101
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
102
|
Singanayagam A, Triantafyllou E. Macrophages in Chronic Liver Failure: Diversity, Plasticity and Therapeutic Targeting. Front Immunol 2021; 12:661182. [PMID: 33868313 PMCID: PMC8051585 DOI: 10.3389/fimmu.2021.661182] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis development and impact on morbidity and mortality. Persistent liver cell damage and death causes immune cell activation and inflammation. Patients with advanced cirrhosis additionally experience pathological bacterial translocation, exposure to microbial products and chronic engagement of the immune system. Bacterial infections have a high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common, while the subsequent systemic inflammation, organ failure and immune dysregulation increase the mortality risk. Tissue-resident and recruited macrophages play a central part in the development of inflammation and fibrosis progression. In the liver, adipose tissue, peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and functional plasticity determined by their ontogeny, epigenetic programming and local microenvironment. These changes can, at different times, promote or ameliorate disease states and therefore represent potential targets for macrophage-directed therapies. In this review, we discuss the evidence for macrophage phenotypic and functional alterations in tissue compartments during the development and progression of chronic liver failure in different aetiologies and highlight the potential of macrophage modulation as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Arjuna Singanayagam
- Infection and Immunity Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
103
|
Yu HH, Qiu YX, Li B, Peng CY, Zeng R, Wang W. Kadsura heteroclita stem ethanol extract protects against carbon tetrachloride-induced liver injury in mice via suppression of oxidative stress, inflammation, and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113496. [PMID: 33091494 DOI: 10.1016/j.jep.2020.113496] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kadsura heteroclita stem (KHS) is a well-known hepatoprotective Tujia ethnomedicine (folk named Xuetong), has long been used for the prevention and treatment of hepatitis and liver diseases. AIM OF THE STUDY To explore the protective effects of KHS against carbon tetrachloride (CCl4)-induced liver injury and the underlying mechanism, particularly antioxidative, anti-inflammatory, and anti-apoptotic potentials. MATERIALS AND METHODS The acute toxicity of KHS was measured by the method of maximum tolerated dose (MTD). Liver injury in mice was induced by intraperitoneal injection of 25% carbon tetrachloride (olive oil solubilization) 2 times every week. After modeling, mice in KHS groups were treated with KHS at 100, 200, 400 mg/kg/d, mice in positive control group were treated with bifendate (30 mg/kg/d), and mice in normal and model groups were given ultrapure water. After 4 weeks of treatment, blood of mice was taken from the orbital venous plexus before mice euthanized, the liver, spleen, and thymus of mice were weighed by dissecting the abdominal cavity after mice euthanized. Moreover, the liver of mice was selected for histological examination. The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in mice serum were measured using the automatic biochemical analyzer. The levels of superoxide dismutase (SOD), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione peroxidase (GPX-2), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), Bcl-2-associated X (Bax), B-cell lymphoma-2 (Bcl-2), Caspase-3, and Caspase-8 in mice liver were measured by Elisa kits. Furthermore, the protein expression of Bcl-2 and Bax in mice liver tissue was detected by Western blot. RESULTS The MTD of KHS was determined to be 26 g/kg in both sexes of mice. Treatment with KHS dose-dependently protected the liver and other main organs against CCl4-induced liver injury in mice. The ALT and AST levels in mice liver were significantly reduced after treatment with KHS at the dose of 100, 200, and 400 mg/kg. In addition, the liver histopathological analyses revealed that KHS markedly alleviated inflammatory cell infiltration, hepatic fibrosis, hepatocyte ballooning, necrosis and severe apoptosis of hepatocytes induced by CCl4. Further assay indicated that KHS significantly suppressed the production of MDA and MPO, while markedly increased the level of SOD and GPx-2. The TNF-α and IL-6 level in mice liver tissue were decreased by KHS, whereas the IL-10 level was increased. KHS also inhibited hepatocyte apoptosis by significantly reducing the expression of Bax, Caspase-3, Caspase-8, as well as increasing the expression of Bcl-2. Besides, the Western blot results strongly demonstrated that KHS inhibited hepatocyte apoptosis, as evidenced by reducing the expression of Bax protein and increasing the expression of Bcl-2 protein in liver injury tissues. CONCLUSIONS This research firstly clarified that KHS has a significant protective effect against CCl4-induced liver injury, which might be closely related to alleviating oxidative stress, reducing inflammatory response, and inhibiting hepatocyte apoptosis.
Collapse
Affiliation(s)
- Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Rong Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, And Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
104
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
105
|
α-Ketoglutarate Modulates Macrophage Polarization Through Regulation of PPARγ Transcription and mTORC1/p70S6K Pathway to Ameliorate ALI/ARDS. Shock 2021; 53:103-113. [PMID: 31841452 DOI: 10.1097/shk.0000000000001333] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
As tissue-resident cells in the lung, alveolar macrophages display remarkable heterogeneity and play a crucial role in the development and control of septic acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Recent evidence suggests that α-ketoglutarate (α-KG) plays an important role in alternative activation of macrophage (M2) through metabolic and epigenetic reprogramming, and thus possesses anti-inflammatory properties. However, the underlying mechanisms of α-KG's effect on alveolar macrophage polarization and the potential effects of α-KG in ALI/ARDS remain unclear. Here, we examined the effects and mechanisms of α-KG on alveolar macrophage polarization, and investigated the possible effects of α-KG on lipopolysaccharide (LPS)-induced ALI/ARDS in a mouse model. We found that α-KG inhibited M1 macrophage polarization and promoted IL-4-induced M2 macrophage polarization in MH-S cells (a murine alveolar macrophage cell line). Further experiments showed that α-KG down-regulated the expression of M1-polarized marker genes and inhibited the activities of mammalian target of rapamycin complex 1 (mTORC1)/p70 ribosomal protein S6 kinase (p70S6K) signaling pathway in M1-polarized MH-S cells. Moreover, our results showed that α-KG promoted IL-4-induced M2 polarization of MH-S cells by augmenting nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ) and increasing expression of relevant fatty acid metabolic genes. Finally, using an LPS-induced ALI/ARDS mouse model, we found that α-KG ameliorated the LPS-induced inflammation and lung pathological damage, as well as α-KG pretreated mice had better clinical scores compared with the LPS group. These findings reveal new mechanisms of α-KG in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of inflammatory diseases, including sepsis and septic ALI/ARDS.
