101
|
Deng L, Wang Y, Peng Y, Wu Y, Ding Y, Jiang Y, Shen Z, Fu Q. Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts. Bone 2015; 79:37-42. [PMID: 26013558 DOI: 10.1016/j.bone.2015.05.022] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/14/2022]
Abstract
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) have received a good deal of attention and are increasingly considered as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells, triggering a variety of biologic responses. Here, we demonstrated that MVs shed from osteoblasts contain RANKL protein and can transfer it to osteoclast precursors through receptor ligand (RANKL-RANK), leading to stimulation of RANKL-RANK signaling to facilitate osteoclast formation. Such MV-mediated intercellular communication between osteoblasts and osteoclasts may represent a novel mechanism of bone modeling and remodeling. It may be worthwhile to further explore MVs as tools to modify the biological responses of bone cells or develop an alternative drug to treat bone diseases.
Collapse
Affiliation(s)
- Lili Deng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.
| | - Yaping Wang
- Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yu Wu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yuedi Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Yuhai Jiang
- Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhenhai Shen
- Jiangsu Provincial Taihu Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Qiang Fu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China.
| |
Collapse
|
102
|
Meng F, Chen C, Wan H, Zhou Q. [Advances of lentiviral vectors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:870-6. [PMID: 25539614 PMCID: PMC6000409 DOI: 10.3779/j.issn.1009-3419.2014.12.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lentiviral vectors are currently very effective tools in molecular and cell experiment. Lentiviral vector, a kind of retroviral vectors, has a number of unique advantages in target gene transferation, for example, the ability of transfection to the dividing or nondividing cells, its high efficiency of transfection and a capacity of large target gene fragments. This paper describes the sources of lentiviral vectors, molecular characteristics, research progress, etc.
Collapse
Affiliation(s)
- Fanrong Meng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haisu Wan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
103
|
Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015; 220:727-37. [PMID: 26390807 DOI: 10.1016/j.jconrel.2015.09.031] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. METHODS EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. RESULTS Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. CONCLUSIONS Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed.
Collapse
|
104
|
Belting M, Christianson HC. Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J Intern Med 2015; 278:251-63. [PMID: 26153525 DOI: 10.1111/joim.12393] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes and microvesicles, collectively referred to as extracellular vesicles (EVs), can transfer complex biological information and induce a diverse signalling response in recipient cells with potential relevance in a wide array of pathological conditions. Tissue hypoxia constitutes a stress-associated phenotype that is central to the malignant state of aggressive tumours as well as to ischaemic tissue in cardiovascular disorders. The adaptive response to hypoxic stress is largely dependent on intercellular communication in which EVs, and cellular exchange of EV cargo molecules, have recently been implicated. The results of numerous studies indicate that hypoxia-dependent shaping of the molecular profile of EVs may mediate the biological response to hypoxia. EVs have been shown to induce tumour angiogenesis and hypercoagulation as well as tissue remodelling and protective effects in ischaemic cardiovascular conditions. Recent findings report increased levels of circulating EVs in patients with hypoxia-associated disorders such as myocardial infarction, stroke and pre-eclampsia, indicating a role of EVs as biomarkers in these pathophysiological states. Here, we discuss the intriguing role of EVs in tumour development and cardiovascular disease, focusing on the paracrine transfer of the hypoxic response to neighbouring cells and to distant cells at the systemic level, with wide implications for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- M Belting
- Section of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - H C Christianson
- Section of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
105
|
de Souza PS, Faccion RS, Bernardo PS, Maia RC. Membrane microparticles: shedding new light into cancer cell communication. J Cancer Res Clin Oncol 2015; 142:1395-406. [PMID: 26285684 DOI: 10.1007/s00432-015-2029-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Microparticles (MPs) or ectosomes are small enclosed fragments (from 0.2 to 2 μm in diameter) released from the cellular plasma membrane. Several oncogenic molecules have been identified inside MPs, including soluble proteins XIAP, survivin, metalloproteinases, CX3CL1, PYK2 and other microRNA-related proteins; membrane proteins EGFR, HER-2, integrins and efflux pumps; and messenger RNAs and microRNAs miR-21, miR-27a, let-7, miR-451, among others. Studies have shown that MPs transfer their cargo to neoplastic or non-malignant cells and thus contribute to activation of oncogenic pathways, resulting in cell survival, drug resistance and cancer dissemination. DISCUSSION AND CONCLUSION This review summarizes recent findings on MP biogenesis and the role of the MPs cargo in cancer and discusses some of the RNAs and proteins involved. In addition, the discussion covers evidence of (1) how and which signaling pathways can be activated by MPs in recipient cells; (2) recipient cell-type selectivity in incorporation of proteins and RNAs transported by MPs; and (3) how upon stimulation, stromal cells release MPs, promoting resistance to chemotherapeutics and invasiveness in cancer cells.
Collapse
Affiliation(s)
- Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Roberta Soares Faccion
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
106
|
The hypoxic tumor microenvironment: A driving force for breast cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:382-391. [PMID: 26079100 DOI: 10.1016/j.bbamcr.2015.05.036] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Intratumoral hypoxia is a common finding in breast cancer and is associated with a significantly increased risk of metastasis and patient mortality. Hypoxia-inducible factors activate the transcription of a large battery of genes encoding proteins that promote primary tumor vascularization and growth, stromal cell recruitment, extracellular matrix remodeling, premetastatic niche formation, cell motility, local tissue invasion, extravasation at sites of metastasis, and maintenance of the cancer stem cell phenotype that is required to generate secondary tumors. Recent preclinical studies suggest that the combination of cytotoxic chemotherapy with drugs that inhibit hypoxia-inducible factors may improve outcome for women with triple-negative breast cancer. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
107
|
Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget 2015; 5:5686-99. [PMID: 25015330 PMCID: PMC4170605 DOI: 10.18632/oncotarget.2159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells within the bone marrow. There is a growing literature that tumor cells release biologically active microvesicles (MVs) that modify both local and distant microenvironments. In this study, our goals were to determine if MM cells release MVs, and if so, begin to characterize their biologic activity. Herein we present clear evidence that not only do both patient MM cells and human MM cell lines (HMCLs) release MVs, but that these MVs stimulate MM cell growth. Of interest, MM-derived MVs were enriched with the biologically active form of CD147, a transmembrane molecule previously shown by us to be crucial for MM cell proliferation. Using MVs isolated from HMCLs stably transfected with a CD147-GFP fusion construct (CD147GFP), we observed binding and internalization of MV-derived CD147 with HMCLs. Cells with greater CD147GFP internalization proliferated at a higher rate than did cells with less CD147GFP association. Lastly, MVs obtained from CD147 downregulated HMCLs were attenuated in their ability to stimulate HMCL proliferation. In summary, this study demonstrates the significance of MV shedding and MV-mediated intercellular communication on malignant plasma cell proliferation, and identifies the role of MV-enriched CD147 in this process.
