemicals with null associations. PFOA, β-hexachlorocyclohexane, PCB-178, PBDE-28, PBDE-85, and trans-nonachlor deserve additional scrutiny as factors that may be associated with childhood autistic behaviors.
Collapse
Affiliation(s)
- Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Huen K, Yousefi P, Bradman A, Yan L, Harley KG, Kogut K, Eskenazi B, Holland N. Effects of age, sex, and persistent organic pollutants on DNA methylation in children. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:209-22. [PMID: 24375655 PMCID: PMC4410811 DOI: 10.1002/em.21845] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 05/21/2023]
Abstract
Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Methylation of Alu and long interspersed nucleotide elements (LINE-1) is a well-established measure of DNA methylation often used in epidemiologic studies. Yet, few studies have examined the effects of host factors on LINE-1 and Alu methylation in children. We characterized the relationship of age, sex, and prenatal exposure to persistent organic pollutants (POPs), dichlorodiphenyl trichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and polybrominated diphenyl ethers (PBDEs), with DNA methylation in a birth cohort of Mexican-American children participating in the CHAMACOS study. We measured Alu and LINE-1 methylation by pyrosequencing bisulfite-treated DNA isolated from whole blood samples collected from newborns and nine-year old children (n = 358). POPs were measured in maternal serum during late pregnancy. Levels of DNA methylation were lower in nine-year olds compared to newborns and were higher in boys compared to girls. Higher prenatal DDT/E exposure was associated with lower Alu methylation at birth, particularly after adjusting for cell type composition (P = 0.02 for o,p' -DDT). Associations of POPs with LINE-1 methylation were only identified after examining the co-exposure of DDT/E with PBDEs simultaneously. Our data suggest that repeat element methylation can be an informative marker of epigenetic differences by age and sex and that prenatal exposure to POPs may be linked to hypomethylation in fetal blood. Accounting for co-exposure to different types of chemicals and adjusting for blood cell types may increase sensitivity of epigenetic analyses for epidemiological studies.
Collapse
Affiliation(s)
- Karen Huen
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Paul Yousefi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Asa Bradman
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | | | - Kim G. Harley
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Katherine Kogut
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
114
|
The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation. J Neurosci 2014; 34:717-25. [PMID: 24431430 DOI: 10.1523/jneurosci.2884-13.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca(2+) oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders.
Collapse
|
115
|
Wu X, Kammerer A, Lehmler HJ. Microsomal oxidation of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) results in species-dependent chiral signatures of the hydroxylated metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2436-44. [PMID: 24467194 PMCID: PMC3983324 DOI: 10.1021/es405433t] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 05/18/2023]
Abstract
Chiral polychlorinated biphenyls (PCBs) display variable atropisomeric enrichment in wildlife and animal models, especially at higher trophic levels. These differences in PCBs' chiral signatures are, at least in part, due to species-dependent oxidation of PCBs to hydroxylated PCB metabolites (OH-PCBs). Here, we investigate the hypothesis that the cytochrome P450 (P450) enzyme-mediated oxidation of chiral PCBs results in species-dependent differences in the chiral signatures of OH-PCBs (i.e., the direction and extent of OH-PCBs' atropisomeric enrichment). To investigate this hypothesis, we incubated PCB 136, a representative chiral PCB, with pooled human liver microsomes (HLMs) or liver microsomes from male guinea pig, hamster, monkey, mouse, and rabbit or female dog and determined average profiles and chiral signatures of the OH-PCBs. 2,2',3,3',6,6'-Hexachlorobiphenyl-4-ol (4-136) was the major metabolite in incubations with HLMs and monkey and rabbit microsomes. 2,2',3,3',6,6'-Hexachlorobiphenyl-5-ol (5-136) was the major metabolite formed by microsomes from all other species. Both 4-136 and 5-136 were formed atropselectively in all microsomal incubations; however, the direction and extent of the atropisomeric enrichment of both OH-PCB metabolites showed considerable differences across microsomal preparations obtained from different species. These differences in OH-PCBs' atropisomeric enrichment may not only be toxicologically relevant but may also be useful to study sources and transport of OH-PCBs in the environment.