Collapse
|
106
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
107
|
Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol 2020; 18:73-91. [PMID: 33268887 PMCID: PMC7852578 DOI: 10.1038/s41423-020-00579-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the two major types of chronic liver disease worldwide. Inflammatory processes play key roles in the pathogeneses of fatty liver diseases, and continuous inflammation promotes the progression of alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH). Although both ALD and NAFLD are closely related to inflammation, their respective developmental mechanisms differ to some extent. Here, we review the roles of multiple immunological mechanisms and therapeutic targets related to the inflammation associated with fatty liver diseases and the differences in the progression of ASH and NASH. Multiple cell types in the liver, including macrophages, neutrophils, other immune cell types and hepatocytes, are involved in fatty liver disease inflammation. In addition, microRNAs (miRNAs), extracellular vesicles (EVs), and complement also contribute to the inflammatory process, as does intertissue crosstalk between the liver and the intestine, adipose tissue, and the nervous system. We point out that inflammation also plays important roles in promoting liver repair and controlling bacterial infections. Understanding the complex regulatory process of disrupted homeostasis during the development of fatty liver diseases may lead to the development of improved targeted therapeutic intervention strategies.
Collapse
|
108
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
109
|
Li M, Chen L, Gao Y, Li M, Wang X, Qiang L, Wang X. Recent advances targeting C-C chemokine receptor type 2 for liver diseases in monocyte/macrophage. Liver Int 2020; 40:2928-2936. [PMID: 33025657 DOI: 10.1111/liv.14687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Liver plays a critical role in metabolism, nutrient storage and detoxification. Emergency signals or appropriate immune response leads to pathological inflammation and breaks the steady state when liver dysfunction appears, which makes body more susceptible to chronic liver infection, autoimmune diseases and tumour. Compelling proof has illustrated the non-redundant importance of C-C chemokine receptor type 2 (CCR2), one of G-protein-coupled receptors, in different diseases. Selectively expressed on the surface of cells, CCR2 is involved in various signalling pathways and regulates the migration of cells. Especially, a peculiar role of CCR2 has been identified within decades in the onset and progression of hepatic diseases, which led to particular focusing on CCR2 as a new therapeutic and diagnostic target for non-alcoholic fatty liver disease and hepatocellular carcinoma. In this review, we discuss the effect of CCR2 in monocytes/macrophages on liver diseases. The application and translation of the decades of discoveries into therapies promise novel approaches in the treatment of liver disease.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liu Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Gao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
110
|
Alharshawi K, Fey H, Vogle A, Klenk T, Kim M, Aloman C. Sex specific effect of alcohol on hepatic plasmacytoid dendritic cells. Int Immunopharmacol 2020; 90:107166. [PMID: 33199233 DOI: 10.1016/j.intimp.2020.107166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease includes a spectrum of clinical and histological entities. They result from the combined direct effect of alcohol and its metabolites on immune cells and resident tissue cells. In humans and mice, females are more susceptible to alcoholic liver injury than males. Despite being involved in sex specific differences of immune mediated tissue injury, plasmacytoid dendritic cells (pDCs) have not been thoroughly assessed as a cellular target of alcohol in humans or mice. Therefore, Meadows-Cook diet was used to study alcohol effect on hepatic dendritic cells. Alcohol consumption for 12 weeks increased hepatic pDCs in female mice. The expression of the C-C chemokine receptor type 2 (CCR2) increased in hepatic pDC of alcohol-fed female mice. Bone marrow transplant chimera showed CCR2 dependent bone marrow egress of pDCs. Chronic alcohol exposure has a sex specific effect on hepatic pDCs population that may explain sex differences to alcoholic liver disease.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Holger Fey
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Alyx Vogle
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Tori Klenk
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Miran Kim
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States
| | - Costica Aloman
- Division of Digestive Diseases and Nutrition, Section of Hepatology, Rush University, Chicago, IL 60612, United States.
| |
Collapse
|
111
|
Kimura T, Pydi SP, Pham J, Tanaka N. Metabolic Functions of G Protein-Coupled Receptors in Hepatocytes-Potential Applications for Diabetes and NAFLD. Biomolecules 2020; 10:biom10101445. [PMID: 33076386 PMCID: PMC7602561 DOI: 10.3390/biom10101445] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate the function of extracellular ligands. Understanding how GPCRs work at the molecular level has important therapeutic implications, as 30–40% of the drugs currently in clinical use mediate therapeutic effects by acting on GPCRs. Like many other cell types, liver function is regulated by GPCRs. More than 50 different GPCRs are predicted to be expressed in the mouse liver. However, knowledge of how GPCRs regulate liver metabolism is limited. A better understanding of the metabolic role of GPCRs in hepatocytes, the dominant constituent cells of the liver, could lead to the development of novel drugs that are clinically useful for the treatment of various metabolic diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In this review, we describe the functions of multiple GPCRs expressed in hepatocytes and their role in metabolic processes.
Collapse
Affiliation(s)
- Takefumi Kimura
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
- Department of Internal Medicine, Division of Gastroenterology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Correspondence: or ; Tel.: +1-301-594-6980
| | - Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Jonathan Pham
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20894, USA; (S.P.P.); (J.P.)
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Research Center for Social Systems, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
112
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
113
|
Lowe PP, Morel C, Ambade A, Iracheta-Vellve A, Kwiatkowski E, Satishchandran A, Furi I, Cho Y, Gyongyosi B, Catalano D, Lefebvre E, Fischer L, Seyedkazemi S, Schafer DP, Szabo G. Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. J Neuroinflammation 2020; 17:296. [PMID: 33036616 PMCID: PMC7547498 DOI: 10.1186/s12974-020-01972-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 02/11/2023] Open
Abstract
Background Chronic alcohol consumption is associated with neuroinflammation, neuronal damage, and behavioral alterations including addiction. Alcohol-induced neuroinflammation is characterized by increased expression of proinflammatory cytokines (including TNFα, IL-1β, and CCL2) and microglial activation. We hypothesized chronic alcohol consumption results in peripheral immune cell infiltration to the CNS. Since chemotaxis through the CCL2-CCR2 signaling axis is critical for macrophage recruitment peripherally and centrally, we further hypothesized that blockade of CCL2 signaling using the dual CCR2/5 inhibitor cenicriviroc (CVC) would prevent alcohol-induced CNS infiltration of peripheral macrophages and alter the neuroinflammatory state in the brain after chronic alcohol consumption. Methods C57BL/6J female mice were fed an isocaloric or 5% (v/v) ethanol Lieber DeCarli diet for 6 weeks. Some mice received daily injections of CVC. Microglia and infiltrating macrophages were characterized and quantified by flow cytometry and visualized using CX3CR1eGFP/+ CCR2RFP/+ reporter mice. The effect of ethanol and CVC treatment on the expression of inflammatory genes was evaluated in various regions of the brain, using a Nanostring nCounter inflammation panel. Microglia activation was analyzed by immunofluorescence. CVC-treated and untreated mice were presented with the two-bottle choice test. Results Chronic alcohol consumption induced microglia activation and peripheral macrophage infiltration in the CNS, particularly in the hippocampus. Treatment with CVC abrogated ethanol-induced recruitment of peripheral macrophages and partially reversed microglia activation. Furthermore, the expression of proinflammatory markers was upregulated by chronic alcohol consumption in various regions of the brain, including the cortex, hippocampus, and cerebellum. Inhibition of CCR2/5 decreased alcohol-mediated expression of inflammatory markers. Finally, microglia function was impaired by chronic alcohol consumption and restored by CVC treatment. CVC treatment did not change the ethanol consumption or preference of mice in the two-bottle choice test. Conclusions Together, our data establish that chronic alcohol consumption promotes the recruitment of peripheral macrophages into the CNS and microglia alterations through the CCR2/5 axis. Therefore, further exploration of the CCR2/5 axis as a modulator of neuroinflammation may offer a potential therapeutic approach for the treatment of alcohol-associated neuroinflammation.
