101
|
Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022; 101:197-204. [DOI: 10.1016/j.seizure.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
|
102
|
Olivotto S, Duse A, Bova SM, Leonardi V, Biganzoli E, Milanese A, Cereda C, Bertoli S, Previtali R, Veggiotti P. Glut1 deficiency syndrome throughout life: clinical phenotypes, intelligence, life achievements and quality of life in familial cases. Orphanet J Rare Dis 2022; 17:365. [PMID: 36153584 PMCID: PMC9509642 DOI: 10.1186/s13023-022-02513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background Glut1 deficiency syndrome (Glut1-DS) is a rare metabolic encephalopathy. Familial forms are poorly investigated, and no previous studies have explored aspects of Glut1-DS over the course of life: clinical pictures, intelligence, life achievements, and quality of life in adulthood. Clinical, biochemical and genetic data in a cohort of familial Glut1-DS cases were collected from medical records. Intelligence was assessed using Raven’s Standard Progressive Matrices and Raven’s Colored Progressive Matrices in adults and children, respectively. An ad hoc interview focusing on life achievements and the World Health Organization Quality of Life Questionnaire were administered to adult subjects. Results The clinical picture in adults was characterized by paroxysmal exercise-induced dyskinesia (PED) (80%), fatigue (60%), low intelligence (60%), epilepsy (50%), and migraine (50%). However, 20% of the adults had higher-than-average intelligence. Quality of Life (QoL) seemed unrelated to the presence of PED or fatigue in adulthood. An association of potential clinical relevance, albeit not statistically significant, was found between intelligence and QoL. The phenotype of familial Glut1-DS in children was characterized by epilepsy (83.3%), intellectual disability (50%), and PED (33%). Conclusion The phenotype of familial Glut1-DS shows age-related differences: epilepsy predominates in childhood; PED and fatigue, followed by epilepsy and migraine, characterize the condition in adulthood. Some adults with familial Glut1-DS may lead regular and fulfilling lives, enjoying the same QoL as unaffected individuals. The disorder tends to worsen from generation to generation, with new and more severe symptoms arising within the same family. Epigenetic studies might be useful to assess the phenotypic variability in Glut1-DS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02513-4.
Collapse
|
103
|
Stezin A, Pal PK. Treatable Ataxias: How to Find the Needle in the Haystack? J Mov Disord 2022; 15:206-226. [PMID: 36065614 DOI: 10.14802/jmd.22069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Treatable ataxias are a group of ataxic disorders with specific treatments. These disorders include genetic and metabolic disorders, immune-mediated ataxic disorders, and ataxic disorders associated with infectious and parainfectious etiology, vascular causes, toxins and chemicals, and endocrinopathies. This review provides a comprehensive overview of different treatable ataxias. The major metabolic and genetic treatable ataxic disorders include ataxia with vitamin E deficiency, abetalipoproteinemia, cerebrotendinous xanthomatosis, Niemann-Pick disease type C, autosomal recessive cerebellar ataxia due to coenzyme Q10 deficiency, glucose transporter type 1 deficiency, and episodic ataxia type 2. The treatment of these disorders includes the replacement of deficient cofactors and vitamins, dietary modifications, and other specific treatments. Treatable ataxias with immune-mediated etiologies include gluten ataxia, anti-glutamic acid decarboxylase antibody-associated ataxia, steroid-responsive encephalopathy associated with autoimmune thyroiditis, Miller-Fisher syndrome, multiple sclerosis, and paraneoplastic cerebellar degeneration. Although dietary modification with a gluten-free diet is adequate in gluten ataxia, other autoimmune ataxias are managed by short-course steroids, plasma exchange, or immunomodulation. For autoimmune ataxias secondary to malignancy, treatment of tumor can reduce ataxic symptoms. Chronic alcohol consumption, antiepileptics, anticancer drugs, exposure to insecticides, heavy metals, and recreational drugs are potentially avoidable and treatable causes of ataxia. Infective and parainfectious causes of cerebellar ataxias include acute cerebellitis, postinfectious ataxia, Whipple's disease, meningoencephalitis, and progressive multifocal leukoencephalopathy. These disorders are treated with steroids and antibiotics. Recognizing treatable disorders is of paramount importance when dealing with ataxias given that early treatment can prevent permanent neurological sequelae.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Centre for Brain Research, Indian Institute of Science, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
104
|
Dietary Treatments for Epilepsy. Neurol Clin 2022; 40:785-797. [DOI: 10.1016/j.ncl.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
105
|
Ketogenic diet administration to mice after a high-fat-diet regimen promotes weight loss, glycemic normalization and induces adaptations of ketogenic pathways in liver and kidney. Mol Metab 2022; 65:101578. [PMID: 35995402 PMCID: PMC9460189 DOI: 10.1016/j.molmet.2022.101578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective The ketogenic diet (KD), characterized by very limited dietary carbohydrate intake and used as nutritional treatment for GLUT1-deficiency syndromes and pharmacologically refractory epilepsy, may promote weight loss and improve metabolic fitness, potentially alleviating the symptoms of osteoarthritis. Here, we have studied the effects of administration of a ketogenic diet in mice previously rendered obese by feeding a high fat diet (HFD) and submitted to surgical destabilization of the medial meniscus to mimic osteoarthritis. Methods 6-weeks old mice were fed an HFD for 10 weeks and then switched to a chow diet (CD), KD or maintained on a HFD for 8 weeks. Glycemia, β-hydroxybutyrate (BHB), body weight and fat mass were compared among groups. In liver and kidney, protein expression and histone post-translational modifications were assessed by Western blot, and gene expression by quantitative Real-Time PCR. Results After a 10 weeks HDF feeding, administration for 8 weeks of a KD or CD induced a comparable weight loss and decrease in fat mass, with better glycemic normalization in the KD group. Histone β-hydroxybutyrylation, but not histone acetylation, was increased in the liver and kidney of mice fed the KD and the rate-limiting ketogenic enzyme HMGCS2 was upregulated – at the gene and protein level – in liver and, to an even greater extent, in kidney. KD-induced HMGCS2 overexpression may be dependent on FGF21, whose gene expression was increased by KD in liver. Conclusions Over a period of 8 weeks, KD is more effective than a chow diet to induce metabolic normalization. Besides acting as a fuel molecule, BHB may exert its metabolic effects through modulation of the epigenome - via histone β-hydroxybutyrylation - and extensive transcriptional modulation in liver and kidney. In mice fed a high fat diet, the dietary switch to a ketogenic diet causes weight loss and loss of fat mass. Glycemic normalization is superior than observed in mice fed a chow diet. Ketogenic diet induces mild ketosis, and β-hydroxybutyrylation on histone H3 lysines. Upregulation of rate limiting ketogenic protein HMGCS2 is observed in kidney. Ketogenic diet may be a transitory nutritional intervention to favor weight loss.