Collapse
Affiliation(s)
- Bonnie K Arendt
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Denise K Walters
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Xiaosheng Wu
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Renee C Tschumper
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN
| | - Diane F Jelinek
- Department of Immunology, Division of Hematology, Mayo Clinic, College of Medicine, Rochester, MN. Department of Medicine, Mayo Clinic, College of Medicine, Rochester, MN
| |
Collapse
|
108
|
Black A, Pienimaeki-Roemer A, Kenyon O, Orsó E, Schmitz G. Platelet-derived extracellular vesicles in plateletpheresis concentrates as a quality control approach. Transfusion 2015; 55:2184-96. [DOI: 10.1111/trf.13128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/07/2015] [Accepted: 02/25/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Anne Black
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | - Annika Pienimaeki-Roemer
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | | | - Evelyn Orsó
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| | - Gerd Schmitz
- Institute for Laboratory Medicine and Transfusion Medicine; University of Regensburg; Regensburg Germany
| |
Collapse
|
109
|
Fuhrmann G, Herrmann IK, Stevens MM. Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. NANO TODAY 2015; 10:397-409. [PMID: 28458718 PMCID: PMC5409525 DOI: 10.1016/j.nantod.2015.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles are small lipid-based membrane-bound entities shed by cells under both physiological and pathological conditions. Their discovery as intercellular communicators through transfer of nucleic acid- and protein-based cargos between cells locally and at distance in a highly specific manner has created recent excitement. The information they transport and their composition may vary depending on the cell of origin as well as the eliciting stimulus. Such sensitive changes in vesicle characteristics hold significant promise for the improved diagnosis of pathological conditions, including infections and neoplastic lesions in a minimally invasive way. Similarly, these cell-derived vesicles exhibit promising characteristics that could enhance drug targeting efficiencies. Recent developments in the field have aimed at studying EVs as novel drug carriers due to their natural composition, biological function and selective cell interaction. In this review, we discuss new research avenues in diagnostics and drug therapy based on extracellular vesicles. We show how cell-derived vesicles can be harvested and engineered to meet application-specific design requirements. We finally discuss potential risks encountered when translating extracellular vesicle based approaches into (pre)clinical applications.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Inge K. Herrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
110
|
Zhao XP, Wang M, Song Y, Song K, Yan TL, Wang L, Liu K, Shang ZJ. Membrane microvesicles as mediators for melanoma-fibroblasts communication: Roles of the VCAM-1/VLA-4 axis and the ERK1/2 signal pathway. Cancer Lett 2015; 360:125-33. [DOI: 10.1016/j.canlet.2015.01.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
|
111
|
Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M. Microparticles in cancer: A review of recent developments and the potential for clinical application. Semin Cell Dev Biol 2015; 40:35-40. [PMID: 25843775 DOI: 10.1016/j.semcdb.2015.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/24/2015] [Accepted: 03/28/2015] [Indexed: 12/21/2022]
Abstract
Once thought of as inert remnants of cellular processes, the significance of membrane vesicles is now expanding as their capacity to package and transfer bioactive molecules during intercellular communication is established. This ability to serve as vectors in the trafficking of cellular cargo is of mounting interest in the context of cancer, particularly in the dissemination of deleterious cancer traits from donor cells to recipient cells. Although microparticles (MPs) contribute to the pathogenesis of cancer, their unique characteristics can also be exploited in the context of cancer management. The detection of MPs in body fluids has the potential to provide an effective means for the diagnosis, prognosis and surveillance of cancer patients. The use of these readily accessible systemic biomarkers has the potential to circumvent the need for invasive biopsy procedures. In addition, the autologous nature of MPs may allow them to be used as novel drug delivery carriers. Consequently, the modulation of MP vesiculation to treat disease, the detection of MPs in disease monitoring, and the application of MPs as therapeutic delivery vehicles present prospective clinical interventions in the treatment of cancer.
Collapse
Affiliation(s)
- Joyce Gong
- Discipline of Pharmacy, Graduate School of Health, Level 4, Building 7, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Ritu Jaiswal
- Discipline of Pharmacy, Graduate School of Health, Level 4, Building 7, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Penelope Dalla
- Discipline of Pharmacy, Graduate School of Health, Level 4, Building 7, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Frederick Luk
- Discipline of Pharmacy, Graduate School of Health, Level 4, Building 7, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, Level 4, Building 7, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
112
|
Nicolson GL. Cell membrane fluid-mosaic structure and cancer metastasis. Cancer Res 2015; 75:1169-76. [PMID: 25788696 DOI: 10.1158/0008-5472.can-14-3216] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California.
| |
Collapse
|
113
|
Zhang L, Valencia CA, Dong B, Chen M, Guan PJ, Pan L. Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions. J Hematol Oncol 2015; 8:14. [PMID: 25885907 PMCID: PMC4344735 DOI: 10.1186/s13045-015-0111-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023] Open
Abstract
Anticancer treatments aiming at killing malignant cells have been applied for decades but have been unsuccessful at curing the disease. The modern concept of tumor microenvironment, especially angiogenesis, suggests that the tumor is not only composed of malignant cells, but also consists of other groups of cells that work together. Recently, genetic message transfer has been revealed between tumor cells and their microenvironment. The latest cell-derived vector, extracellular membrane microvesicles (EMVs), has been found to provide membrane protection and allowed to deliver genetic information beyond the cells. Additionally, EMV-associated microRNAs are involved in a variety of cellular pathways for tumor initiation and progression. Previous published reviews have focused on miRNA that included EMVs as a sensitive marker for tumor monitoring in clinical applications that are based on the alteration of their expression levels in conjunction with disease occurrence and progression. From the aspect of cellular crosstalk, this article will review the role of EMV-mediated microRNA transfer in tumor pathogenesis, including tumor treatment obstacles, history and features, and current research in inflammatory/immune pathologies, as well as in solid tumors and hematological malignancies. This nascent crosstalk model will provide a novel insight into complementing the classic mechanisms of intercellular communication and contribute to the potential therapeutic strategy via small RNA molecule-carrying EMVs for multimodality treatment of cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| | - Biao Dong
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA.
| | - Meng Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Pu-Jun Guan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ling Pan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
114
|
Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells. Oncogenesis 2015; 4:e138. [PMID: 25664931 PMCID: PMC4338426 DOI: 10.1038/oncsis.2014.52] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022] Open
Abstract
Therapies targeting cancer metastasis are challenging owing to the complexity of the metastatic process and the high number of effectors involved. Although tumour hypoxia has previously been associated with increased aggressiveness as well as resistance to radio- and chemotherapy, the understanding of a direct link between the level and duration of hypoxia and the individual steps involved in metastasis is still missing. Using live imaging in a chick embryo model, we have demonstrated that the exposure of neuroblastoma cells to 1% oxygen for 3 days was capable of (1) enabling cell migration towards blood vessels, (2) slowing down their velocity within blood vessels to facilitate extravasation and (3) promoting cell proliferation in primary and secondary sites. We have shown that cells do not have to be hypoxic anymore to exhibit these acquired capabilities as a long-term memory of prior hypoxic exposure is kept. Furthermore, non-hypoxic cells can be influenced by neighbouring hypoxic preconditioned cells and be entrained in the metastatic progression. The acquired aggressive phenotype relies on hypoxia-inducible factor (HIF)-dependent transcription of a number of genes involved in metastasis and can be impaired by HIF inhibition. Altogether, our results demonstrate the need to consider both temporal and spatial tumour heterogeneity because cells can 'remember' an earlier environment and share their acquired phenotype with their close neighbours. As a consequence, it is necessary to monitor the correct hypoxic markers to be able to predict the consequences of the cells' history on their behaviour and their potential response to therapies.