Collapse
Affiliation(s)
- Patrick P Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caroline Morel
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST-214B, Boston, MA, 02215, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erica Kwiatkowski
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST-214B, Boston, MA, 02215, USA
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Donna Catalano
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST-214B, Boston, MA, 02215, USA
| | | | | | | | - Dorothy P Schafer
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, ST-214B, Boston, MA, 02215, USA.
| |
Collapse
|
114
|
Kondo R, Iwakiri Y. The lymphatic system in alcohol-associated liver disease. Clin Mol Hepatol 2020; 26:633-638. [PMID: 32951411 PMCID: PMC7641555 DOI: 10.3350/cmh.2020.0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic system plays vital roles in interstitial fluid balance and immune cell surveillance. The effect of alcohol on the lymphatic system is poorly understood. This review article explores the role of the lymphatic system in the pathogenesis of alcohol-related disease including alcoholic liver disease (ALD) and the therapeutic potential of targeting hepatic lymphatics for the treatment of ALD.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
115
|
Tornai D, Szabo G. Emerging medical therapies for severe alcoholic hepatitis. Clin Mol Hepatol 2020; 26:686-696. [PMID: 32981291 PMCID: PMC7641578 DOI: 10.3350/cmh.2020.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Severe alcoholic hepatitis (AH) is an acute and often devastating form of alcohol-associated liver disease. Clinically, AH is characterized by elevated bilirubin, model for end stage liver disease scores >20, and nonspecific symptoms that are caused by underlying inflammation, hepatocyte injury, and impaired intestinal barrier function. Compromised immune defense in AH contributes to infections, sepsis and organ failure. To date, corticosteroids are the only recommended treatment for severe AH, however it does not provide survival benefits beyond 1 month. Recent preclinical and early clinical studies in AH aided understanding of the disease and presented opportunities for new therapeutic options targeting inflammation, oxidative stress, liver regeneration and modification of intestinal microbiota. In this comprehensive review, we discuss promising preclinical results and ongoing clinical trials evaluating novel therapeutic agents for the treatment of severe AH.
Collapse
Affiliation(s)
- David Tornai
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
116
|
Diaz Soto MP, Lim JK. Evaluating the Therapeutic Potential of Cenicriviroc in the Treatment of Nonalcoholic Steatohepatitis with Fibrosis: A Brief Report on Emerging Data. Hepat Med 2020; 12:115-123. [PMID: 32884369 PMCID: PMC7434517 DOI: 10.2147/hmer.s230613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with significant morbidity and mortality due to liver cirrhosis, liver failure, and hepatocellular carcinoma, and represents a leading indication for liver transplantation in the United States (U.S.). A growing spectrum of novel therapies are currently in clinical development and target several mechanisms of action which address hepatic steatosis, steatohepatitis, and hepatic fibrosis. Cenicriviroc (Allergan, Dublin, Ireland) is a novel oral antagonist of CC-motif chemokine receptors 2 and 5 (CCR2/5) which have demonstrated expression on circulating monocytes and Kupffer cells. Preclinical models have confirmed that CCR2/5 antagonism may block fat accumulation and Kupffer cell activation and disrupt monocyte/macrophage recruitment and hepatic stellate cell activation responsible for fibrogenesis. Herein we review results from the phase 2b CENTAUR trial and study designs for the phase 2b TANDEM and phase 3 AURORA trials and discuss the potential role of cenicriviroc in future pharmacotherapy for NASH fibrosis.
Collapse
Affiliation(s)
| | - Joseph K Lim
- Yale Liver Center and Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
117
|
Rinchai D, Syed Ahamed Kabeer B, Toufiq M, Tatari-Calderone Z, Deola S, Brummaier T, Garand M, Branco R, Baldwin N, Alfaki M, Altman MC, Ballestrero A, Bassetti M, Zoppoli G, De Maria A, Tang B, Bedognetti D, Chaussabel D. A modular framework for the development of targeted Covid-19 blood transcript profiling panels. J Transl Med 2020; 18:291. [PMID: 32736569 PMCID: PMC7393249 DOI: 10.1186/s12967-020-02456-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-CoV-2 infection. METHODS We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further selection steps relied on expert curation. Additionally, we developed several custom web applications to support the evaluation of candidates. RESULTS As a proof of principle, we designed three targeted blood transcript panels, each with a different translational connotation: immunological relevance, therapeutic development relevance and SARS biology relevance. CONCLUSION Altogether the work presented here may contribute to the future expansion of immune profiling capabilities via targeted profiling of blood transcript abundance in Covid-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Nicole Baldwin
- Baylor Institute for Immunology Research and Baylor Research Institute, Dallas, TX, USA
| | | | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
- Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alberto Ballestrero
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea De Maria
- Division of Infectious and Tropical Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Benjamin Tang
- Nepean Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Davide Bedognetti
- Sidra Medicine, Doha, Qatar
- Department of Internal Medicine, Università degli Studi di Genova, Genoa, Italy
| | | |
Collapse
|
118
|
Liu Y, Wang Z, Kong F, Teng L, Zheng X, Liu X, Wang D. Triterpenoids Extracted From Antrodia cinnamomea Mycelia Attenuate Acute Alcohol-Induced Liver Injury in C57BL/6 Mice via Suppression Inflammatory Response. Front Microbiol 2020; 11:1113. [PMID: 32719658 PMCID: PMC7350611 DOI: 10.3389/fmicb.2020.01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption causes liver injury–induced mortality. Here we systematically analyzed the structure of triterpenoids extracted from Antrodia cinnamomea mycelia (ACT) and investigated their protective effects against acute alcohol-induced liver injury in mice. Liquid chromatography–mass spectrometry and liquid chromatography with tandem mass spectrometry were performed to determine the structures of ACT constituents. Alcohol-induced liver injury was generated in C57BL/6 mice by oral gavage of 13 g/kg white spirit (a wine at 56% ABV). Mice were treated with either silibinin or ACT for 2 weeks. Liver injury markers and pathological signaling were then quantified with enzyme-linked immunosorbent assays, antibody array assays, and Western blots, and pathological examinations were performed using hematoxylin-eosin staining and periodic acid–Schiff staining. Triterpenoids extracted from A. cinnamomea mycelia contain 25 types of triterpenoid compounds. A 2-weeks alcohol consumption treatment caused significant weight loss, liver dyslipidemia, and elevation of alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, and alkaline phosphatase activities in the serum and/or liver. These effects were markedly reversed after 2-weeks ACT administration. Triterpenoids extracted from A. cinnamomea mycelia alleviated the organ structural changes and inflammatory infiltration of alcohol-damaged tissues. Triterpenoids extracted from A. cinnamomea mycelia inhibited proinflammatory cytokine levels and enhanced anti-inflammatory cytokine levels. Acute alcohol treatment promoted inflammation with significant correlations to hypoxia-inducible factor 1α (HIF-1α), which was reduced by ACT and was partially related to modulation of the protein kinase B (Akt)/70-kDa ribosomal protein S6 kinase phosphorylation (p70S6K) and Wnt/β-catenin signaling pathways. In conclusion, ACT protected against acute alcohol-induced liver damage in mice mainly through its suppression of the inflammatory response, which may be related to HIF-1α signaling.