Collapse
|
106
|
Pervaiz I, Zahra FT, Mikelis C, Al-Ahmad AJ. An in vitro model of glucose transporter 1 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells. J Neurochem 2022; 162:483-500. [PMID: 35943296 DOI: 10.1111/jnc.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Glucose is an important source of energy for the central nervous system. Its uptake at the blood-brain barrier (BBB) is mostly mediated via glucose transporter 1 (GLUT1), a facilitated transporter encoded by the SLC2A1 gene. GLUT1 Deficiency Syndrome (GLUT1DS) is a haploinsufficiency characterized by mutations in the SLC2A1 gene, resulting in impaired glucose uptake at the BBB and clinically characterized by epileptic seizures and movement disorder. A major limitation is an absence of in vitro models of the BBB reproducing the disease. This study aimed to characterize an in vitro model of GLUT1DS using human pluripotent stem cells (iPSCs). Two GLUT1DS clones were generated (GLUT1-iPSC) from their original parental clone iPS(IMR90)-c4 by CRISPR/Cas9 and differentiated into brain microvascular endothelial cells (iBMECs). Cells were characterized in terms of SLC2A1 expression, changes in the barrier function, glucose uptake and metabolism, and angiogenesis. GLUT1DS iPSCs and iBMECs showed comparable phenotype to their parental control, with exception of reduced GLUT1 expression at the protein level. Although no major disruption in the barrier function was reported in the two clones, a significant reduction in glucose uptake accompanied by an increase in glycolysis and mitochondrial respiration was reported in both GLUT1DS-iBMECs. Finally, impaired angiogenic features were reported in such clones compared to the parental clone. Our study provides the first documented characterization of GLUT1DS-iBMECs generated by CRISPR-Cas9, suggesting that GLUT1 truncation appears detrimental to brain angiogenesis and brain endothelial bioenergetics, but maybe not be detrimental to iBMECs differentiation and barriergenesis. Our future direction is to further characterize the functional outcome of such truncated product, as well as its impact on other cells of the neurovascular unit.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Fatema Tuz Zahra
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Constantinos Mikelis
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| | - Abraham Jacob Al-Ahmad
- Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas, United States of America
| |
Collapse
|
107
|
Del Moro L, Rota E, Pirovano E, Rainero I. Migraine, Brain Glucose Metabolism and the "Neuroenergetic" Hypothesis: A Scoping Review. THE JOURNAL OF PAIN 2022; 23:1294-1317. [PMID: 35296423 DOI: 10.1016/j.jpain.2022.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that migraine may be the result of an impaired brain glucose metabolism. Several studies have reported brain mitochondrial dysfunction, impaired brain glucose metabolism and gray matter volume reduction in specific brain areas of migraineurs. Furthermore, peripheral insulin resistance, a condition demonstrated in several studies, may extend to the brain, leading to brain insulin resistance. This condition has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis, mainly during high metabolic demand. This scoping review examines the clinical, epidemiologic and pathophysiologic data supporting the hypothesis that abnormalities in brain glucose metabolism may generate a mismatch between the brain's energy reserve and metabolic expenditure, triggering migraine attacks. Moreover, alteration in glucose homeostasis could generate a chronic brain energy deficit promoting migraine chronification. Lastly, insulin resistance may link migraine with its comorbidities, like obesity, depression, cognitive impairment and cerebrovascular diseases. PERSPECTIVE: Although additional experimental studies are needed to support this novel "neuroenergetic" hypothesis, brain insulin resistance in migraineurs may unravel the pathophysiological mechanisms of the disease, explaining the migraine chronification and connecting migraine with comorbidities. Therefore, this hypothesis could elucidate novel potential approaches for migraine treatment.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Foundation Allineare Sanità and Salute, Scientific Committee, Milan, Italy; LUMEN APS, European Salus Network, Scientific Committee, San Pietro in Cerro (PC), Italy.
| | - Eugenia Rota
- Neurology Unit, ASL AL, San Giacomo Hospital, Novi Ligure, Italy
| | - Elenamaria Pirovano
- Foundation Allineare Sanità and Salute, Scientific Committee, Milan, Italy; LUMEN APS, European Salus Network, Scientific Committee, San Pietro in Cerro (PC), Italy
| | - Innocenzo Rainero
- Headache Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| |
Collapse
|
108
|
Inherited metabolic diseases mimicking hereditary spastic paraplegia (HSP): a chance for treatment. Neurogenetics 2022; 23:167-177. [DOI: 10.1007/s10048-022-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
|
109
|
Suzuki T, Ito Y, Ito T, Kidokoro H, Noritake K, Hattori A, Nabatame S, Natsume J. Quantitative Three-Dimensional Gait Evaluation in Patients With Glucose Transporter 1 Deficiency Syndrome. Pediatr Neurol 2022; 132:23-26. [PMID: 35605310 DOI: 10.1016/j.pediatrneurol.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Of the patients with glucose transporter 1 deficiency syndrome (GLUT1-DS), 90% have a pathologic gait. Ataxic-spastic and ataxic gaits are seen in 35% of patients each. A ketogenic diet and modified Atkins diet (MAD) are effective therapy in GLUT1-DS in terms of both the seizures and movement disorder. A three-dimensional gait analysis (3DGA) system can be used to evaluate gait quantitatively using spatiotemporal data and gait kinematics. We performed 3DGA in three ambulatory patients with GLUT1-DS to evaluate the characteristics of their gait pathology, and we compared the gait variables before and after enhancing the MAD in one patient. METHODS After examination by pediatric neurologists and pediatric orthopedic surgeons, 3DGA was performed. We assessed walking speed, step length, step width, gait variability, Gait Deviation Index (GDI), Gait Profile Score (GPS), and Gait Variable Score (GVS). RESULTS All three patients had a low GDI and high GPS, comprehensive indices of gait pathology. The unstable gait pattern featured a wide step width in one patient and high gait variability in two patients. In the sagittal plane, the patients had increased GVSs in the knee and ankle joints due to excessive knee flexion or extension and excessive ankle plantarflexion. In the horizontal plane, the patients had increased GVSs in the pelvis, hips, and foot due to excessive rotation during walking. After enhancing the MAD, GDI, GPS, and GVSs improved. CONCLUSIONS 3DGA has potential for quantifying the characteristics of gait pathology and its improvement with dietary therapy in patients with GLUT1-DS.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Pediatrics, Nagoya University Graduate School of medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of medicine, Nagoya, Japan; Department of Pediatrics, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan.
| | - Tadashi Ito
- Three-Dimensional Motion Analysis Room, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of medicine, Nagoya, Japan
| | - Koji Noritake
- Department of Orthopedic Surgery, Aichi Prefectural Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of medicine, Nagoya, Japan; Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
110
|
Burns W, Chaudhari BP, Haffner DN. Neurogenetic and Metabolic Mimics of Common Neonatal Neurological Disorders. Semin Pediatr Neurol 2022; 42:100972. [PMID: 35868729 DOI: 10.1016/j.spen.2022.100972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Neurogenetic and metabolic diseases often present in the neonatal period, masquerading as other disorders, most commonly as neonatal encephalopathy and seizures. Advancements in our understanding of inborn errors of metabolism are leading to an increasing number of therapeutic options. Many of these treatments can improve long-term neurodevelopment and seizure control. However, the treatments are frequently condition-specific. A high index of suspicion is required for prompt identification and treatment. When suspected, simultaneous metabolic and molecular testing are recommended along with concurrent treatment.
Collapse
Affiliation(s)
- William Burns
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH.
| | - Bimal P Chaudhari
- Division of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neonatology, Nationwide Children's Hospital, Columbus, OH; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Darrah N Haffner
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Neurology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
111
|
Bartolini E, Ferrari AR, Lattanzi S, Pradella S, Zaccara G. Drug-resistant epilepsy at the age extremes: Disentangling the underlying etiology. Epilepsy Behav 2022; 132:108739. [PMID: 35636351 DOI: 10.1016/j.yebeh.2022.108739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
The incidence of epilepsy is highest at the extreme age ranges: childhood and elderly age. The most common syndromes in these demographics - self-limited epilepsies of childhood and idiopathic generalized epilepsies in pediatric age, focal epilepsy with structural etiology in older people - are expected to be drug responsive. In this work, we focus on such epilepsy types, overviewing the complex clinical background of unexpected drug-resistance. For self-limited epilepsies of childhood and idiopathic generalized epilepsies, we illustrate drug-resistance resulting from syndrome misinterpretation, reason on possible unexpected courses of epilepsy, and explicate the influence of inappropriate treatments. For elderly-onset epilepsy, we show the challenges in differential diagnosis possibly leading to pseudoresistance and analyze how drug-resistant epilepsy can arise in stroke, neurocognitive disorders, brain tumors, and autoimmune encephalitis. In children and senior people, drug-resistance can be regarded as a hint to review the diagnosis or explore alternative therapeutic strategies. Refractory seizures are not only a therapeutic challenge, but also a cardinal sign not to be overlooked in syndromes commonly deemed to be drug-responsive.
Collapse
Affiliation(s)
- Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Prato, Italy.
| | | |
Collapse
|
112
|
Serrallach BL, Orman G, Boltshauser E, Hackenberg A, Desai NK, Kralik SF, Huisman TAGM. Neuroimaging in cerebellar ataxia in childhood: A review. J Neuroimaging 2022; 32:825-851. [PMID: 35749078 DOI: 10.1111/jon.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Ataxia is one of the most common pediatric movement disorders and can be caused by a large number of congenital and acquired diseases affecting the cerebellum or the vestibular or sensory system. It is mainly characterized by gait abnormalities, dysmetria, intention tremor, dysdiadochokinesia, dysarthria, and nystagmus. In young children, ataxia may manifest as the inability or refusal to walk. The diagnostic approach begins with a careful clinical history including the temporal evolution of ataxia and the inquiry of additional symptoms, is followed by a meticulous physical examination, and, depending on the results, is complemented by laboratory assays, electroencephalography, nerve conduction velocity, lumbar puncture, toxicology screening, genetic testing, and neuroimaging. Neuroimaging plays a pivotal role in either providing the final diagnosis, narrowing the differential diagnosis, or planning targeted further workup. In this review, we will focus on the most common form of ataxia in childhood, cerebellar ataxia (CA). We will discuss and summarize the neuroimaging findings of either the most common or the most important causes of CA in childhood or present causes of pediatric CA with pathognomonic findings on MRI. The various pediatric CAs will be categorized and presented according to (a) the cause of ataxia (acquired/disruptive vs. inherited/genetic) and (b) the temporal evolution of symptoms (acute/subacute, chronic, progressive, nonprogressive, and recurrent). In addition, several illustrative cases with their key imaging findings will be presented.