Collapse
|
115
|
Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol 2015; 40:27-34. [PMID: 25662446 DOI: 10.1016/j.semcdb.2015.01.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 12/14/2022]
Abstract
The tumour microenvironment is a highly complex and dynamic tissue. It comprises not only neoplastic cells, but also other resident cells within the milieu such as stroma and vascular cells in addition to a variable cellular infiltrate from the periphery. A host of soluble factors such as growth factors, chemokines, eicosanoids soluble metabolites and extracellular matrix components have been extensively documented as factors which modulate this environment. However, in recent years there has also been growing interests in the potential roles of extracellular vesicles (EV) in many of the processes governing the nature of cancerous tissue. In this brief review, we have assembled evidence describing several distinct functions for extracellular vesicles in modulating the microenvironment with examples that include immune evasion, angiogenesis and stromal activation. Whilst there remains a great deal to be learnt about the interplay between vesicles and the cancerous environment, it is becoming clear that vesicle-mediated communication has a major influence on key aspects of cancer growth and progression. We conclude that the design of future therapeutics should acknowledge the existence and roles of extracellular vesicles, and seriously consider strategies for circumventing their effects in vivo.
Collapse
Affiliation(s)
- Jason Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom
| | - Vincent Yeung
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom
| | - Aled Clayton
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom.
| |
Collapse
|
116
|
Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, Roh TY, Gho YS. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One 2014; 9:e115170. [PMID: 25502753 PMCID: PMC4264882 DOI: 10.1371/journal.pone.0115170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference–mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yae Jin Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Chang Min Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yoon-Keun Kim
- Ewha Institute of Convergence Medicine, Ewha Womans University Medical Center, Seoul 158-710, Republic of Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- * E-mail: (YSG); (T-YR)
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- * E-mail: (YSG); (T-YR)
| |
Collapse
|
117
|
Yan T, Mizutani A, Chen L, Takaki M, Hiramoto Y, Matsuda S, Shigehiro T, Kasai T, Kudoh T, Murakami H, Masuda J, Hendrix MJC, Strizzi L, Salomon DS, Fu L, Seno M. Characterization of cancer stem-like cells derived from mouse induced pluripotent stem cells transformed by tumor-derived extracellular vesicles. J Cancer 2014; 5:572-84. [PMID: 25057308 PMCID: PMC4107233 DOI: 10.7150/jca.8865] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/21/2014] [Indexed: 12/19/2022] Open
Abstract
Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors.
Collapse
Affiliation(s)
- Ting Yan
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Akifumi Mizutani
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Ling Chen
- 2. Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156, Sanmalu, Nankai District, Tianjin, 300100, China
| | - Mai Takaki
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuki Hiramoto
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shuichi Matsuda
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsukasa Shigehiro
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Tomonari Kasai
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Takayuki Kudoh
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Murakami
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Junko Masuda
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Mary J C Hendrix
- 3. Lurie Children's Research Center, Feinberg School of Medicine, Northwestern University, 2300 Children's Plaza, Box 222, Chicago, IL 60614-3394, USA
| | - Luigi Strizzi
- 3. Lurie Children's Research Center, Feinberg School of Medicine, Northwestern University, 2300 Children's Plaza, Box 222, Chicago, IL 60614-3394, USA
| | - David S Salomon
- 4. Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 2702, USA
| | - Li Fu
- 5. State Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Masaharu Seno
- 1. Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, 3.1.1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
118
|
Luo J, Zhou X, Yakisich JS. Stemness and plasticity of lung cancer cells: paving the road for better therapy. Onco Targets Ther 2014; 7:1129-34. [PMID: 25018639 PMCID: PMC4075950 DOI: 10.2147/ott.s62345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a devastating disease that is responsible for around 160,000 deaths each year in United States. The discovery that lung cancer, like most other solid tumors, contains a subpopulation of cancer stem cells or cancer stem-like cells (CSCs/CS-LCs) that if eliminated could lead to a cure has brought new hope. However, the exact nature of the putative lung CSCs/CS-LCs is not known and therefore therapies to eliminate this subpopulation have been elusive. A limited knowledge and understanding of cancer stem cell properties and tumor biology may be responsible for the limited clinical success. In this review we discuss the stemness and plasticity properties of lung cancer cells that are critical aspects in terms of developing effective therapies. We suggest that the available experimental evidence obtained from lung cancer cell lines and patients’ derived primary cultures does not support a tumor model consistent with the classical CSC model. Instead, all lung cancer cells may be extremely versatile and new models of cancer stem cells may be better working models.
Collapse
Affiliation(s)
- Judong Luo
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China ; School of Radiation Medicine and Protection, Jiangsu Province Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Xifa Zhou
- Changzhou Tumor Hospital, Soochow University, Changzhou, People's Republic of China
| | | |
Collapse
|
119
|
Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2014; 111:E3234-42. [PMID: 24938788 DOI: 10.1073/pnas.1410041111] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles such as exosomes and microvesicles (MVs) are shed by cancer cells, are detected in the plasma of cancer patients, and promote cancer progression, but the molecular mechanisms regulating their production are not well understood. Intratumoral hypoxia is common in advanced breast cancers and is associated with an increased risk of metastasis and patient mortality that is mediated in part by the activation of hypoxia-inducible factors (HIFs). In this paper, we report that exposure of human breast cancer cells to hypoxia augments MV shedding that is mediated by the HIF-dependent expression of the small GTPase RAB22A, which colocalizes with budding MVs at the cell surface. Incubation of naïve breast cancer cells with MVs shed by hypoxic breast cancer cells promotes focal adhesion formation, invasion, and metastasis. In breast cancer patients, RAB22A mRNA overexpression in the primary tumor is associated with decreased overall and metastasis-free survival and, in an orthotopic mouse model, RAB22A knockdown impairs breast cancer metastasis.
Collapse
|
120
|
Extracellular Membrane Vesicles Derived from 143B Osteosarcoma Cells Contain Pro-Osteoclastogenic Cargo: A Novel Communication Mechanism in Osteosarcoma Bone Microenvironment. Transl Oncol 2014; 7:331-40. [PMID: 25180057 PMCID: PMC4145399 DOI: 10.1016/j.tranon.2014.04.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/21/2014] [Accepted: 03/03/2014] [Indexed: 12/21/2022] Open
Abstract
The bone microenvironment (BME) is the main hub of all skeletal related pathological events in osteosarcoma leading to tumor induced bone destruction, and decreasing overall bone quality and bone strength. The role of extra-cellular membrane vesicles (EMVs) as mediators of intercellular communication in modulating osteosarcoma-BME is unknown, and needs to be investigated. It is our hypothesis that osteosarcoma-EMVs contain pro-osteoclastogenic cargo which increases osteoclastic activity, and dysregulated bone remodeling in the osteosarcoma-BME. In this study, EMVs were isolated from the conditioned media of 143B and HOS human osteosarcoma cell cultures using differential ultracentrifugation. Nano-particle tracking analysis determined EMVs in the size range of 50-200 nm in diameter. The EMV yield from 143B cells was relatively higher compared to HOS cells. Transmission electron microscopy confirmed the ultrastructure of 143B-EMVs and detected multivesicular bodies. Biochemical characterization of 143B-EMVs detected the expression of bioactive pro-osteoclastic cargo including matrix metalloproteinases-1 and -13 (MMP-1, -13), transforming growth factor-β (TGF-β), CD-9, and receptor activator of nuclear factor kappa-β ligand (RANKL). Detection of a protein signature that is uniquely pro-osteoclastic in 143B-EMVs is a novel finding, and is significant as EMVs represent an interesting mechanism for potentially mediating bone destruction in the osteosarcoma-BME. This study further demonstrates that 143B cells actively mobilize calcium in the presence of ionomycin, and forskolin, and induce cytoskeleton rearrangements leading to vesicular biogenesis. In conclusion, this study demonstrates that 143B osteosarcoma cells generate EMVs mainly by mechanisms involving increased intracellular calcium or cAMP levels, and contain pro-osteoclastic cargo.