Collapse
Affiliation(s)
- Yange Liu
- School of Life Sciences, Jilin University, Changchun, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Zhuqian Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Fange Kong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoyi Zheng
- Division of Nephrology, Stanford University School of Medicine, Stanford, CA, United States
| | - Xingkai Liu
- Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
119
|
Huang E, Peng N, Xiao F, Hu D, Wang X, Lu L. The Roles of Immune Cells in the Pathogenesis of Fibrosis. Int J Mol Sci 2020; 21:E5203. [PMID: 32708044 PMCID: PMC7432671 DOI: 10.3390/ijms21155203] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue injury and inflammatory response trigger the development of fibrosis in various diseases. It has been recognized that both innate and adaptive immune cells are important players with multifaceted functions in fibrogenesis. The activated immune cells produce various cytokines, modulate the differentiation and functions of myofibroblasts via diverse molecular mechanisms, and regulate fibrotic development. The immune cells exhibit differential functions during different stages of fibrotic diseases. In this review, we summarized recent advances in understanding the roles of immune cells in regulating fibrotic development and immune-based therapies in different disorders and discuss the underlying molecular mechanisms with a focus on mTOR and JAK-STAT signaling pathways.
Collapse
Affiliation(s)
- Enyu Huang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Na Peng
- Department of Rheumatology and Immunology, the Second People’s Hospital of Three Gorges University, Yichang 443000, China; (N.P.); (D.H.)
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Dajun Hu
- Department of Rheumatology and Immunology, the Second People’s Hospital of Three Gorges University, Yichang 443000, China; (N.P.); (D.H.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China; (E.H.); (F.X.)
| |
Collapse
|
120
|
Comparison of the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic pain-related symptoms in rodents: behavioral and biochemical analyses. Int Immunopharmacol 2020; 84:106540. [PMID: 32402949 DOI: 10.1016/j.intimp.2020.106540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.
Collapse
|
121
|
Bluemel S, Wang L, Kuelbs C, Moncera K, Torralba M, Singh H, Fouts DE, Schnabl B. Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 2020; 11:265-275. [PMID: 30982395 PMCID: PMC7524386 DOI: 10.1080/19490976.2019.1595300] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver disease is closely related to translocation of bacterial products and bacteria from the intestine to the liver. However, it is not known whether bacterial translocation to the liver depends on certain intestinal microbiota changes that would predispose bacteria to translocate to the liver. In this study, we investigated the microbiota in the jejunum, ileum, cecum, feces and liver of mice subjected to chronic ethanol feeding using a Lieber DeCarli diet model of chronic ethanol feeding for 8 weeks. We demonstrate that chronic ethanol administration changes alpha diversity in the ileum and the liver and leads to compositional changes especially in the ileum. This is largely driven by an increase in gram-negative phyla - the source of endotoxins. Moreover, gram-negative Prevotella not only increased in the mucus layer of the ileum but also in liver samples. These results suggest that bacterial translocation to the liver might be associated with microbiota changes in the distal gastrointestinal tract.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, USA,Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Lirui Wang
- Department of Medicine, University of California San Diego, La Jolla, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, USA
| | - Claire Kuelbs
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | - Kelvin Moncera
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Harinder Singh
- Rockville Campus, J. Craig Venter Institute, Rockville, USA
| | | | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, USA,Department of Medicine, VA San Diego Healthcare System, San Diego, USA,CONTACT Bernd Schnabl MD Department of Medicine, University of California, San Diego, Biomedical Research Facility 2 (BRF2), Room 4A22, 9500 Gilman Drive, MC0063, La Jolla, CA92093, USA
| |
Collapse
|
122
|
Puengel T, De Vos S, Hundertmark J, Kohlhepp M, Guldiken N, Pujuguet P, Auberval M, Marsais F, Shoji KF, Saniere L, Trautwein C, Luedde T, Strnad P, Brys R, Clément-Lacroix P, Tacke F. The Medium-Chain Fatty Acid Receptor GPR84 Mediates Myeloid Cell Infiltration Promoting Steatohepatitis and Fibrosis. J Clin Med 2020; 9:E1140. [PMID: 32316235 PMCID: PMC7231190 DOI: 10.3390/jcm9041140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) have been associated with anti-steatotic effects in hepatocytes. Expression of the MCFA receptor GPR84 (G protein-coupled receptor 84) is induced in immune cells under inflammatory conditions and can promote fibrogenesis. We aimed at deciphering the role of GPR84 in the pathogenesis of non-alcoholic steatohepatitis (NASH), exploring its potential as a therapeutic target. GPR84 expression is upregulated in liver from patients with non-alcoholic fatty liver disease (NAFLD), correlating with the histological degree of inflammation and fibrosis. In mouse and human, activated monocytes and neutrophils upregulate GPR84 expression. Chemotaxis of these myeloid cells by GPR84 stimulation is inhibited by two novel, small molecule GPR84 antagonists. Upon acute liver injury in mice, treatment with GPR84 antagonists significantly reduced the hepatic recruitment of neutrophils, monocytes, and monocyte-derived macrophages (MoMF). We, therefore, evaluated the therapeutic inhibition of GPR84 by these two novel antagonists in comparison to selonsertib, an apoptosis signal-regulating kinase 1 (ASK1) inhibitor, in three NASH mouse models. Pharmacological inhibition of GPR84 significantly reduced macrophage accumulation and ameliorated inflammation and fibrosis, to an extent similar to selonsertib. In conclusion, our findings support that GPR84 mediates myeloid cell infiltration in liver injury and is a promising therapeutic target in steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Steve De Vos