Collapse
|
116
|
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4:e360. [PMID: 24518398 PMCID: PMC3944636 DOI: 10.1038/tp.2014.4] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/15/2013] [Accepted: 01/06/2014] [Indexed: 11/21/2022] Open
Abstract
Although the involvement of genetic abnormalities in autism spectrum disorders (ASD) is well-accepted, recent studies point to an equal contribution by environmental factors, particularly environmental toxicants. However, these toxicant-related studies in ASD have not been systematically reviewed to date. Therefore, we compiled publications investigating potential associations between environmental toxicants and ASD and arranged these publications into the following three categories: (a) studies examining estimated toxicant exposures in the environment during the preconceptional, gestational and early childhood periods; (b) studies investigating biomarkers of toxicants; and (c) studies examining potential genetic susceptibilities to toxicants. A literature search of nine electronic scientific databases through November 2013 was performed. In the first category examining ASD risk and estimated toxicant exposures in the environment, the majority of studies (34/37; 92%) reported an association. Most of these studies were retrospective case-control, ecological or prospective cohort studies, although a few had weaker study designs (for example, case reports or series). Toxicants implicated in ASD included pesticides, phthalates, polychlorinated biphenyls (PCBs), solvents, toxic waste sites, air pollutants and heavy metals, with the strongest evidence found for air pollutants and pesticides. Gestational exposure to methylmercury (through fish exposure, one study) and childhood exposure to pollutants in water supplies (two studies) were not found to be associated with ASD risk. In the second category of studies investigating biomarkers of toxicants and ASD, a large number was dedicated to examining heavy metals. Such studies demonstrated mixed findings, with only 19 of 40 (47%) case-control studies reporting higher concentrations of heavy metals in blood, urine, hair, brain or teeth of children with ASD compared with controls. Other biomarker studies reported that solvent, phthalate and pesticide levels were associated with ASD, whereas PCB studies were mixed. Seven studies reported a relationship between autism severity and heavy metal biomarkers, suggesting evidence of a dose-effect relationship. Overall, the evidence linking biomarkers of toxicants with ASD (the second category) was weaker compared with the evidence associating estimated exposures to toxicants in the environment and ASD risk (the first category) because many of the biomarker studies contained small sample sizes and the relationships between biomarkers and ASD were inconsistent across studies. Regarding the third category of studies investigating potential genetic susceptibilities to toxicants, 10 unique studies examined polymorphisms in genes associated with increased susceptibilities to toxicants, with 8 studies reporting that such polymorphisms were more common in ASD individuals (or their mothers, 1 study) compared with controls (one study examined multiple polymorphisms). Genes implicated in these studies included paraoxonase (PON1, three of five studies), glutathione S-transferase (GSTM1 and GSTP1, three of four studies), δ-aminolevulinic acid dehydratase (one study), SLC11A3 (one study) and the metal regulatory transcription factor 1 (one of two studies). Notably, many of the reviewed studies had significant limitations, including lack of replication, limited sample sizes, retrospective design, recall and publication biases, inadequate matching of cases and controls, and the use of nonstandard tools to diagnose ASD. The findings of this review suggest that the etiology of ASD may involve, at least in a subset of children, complex interactions between genetic factors and certain environmental toxicants that may act synergistically or in parallel during critical periods of neurodevelopment, in a manner that increases the likelihood of developing ASD. Because of the limitations of many of the reviewed studies, additional high-quality epidemiological studies concerning environmental toxicants and ASD are warranted to confirm and clarify many of these findings.
Collapse
Affiliation(s)
- D A Rossignol
- Family Medicine, Rossignol Medical Center, Irvine, CA, USA
| | - S J Genuis
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - R E Frye
- Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
117
|
Persico AM, Merelli S. Environmental Factors in the Onset of Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [DOI: 10.1007/s40474-013-0002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
118
|
Faniband M, Lindh CH, Jönsson BAG. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J Androl 2014; 16:5-16. [PMID: 24369128 PMCID: PMC3901881 DOI: 10.4103/1008-682x.122197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 01/16/2023] Open
Abstract
Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends.