Collapse
|
121
|
Voloshin T, Fremder E, Shaked Y. Small but mighty: microparticles as mediators of tumor progression. CANCER MICROENVIRONMENT 2014; 7:11-21. [PMID: 24705797 DOI: 10.1007/s12307-014-0144-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
A wide spectrum of both normal and diseased cell types shed extracellular vesicles that facilitate intercellular communication without direct cell-to-cell contact. Microparticles (MPs) are a subtype of extracellular vesicles that participate in multiple biological processes. They carry abundant bioactive molecules including different forms of nucleic acids and proteins that can markedly modulate cellular behavior. MPs are involved in several hallmarks of cancer such as drug resistance, thrombosis, immune evasion, angiogenesis, tumor invasion and metastasis. Such MPs originate from either cancer or other host cells. As MPs are secreted and can be detected in various body fluids, they can be used as potential diagnostic and prognostic biomarkers as well as vehicles for delivery of cytotoxic drugs. This review summarizes accumulating evidence on the biological properties of MPs in cancer, with reference to their potential usage in clinical settings.
Collapse
Affiliation(s)
- Tali Voloshin
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel
| | | | | |
Collapse
|
122
|
Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 2014; 306:C621-33. [DOI: 10.1152/ajpcell.00228.2013] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microvesicles represent a newly identified mechanism of intercellular communication. Two different types of microvesicles have been identified: membrane-derived vesicles (EVs) and exosomes. EVs originate by direct budding from the plasma membrane, while exosomes arise from ectocytosis of multivesicular bodies. Recent attention has focused on the capacity of EVs to alter the phenotype of neighboring cells to make them resemble EV-producing cells. Stem cells are an abundant source of EVs, and the interaction between stem cells and the microenvironment (i.e., stem cell niche) plays a critical role in determining stem cell phenotype. The stem cell niche hypothesis predicts that stem cell number is limited by the availability of niches releasing the necessary signals for self-renewal and survival, and the niche thus provides a mechanism for controlling and limiting stem cell numbers. EVs may play a fundamental role in this context by transferring genetic information between cells. EVs can transfer mRNA and microRNA to target cells, both of which may be involved in the change in target-cell phenotype towards that of EV-producing cells. The exchange of genetic information may be bidirectional, and EV-mediated transfer of genetic information after tissue damage may reprogram stem cells to acquire the phenotypic features of the injured tissue cells. In addition, stem cell-derived EVs may induce the de-differentiation of cells that survive injury by promoting their reentry into the cell cycle and subsequently increasing the possibility of tissue regeneration.
Collapse
Affiliation(s)
- Giuseppina Turturici
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Rosaria Tinnirello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Gabriella Sconzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Fabiana Geraci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| |
Collapse
|
123
|
Thuma F, Zöller M. Outsmart tumor exosomes to steal the cancer initiating cell its niche. Semin Cancer Biol 2014; 28:39-50. [PMID: 24631836 DOI: 10.1016/j.semcancer.2014.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 02/22/2014] [Indexed: 12/14/2022]
Abstract
Exosomes are small vesicles that derive from endosomes and are delivered by many cells, including tumor cells that are a particular rich source of exosomes. Exosomes are suggested to be the most potent intercellular communicators. Being recovered in all body fluids, they can communicate with neighboring as well as distant cells. The latter was first described for dendritic cell exosomes that can initiate T cell activation. However, tumor exosomes (TEX) may impede this crosstalk. Besides with hematopoietic cells, TEX communicate with the tumor cell itself, but also with host stroma cells and endothelial cells. This crosstalk received much attention as there is strong evidence that TEX account for angiogenesis and premetastatic niche formation, which may proceed directly via binding and uptake of TEX by cells in the premetastatic organ or indirectly via TEX being taken up by hematopoietic progenitors in the bone marrow (BM), which mature toward lineages with immunosuppressive features or are forced toward premature release from the BM and homing into premetastatic organs. Knowing these deleterious activities of TEX, it becomes demanding to search for modes of therapeutic interference. I here introduce our hypothesis that metastasis formation may be hampered by tailored exosomes that outsmart TEX. The essential prerequisites are an in depth knowledge on TEX binding, uptake, binding-initiated signal transduction and uptake-promoted target cell reprogramming.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
124
|
Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin 2014; 35:381-93. [PMID: 24374813 DOI: 10.1038/aps.2013.166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate the effects of serum deprivation (SD) on microvesicles (MVs) secreted from human myeloma cells and the implications for disease progression. METHODS RPMI 8226, U266, and KM3 human myeloma cells were incubated in medium containing 10% (non-SD) or 1% fetal bovine serum (SD) and MVs were isolated. The levels and size distribution of MVs were analyzed with flow cytometry. The protein profiles of MVs were studied using 2D SDS-PAGE, MALDI-TOF-MS, and Western blotting. NF-κB activation was analyzed using EMSA. Angiogenesis was examined in Eahy926 endothelial cells. RESULTS Exposure of RPMI 8226 cells to SD for 24 h did not alter the number of apoptotic cells. However, SD increased the number of MVs from RPMI 8226, U266, and KM3 cells to 2.5-, 4.3-, and 3.8-fold, respectively. The size distribution of SD MVs was also significantly different from that of non-SD MVs. Three proteins ZNF224, SARM, and COBL in SD MVs were found to be up-regulated, which were involved in cell cycle regulation, signal transduction and metabolism, respectively. Co-culture of SD MVs and RPMI 8226 cells increased NF-κB activation in the target RPMI 8226 cells. Furthermore, SD MVs from RPMI 8226 cells significantly increased the microtubule formation capacity of Eahy926 endothelial cells compared with non-SD MVs. CONCLUSION SD elevates the levels of microvesicles with different size distribution and selectively enriched proteins in human myeloma cells in vitro. The selectively enriched proteins, especially ZNF224, may play key roles in regulation of myeloma cells, allowing better adaptation to SD.
Collapse
|
125
|
Circulating levels of cell-derived microparticles are reduced by mild hypobaric hypoxia: data from a randomised controlled trial. Eur J Appl Physiol 2014; 114:1067-73. [PMID: 24514947 DOI: 10.1007/s00421-014-2837-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Hypoxia is known to induce the release of microparticles in vitro. However, few publications have addressed the role of hypoxia in vivo on circulating levels of microparticles. This randomised, controlled, crossover trial aimed to determine the effect of mild hypoxia on in vivo levels of circulating microparticles in healthy individuals. METHODS Blood was obtained from 51 healthy male volunteers (mean age of 26.9 years) at baseline altitude (490 m) and after 24 and 48 h at moderate altitude (2,590 m). The order of altitude exposure was randomised. Flow cytometry was used to assess platelet-poor plasma for levels of circulating microparticles derived from platelets, endothelial cells, leucocytes, granulocytes, monocytes, red blood cells and procoagulant microparticles. RESULTS Mean (standard deviation) oxygen saturation was significantly lower on the first and second day after arrival at 2,590 m, 91.0 (2.0) and 92.0 (2.0) %, respectively, compared to 490 m, 96 (1.0) %, p < 0.001 for both comparisons. A significant decrease in the levels of procoagulant microparticles (annexin V+ -221/μl 95 % CI -370.8/-119.0, lactadherin+ -202/μl 95 % CI -372.2/-93.1), platelet-derived microparticles (-114/μl 95 % CI -189.9/-51.0) and red blood cell-derived microparticles (-81.4 μl 95 % CI -109.9/-57.7) after 48 h at moderate altitude was found. Microparticles derived from endothelial cells, granulocytes, monocytes and leucocytes were not significantly altered by exposure to moderate altitude. CONCLUSIONS In healthy male individuals, mild hypobaric hypoxia, induced by a short-term stay at moderate altitude, is associated with lower levels of procoagulant microparticles, platelet-derived microparticles and red blood cell-derived microparticles, suggesting a reduction in thrombotic potential.