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Marlene Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Nurdan Guldiken
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Philippe Pujuguet
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Marielle Auberval
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Florence Marsais
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Kenji F. Shoji
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Laurent Saniere
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Pavel Strnad
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Philippe Clément-Lacroix
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| |
Collapse
|
123
|
Avila MA, Dufour JF, Gerbes AL, Zoulim F, Bataller R, Burra P, Cortez-Pinto H, Gao B, Gilmore I, Mathurin P, Moreno C, Poznyak V, Schnabl B, Szabo G, Thiele M, Thursz MR. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 2020; 69:764-780. [PMID: 31879281 PMCID: PMC7236084 DOI: 10.1136/gutjnl-2019-319720] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Alcohol-related liver disease (ALD), which includes a range of disorders of different severity and is one of the most prevalent types of liver disease worldwide, has recently regained increased attention. Among other reasons, the realisation that any alcohol intake, regardless of type of beverage represents a health risk, and the new therapeutic strategies tested in recently published or undergoing clinical trials spur scientific interest in this area.In April 2019, Gut convened a round table panel of experts during the European Association for the Study of the Liver International Liver Congress in Vienna to discuss critical and up-to-date issues and clinical trial data regarding ALD, its epidemiology, diagnosis, management, pathomechanisms, possible future treatments and prevention. This paper summarises the discussion and its conclusions.
Collapse
Affiliation(s)
- Matias A Avila
- Hepatology, CIBERehd, IdiSNA, CIMA, University of Navarra, Pamplona, Spain
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research and University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Alexander L Gerbes
- Liver Centre Munich, Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Fabien Zoulim
- Hepatology Department, INSERM U1052, Hospices Civils de Lyon, Cancer Research Centerl of Lyon, University of Lyon, Lyon, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Helena Cortez-Pinto
- Departamento de Gastroenterologia, CHLN, Laboratorio de Nutriçao, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian Gilmore
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, INSERM U795, Hôpital Huriez, Lille, France
| | - Christophe Moreno
- Service de Gastroentérologie, Hépatopancréatologie et Oncologie Digestive, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Vladimir Poznyak
- Department of Mental Health and Substance Abuse, World Health Organization, Geneve, Switzerland
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, and Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Mark R Thursz
- Department of Metabolism, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
124
|
Queck A, Bode H, Uschner FE, Brol MJ, Graf C, Schulz M, Jansen C, Praktiknjo M, Schierwagen R, Klein S, Trautwein C, Wasmuth HE, Berres ML, Trebicka J, Lehmann J. Systemic MCP-1 Levels Derive Mainly From Injured Liver and Are Associated With Complications in Cirrhosis. Front Immunol 2020; 11:354. [PMID: 32218781 PMCID: PMC7078155 DOI: 10.3389/fimmu.2020.00354] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Monocyte chemotactic protein-1 (MCP-1) is a potent chemoattractant for monocytes. It is involved in pathogenesis of several inflammatory diseases. Hepatic MCP-1 is a readout of macrophage activation. While inflammation is a major driver of liver disease progression, the origin and role of circulating MCP-1 as a biomarker remains unclear. Methods: Hepatic CC-chemokine ligand 2 (CCL2) expression and F4/80 staining for Kupffer cells were measured and correlated in a mouse model of chronic liver disease (inhalative CCl4 for 7 weeks). Next, hepatic RNA levels of CCL2 were measured in explanted livers of 39 patients after transplantation and correlated with severity of disease. Changes in MCP-1 were further evaluated in a rat model of experimental cirrhosis and acute-on-chronic liver failure (ACLF). Finally, we analyzed portal and hepatic vein levels of MCP-1 in patients receiving transjugular intrahepatic portosystemic shunt insertion for complications of portal hypertension. Results: In this mouse model of fibrotic hepatitis, hepatic expression of CCL2 (P = 0.009) and the amount of F4/80 positive cells in the liver (P < 0.001) significantly increased after induction of hepatitis by CCl4 compared to control animals. Moreover, strong correlation of hepatic CCL2 expression and F4/80 positive cells were seen (P = 0.023). Furthermore, in human liver explants, hepatic transcription levels of CCL2 correlated with the MELD score of the patients, and thus disease severity (P = 0.007). The experimental model of ACLF in rats revealed significantly higher levels of MCP-1 plasma (P = 0.028) and correlation of hepatic CCL2 expression (R = 0.69, P = 0.003). Particularly, plasma MCP-1 levels did not correlate with peripheral blood monocyte CCL2 expression. Finally, higher levels of MCP-1 were observed in the hepatic compared to the portal vein (P = 0.01) in patients receiving TIPS. Similarly, a positive correlation of MCP-1 with Child-Pugh score was observed (P = 0.018). Further, in the presence of ACLF, portal and hepatic vein levels of MCP-1 were significantly higher compared to patients without ACLF (both P = 0.039). Conclusion: Circulating levels of MCP-1 mainly derive from the injured liver and are associated with severity of liver disease. Therefore, liver macrophages contribute significantly to disease progression. Circulating MCP-1 may reflect the extent of hepatic macrophage activation.