Collapse
Affiliation(s)
- Bettina L Serrallach
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Gunes Orman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nilesh K Desai
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Thierry A G M Huisman
- Edward B. Singleton Department of Radiology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
113
|
Chung WK, Berg JS, Botkin JR, Brenner SE, Brosco JP, Brothers KB, Currier RJ, Gaviglio A, Kowtoniuk WE, Olson C, Lloyd-Puryear M, Saarinen A, Sahin M, Shen Y, Sherr EH, Watson MS, Hu Z. Newborn screening for neurodevelopmental diseases: Are we there yet? AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:222-230. [PMID: 35838066 PMCID: PMC9796120 DOI: 10.1002/ajmg.c.31988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
In the US, newborn screening (NBS) is a unique health program that supports health equity and screens virtually every baby after birth, and has brought timely treatments to babies since the 1960's. With the decreasing cost of sequencing and the improving methods to interpret genetic data, there is an opportunity to add DNA sequencing as a screening method to facilitate the identification of babies with treatable conditions that cannot be identified in any other scalable way, including highly penetrant genetic neurodevelopmental disorders (NDD). However, the lack of effective dietary or drug-based treatments has made it nearly impossible to consider NDDs in the current NBS framework, yet it is anticipated that any treatment will be maximally effective if started early. Hence there is a critical need for large scale pilot studies to assess if and how NDDs can be effectively screened at birth, if parents desire that information, and what impact early diagnosis may have. Here we attempt to provide an overview of the recent advances in NDD treatments, explore the possible framework of setting up a pilot study to genetically screen for NDDs, highlight key technical, practical, and ethical considerations and challenges, and examine the policy and health system implications.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics and Medicine, Columbia University, New York, New York, USA
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey R Botkin
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Jeffrey P Brosco
- Institute for Bioethics and Health Policy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kyle B Brothers
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Robert J Currier
- School of Medicine, University of California, San Francisco, California, USA
| | - Amy Gaviglio
- Connetics Consulting, Minneapolis, Minnesota, USA
| | | | - Colleen Olson
- Steinhardt Graduate School of Education, New York University, New York, New York, USA
| | | | | | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Elliott H Sherr
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, California, USA
| | - Michael S Watson
- Department of Pediatrics, School of Medicine, Washington University (Adjunct), St. Louis, Missouri, USA
| | - Zhanzhi Hu
- Department of Systems Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| |
Collapse
|
114
|
One Molecule for Mental Nourishment and More: Glucose Transporter Type 1—Biology and Deficiency Syndrome. Biomedicines 2022; 10:biomedicines10061249. [PMID: 35740271 PMCID: PMC9219734 DOI: 10.3390/biomedicines10061249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Glucose transporter type 1 (Glut1) is the main transporter involved in the cellular uptake of glucose into many tissues, and is highly expressed in the brain and in erythrocytes. Glut1 deficiency syndrome is caused mainly by mutations of the SLC2A1 gene, impairing passive glucose transport across the blood–brain barrier. All age groups, from infants to adults, may be affected, with age-specific symptoms. In its classic form, the syndrome presents as an early-onset drug-resistant metabolic epileptic encephalopathy with a complex movement disorder and developmental delay. In later-onset forms, complex motor disorder predominates, with dystonia, ataxia, chorea or spasticity, often triggered by fasting. Diagnosis is confirmed by hypoglycorrhachia (below 45 mg/dL) with normal blood glucose, 18F-fluorodeoxyglucose positron emission tomography, and genetic analysis showing pathogenic SLC2A1 variants. There are also ongoing positive studies on erythrocytes’ Glut1 surface expression using flow cytometry. The standard treatment still consists of ketogenic therapies supplying ketones as alternative brain fuel. Anaplerotic substances may provide alternative energy sources. Understanding the complex interactions of Glut1 with other tissues, its signaling function for brain angiogenesis and gliosis, and the complex regulation of glucose transportation, including compensatory mechanisms in different tissues, will hopefully advance therapy. Ongoing research for future interventions is focusing on small molecules to restore Glut1, metabolic stimulation, and SLC2A1 transfer strategies. Newborn screening, early identification and treatment could minimize the neurodevelopmental disease consequences. Furthermore, understanding Glut1 relative deficiency or inhibition in inflammation, neurodegenerative disorders, and viral infections including COVID-19 and other settings could provide clues for future therapeutic approaches.
Collapse
|
115
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
116
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK.,Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA.,Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
117
|
van Gemert LA, Leen WG, Draaisma JM, Roeleveld N, Willemsen MA. Head circumference in glucose transporter 1 deficiency syndrome: Normal for individuals, abnormal as a group. Eur J Paediatr Neurol 2022; 38:73-76. [PMID: 35500464 DOI: 10.1016/j.ejpn.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
In the literature, microcephaly is considered as part of the classical phenotype of glucose transporter 1 deficiency syndrome (GLUT1DS), and previous cohort studies reported a prevalence of microcephaly of around 50%. In our clinical experience, however, only very few patients with GLUT1DS appear to have microcephaly. Therefore, we conducted an observational study among a large cohort of Dutch patients with GLUT1DS to investigate the prevalence of microcephaly, defined as < 2 standard deviations (SD) below the mean. We analysed the head circumference of 54 patients and found a prevalence of microcephaly at last known measurement of 6.5%. Notably, none of the patients had a head circumference < -3 SD. However, we learned that 75.9% of the patients had a head circumference below 0 SD. This study shows that microcephaly occurs less often than previously thought in patients with GLUT1DS, and that primary or secondary microcephaly does not seem to be a sign for clinicians to suspect GLUT1DS. As a group, however, patients with GLUT1DS seem to have decreased head circumference compared to healthy individuals and as such, our study suggests that early brain development and brain growth may be compromised in GLUT1DS.
Collapse
Affiliation(s)
- Loes A van Gemert
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Wilhelmina G Leen
- Department of Neurology, Canisius Wilhelmina Hospital, Weg Door Jonkerbos 100, 6532, SZ, Nijmegen, the Netherlands.
| | - Jos M Draaisma
- Department of General Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Michèl A Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525, HR, Nijmegen, the Netherlands.
| |
Collapse
|
118
|
Diaz-Arias LA, Henry-Barron BJ, Buchholz A, Cervenka MC. Positive impact of a modified Atkins diet on cognition, seizure control, and abnormal movements in an adult with glucose transporter type 1 deficiency syndrome: case report. Neurol Sci 2022; 43:3449-3452. [DOI: 10.1007/s10072-022-05973-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022]
|
119
|
Striano P, Auvin S, Collins A, Horvath R, Scheffer IE, Tzadok M, Miller I, Koenig MK, Lacy A, Davis R, Garcia-Cazorla A, Saneto RP, Brandabur M, Blair S, Koutsoukos T, De Vivo D. A randomized, double-blind trial of triheptanoin for drug-resistant epilepsy in glucose transporter I deficiency syndrome (Glut1DS). Epilepsia 2022; 63:1748-1760. [PMID: 35441706 PMCID: PMC9546029 DOI: 10.1111/epi.17263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Evaluate efficacy and long-term safety of triheptanoin in patients >1 year old, not on a ketogenic diet, with drug-resistant seizures associated with Glucose Transporter Type 1 Deficiency Syndrome (Glut1DS). METHODS UX007G-CL201 was a randomized, double-blind, placebo-controlled trial. Following a 6-week baseline period, eligible patients were randomized 3:1 to triheptanoin or placebo. Dosing was titrated to 35% total daily calories over 2 weeks. After an 8-week placebo-controlled period, all patients received open-label triheptanoin through Week 52. RESULTS The study included 36 patients (15 children; 13 adolescents; 8 adults). A median 12.6% reduction in overall seizure frequency was observed in the triheptanoin arm relative to baseline and a 13.5% difference was observed relative to placebo (p = .58). In patients with absence seizures only (n = 9), a median 62.2% reduction in seizure frequency was observed in the triheptanoin arm relative to baseline. Only one patient with absence seizures only was present in the control group, preventing comparison. No statistically significant differences in seizure frequency were observed. Common treatment-emergent adverse events (TEAEs) included diarrhea, vomiting, abdominal pain, and nausea, most mild or moderate in severity. No serious AEs were considered treatment related. One patient discontinued due to status epilepticus. SIGNIFICANCE Triheptanoin did not significantly reduce seizure frequency in patients with Glut1DS not on the ketogenic diet. Treatment was associated with mild to moderate GI treatment-related events; most resolved following dose reduction or interruption and/or medication for treatment. Triheptanoin was not associated with any long-term safety concerns when administered at dose levels up to 35% total daily caloric intake for up to one year.