Collapse
|
126
|
Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin 2014; 35:230-8. [PMID: 24374814 DOI: 10.1038/aps.2013.141] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022] Open
Abstract
AIM To investigate whether human multiple myeloma (MM) cells secrete microvesicles (MVs) and whether the MVs secreted from MM cells (MM-MVs) promote angiogenesis. METHODS RPMI8226 human MM cells and EA.hy926 human umbilical vein cells were used. MVs isolated from RPMI8226 cells were characterized under laser confocal microscopy, electron microscopy and with flow cytometry. The fusion of MM-MVs and EA.hy926 cells was studied under confocal microscopy, and the transfer of CD138 to EA.hy926 cells was demonstrated with flow cytometry. The proliferation, invasion and tube formation of EA.hy926 cells in vitro were evaluated using MTT, transwell migration and tube formation assays, respectively. The vasculization of EA.hy926 cells in vivo was studied using Matrigel plug assay. The expression of IL-6 and VEGF was analyzed with PCR and ELISA. RESULTS MM-MVs from the RPMI 8226 cells had the characteristic cup-shape with diameter of 100-1000 nm. Most of the MM-MVs expressed phosphatidylserine and the myeloma cell marker CD138, confirming that they were derived from myeloma cells. After added to EA.hy926 cells, the MM-MVs transferred CD138 to the endothelial cells and significantly stimulated the endothelial cells to proliferate, invade, secrete IL-6 and VEGF, two key angiogenic factors of myeloma, and form tubes in vitro and in vivo. CONCLUSION Our results confirm the presence of MVs in MM cells and support the idea that MM-MVs are newfound mediators for myeloma angiogenesis and may serve as a therapeutic target to treat MM.
Collapse
|
127
|
Beach A, Zhang HG, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 2014; 7:14. [PMID: 24460816 PMCID: PMC3932023 DOI: 10.1186/1757-2215-7-14] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022] Open
Abstract
Exosomes are tiny membrane-bound vesicles that are over produced by most proliferating cell types during normal and pathological states. Their levels are up-regulated during pregnancy and disease states such as cancer. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, microRNAs and small RNAs that are representative to their cellular origin and shuttle from a donor cell to a recipient cell. From intercellular communication to tumor proliferation, exosomes carry out a diverse range of functions, both helpful and harmful. Useful as biomarkers, exosomes may be applicable in diagnostic assessments as well as cell-free anti-tumor vaccines. Exosomes of ovarian cancer contain different set of proteins and miRNAs compared to exosomes of normal, cancer-free individuals. These molecules may be used as multiple “barcode” for the development of a diagnostic tool for early detection of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | - Sham S Kakar
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
128
|
Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 2014; 1165:147-73. [PMID: 24839024 DOI: 10.1007/978-1-4939-0856-1_11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery that cancer cells generate large membrane-enclosed packets of epigenetic information, known as microvesicles (MVs), that can be transferred to other cells and influence their behavior (Antonyak et al., Small GTPases 3:219-224, 2012; Cocucci et al., Trends Cell Biol 19:43-51, 2009; Rak, Semin Thromb Hemost 36:888-906, 2010; Skog et al., Nat Cell Biol 10:1470-1476, 2008) has added a unique perspective to the classical paracrine signaling paradigm. This is largely because, in addition to growth factors and cytokines, MVs contain a variety of components that are not usually thought to be released into the extracellular environment by viable cells including plasma membrane-associated proteins, cytosolic- and nuclear-localized proteins, as well as nucleic acids, particularly RNA transcripts and micro-RNAs (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008; Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Balaj et al., Nat Commun 2:180, 2011; Choi et al., J Proteome Res 6:4646-4655, 2007; Del Conde et al., Blood 106:1604-1611, 2005; Gallo et al., PLoS One 7:e30679, 2012; Graner et al., FASEB J 23:1541-1557, 2009; Grange et al., Cancer Res 71:5346-5356, 2011; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Noerholm et al., BMC Cancer 12:22, 2012; Zhuang et al., EMBO J 31:3513-3523, 2012). When transferred between cancer cells, MVs have been shown to stimulate signaling events that promote cell growth and survival (Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008). Cancer cell-derived MVs can also be taken up by normal cell types that surround the tumor, an outcome that helps shape the tumor microenvironment, trigger tumor vascularization, and even confer upon normal recipient cells the transformed characteristics of a cancer cell (Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Martins et al., Curr Opin Oncol 25:66-75, 2013; Al-Nedawi et al., Proc Natl Acad Sci U S A 106:3794-3799, 2009; Ge et al., Cancer Microenviron 5:323-332, 2012). Thus, the production of MVs by cancer cells plays crucial roles in driving the expansion of the primary tumor. However, it is now becoming increasingly clear that MVs are also stable in the circulation of cancer patients, where they can mediate long-range effects and contribute to the formation of the pre-metastatic niche, an essential step in metastasis (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Noerholm et al., BMC Cancer 12:22, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; van der Vos et al., Cell Mol Neurobiol 31:949-959, 2011). These findings, when taken together with the fact that MVs are being aggressively pursued as diagnostic markers, as well as being considered as potential targets for intervention against cancer (Antonyak et al., Small GTPases 3:219-224, 2012; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Ge et al., Cancer Microenviron 5:323-332, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; Al-Nedawi et al., Cell Cycle 8:2014-2018, 2009; Cocucci and Meldolesi, Curr Biol 21:R940-R941, 2011; D'Souza-Schorey and Clancy, Genes Dev 26:1287-1299, 2012; Shao et al., Nat Med 18:1835-1840, 2012), point to critically important roles for MVs in human cancer progression that can potentially be exploited to develop new targeted approaches for treating this disease.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
129
|
Ratajczak MZ, Jadczyk T, Schneider G, Kakar SS, Kucia M. Induction of a tumor-metastasis-receptive microenvironment as an unwanted and underestimated side effect of treatment by chemotherapy or radiotherapy. J Ovarian Res 2013; 6:95. [PMID: 24373588 PMCID: PMC3880975 DOI: 10.1186/1757-2215-6-95] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/26/2013] [Indexed: 12/12/2022] Open
Abstract
There are well-known side effects of chemotherapy and radiotherapy that are mainly related to the toxicity and impaired function of vital organs; however, the induction by these therapies of expression of several pro-metastatic factors in various tissues and organs that in toto create a pro-metastatic microenvironment is still, surprisingly, not widely acknowledged. In this review, we support the novel concept that toxic damage in various organs leads to upregulation in “bystander” tissues of several factors such as chemokines, growth factors, alarmines, and bioactive phosphosphingolipids, which attract circulating normal stem cells for regeneration but unfortunately also provide chemotactic signals to cancer cells that survived the initial treatment. We propose that this mechanism plays an important role in the metastasis of cancer cells to organs such as bones, lungs, and liver, which are highly susceptible to chemotherapeutic agents as well as ionizing irradiation. This problem indicates the need to develop efficient anti-metastatic drugs that will work in combination with, or follow, standard therapies in order to prevent the possibility of therapy-induced spread of tumor cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S, Floyd Street, Rm, 107, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
130
|
Zöller M. Pancreatic cancer diagnosis by free and exosomal miRNA. World J Gastrointest Pathophysiol 2013; 4:74-90. [PMID: 24340225 PMCID: PMC3858795 DOI: 10.4291/wjgp.v4.i4.74] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/01/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic adenocarcinoma (PaCa) have a dismal prognosis. This is in part due to late diagnosis prohibiting surgical intervention, which provides the only curative option as PaCa are mostly chemo- and radiation resistance. Hope is raised on a reliable non-invasive/minimally invasive diagnosis that is still missing. Recently two diagnostic options are discussed, serum MicroRNA (miRNA) and serum exosomes. Serum miRNA can be free or vesicle-, particularly, exosomes-enclosed. This review will provide an overview on the current state of the diagnostic trials on free serum miRNA and proceed with an introduction of exosomes that use as a diagnostic tool in serum and other body fluids has not received sufficient attention, although serum exosome miRNA in combination with protein marker expression likely will increase the diagnostic and prognostic power. By their crosstalk with host cells, which includes binding-initiated signal transduction, as well as reprogramming target cells via the transfer of proteins, mRNA and miRNA exosomes are suggested to become a most powerful therapeutics. I will discuss which hurdles have still to be taken as well as the different modalities, which can be envisaged to make therapeutic use of exosomes. PaCa are known to most intensely crosstalk with the host as apparent by desmoplasia and frequent paraneoplastic syndromes. Thus, there is hope that the therapeutic application of exosomes brings about a major breakthrough.