Collapse
Affiliation(s)
- Alexander Queck
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Hannah Bode
- Department of Internal Medicine 1, University Hospital, University Bonn, Bonn, Germany
| | - Frank E Uschner
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Maximilian J Brol
- Department of Internal Medicine 1, University Hospital, University Bonn, Bonn, Germany
| | - Christiana Graf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Martin Schulz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Christian Jansen
- Department of Internal Medicine 1, University Hospital, University Bonn, Bonn, Germany
| | - Michael Praktiknjo
- Department of Internal Medicine 1, University Hospital, University Bonn, Bonn, Germany
| | - Robert Schierwagen
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | - Sabine Klein
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany
| | | | | | | | - Jonel Trebicka
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt, Germany.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain.,Institute of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jennifer Lehmann
- Department of Internal Medicine 1, University Hospital, University Bonn, Bonn, Germany
| |
Collapse
|
125
|
Trivella JP, Martin P, Carrion AF. Novel targeted therapies for the management of liver fibrosis. Expert Opin Emerg Drugs 2020; 25:59-70. [PMID: 32098512 DOI: 10.1080/14728214.2020.1735350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan P. Trivella
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Martin
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andres F. Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
126
|
PSMP/MSMP promotes hepatic fibrosis through CCR2 and represents a novel therapeutic target. J Hepatol 2020; 72:506-518. [PMID: 31813573 DOI: 10.1016/j.jhep.2019.09.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS C-C motif chemokine receptor 2 (CCR2) has been recognized as a promising target for the treatment of liver fibrosis. PC3-secreted microprotein (PSMP)/microseminoprotein (MSMP) is a novel chemotactic cytokine and its receptor is CCR2. In the present study we investigated the expression and role of PSMP in liver fibrosis/cirrhosis. METHODS PSMP expression was studied in patients with fibrosis/cirrhosis and in 3 murine models of liver fibrosis, including mice treated with carbon tetrachloride (CCl4), bile-duct ligation, or a 5-diethoxycarbonyl-1,4-dihydrocollidine diet. The role of PSMP was evaluated in Psmp-/- mice and after treatment with a PSMP antibody in wild-type mice. The direct effects of PSMP on macrophages and hepatic stellate cells were studied in vitro. RESULTS In this study, we found that PSMP was highly expressed in fibrotic/cirrhotic tissues from patients with different etiologies of liver disease and in the 3 experimental mouse models of fibrosis. Damage-associated molecular pattern molecules HMGB-1 and IL-33 induced hepatocytes to produce PSMP. PSMP deficiency resulted in a marked amelioration of hepatic injury and fibrosis. In CCl4-induced hepatic injury, the infiltration of macrophages and CCR2+ monocytes into the liver was significantly decreased in Psmp-/- mice. Consistent with the decreased levels of intrahepatic macrophages, proinflammatory cytokines were significantly reduced. Moreover, adeno-associated virus-8 vectors successfully overexpressing human PSMP in Psmp-/- mouse livers could reverse the attenuation of liver injury and fibrosis induced by CCl4 in a CCR2-dependent manner. Treatment with a specific PSMP-neutralizing antibody, 3D5, prevented liver injury and fibrosis induced by CCl4 in mice. At the cellular level, PSMP directly promoted M1 polarization of macrophages and activation of LX-2 cells. CONCLUSION PSMP enhances liver fibrosis through its receptor, CCR2. PSMP is a potentially attractive therapeutic target for the treatment of patients with liver fibrosis. LAY SUMMARY Our present study identifies the essential role of the protein PSMP for the development and progression of liver fibrosis in humans and mice. PSMP promotes liver fibrosis through inflammatory macrophage infiltration, polarization and production of proinflammatory cytokines, as well as direct activation of hepatic stellate cells via its receptor CCR2. A PSMP antibody can significantly reduce liver fibrosis development in vivo. These findings indicate that PSMP is a potential therapeutic target and its antibody is a potential therapeutic agent for the treatment of liver fibrosis.
Collapse
|
127
|
Xu W, Chen S, Zhong G, Liu H, Xiu L, Yu X, Chen F, Li N, Lv Y. Effects of a combination of Japanese Raisin Tree Seed and Flower of Lobed Kudzuvine against acute alcohol-induced liver injury in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
128
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
129
|
Zhang K, Shi Z, Zhang M, Dong X, Zheng L, Li G, Han X, Yao Z, Han T, Hong W. Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis. Cell Death Dis 2020; 11:132. [PMID: 32071306 PMCID: PMC7028920 DOI: 10.1038/s41419-020-2323-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Hepatic fibrosis is a common pathological consequence of a sustained wound healing response to continuous liver injury, characterized by increased production and accumulation of extracellular matrix. If unresolved, the fibrotic process results in organ failure, and eventually death after the development of cirrhosis. It has been suggested that macrophages play central role in the progression of hepatic fibrosis, which is related to inflammation and pyroptosis, a novel programmed and proinflammatory cell death. However, it remains far less clear if, or how, lncRNAs regulates the activation and pyroptosis of macrophage in hepatic fibrosis. In the present study, we demonstrated that the liver-enriched lncRNA Lfar1, which has been reported to promote hepatic fibrosis through inducing hepatic stellate cells activation and hepatocytes apoptosis, was dysregulated during proinflammatory M1 activation and pyroptosis of macrophage. Our study revealed that silencing lnc-Lfar1 by a lentivirus-shRNA alleviated CCl4- and BDL-induced proinflammatory M1 macrophage activation and NLRP3 inflammasome-mediated pyroptosis. Furthermore, the in vitro experiments demonstrated that lnc-Lfar1 knockdown significantly suppressed LPS- and IFN-γ-induced proinflammatory activation of macrophages, and inhibited LPS/ATP- and LPS/Nigericin-induced NLRP3 inflammasome-mediated pyroptosis. Mechanistically, lnc-Lfar1 regulated LPS- and IFN-γ-induced proinflammatory activation of macrophages through the NF-ĸB pathway. All these data supported our conclusion that lnc-Lfar1 plays a vital role in controlling the activation and pyroptosis of macrophage, thus providing a possible therapeutic target against inflammation-related disorders including hepatic fibrosis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhemin Shi
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengxia Zhang
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lina Zheng
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guantong Li
- The Third Central Clinical College of Tianjin Medical University, Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Xiaohui Han
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tao Han
- The Third Central Clinical College of Tianjin Medical University, Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China.