Collapse
Affiliation(s)
- Pasquale Striano
- IRCCS Istituto 'G. Gaslini', Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Stéphane Auvin
- Robert-Debré University Hospital and Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | | | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ingrid E Scheffer
- Austin and Royal Children's Hospital, Florey and Murdoch Institutes, University of Melbourne, Melbourne, Vic., Australia
| | - Michal Tzadok
- Pediatric Neurology Units, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Ramat Gan, Israel
| | - Ian Miller
- Miami Children's Research Institute, Miami, Florida, USA
| | | | - Adrian Lacy
- Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Ronald Davis
- Neurology & Epilepsy Research Center, DBO Pediatric Neurology, P.A., Orlando, Florida, USA
| | | | - Russell P Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington/ Seattle Children's Hospital, Seattle, Washington, USA
| | | | - Susan Blair
- Ultragenyx Pharmaceutical Inc., Novato, California, USA
| | | | - Darryl De Vivo
- Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
120
|
Sánchez-Lijarcio O, Yubero D, Leal F, Couce ML, Luis GGS, López-Laso E, García-Cazorla À, Pías-Peleteiro L, de Azua Brea B, Ibáñez-Micó S, Martínez GM, Schifferli MT, Enriquez SW, Ugarte M, Artuch R, Pérez B. The clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1. Clin Genet 2022; 102:40-55. [PMID: 35388452 PMCID: PMC9325084 DOI: 10.1111/cge.14138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
Glucose transporter 1 deficiency syndrome (GLUT1DS) is a neurometabolic disorder caused by haploinsufficiency of the GLUT1 glucose transporter (encoded by SLC2A1) leading to defective glucose transport across the blood–brain barrier. This work describes the genetic analysis of 56 patients with clinical or biochemical GLUT1DS hallmarks. 55.4% of these patients had a pathogenic variant of SLC2A1, and 23.2% had a variant in one of 13 different genes. No pathogenic variant was identified for the remaining patients. Expression analysis of SLC2A1 indicated a reduction in SLC2A1 mRNA in patients with pathogenic variants of this gene, as well as in one patient with a pathogenic variant in SLC9A6, and in three for whom no candidate variant was identified. Thus, the clinical and biochemical hallmarks generally associated with GLUT1DS may be caused by defects in genes other than SLC2A1.
Collapse
Affiliation(s)
- Obdulia Sánchez-Lijarcio
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Delia Yubero
- Sant Joan de Déu Research Institute, CIBERER, Barcelona, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - María L Couce
- Unit for the Diagnosis and Treatment of Congenital Metabolic Diseases, Clinical University Hospital of Santiago de Compostela, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, CIBERER, MetabERN, Santiago de Compostela, Spain
| | | | - Eduardo López-Laso
- Paediatric Neurology Unit, Department of Paediatrics, University Hospital Reina Sofía, Maimónides Institute of Biomedical Investigation of Cordoba (IMIBIC) and CIBERER, Córdoba, Spain
| | | | | | | | - Salvador Ibáñez-Micó
- Neuropaediatrics Unit, Department of Pediatrics, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | | | | | - Scarlet Witting Enriquez
- Child Neurology Service, Clinical Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| | - Rafael Artuch
- Sant Joan de Déu Research Institute, CIBERER, Barcelona, Spain
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Center of Molecular Biology Severo Ochoa (CBMSO), Autonomous University of Madrid, CIBERER, IdiPAZ, Madrid, Spain
| |
Collapse
|
121
|
Anurat K, Khongkhatithum C, Tim-Aroon T, Limwongse C, Thampratankul L. Sleep Disorder: An Overlooked Manifestation of Glucose Transporter Type-1 Deficiency Syndrome. Neuropediatrics 2022; 53:129-132. [PMID: 34674205 DOI: 10.1055/s-0041-1736179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glucose transporter type-1 deficiency syndrome (Glut1 DS) is a rare disorder with various manifestations. Early diagnosis is crucial because treatment with the ketogenic diet can lead to clinical improvement. Here, we report the cases of two siblings with Glut1 DS and one of them presented with sleep disorder which is a rare and atypical manifestation of Glut1 DS. Patient 1 was a 3.5-year-old boy who presented with paroxysmal loss of tone and weakness of the whole body with unresponsiveness after waking up. He also had excessive daytime sleepiness, insomnia, and restless sleep. His other clinical findings included focal seizures, paroxysmal exercise-induced dyskinesia (PED), ataxia, mild global developmental delay, and hyperactivity. Patient 2 was a 5.5-year-old boy who presented with drug-resistant focal epilepsy, global developmental delay, paroxysmal dystonia, and ataxia. A novel heterozygous nonsense variant of SLC2A1, c.1177G > T (p.Glu393*), classified as a pathogenic variant, was identified in both patients, but not in their parents' blood. After treatment with the modified Atkins diet, their neurological functions significantly improved. In conclusion, we reported two siblings with variable phenotypes of Glut1 DS with a novel nonsense mutation. Although sleep disorder and daytime somnolence were the nonclassical manifestations of Glut1 DS, the diagnostic evaluation of possible Glut1 DS in patients presented with daytime sleepiness, particularly in cases with the cooccurrence of seizures or movement disorders should be considered.
Collapse
Affiliation(s)
- Kingthong Anurat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chaiyos Khongkhatithum
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lunliya Thampratankul
- Division of Neurology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
122
|
Vasquez A, Buraniqi E, Wirrell EC. New and emerging pharmacologic treatments for developmental and epileptic encephalopathies. Curr Opin Neurol 2022; 35:145-154. [PMID: 35102126 DOI: 10.1097/wco.0000000000001029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Summarize evidence on Developmental and Epileptic Encephalopathies (DEEs) treatments focusing on new and emerging pharmacologic therapies (see Video, http://links.lww.com/CONR/A61, Supplementary Digital Content 1, which provides an overview of the review). RECENT FINDINGS Advances in the fields of molecular genetics and neurobiology have led to the recognition of underlying pathophysiologic mechanisms involved in an increasing number of DEEs that could be targeted with precision therapies or repurposed drugs, some of which are currently being evaluated in clinical trials. Prompt, optimal therapy is critical, and promising therapies approved or in clinical trials for tuberous sclerosis complex, Dravet and Lennox-Gastaut Syndromes including mammalian target of rapamycin inhibitors, selective membrane channel and antisense oligonucleotide modulation, and repurposed drugs such as fenfluramine, stiripentol and cannabidiol, among others, may improve seizure burden and neurological outcomes. There is an urgent need for collaborative efforts to evaluate the efficacy and safety of emerging DEEs therapies. SUMMARY Development of new therapies promise to address unmet needs for patients with DEEs, including improvement of neurocognitive function and quality of life.
Collapse
Affiliation(s)
- Alejandra Vasquez
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
123
|
Diagnostic and Clinical Manifestation Differences of Glucose Transporter Type 1 Deficiency Syndrome in a Family with SLC2A1 Gene Mutation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063279. [PMID: 35328965 PMCID: PMC8950241 DOI: 10.3390/ijerph19063279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023]
Abstract
Glucose transporter type 1 deficiency syndrome is a rare genetic disease that manifests neurological symptoms such as mental impairment or movement disorders, mostly seen in pediatric patients. Here, we highlight the main symptoms, diagnostic difficulties, and genetic correlations of this disease based on different clinical presentations between the members of a family carrying the same mutation. In this report, we studied siblings—a 5-year-old girl and a 6-year-old boy—who were admitted to a pediatric ward with various neurological symptoms. Different diagnostic procedures such as lumbar puncture, electroencephalography, and MRI of the brain were performed on these patients. Whole genome sequencing identified mutations in the SLC2A1 and GLUT1-DS genes, following which a ketogenic diet was implemented. This diet modification resulted in a good clinical response. Our case report reveals patients with the same genetic mutations having distinctive clinical manifestations.