Collapse
Affiliation(s)
- Moosa Faniband
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Bo AG Jönsson
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
119
|
LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet 2013; 58:396-401. [PMID: 23677056 DOI: 10.1038/jhg.2013.49] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) have been increasing in prevalence over the last two decades, primarily because of increased awareness and diagnosis. However, autism is clearly a complex human genetic disorder that involves interactions between genes and environment. Epigenetic mechanisms, such as DNA methylation, act at the interface of genetic and environmental risk and protective factors. Advancements in genome-wide sequencing has broadened the view of the human methylome and revealed the organization of the human genome into large-scale methylation domains that footprint over neurologically important genes involved in embryonic development. Future integrative epigenomic analyses of genetic risk factors with environmental exposures and methylome analyses are expected to be important for understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
120
|
Li T, Wang W, Pan YW, Xu L, Xia Z. A hydroxylated metabolite of flame-retardant PBDE-47 decreases the survival, proliferation, and neuronal differentiation of primary cultured adult neural stem cells and interferes with signaling of ERK5 MAP kinase and neurotrophin 3. Toxicol Sci 2013; 134:111-24. [PMID: 23564643 DOI: 10.1093/toxsci/kft083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of organobromine compounds widely used as flame retardants. PBDE-47 is one of the most prominent PBDE congeners found in human tissues, and it can be transformed into several metabolites, including 6-OH-PBDE-47. Recent studies have shown that PBDE-47 is neurotoxic to animals and possibly humans. However, the basis for the neurotoxicity of PBDEs and their metabolites is unclear. For example, it is not known whether PBDEs affect adult neurogenesis, a process implicated in learning and memory and in olfactory behavior. In this study, we examined the toxicity of PBDEs for primary adult neural stem/progenitor cells (aNSCs) isolated from the subventricular zone (SVZ) of adult mice. We discovered that 6-OH-PBDE-47, but not its parent compound PBDE-47, is cytotoxic for aNCSs using MTS metabolism and cell number as a measure of cytotoxicity. Interestingly, 6-OH-PBDE-47 induced apoptosis at concentrations above 7.5μM inhibited proliferation at 2.5-5μM while suppressing neuronal and oligodendrocyte differentiation at submicromolar concentrations (≤ 1μM). The effect on proliferation was reversed upon removal of 6-OH-PBDE-47 and correlated with selective but reversible inhibition of ERK5 activation by mitogenic growth factors EGF and bFGF. 6-OH-PBDE-47 also inhibited the proneuronal differentiation effect of neurotrophin 3 (NT3) and NT3 activation of ERK5. Together, these data show that 6-OH-PBDE-47 is more toxic than its parent compound for SVZ-derived aNSCs and that it inhibits multiple aspects of adult neurogenesis. Furthermore, inhibition of ERK5 signaling may underlie the adverse effect of 6-OH-PBDE-47 on proliferation and neuronal differentiation. Our data suggest that exposure to PBDE-based flame retardants could cause neurotoxicity in the adult brain by interfering with adult neurogenesis.
Collapse
Affiliation(s)
- Tan Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
121
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
122
|
Johnson LL, Anulacion BF, Arkoosh MR, Burrows DG, da Silva DA, Dietrich JP, Myers MS, Spromberg J, Ylitalo GM. Effects of Legacy Persistent Organic Pollutants (POPs) in Fish—Current and Future Challenges. FISH PHYSIOLOGY 2013. [DOI: 10.1016/b978-0-12-398254-4.00002-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
123
|
Bradner JM, Suragh TA, Wilson WW, Lazo CR, Stout KA, Kim HM, Wang MZ, Walker DI, Pennell KD, Richardson JR, Miller GW, Caudle WM. Exposure to the polybrominated diphenyl ether mixture DE-71 damages the nigrostriatal dopamine system: role of dopamine handling in neurotoxicity. Exp Neurol 2012; 241:138-47. [PMID: 23287494 DOI: 10.1016/j.expneurol.2012.12.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022]
Abstract
In the last several decades polybrominated diphenyl ethers (PBDEs) have replaced the previously banned polychlorinated biphenyls (PCBs) in multiple flame retardant utilities. As epidemiological and laboratory studies have suggested PCBs as a risk factor for Parkinson's disease (PD), the similarities between PBDEs and PCBs suggest that PBDEs have the potential to be neurotoxic to the dopamine system. The purpose of this study was to evaluate the neurotoxic effects of the PBDE mixture, DE-71, on the nigrostriatal dopamine system and address the role of altered dopamine handling in mediating this neurotoxicity. Using an in vitro model system we found DE-71 effectively caused cell death in a dopaminergic cell line as well as reducing the number of TH+ neurons isolated from VMAT2 WT and LO animals. Assessment of DE-71 neurotoxicity in vivo demonstrated significant deposition of PBDE congeners in the brains of mice, leading to reductions in striatal dopamine and dopamine handling, as well as reductions in the striatal dopamine transporter (DAT) and VMAT2. Additionally, DE-71 elicited a significant locomotor deficit in the VMAT2 WT and LO mice. However, no change was seen in TH expression in dopamine terminal or in the number of dopamine neurons in the substantia nigra pars compacta (SNpc). To date, these are the first data to demonstrate that exposure to PBDEs disrupts the nigrostriatal dopamine system. Given their similarities to PCBs, additional laboratory and epidemiological research should be considered to assess PBDEs as a potential risk factor for PD and other neurological disorders.
Collapse
Affiliation(s)
- Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|