Collapse
|
131
|
Elevated circulating levels of tissue factor-positive microvesicles are associated with distant metastasis in lung cancer. J Cancer Res Clin Oncol 2013; 140:61-7. [PMID: 24169761 DOI: 10.1007/s00432-013-1544-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Microvesicles (MV) in the blood stream are associated with distant metastasis in cancer. Platelet or endothelial cell-related MV actively participate in thrombogenesis, which is an important step in cancer metastasis. This study investigated the correlations between MV levels of platelet-poor plasma and distant metastasis in lung cancer. METHODS Platelet-poor plasma from 44 treatment-naive lung cancer (23 with distant metastasis) and 19 normal subjects was used to determine the levels of glycoprotein Iβ (CD42) + platelet MV (PMV), P-selectin (CD62P) + PMV, VE-cadherin (CD144) + endothelial MV (EMV), tissue factor (CD142) + MV, thrombin-antithrombin complex and vascular endothelial growth factor (VEGF). RESULTS The level of CD142 + MV was significant (odds ratio 5.86, 95 % confidence interval 1.31-38.3) in predicting distant metastasis in lung cancer, and a cutoff value of 2.668 (after logarithm transformation) in the ROC curve had a specificity of 90 % and a sensitivity of 59 %. The presence of distant metastasis showed a significant correlation between CD144 + EMV and VEGF, but not between CD144 + EMV and CD42 + PMV or CD62P + PMV in lung cancer subjects. CONCLUSIONS The finding of CD142 + MV in platelet-poor plasma may be useful for suggesting distant metastasis in lung cancer. In addition to thrombogenesis, interaction between VE-cadherin and VEGF may be needed for successful metastasis in lung cancer.
Collapse
|
132
|
Thomas SN, Liao Z, Clark D, Chen Y, Samadani R, Mao L, Ann DK, Baulch JE, Shapiro P, Yang AJ. Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes 2013; 1:87-108. [PMID: 24860738 PMCID: PMC4029595 DOI: 10.3390/proteomes1020087] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiation and drug resistance are significant challenges in the treatment of locally advanced, recurrent and metastatic breast cancer that contribute to mortality. Clinically, radiotherapy requires oxygen to generate cytotoxic free radicals that cause DNA damage and allow that damage to become fixed in the genome rather than repaired. However, approximately 40% of all breast cancers have hypoxic tumor microenvironments that render cancer cells significantly more resistant to irradiation. Hypoxic stimuli trigger changes in the cell death/survival pathway that lead to increased cellular radiation resistance. As a result, the development of noninvasive strategies to assess tumor hypoxia in breast cancer has recently received considerable attention. Exosomes are secreted nanovesicles that have roles in paracrine signaling during breast tumor progression, including tumor-stromal interactions, activation of proliferative pathways and immunosuppression. The recent development of protocols to isolate and purify exosomes, as well as advances in mass spectrometry-based proteomics have facilitated the comprehensive analysis of exosome content and function. Using these tools, studies have demonstrated that the proteome profiles of tumor-derived exosomes are indicative of the oxygenation status of patient tumors. They have also demonstrated that exosome signaling pathways are potentially targetable drivers of hypoxia-dependent intercellular signaling during tumorigenesis. This article provides an overview of how proteomic tools can be effectively used to characterize exosomes and elucidate fundamental signaling pathways and survival mechanisms underlying hypoxia-mediated radiation resistance in breast cancer.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - David Clark
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Division of Oncology, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yangyi Chen
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.)
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Li Mao
- Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - David K Ann
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA;
| | - Paul Shapiro
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA;
| | - Austin J Yang
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.C.); (Y.C.); (P.S.) ; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
133
|
Abstract
The important roles of extracellular vesicles in the pathogenesis of various diseases are rapidly being elucidated. As important vehicles of intercellular communication, extracellular vesicles, which comprise microvesicles and exosomes, are revealing important roles in cancer tumorigenesis and metastases and in the spread of infectious disease. The September 2012 Focused Meeting 'Microvesiculation and Disease' brought together researchers working on extracellular vesicles. The papers in this issue of Biochemical Society Transactions review work in areas including HIV infection, kidney disease, hypoxia-mediated tumorigenesis and down-regulation of immune cell functions in acute myeloid leukaemia by tumour-derived exosomes. In all cases, microvesicles and exosomes have been demonstrated to be important factors leading to the pathophysiology of disease or indeed as therapeutic vehicles in possible new treatments. The aim was, having enhanced our molecular understanding of the contribution of microvesicles and exosomes to disease in vitro, to begin to apply this knowledge to in vivo models of disease.
Collapse
|
134
|
Xiong W, Sun LP, Chen XM, Li HY, Huang SA, Jie SH. Comparison of microRNA expression profiles in HCC-derived microvesicles and the parental cells and evaluation of their roles in HCC. ACTA ACUST UNITED AC 2013; 33:346-352. [PMID: 23771658 DOI: 10.1007/s11596-013-1122-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Indexed: 12/17/2022]
Abstract
To determine whether the microRNAs (miRNAs) contained in cancer-derived microvesicles (MVs) mirror those of the parental tumor cells, we compared the miRNA expression profiles of MVs derived from their parental hepatocellular carcinoma (HCC) cells. The presence and levels of 888 miRNAs from SMMC-7721 cells and MVs were detected by Agilent miRNA microarray analysis. Four selected miRNAs were verified by real time qRT-PCR. Furthermore, the genes of the miRNAs were bioinformatically identified to explore potential roles of the miRNAs in HCC microenvironment. Our results showed that miRNAs expression profiles of MVs derived from HCC were significantly changed. Of all the miRNAs tested, 148 miRNAs were co-expressed in MVs and SMMC-7721 cells, only 121 and 15 miRNAs were detected in MVs and SMMC-7721 cells, respectively. Among the 148 co-expressing miRNAs, 48 miRNAs had the similar expression level and 6 of them were supposed to be oncogenic or suppressive miRNAs. According to the target prediction by Quantile Algorithm method, these miRNAs may regulate 3831 genes which were closely related to cell cycle, apoptosis and oncogenesis, and 78 were known tumor suppressors or oncogenes. Gene ontology (GO) analysis indicated that 3831 genes were mainly associated with nucleic acid binding, cell death, cell adhesion. MVs containing miRNAs, released into the HCC microenvironment, bear the characteristic miRNAs of the original cells and might participate in cancer progression.