Collapse
|
124
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
125
|
Ziegler A. [Precision medicine in pediatric neurology exemplified by the new treatment forms]. DER NERVENARZT 2022; 93:122-134. [PMID: 35037966 PMCID: PMC8825642 DOI: 10.1007/s00115-021-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND In recent years the possibilities for molecular diagnostics and treatment of rare childhood diseases have greatly improved. The first gene-modifying drugs have now been approved, leading to a new era of precision treatment in pediatric neurology. OBJECTIVE This article describes the dynamic developments of precision medicine in pediatric neurology in the areas of prevention, diagnostics and targeted treatment. DISCUSSION The paradigm shift as a result of precision medicine is based on a treatment approach focused more strongly on the individual and the corresponding unique characteristics. Modern methods of genetic and molecular diagnostics are used to accurately describe and characterize affected children, complemented by a precise description of the clinical phenotype. Nevertheless, the success of the best individual treatment strategy derived from this information is often dependent on the time of diagnosis. Therefore, methods for disease prevention, particularly newborn screening programs, become increasingly more important to achieve the best possible success of novel therapies even before the onset of disease symptoms. In addition to a precise stratification of therapies, special attention should be paid in the future to the consideration of the individual perspective of patients and parents/guardians. Furthermore, a normative framework for a quality-ensured application of gene-modifying therapies in the German healthcare system must be created.
Collapse
Affiliation(s)
- Andreas Ziegler
- Zentrum für Kinder- und Jugendmedizin, Sektion für Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| |
Collapse
|
126
|
Sourbron J, Jansen K, Mei D, Hammer TB, Møller RS, Gold NB, O'Grady L, Guerrini R, Lagae L. SLC7A3: In Silico Prediction of a Potential New Cause of Childhood Epilepsy. Neuropediatrics 2022; 53:46-51. [PMID: 34872132 DOI: 10.1055/s-0041-1739133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, University of Florence, Florence, Italy
| | - Trine Bjørg Hammer
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Denmark and Clinical Genetic Department, Rigshospitalet, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Dianalund, Denmark
| | - Nina B Gold
- Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, United States.,Harvard Medical School, Department of Pediatrics, Boston, MA, USA
| | - Lauren O'Grady
- Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, United States
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
127
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
128
|
Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in Neurometabolic Diseases. CHILDREN (BASEL, SWITZERLAND) 2022; 9:97. [PMID: 35053723 PMCID: PMC8774396 DOI: 10.3390/children9010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Neurometabolic disorders are an important group of diseases that mostly occur in neonates and infants. They are mainly due to the lack or dysfunction of an enzyme or cofactors necessary for a specific biochemical reaction, which leads to a deficiency of essential metabolites in the brain. This, in turn, can cause certain neurometabolic diseases. Disruption of metabolic pathways, and the inhibition at earlier stages, may lead to the storage of reaction intermediates, which are often toxic to the developing brain. Symptoms are caused by the progressive deterioration of mental, motor, and perceptual functions. The authors review the diseases with microcephaly, which may be one of the most visible signs of neurometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Justyna Paprocka
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (W.K.); (K.K.); (M.M.)
| |
Collapse
|
129
|
He Q, Zhang Y, Ma D, Zhang W, Zhang H. Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways. Eur J Nutr 2022; 61:2003-2014. [PMID: 34984487 DOI: 10.1007/s00394-021-02764-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Obesity is a major risk factor for various metabolic diseases, including metabolic syndrome and type-2 diabetes. Glucose transporter 1 (GLUT1) impairment has been proposed as a mechanism of fat accumulation and glucose tolerance. Our aims were to determine the role of intestinal epithelial glut1 activity in obesity and the mechanism of anti-obesity effect of Lactobacillus casei Zhang (LCZ) intervention in the absence of gut villi-specific glut1 expression. METHODS This study compared the body weight, intestinal microbiota perturbations, fat mass accumulation, and glucose tolerance (by oral glucose tolerance test) between high-fat diet fed villi-specific glut1 knockout (KO) mice and control mice (glut1 flox/flox) with/without LCZ intervention. The intestinal microbiota was evaluated by metagenomic sequencing. RESULTS Our results showed that villi-specific glut1 KO mice had more fat deposition at the premetaphase stage, impaired glucose tolerance, and obvious alterations in gut microbiota compared to control mice. Probiotic administration significantly lowered the body weight, the weights of mesenteric and perirenal white adipose tissues (WAT), and mediated gut microbiota modulation in both types of KO and control mice. The species Barnesiella intestinihominis and Faecalibaculum rodentium might contribute to fasting fat mass accumulation associated with gut-specific glut1 inactivation, while the probiotic-mediated anti-obesity effect was linked to members of the Bacteroides genera, Odoribacter genera and Alistipes finegoldii. CONCLUSION Our study demonstrated that abrogating gut epithelial GLUT1 activity affected the gut microbiota, fat mass accumulation, and glucose tolerance; and LCZ administration reduced fat mass accumulation and central obesity.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
130
|
McGinn RJ, Von Stein EL, Summers Stromberg JE, Li Y. Precision medicine in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:147-188. [DOI: 10.1016/bs.pmbts.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
131
|
Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN. The role of SLC transporters for brain health and disease. Cell Mol Life Sci 2021; 79:20. [PMID: 34971415 PMCID: PMC11071821 DOI: 10.1007/s00018-021-04074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The brain exchanges nutrients and small molecules with blood via the blood-brain barrier (BBB). Approximately 20% energy intake for the body is consumed by the brain. Glucose is known for its critical roles for energy production and provides substrates for biogenesis in neurons. The brain takes up glucose via glucose transporters GLUT1 and 3, which are expressed in several neural cell types. The brain is also equipped with various transport systems for acquiring amino acids, lactate, ketone bodies, lipids, and cofactors for neuronal functions. Unraveling the mechanisms by which the brain takes up and metabolizes these nutrients will be key in understanding the nutritional requirements in the brain. This could also offer opportunities for therapeutic interventions in several neurological disorders. For instance, emerging evidence suggests a critical role of lactate as an alternative energy source for neurons. Neuronal cells express monocarboxylic transporters to acquire lactate. As such, treatment of GLUT1-deficient patients with ketogenic diets to provide the brain with alternative sources of energy has been shown to improve the health of the patients. Many transporters are present in the brain, but only a small number has been characterized. In this review, we will discuss about the roles of solute carrier (SLC) transporters at the blood brain barrier (BBB) and neural cells, in transport of nutrients and metabolites in the brain.
Collapse
Affiliation(s)
- Yen T K Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Hoa T T Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Tra H Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- SLING/Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Immunology Translational and Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
132
|
Soliani L, Martorell L, Yubero D, Verges C, Petit V, Ortigoza‐Escobar JD. Paroxysmal Non-Kinesigenic Dyskinesia: Utility of the Quantification of GLUT1 in Red Blood Cells. Mov Disord Clin Pract 2021; 9:252-254. [PMID: 35146065 PMCID: PMC8810440 DOI: 10.1002/mdc3.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età pediatricaBolognaItaly,Dipartimento di Scienze Mediche e Chirurgiche (DIMEC)Università di BolognaBolognaItaly
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos IIIMadridSpain
| | - Delia Yubero
- Department of Genetic and Molecular Medicine IPERInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Carla Verges
- Rehabilitation Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | | | - Juan Darío Ortigoza‐Escobar
- Movement Disorders Unit, Pediatric Neurology DepartmentInstitut de Recerca, Hospital Sant Joan de Déu BarcelonaBarcelonaSpain,European Reference Network for Rare Neurological Diseases (ERN‐RND)TübingenGermany
| |
Collapse
|
133
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
134
|
Armeno M, Verini A, Caballero E, Cresta A, Valenzuela GR, Caraballo R. Long-term effectiveness and adverse effects of ketogenic diet therapy in infants with drug-resistant epilepsy treated at a single center in Argentina. Epilepsy Res 2021; 178:106793. [PMID: 34763269 DOI: 10.1016/j.eplepsyres.2021.106793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Ketogenic diet therapy (KDT) is a metabolic treatment with proven effectiveness for the treatment of drug-resistant epilepsy in children. Although previously not used in infants under 2 years of age, recent studies have shown KDT to be highly effective and well tolerated in infants with epilepsy, especially those with epileptic encephalopathies. Here, we describe the effectiveness and tolerability of the diet in infants up to 2 years of age. MATERIAL AND METHODS A prospective study was conducted in a cohort of infants younger than 2 years of age with drug-resistant epilepsy who received the classic ketogenic diet using a specific protocol at a single center in Argentina. RESULTS 56 infants with treatment-refractory epilepsy were evaluated. The etiology was genetic in 21.4%, structural in 28.6%, unknown in 44.7%, and metabolic in 5.4%. At 3 months, a > 50% decrease in seizure frequency was observed in 35 patients (62.4%), of whom 11 (19.6%) became seizure free. At 6 months, 34 patients (60.7%) had a decrease in seizure frequency of > 50%, of whom 10 (17.8%) were seizure free. At the one-year follow-up, 27 patients (48.2%) had a > 50% decrease in seizure frequency, of whom six (10.7%) were seizure free. At two years, 14 patients (25%) had a > 50% seizure control, of whom four (7.1%) were seizure free. The most common early adverse effects were hypoglycemia and vomiting, while after 1 month and beyond metabolic acidosis, vomiting, and constipation more commonly found. A trend towards a higher rate of acute adverse events in infants younger than 1 year was observed. CONCLUSIONS CKD showed to be a useful option in infants with treatment-resistant epilepsy. Adverse effects were common, but not a reason to discontinue the diet. Further studies are necessary to evaluate in which epilepsy syndromes and etiologies KDT is most effective.