| | - Wei Hong
- Department of Histology and Embryology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
130
|
Lefere S, Devisscher L, Tacke F. Targeting CCR2/5 in the treatment of nonalcoholic steatohepatitis (NASH) and fibrosis: opportunities and challenges. Expert Opin Investig Drugs 2020; 29:89-92. [PMID: 31952447 DOI: 10.1080/13543784.2020.1718106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
131
|
Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 2020; 16:11-30. [PMID: 31903790 DOI: 10.1080/17425255.2020.1711884] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Miao Miao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| |
Collapse
|
132
|
Lowe PP, Cho Y, Tornai D, Coban S, Catalano D, Szabo G. Inhibition of the Inflammasome Signaling Cascade Reduces Alcohol Consumption in Female But Not Male Mice. Alcohol Clin Exp Res 2020; 44:567-578. [PMID: 31854009 DOI: 10.1111/acer.14272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol use disorder is a significant societal and medical burden that is associated with both organ pathology and addiction. Excessive alcohol use results in neuroinflammation characterized by activation of the inflammasome, a multiprotein complex, and IL-1β increase in the brain. Recent studies suggest that inflammation could contribute to alcohol addiction. Here, we targeted components of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome cascade, which senses and responds to immunologic stimuli, to determine whether NLRP3 inhibition modulates alcohol consumption. METHODS C57BL/6J male and female mice were provided a 2-bottle choice of alcohol at increasing concentrations (3, 6, 9, and 12%, 4 days each) or water, and some were treated with daily injections of an NLRP3 inhibitor (MCC950), a caspase-1 inhibitor (VX765), IL-1 receptor antagonist (IL-1ra; anakinra), or vehicle injection. RESULTS Treatment with VX765, MCC950, and IL-1ra significantly reduced alcohol consumption and preference in female mice (p < 0.05). Treatment with MCC950 and IL-1ra reduced alcohol consumption, while IL-1ra reduced alcohol preference in male mice (p < 0.05). VX765 did not affect alcohol consumption or preference in male mice. CONCLUSIONS These findings highlight gender differences in alcohol preference and demonstrate that inhibition of different steps in inflammasome signaling can reduce alcohol consumption in females. Inhibition of NLRP3 inflammasome activation and the inflammasome-IL-1β cascade opens novel insights into the development of new therapies to address alcohol use disorder in an era of targeted and precision medicine.
Collapse
Affiliation(s)
- Patrick P Lowe
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yeonhee Cho
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts.,Beth Israel Deaconess Medical Center, (YC, DT, GS), Harvard Medical School, Boston, Massachusetts
| | - David Tornai
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts.,Beth Israel Deaconess Medical Center, (YC, DT, GS), Harvard Medical School, Boston, Massachusetts
| | - Sahin Coban
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- From the, Department of Medicine, (PPL, YC, DT, SC, DC, GS), University of Massachusetts Medical School, Worcester, Massachusetts.,Beth Israel Deaconess Medical Center, (YC, DT, GS), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
133
|
Fantuzzi L, Tagliamonte M, Gauzzi MC, Lopalco L. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell Mol Life Sci 2019; 76:4869-4886. [PMID: 31377844 PMCID: PMC6892368 DOI: 10.1007/s00018-019-03255-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The chemokine system mediates acute inflammation by driving leukocyte migration to damaged or infected tissues. However, elevated expression of chemokines and their receptors can contribute to chronic inflammation and malignancy. Thus, great effort has been taken to target these molecules. The first hint of the druggability of the chemokine system was derived from the role of chemokine receptors in HIV infection. CCR5 and CXCR4 function as essential co-receptors for HIV entry, with the former accounting for most new HIV infections worldwide. Not by chance, an anti-CCR5 compound, maraviroc, was the first FDA-approved chemokine receptor-targeting drug. CCR5, by directing leukocytes to sites of inflammation and regulating their activation, also represents an important player in the inflammatory response. This function is shared with CCR2 and its selective ligand CCL2, which constitute the primary chemokine axis driving the recruitment of monocytes/macrophages to inflammatory sites. Both receptors are indeed involved in the pathogenesis of several immune-mediated diseases, and dual CCR5/CCR2 targeting is emerging as a more efficacious strategy than targeting either receptor alone in the treatment of complex human disorders. In this review, we focus on the distinctive and complementary contributions of CCR5 and CCR2/CCL2 in HIV infection, multiple sclerosis, liver fibrosis and associated hepatocellular carcinoma. The emerging therapeutic approaches based on the inhibition of these chemokine axes are highlighted.
Collapse
Affiliation(s)
- Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori- IRCCS-"Fond G. Pascale", Naples, Italy
| | | | - Lucia Lopalco
- Immunobiology of HIV Unit, Division Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
134
|
Xiao M, Liu Y, Wang L, Liang J, Wang T, Zhai Y, Wang Y, Liu S, Liu W, Luo X, Wang F, Sun X. Intraocular VEGF deprivation induces degeneration and fibrogenic response in retina. FASEB J 2019; 33:13920-13934. [DOI: 10.1096/fj.201901283rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meichun Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyu Wang
- GloriousMed Technology Company, Limited, Shanghai, China
| | - Jian Liang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Tianjun Wang
- School of Life Science, University of Liverpool, Liverpool, United Kingdom
| | - Yuanqi Zhai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yafang Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
135
|
Zhangdi HJ, Su SB, Wang F, Liang ZY, Yan YD, Qin SY, Jiang HX. Crosstalk network among multiple inflammatory mediators in liver fibrosis. World J Gastroenterol 2019; 25:4835-4849. [PMID: 31543677 PMCID: PMC6737310 DOI: 10.3748/wjg.v25.i33.4835] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is the common pathological basis of all chronic liver diseases, and is the necessary stage for the progression of chronic liver disease to cirrhosis. As one of pathogenic factors, inflammation plays a predominant role in liver fibrosis via communication and interaction between inflammatory cells, cytokines, and the related signaling pathways. Damaged hepatocytes induce an increase in pro-inflammatory factors, thereby inducing the development of inflammation. In addition, it has been reported that inflammatory response related signaling pathway is the main signal transduction pathway for the development of liver fibrosis. The crosstalk regulatory network leads to hepatic stellate cell activation and proinflammatory cytokine production, which in turn initiate the fibrotic response. Compared with the past, the research on the pathogenesis of liver fibrosis has been greatly developed. However, the liver fibrosis mechanism is complex and many pathways involved need to be further studied. This review mainly focuses on the crosstalk regulatory network among inflammatory cells, cytokines, and the related signaling pathways in the pathogenesis of chronic inflammatory liver diseases. Moreover, we also summarize the recent studies on the mechanisms underlying liver fibrosis and clinical efforts on the targeted therapies against the fibrotic response.