Collapse
Affiliation(s)
- Wei Xiong
- Center for Stem Cell Research and Application, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Ping Sun
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Mei Chen
- Center for Stem Cell Research and Application, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui-Yu Li
- Center for Stem Cell Research and Application, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi-Ang Huang
- Center for Stem Cell Research and Application, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng-Hua Jie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
135
|
Lanara Z, Giannopoulou E, Fullen M, Kostantinopoulos E, Nebel JC, Kalofonos HP, Patrinos GP, Pavlidis C. Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. Hum Genomics 2013; 7:14. [PMID: 23738773 PMCID: PMC3686617 DOI: 10.1186/1479-7364-7-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
A large number of common disorders, including cancer, have complex genetic traits, with multiple genetic and environmental components contributing to susceptibility. A literature search revealed that even among several meta-analyses, there were ambiguous results and conclusions. In the current study, we conducted a thorough meta-analysis gathering the published meta-analysis studies previously reported to correlate any random effect or predictive value of genome variations in certain genes for various types of cancer. The overall analysis was initially aimed to result in associations (1) among genes which when mutated lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer. We have meta-analysed 150 meta-analysis articles which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total) including various racial groups and other population groups (native Americans, Latinos, Aborigines, etc.). Our results were not only consistent with previously published literature but also depicted novel correlations of genes with new cancer types. Our analysis revealed a total of 17 gene-disease pairs that are affected and generated gene/disease clusters, many of which proved to be independent of the criteria used, which suggests that these clusters are biologically meaningful.
Collapse
Affiliation(s)
- Zoi Lanara
- Faculty of Mathematical, Physical and Natural Sciences, Department of Biological Sciences, University of Trieste, Trieste, 34128, Italy
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW Exosomes and microvesicles are secreted particles of 30-200 nm in diameter, delimited by a lipid bilayer and containing a wide range of membrane-bound or free proteins and nucleic acids (in particular mRNA and miRNA). Here, we review the properties of tumor-cell-derived microvesicles as carriers of molecular information in relation to cancer progression and promotion of metastasis. RECENT FINDINGS Microvesicles from tumor cells operate as signaling platforms that diffuse in the extracellular space to target cells in the microenvironment, modulating the interactions of tumor cells with stromal, inflammatory, dendritic, immune or vascular cells and priming the formation of the metastatic niche. SUMMARY Because of their stability, exosomes and microvesicles can be retrieved in bodily fluids as biomarkers for cancer detection and monitoring. They offer a range of molecular targets for controlling cell-cell interactions during invasion and metastasis.
Collapse
|
137
|
Choi DS, Kim DK, Kim YK, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013; 13:1554-71. [PMID: 23401200 DOI: 10.1002/pmic.201200329] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/12/2022]
Abstract
Mammalian cells secrete two types of extracellular vesicles either constitutively or in a regulated manner: exosomes (50-100 nm in diameter) released from the intracellular compartment and ectosomes (also called microvesicles, 100-1000 nm in diameter) shed directly from the plasma membrane. Extracellular vesicles are bilayered proteolipids enriched with proteins, mRNAs, microRNAs, and lipids. In recent years, much data have been collected regarding the specific components of extracellular vesicles from various cell types and body fluids using proteomic, transcriptomic, and lipidomic methods. These studies have revealed that extracellular vesicles harbor specific types of proteins, mRNAs, miRNAs, and lipids rather than random cellular components. These results provide valuable information on the molecular mechanisms involved in vesicular cargo-sorting and biogenesis. Furthermore, studies of these complex extracellular organelles have facilitated conceptual advancements in the field of intercellular communication under physiological and pathological conditions as well as for disease-specific biomarker discovery. This review focuses on the proteomic, transcriptomic, and lipidomic profiles of extracellular vesicles, and will briefly summarize recent advances in the biology, function, and diagnostic potential of vesicle-specific components.
Collapse
Affiliation(s)
- Dong-Sic Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
138
|
Kucharzewska P, Belting M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J Extracell Vesicles 2013; 2:20304. [PMID: 24009895 PMCID: PMC3760648 DOI: 10.3402/jev.v2i0.20304] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/09/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly subjected to various types of endogenous and exogenous stressful stimuli, which can cause serious and even permanent damage. The ability of a cell to sense and adapt to environmental alterations is thus vital to maintain tissue homeostasis during development and adult life. Here, we review some of the major phenotypic characteristics of the hostile tumour microenvironment and the emerging roles of extracellular vesicles in these events.
Collapse
Affiliation(s)
- Paulina Kucharzewska
- Section of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | |
Collapse
|
139
|
Fabbri M, Paone A, Calore F, Galli R, Croce CM. A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 2013; 10:169-74. [PMID: 23296026 DOI: 10.4161/rna.23144] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment plays a central role in the development and dissemination of cancer cells. In addition to study each specific cellular component of the microenvironment, it has become clear that it is the type and amount of information that cells exchange that ultimately affects cancer phenotype. Recently, it has been discovered that intercellular communication occurs through the release of microvesicles and exosomes, whose cargo represents the information released by one cell to a recipient cell. A key component of this cargo is represented by microRNAs (miRNAs), small non-coding RNAs with gene regulatory functions. We discovered that miRNAs released by cancer cells within microvesicles can reach and bind to Toll-like receptors (TLRs) in surrounding immune cells, and activate them in a paracrine loop. As a result, immune cells produce cytokines that increase cell proliferation and metastatic potential. This discovery provides the rationale for the development of new drugs that might be used in the treatment of cancer as well as other inflammation-related diseases.
Collapse
Affiliation(s)
- Muller Fabbri
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
140
|
Abstract
Body fluids contain surprising numbers of cell-derived vesicles which are now thought to contribute to both physiology and pathology. Tools to improve the detection of vesicles are being developed and clinical applications using vesicles for diagnosis, prognosis, and therapy are under investigation. The increased understanding why cells release vesicles, how vesicles play a role in intercellular communication, and how vesicles may concurrently contribute to cellular homeostasis and host defense, reveals a very complex and sophisticated contribution of vesicles to health and disease.
Collapse
|
141
|
Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC, Li LT, Yeh CM, Yeh KT, Chen YC, Hsu TH, Shen SC, Lee WR, Chiou JF, Luo SF, Jiang MC. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol Med 2012; 18:1269-80. [PMID: 22952058 DOI: 10.2119/molmed.2012.00205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022] Open
Abstract
Tumor-derived microvesicles are rich in metastasis-related proteases and play a role in the interactions between tumor cells and tumor microenvironment in tumor metastasis. Because shed microvesicles may remain in the extracellular environment around tumor cells, the microvesicle membrane protein may be the potential target for cancer therapy. Here we report that chromosome segregation 1-like (CSE1L) protein is a microvesicle membrane protein and is a potential target for cancer therapy. v-H-Ras expression induced extracellular signal-regulated kinase (ERK)-dependent CSE1L phosphorylation and microvesicle biogenesis in various cancer cells. CSE1L overexpression also triggered microvesicle generation, and CSE1L knockdown diminished v-H-Ras-induced microvesicle generation, matrix metalloproteinase (MMP)-2 and MMP-9 secretion and metastasis of B16F10 melanoma cells. CSE1L was preferentially accumulated in microvesicles and was located in the microvesicle membrane. Furthermore, anti-CSE1L antibody-conjugated quantum dots could target tumors in animal models. Our findings highlight a novel role of Ras-ERK signaling in tumor progression and suggest that CSE1L may be involved in the "early" and "late" metastasis of tumor cells in tumorigenesis. Furthermore, the novel microvesicle membrane protein, CSE1L, may have clinical utility in cancer diagnosis and targeted cancer therapy.