Collapse
Affiliation(s)
- Marisa Armeno
- Department of Clinical Nutrition, Hospital de Pediatria J.P. Garrahan, Buenos Aires, Argentina.
| | - Antonella Verini
- Department of Clinical Nutrition, Hospital de Pediatria J.P. Garrahan, Buenos Aires, Argentina
| | - Eugenia Caballero
- Department of Food Services, Hospital de Pediatria J.P. Garrahan, Buenos Aires, Argentina
| | - Araceli Cresta
- Department of Food Services, Hospital de Pediatria J.P. Garrahan, Buenos Aires, Argentina
| | | | - Roberto Caraballo
- Department of Neurology, Hospital de Pediatria J.P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
135
|
Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder. NPJ Genom Med 2021; 6:94. [PMID: 34764295 PMCID: PMC8586153 DOI: 10.1038/s41525-021-00255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a−/− mouse model showed behavioral changes.
Collapse
|
136
|
Maiorana A, Caviglia S, Greco B, Alfieri P, Cumbo F, Campana C, Bernabei SM, Cusmai R, Mosca A, Dionisi-Vici C. Ketogenic diet as elective treatment in patients with drug-unresponsive hyperinsulinemic hypoglycemia caused by glucokinase mutations. Orphanet J Rare Dis 2021; 16:424. [PMID: 34635134 PMCID: PMC8507241 DOI: 10.1186/s13023-021-02045-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hyperinsulinemic hypoglycemia (HI) is the most frequent cause of recurrent hypoglycemia in children. Despite diagnostic and therapeutic advances, it remains an important cause of morbidity, leading to neurological complications, such as psychomotor retardation and epilepsy. Patients with diffuse drug-unresponsive HI manifest neurological impairment and neurobehavioral problems, even though surgically treated with a near-total pancreatectomy. Based on the analogies between HI and GLUT1 deficiency, both presenting with neuroglycopenia and lack of alternative cerebral energy sources, we administered a ketogenic diet (KD) in three drug-unresponsive GCK-HI patients with the aim of preserving neurodevelopment and avoiding the need of a near-total pancreatectomy. They presented recurrent symptomatic hypoglycemia, intellectual disability and refractory epilepsy. Patients were treated with classical KD for 79, 27 and 18 months, respectively. Results All patients became asymptomatic in a few days and showed an important improvement of the alert state. Epilepsy disappeared and no appearance of novel hypoglycemic lesions was detected with a brain MRI. Cognitive and adaptive abilities rapidly improved and normalized. IQ rose significantly from 81 to 111 (p = 0.04) in patient 1, from 82 vs 95 (p = 0.04) in patient 2, from 60 to 90 (p = 0.04) in patient 3. Conclusions We demonstrated the safety and efficacy of KD in the treatment of drug-unresponsive GCK-HI at a short and long-term. The neuroprotective effects of KD determined the recovery from epilepsy and intellectual disabilities and averted the need of a near-total pancreatectomy. All patients and their families reported an improvement of physical and psychosocial well-being, with a substantial improvement of their quality of life. These results might change the course and the quality of life of these patients and their families, having a relevant impact on human lives. Therefore, KD might be considered the elective treatment in unresponsive forms of GCK-HI. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02045-3.
Collapse
Affiliation(s)
- Arianna Maiorana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Stefania Caviglia
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Benedetta Greco
- Psychology Clinic Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Francesca Cumbo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carmen Campana
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Silvia Maria Bernabei
- Division of Artificial Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonella Mosca
- Department of Hepatology, Gastroenterology and Nutrition, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Department of Pediatric Subspecialties, Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
137
|
Logel SN, Connor EL, Hsu DA, Fenske RJ, Paloian NJ, De Vivo DC. Exploring diazoxide and continuous glucose monitoring as treatment for Glut1 deficiency syndrome. Ann Clin Transl Neurol 2021; 8:2205-2209. [PMID: 34612610 PMCID: PMC8607448 DOI: 10.1002/acn3.51462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Glut1 deficiency syndrome is caused by SLC2A1 mutations on chromosome 1p34.2 that impairs glucose transport across the blood–brain barrier resulting in hypoglycorrhachia and decreased fuel for brain metabolism. Neuroglycopenia causes a drug‐resistant metabolic epilepsy due to energy deficiency. Standard treatment for Glut1 deficiency syndrome is the ketogenic diet that decreases the demand for brain glucose by supplying ketones as alternative fuel. Treatment options are limited if patients fail the ketogenic diet. We present a case of successful diazoxide use with continuous glucose monitoring in a patient with Glut1 deficiency syndrome who did not respond to the ketogenic diet.
Collapse
Affiliation(s)
- Santhi N Logel
- Division of Pediatric Endocrinology and Diabetes, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ellen L Connor
- Division of Pediatric Endocrinology and Diabetes, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David A Hsu
- Department of Neurology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rachel J Fenske
- Clinical Nutrition, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, USA
| | - Neil J Paloian
- Division of Pediatric Nephrology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darryl C De Vivo
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
138
|
Cervenka MC, Wood S, Bagary M, Balabanov A, Bercovici E, Brown MG, Devinsky O, Di Lorenzo C, Doherty CP, Felton E, Healy LA, Klein P, Kverneland M, Lambrechts D, Langer J, Nathan J, Munn J, Nguyen P, Phillips M, Roehl K, Tanner A, Williams C, Zupec-Kania B. International Recommendations for the Management of Adults Treated With Ketogenic Diet Therapies. Neurol Clin Pract 2021; 11:385-397. [PMID: 34840865 PMCID: PMC8610544 DOI: 10.1212/cpj.0000000000001007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 10/16/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate current clinical practices and evidence-based literature to establish preliminary recommendations for the management of adults using ketogenic diet therapies (KDTs). METHODS A 12-topic survey was distributed to international experts on KDTs in adults consisting of neurologists and dietitians at medical institutions providing KDTs to adults with epilepsy and other neurologic disorders. Panel survey responses were tabulated by the authors to determine the common and disparate practices between institutions and to compare these practices in adults with KDT recommendations in children and the medical literature. Recommendations are based on a combination of clinical evidence and expert opinion regarding management of KDTs. RESULTS Surveys were obtained from 20 medical institutions with >2,000 adult patients treated with KDTs for epilepsy or other neurologic disorders. Common side effects reported are similar to those observed in children, and recommendations for management are comparable with important distinctions, which are emphasized. Institutions differ with regard to recommended biochemical assessment, screening, monitoring, and concern for long-term side effects, and further investigation is warranted to determine the optimal clinical management. Differences also exist between screening and monitoring practices among adult and pediatric providers. CONCLUSIONS KDTs may be safe and effective in treating adults with drug-resistant epilepsy, and there is emerging evidence supporting the use in other adult neurologic disorders and general medical conditions as well. Therefore, expert recommendations to guide optimal care are critical as well as further evidence-based investigation.