Collapse
Affiliation(s)
- Han-Jing Zhangdi
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Biao Su
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fei Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-Yu Liang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Dong Yan
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shan-Yu Qin
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
136
|
Alcohol-induced IL-17A production in Paneth cells amplifies endoplasmic reticulum stress, apoptosis, and inflammasome-IL-18 activation in the proximal small intestine in mice. Mucosal Immunol 2019; 12:930-944. [PMID: 31105269 PMCID: PMC6599481 DOI: 10.1038/s41385-019-0170-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023]
Abstract
Gut microbial translocation contributes to alcoholic hepatitis. Using a mouse model of alcoholic hepatitis, we investigated the effects of chronic alcohol plus binge and found increased abundance of Paneth cells and IL-17A in the proximal small intestine (PSI). Alcohol increased IL-17A production and pro-apoptotic signaling evidenced by Bax, Bim, caspase-3, and caspase-8 increases via endoplasmic reticulum (ER) stress indicated by C/EBP homologous protein (CHOP) upregulation; this was prevented by the ER stress inhibitor, 4-PBA, in isolated crypts in vitro and in vivo. Mechanistically, IL-17 augmented alcohol-induced ER stress in isolated crypts. In vivo IL-17A blocking antibody administration in alcohol-treated mice attenuated ER stress-mediated apoptosis and IL-18 induction and prevented alcohol-induced impairment of tight junctions in the PSI and LPS translocation to the liver. Acute-on-chronic alcohol resulted in inflammasome activation, caspase-1 cleavage, and IL-18 production in the PSI. In vivo treatment with antibiotics or 4-PBA prevented CHOP upregulation and inflammasome activation. Our data suggest that alcohol upregulates innate immune mechanisms by increasing Paneth cell numbers and IL-17A release contributing to apoptosis amplification, inflammasome activation, and gut leakiness in the PSI. Binge alcohol-induced Paneth cell expansion, ER stress, and inflammasome activation in the PSI are modulated by the gut microbiome.
Collapse
|
137
|
Li M, Lu C, Zhu H, Kang X, Wang F, Shao L, Lu X, Chen W, Xia X. Cenicriviroc ameliorates the severity of graft-versus-host disease through inhibition of CCR5 in a rat model of liver transplantation. Am J Transl Res 2019; 11:3438-3449. [PMID: 31312356 PMCID: PMC6614659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is one of the major complications after liver transplantation (LTx), which is induced by over-activation of T helper lymphocytes. Cenicriviroc (CVC) exerts its anti-inflammatory effect through inhibition of C-C chemokine receptor 5 (CCR5). However, whether CVC ameliorates aGVHD after liver transplantation remains unknown. In the present study, a rat aGVHD liver transplantation model (LTx-aGVHD) was constructed. CVC was intravenously injected from day 7 to day 14 after LTx. Liver and intestine samples were harvested to evaluate GVHD severity. Peripheral blood mononuclear cells (PBMCs) were collected and CCR5 antibodies were prepared to further explore the molecular mechanism in vitro. CVC significantly decreased the severity of GVHD associated skin and intestine injury. Quality of life of the LTx-GVHD rats was improved after CVC treatment. Flow cytometry further confirmed diminished peripheral donor-derived Th cells after CVC treatment. Molecularly, CVC treatment showed similar anti-inflammatory effects to CCR5 antibody injection. The level of CCR5, C-C motif chemokine ligand 5 (CCL5), and pro-inflammatory cytokines in the liver and intestines were inhibited after CVC treatment. Thus, CVC deactivated Th lymphocytes and decreased the severity of LTx-aGVHD through inhibition of CCR5.
Collapse
Affiliation(s)
- Minhuan Li
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211100, Jiangsu Province, China
| | - Chenglin Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Hao Zhu
- Department of Gastroenterologz, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Xing Kang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Feng Wang
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Lihua Shao
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Xiaofeng Lu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang Province, China
| | - Xuefeng Xia
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu Province, China
| |
Collapse
|
138
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
139
|
Kim SJ, Feng D, Guillot A, Dai S, Liu F, Hwang S, Parker R, Seo W, He Y, Godlewski G, Jeong WI, Lin Y, Qin X, Kunos G, Gao B. Adipocyte Death Preferentially Induces Liver Injury and Inflammation Through the Activation of Chemokine (C-C Motif) Receptor 2-Positive Macrophages and Lipolysis. Hepatology 2019; 69:1965-1982. [PMID: 30681731 PMCID: PMC6461506 DOI: 10.1002/hep.30525] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Adipocyte death occurs under various physiopathological conditions, including obesity and alcohol drinking, and can trigger organ damage particularly in the liver, but the underlying mechanisms remain obscure. To explore these mechanisms, we developed a mouse model of inducible adipocyte death by overexpressing the human CD59 (hCD59) on adipocytes (adipocyte-specific hCD59 transgenic mice). Injection of these mice with intermedilysin (ILY), which rapidly lyses hCD59 expressing cells exclusively by binding to the hCD59 but not mouse CD59, resulted in the acute selective death of adipocytes, adipose macrophage infiltration, and elevation of serum free fatty acid (FFA) levels. ILY injection also resulted in the secondary damage to multiple organs with the strongest injury observed in the liver, with inflammation and hepatic macrophage activation. Mechanistically, acute adipocyte death elevated epinephrine and norepinephrine levels and activated lipolysis pathways in adipose tissue in a chemokine (C-C motif) receptor 2-positive (CCR2+ ) macrophage-dependent manner, which was followed by FFA release and lipotoxicity in the liver. Additionally, acute adipocyte death caused hepatic CCR2+ macrophage activation and infiltration, further exacerbating liver injury. Conclusion: Adipocyte death predominantly induces liver injury and inflammation, which is probably due to the superior sensitivity of hepatocytes to lipotoxicity and the abundance of macrophages in the liver.
Collapse
Affiliation(s)
- Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shen Dai
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Fengming Liu
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Parker
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,NIHR Centre for Liver Research, University of Birmingham, UK
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Won-Il Jeong
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuhong Lin
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Xuebin Qin
- Department of Neuroscience, School of Medicine, Temple University, Philadelphia, PA, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892; USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author: Bin Gao, M.D., Ph.D., Laboratory of Liver Diseases, NIAAA/NIH, 5625 Fishers Lane, Bethesda, MD 20892. Tel: 301-443-3998;
| |
Collapse
|
140
|
Ohtani N, Kawada N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatol Commun 2019; 3:456-470. [PMID: 30976737 PMCID: PMC6442695 DOI: 10.1002/hep4.1331] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The gut and the liver are anatomically and physiologically connected, and this “gut–liver axis” exerts various influences on liver pathology. The gut microbiota consists of various microorganisms that normally coexist in the human gut and have a role of maintaining the homeostasis of the host. However, once homeostasis is disturbed, metabolites and components derived from the gut microbiota translocate to the liver and induce pathologic effects in the liver. In this review, we introduce and discuss the mechanisms of liver inflammation, fibrosis, and cancer that are influenced by gut microbial components and metabolites; we include recent advances in molecular‐based therapeutics and novel mechanistic findings associated with the gut–liver axis and gut microbiota.
Collapse
Affiliation(s)
- Naoko Ohtani
- Department of Pathophysiology Osaka City University, Graduate School of Medicine Osaka Japan
| | - Norifumi Kawada
- Department of Hepatology Osaka City University, Graduate School of Medicine Osaka Japan
| |
Collapse
|