Collapse
Affiliation(s)
- Mackenzie C Cervenka
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Susan Wood
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Manny Bagary
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Antoaneta Balabanov
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Eduard Bercovici
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Mesha-Gay Brown
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Orrin Devinsky
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Cherubino Di Lorenzo
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Colin P Doherty
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Elizabeth Felton
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Laura A Healy
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Pavel Klein
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Magnhild Kverneland
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Danielle Lambrechts
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Jennifer Langer
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Janak Nathan
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Jude Munn
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Patty Nguyen
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Matthew Phillips
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Kelly Roehl
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Adrianna Tanner
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Clare Williams
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| | - Beth Zupec-Kania
- Department of Neurology (MCC), Johns Hopkins University School of Medicine, Baltimore, MD; Matthew's Friends Clinics for Ketogenic Dietary Therapies (SW), Lingfield, Surrey, United Kingdom; Complex Epilepsy and Sleep Service (MB, JM), The Barberry, Birmingham, United Kingdom; Department of Neurology (AB, KR), Rush University Medical Center, Chicago, IL; Department of Neurology (EB), University of Toronto, Ontario, Canada; Department of Neurology (M-GB), University of Colorado, Denver; Department of Neurology (OD), New York University School of Medicine; Department of Medico-Surgical Sciences and Biotechnologies (CDL), Sapienza University of Rome Polo Pontino, Italy; Academic Unit of Neurology (CPD), Trinity College Dublin & FutureNeuro, Ireland; Department of Neurology (EF), UW Health, Madison; Department of Clinical Nutrition (LAH), St James' Hospital, Dublin, Ireland; Mid-Atlantic Epilepsy and Sleep Center (PK), Bethesda, MD; National Center for Epilepsy (MK), Oslo, Norway; Department of Neurology (DL), Academic Center for Epileptology, Kempenhaeghe and Maastricht University Medical Center, Heeze, The Netherlands; Department of Neurology (JL), University of Virginia, Charlottesville; Department of Neurology (JN), Shushrusha Hospital, Mumbai, India; Charles Dent Metabolic Unit (PN), University College London Hospitals NHS Foundation Trust, United Kingdom; Department of Neurology (MP), Waikato Hospital, Hamilton, New Zealand; Mercy Health Hauenstein Neurosciences (AT), Grand Rapids, MI; Department of Dietetics and Foodservices (CW), Mater Group, South Brisbane, QLD, Australia; and The Charlie Foundation for Ketogenic Therapies (BZ-K), Santa Monica, CA
| |
Collapse
|
139
|
Jacobson RI. Discovery of Glut 1 Deficiency Syndrome: Cerebrospinal Fluid Inspiration and Serendipity. Pediatr Neurol 2021; 122:65-67. [PMID: 34303586 DOI: 10.1016/j.pediatrneurol.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Ronald I Jacobson
- Chief of Pediatric Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, Clinical Associate Professor Neurology and Pediatrics, New York Medical College, Valhalla, New York.
| |
Collapse
|
140
|
GLUT1 Deficiency Syndrome-Early Treatment Maintains Cognitive Development? (Literature Review and Case Report). Genes (Basel) 2021; 12:genes12091379. [PMID: 34573360 PMCID: PMC8472230 DOI: 10.3390/genes12091379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Glucose transporter type 1 (GLUT1) is the most important energy carrier of the brain across the blood-brain barrier, and a genetic defect of GLUT1 is known as GLUT1 deficiency syndrome (GLUT1DS). It is characterized by early infantile seizures, developmental delay, microcephaly, ataxia, and various paroxysmal neurological phenomena. In most cases, GLUT1DS is caused by heterozygous single-nucleotide variants (SNVs) in the SLC2A1 gene that provoke complete or severe impairment of the functionality and/or expression of GLUT1 in the brain. Despite the rarity of these diseases, GLUT1DS is of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms, especially if it is started as early as possible. We present a clinical phenotype, biochemical analysis, electroencephalographic and neuropsychological features of an 11-month-old boy with myoclonic seizures, hypogammaglobulinemia, and mildly impaired gross motor development. Using sequence analysis and deletion/duplication testing, deletion of an entire coding sequence in the SLC2A1 gene was detected. Early introduction of a modified Atkins diet maintained a seizure-free period without antiseizure medications and normal cognitive development in the follow-up period. Our report summarizes the clinical features of GLUT1 syndromes and discusses the importance of early identification and molecular confirmation of GLUT1DS as a treatable metabolic disorder.
Collapse
|
141
|
Breu M, Häfele C, Trimmel-Schwahofer P, Schmidt WM, Laconne F, Vodopiutz J, Male C, Dressler A. The relation of etiology based on the 2017 ILAE classification to the effectiveness of the ketogenic diet in drug-resistant epilepsy in childhood. Epilepsia 2021; 62:2814-2825. [PMID: 34453316 PMCID: PMC9290115 DOI: 10.1111/epi.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Objective To investigate the effectiveness and safety of the ketogenic diet (KD) in drug‐resistant epilepsy in childhood in relation to the new 2017 International League Against Epilepsy (ILAE) classification of etiology. Methods A consecutive cohort of patients treated with the KD were categorized according to the ILAE classification into known (structural, genetic, metabolic, infectious, and immune‐mediated) and unknown etiology. Primary outcome was the frequency of patients achieving seizure freedom with the KD at 3 months, secondary outcomes were seizure reduction >50% at 3 months, and both seizure freedom and seizure reduction >50% at 6, 12 months, and at last follow‐up (LFU), and adverse effects. Outcomes were compared between etiology groups. Results Etiology was known in 70% (129/183). Outcomes did not differ at 3 months (known vs unknown: seizure freedom 28% vs 33%, seizure reduction 62 vs 67%), but seizure freedom was significantly less frequent in known etiology at 6 months (26% vs 43%) and beyond (22% vs 37%). Logistic regression identified duration of epilepsy, number of previous antiseizure medications (ASMs), and age‐appropriate psychomotor development as positive determinants of outcome. Among individual etiology groups, the effectiveness of KD was relatively best for genetic (33% at LFU) and poorest for metabolic etiology (8% at LFU). The small number of patients with infectious and immune‐mediated etiology requires larger numbers in each etiology group to corroborate our results. No differences in type and frequency of adverse effects (in 71%) between etiology groups were observed, requiring medical intervention in 21%. Significance The KD was most effective in genetic and unknown etiology, many unknowns probably represent yet unidentified genetic causes. We recommend consequent diagnostic and genetic work‐up to identify etiologies that respond best to the KD. The KD should be offered early to infants with genetic epilepsy before deterioration of epileptic symptoms and of psychomotor development.
Collapse
Affiliation(s)
- Markus Breu
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Chiara Häfele
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Petra Trimmel-Schwahofer
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Wolfgang M Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University Vienna, Vienna, Austria
| | - Franco Laconne
- Institute for Medical Genetics, Medical University Vienna, Vienna, Austria
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Christoph Male
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Anastasia Dressler
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| |
Collapse
|
142
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
143
|
Kaul N, Nicolo JP, O’Brien TJ, Kwan P. Practical considerations of dietary therapies for epilepsy in adults. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDespite the increasing number of anti-seizure medications becoming available, the proportion of patients with drug-resistant epilepsy remains unchanged. Dietary therapy for epilepsy is well-established practice in paediatric care, but relatively underutilised in adults. Recently, international recommendations have been published to guide the treatment of adults receiving dietary therapy for epilepsy.This review focuses on the specific aspects of care unique to the management of adults receiving dietary therapy for epilepsy, including patient selection, diet composition, initiation, monitoring and cessation of dietary treatment. We emphasise the need for a multidisciplinary team approach with appropriately trained neurologists and dietitians to provide holistic care while the patients are receiving dietary therapy. Future research should focus on the optimal diet composition and meeting the psychosocial needs of adults with epilepsy to maximise efficacy and adherence to dietary treatment.
Collapse
|
144
|
A O, U M, Lf B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine 2021; 69:103474. [PMID: 34256347 PMCID: PMC8324816 DOI: 10.1016/j.ebiom.2021.103474] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Whereas energy function in the aging brain and their related neurodegenerative diseases has been explored in some detail, there is limited knowledge about molecular mechanisms and brain networks of energy metabolism during infancy and childhood. In this review we describe current insights on physiological brain energetics at prenatal and neonatal stages, and in childhood. We then describe the main groups of inborn errors of energy metabolism affecting the brain. Of note, scarce basic neuroscience research in this field limits the opportunity for these disorders to provide paradigms of energy utilization during neurodevelopment. Finally, we report energy metabolism disturbances in well-known non-metabolic neurodevelopmental disorders. As energy metabolism is a fundamental biological function, brain energy utilization is likely altered in most neuropediatric diseases. Precise knowledge on mechanisms of brain energy disturbance will open the possibility of metabolic modulation therapies regardless of disease etiology.
Collapse
Affiliation(s)
- Oyarzábal A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Musokhranova U
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Barros Lf
- Center for Scientific Studies - CECs, Valdivia 5110466, Chile
| | - García-Cazorla A
- Neurometabolic Unit and Laboratory of Synaptic Metabolism. IPR, CIBERER (ISCIII) and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
145
|
Zanaboni MP, Pasca L, Villa BV, Faggio A, Grumi S, Provenzi L, Varesio C, De Giorgis V. Characterization of Speech and Language Phenotype in GLUT1DS. CHILDREN-BASEL 2021; 8:children8050344. [PMID: 33925679 PMCID: PMC8146076 DOI: 10.3390/children8050344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022]
Abstract
Background: To analyze the oral motor, speech and language phenotype in a sample of pediatric patients with GLUT 1 transporter deficiency syndrome (GLUT1DS). Methods: eight Italian-speaking children with GLUT1DS (aged 4.6–15.4 years) in stable treatment with ketogenic diet from a variable time underwent a specific and standardized speech and language assessment battery. Results: All patients showed deficits with different degrees of impairment in multiple speech and language areas. In particular, orofacial praxis, parallel and total movements were the most impaired in the oromotor domain; in the speech domain patients obtained a poor performance in the diadochokinesis rate and in the repetition of words that resulted as severely deficient in seven out of eight patients; in the language domain the most affected abilities were semantic/phonological fluency and receptive grammar. Conclusions: GLUT1DS is associated to different levels of speech and language impairment, which should guide diagnostic and therapeutic intervention. Larger population data are needed to identify more precisely a speech and language profile in GLUT1DS patients.
Collapse
Affiliation(s)
- Martina Paola Zanaboni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
- Department of Brain and Behaviour Neuroscience, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380289
| | - Barbara Valeria Villa
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Antonella Faggio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Serena Grumi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Livio Provenzi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
- Department of Brain and Behaviour Neuroscience, University of Pavia, 27100 Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.P.Z.); (B.V.V.); (A.F.); (S.G.); (L.P.); (C.V.); (V.D.G.)
| |
Collapse
|
146
|
Syrbe S. Präzisionsmedizin für genetische Epilepsien – am Anfang des Weges? ZEITSCHRIFT FÜR EPILEPTOLOGIE 2021. [DOI: 10.1007/s10309-021-00409-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
147
|
Classic Ketogenic Diet and Modified Atkins Diet in SLC2A1 Positive and Negative Patients with Suspected GLUT1 Deficiency Syndrome: A Single Center Analysis of 18 Cases. Nutrients 2021; 13:nu13030840. [PMID: 33806661 PMCID: PMC8000344 DOI: 10.3390/nu13030840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Glucose transporter type 1 deficiency syndrome (GLUT1DS) is caused by mutations in the SLC2A1 gene and produces seizures, neurodevelopmental impairment, and movement disorders. Ketogenic dietary therapies (KDT) are the gold standard treatment. Similar symptoms may appear in SLC2A1 negative patients. The purpose is to evaluate the effectiveness of KDT in children with GLUT1DS suspected SLC2A1 (+) and (-), side effects (SE), and the impact on patients nutritional status. Methods: An observational descriptive study was conducted to describe 18 children (January 2009–August 2020). SLC2A1 analysis, seizures, movement disorder, anti-epileptic drugs (AEDS), anthropometry, SE, and laboratory assessment were monitored baseline and at 3, 6, 12, and 24 months after the onset of KDT. Results: 6/18 were SLC2A1(+) and 13/18 had seizures. In these groups, the age for debut of symptoms was higher. The mean time from debut to KDT onset was higher in SLC2A1(+). The modified Atkins diet (MAD) was used in 12 (5 SLC2A1(+)). Movement disorder improved (4/5), and a reduction in seizures >50% compared to baseline was achieved in more than half of the epileptic children throughout the follow-up. No differences in effectiveness were found according to the type of KDT. Early SE occurred in 33%. Long-term SE occurred in 10, 5, 7, and 5 children throughout the follow-up. The most frequent SE were constipation, hypercalciuria, and hyperlipidaemia. No differences in growth were found according to the SLC2A1 mutation or type of KDT. Conclusions: CKD and MAD were effective for SLC2A1 positive and negative patients in our cohort. SE were frequent, but mild. Permanent monitoring should be made to identify SE and nutritional deficits.
Collapse
|
148
|
Abstract
BACKGROUND Glucose Transporter-1 (GLUT1) Deficiency Syndrome (GLUT1DS) is caused by defective transport of glucose across the blood-brain barrier into brain cells resulting in hypoglycorrhachia due to the heterozygous pathogenic variants in SLC2A1. We report on the phenotypic spectrum of patients with pediatric GLUT1DS as well as their diagnostic methods from a single center in Canada. METHODS We reviewed patient charts for clinical features, biochemical and molecular genetic investigations, neuroimaging, treatment modalities, and outcomes of patients with GLUT1DS at our institution. RESULTS There were 13 patients. The most common initial symptom was seizures, with the most common seizure type being absence seizures (85%). Seventy-seven percent of the patients had movement disorders, and dystonia and ataxia were the most common movement disorders. Fifty-four percent of the patients did not have a history of developmental delay during their initial presentation, whereas all patients had developmental delay, intellectual disability, or cognitive dysfunction during their follow-up. All patients had a pathogenic or likely pathogenic variant in SLC2A1 and missense variants were the most common variant type. CONCLUSION We present 13 patients with GLUT1DS in the pediatric patient population. Atypical clinical features such as hemiplegia and hemiplegic migraine were present in an infant; there was a high prevalence of absence seizures and movement disorders in our patient population. We report an increased number of patients with GLUT1DS since the introduction of next-generation sequencing in the clinical settings. We believe that GLUT1DS should be included in the differential diagnosis of seizures, movement disorders, and hemiplegic migraine.
Collapse
|
149
|
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021; 17:2229-2242. [PMID: 34285484 PMCID: PMC8286073 DOI: 10.2147/ndt.s256699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily dose. Despite the increasing number of available ASD, about a third of patients with epilepsy still suffer from drug resistance. Several factors are associated with the risk of evolution to DRE in patients with newly diagnosed epilepsy, including epilepsy onset in the infancy, intellectual disability, symptomatic epilepsy and abnormal neurological exam. Pharmacological management often consists in ASD polytherapy. However, because quality of life is driven by several factors in patients with DRE, including the tolerability of the treatment, ASD management should try to optimize efficacy while anticipating the risks of drug-related adverse events. All patients with DRE should be evaluated at least once in a tertiary epilepsy center, especially to discuss eligibility for non-pharmacological therapies. This is of paramount importance in patients with drug resistant focal epilepsy in whom epilepsy surgery can result in long-term seizure freedom. Vagus nerve stimulation, deep brain stimulation or cortical stimulation can also improve seizure control. Lastly, considering the effect of DRE on psychologic status and social integration, comprehensive care adaptations are always needed in order to improve patients' quality of life.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
150
|
Kramer J, Smith L. Ketogenic Diet in Glut 1 Deficiency Through the Life Cycle: Pregnancy to Neonate to Preschooler. Child Neurol Open 2021; 8:2329048X211034655. [PMID: 34541019 PMCID: PMC8444274 DOI: 10.1177/2329048x211034655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/02/2021] [Indexed: 11/15/2022] Open
Abstract
A 19-year-old woman with glucose transporter type 1 deficiency syndrome (Glut1DS) treated with ketogenic diet therapy (KDT) became pregnant. Her pregnancy included close monitoring of her diet as well as the fetus. Shortly after delivery, a lumbar puncture was performed followed by confirmatory genetic test diagnosing the neonate with Glut1DS. The neonate was placed on KDT and has been maintained on diet since infancy. The child is now 5 years of age, asymptomatic, and excelling developmentally. This case presents 2 management challenges, that of a patient with Glut1DS during pregnancy followed by managing a neonate on KDT with minimal guidance available in the literature due to the relative rarity of the condition and this unique situation.
Collapse
Affiliation(s)
- Jennifer Kramer
- Riley Hospital for Children at Indiana University
Health, Indianapolis, IN, USA
| | - Lisa Smith
- Riley Hospital for Children at Indiana University
Health, Indianapolis, IN, USA
| |
Collapse
|