Collapse
Affiliation(s)
- Ching-Fong Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Metastasis is the leading cause of cancer death, yet it is mechanistically considered a very inefficient process suggesting the presence of some sort of (e.g. systemic) routes for fuelling the process. The pre-metastatic niche formation is described as one such metastasis promoting route. Now, the emerging potentials of tumor-derived microvesicles (TDMVs), not only in formulating the pre-metastatic niche, but also conferring neoplastic phenotypes onto normal cells, has integrated new concepts into the field. Here, we note as an ancillary proposition that, exerting functional disturbances in other sites, TDMVs (we have termed them metastasomes) may aid foundation of the secondary lesions via two seemingly interrelated models: (i) tumor-organ-training (TOTr), training a proper niche for the growth of the disseminated tumor cells; (ii) tumor-organ-targeting (TOTa), contribution to the propagation of the transformed phenotype via direct or indirect (TOTr-mediated disturbed stroma) transformation and/or heightened growth/survival states of the normal resident cells in the secondary organs. Respecting the high content of the RNA molecules (particularly microRNAs) identified in the secretory MVs, they may play crucial parts in such "malignant trait" spreading system. That is, the interactions between tumor tissue-specific RNA signatures, being transferred via metastasomes, and the cell-type/tissue-specific RNA stockrooms in other areas may settle a unique outcome in each organ. Thus, serving as tumor-organ matchmakers, the RNA molecules may also play substantial roles in the seeding and tropism of the process.
Collapse
|
143
|
Chang YH, Lee SH, Chang HC, Tseng YL, Lai WW, Liao CC, Tsay YG, Liao PC. Comparative secretome analyses using a hollow fiber culture system with label-free quantitative proteomics indicates the influence of PARK7 on cell proliferation and migration/invasion in lung adenocarcinoma. J Proteome Res 2012; 11:5167-85. [PMID: 22985211 DOI: 10.1021/pr300362g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the leading cause of cancer death worldwide, lung cancer lacks effective diagnosis tools and treatments to prevent its metastasis. Fortunately, secretome has clinical usages as biomarkers and protein drugs. To discover the secretome that influences lung adenocarcinoma metastasis, the hollow fiber culture (HFC) system was used along with label-free proteomics approach to analyze cell secretomes between CL1-0 and CL1-5 cell lines, which exhibit low and high metastatic potentials. Among the 703 proteins quantified, 50 possessed different levels between CL1-0 and CL1-5. PARK7 was a primary focus because of the lack of research involving lung adenocarcinoma. The cell proliferation, migration, and invasion properties of CL1-0, CL1-5, and A549 cells were significantly diminished when the expression of their PARK7 proteins was reduced. Conversely, these functions were promoted when PARK7 was overexpressed in CL1-0. In clinical expression, PARK7 levels within tissue specimens and plasma samples were significantly higher in the cancer group. This represents the first time the HFC system has been used with label-free quantification to discern the elements of metastasis in lung adenocarcinoma cell secretomes. Likewise, PARK7 has never been researched for its role in promoting lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Ying-Hua Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Zhang HC, Liu XB, Huang S, Bi XY, Wang HX, Xie LX, Wang YQ, Cao XF, Lv J, Xiao FJ, Yang Y, Guo ZK. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 2012; 21:3289-97. [PMID: 22839741 DOI: 10.1089/scd.2012.0095] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although mesenchymal stem cells (MSCs) have been increasingly trialed to treat a variety of diseases, the underlying mechanisms remain still elusive. In this study, human umbilical cord (UC)-derived MSCs were stimulated by hypoxia, and the membrane microvesicles (MVs) in the supernatants were collected by ultracentrifugation, observed under an electron microscope, and the origin was identified with the flow cytometric technique. The results showed that upon hypoxic stimulus, MSCs released a large quantity of MVs of ~100 nm in diameter. The MVs were phenotypically similar to the parent MSCs, except that the majority of them were negative for the receptor of platelet-derived growth factor. DiI-labeling assay revealed that MSC-MVs could be internalized into human UC endothelial cells (UC-ECs) within 8 h after they were added into the culture medium. Carboxyfluorescein succinimidyl ester-labeling technique and MTT test showed that MSC-MVs promoted the proliferation of UC-ECs in a dose-dependent manner. Further, MVs could enhance in vitro capillary network formation of UC-ECs in a Matrigel matrix. In a rat hindlimb ischemia model, both MSCs and MSC-MVs were shown to improve significantly the blood flow recovery compared with the control medium (P<0.0001), as assessed by laser Doppler imaging analysis. These data indicate that MV releasing is one of the major mechanisms underlying the effectiveness of MSC therapy by promoting angiogenesis.
Collapse
Affiliation(s)
- Hong-Chao Zhang
- Department of Cardiology Surgery, General Hospital of Air Force, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 2012; 12:421. [PMID: 22998595 PMCID: PMC3488584 DOI: 10.1186/1471-2407-12-421] [Citation(s) in RCA: 764] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/18/2012] [Indexed: 01/11/2023] Open
Abstract
Background Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Results Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more exosomes into their microenvironment to promote their own survival and invasion.
Collapse
Affiliation(s)
- Hamish W King
- Renal Department, Flinders Medical Centre, Flinders University School of Medicine, Bedford Park, South Australia, 5042, Australia
| | | | | |
Collapse
|
146
|
D'Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 2012; 26:1287-99. [PMID: 22713869 DOI: 10.1101/gad.192351.112] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the study of tumor-derived microvesicles reveal new insights into the cellular basis of disease progression and the potential to translate this knowledge into innovative approaches for cancer diagnostics and personalized therapy. Tumor-derived microvesicles are heterogeneous membrane-bound sacs that are shed from the surfaces of tumor cells into the extracellular environment. They have been thought to deposit paracrine information and create paths of least resistance, as well as be taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. The complexity of their bioactive cargo-which includes proteins, RNA, microRNA, and DNA-suggests multipronged mechanisms by which microvesicles can condition the extracellular milieu to facilitate disease progression. The formation of these shed vesicles likely involves both a redistribution of surface lipids and the vertical trafficking of cargo to sites of microvesicle biogenesis at the cell surface. Current research also suggests that molecular profiling of these structures could unleash their potential as circulating biomarkers as well as platforms for personalized medicine. Thus, new and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.
Collapse
Affiliation(s)
- Crislyn D'Souza-Schorey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
147
|
Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 2012; 21:R125-34. [PMID: 22872698 DOI: 10.1093/hmg/dds317] [Citation(s) in RCA: 686] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes and microvesicles are extracellular nanovesicles released by most but not all cells. They are specifically equipped to mediate intercellular communication via the transfer of genetic information, including the transfer of both coding and non-coding RNAs, to recipient cells. As a result, both exosomes and microvesicles play a fundamental biological role in the regulation of normal physiological as well as aberrant pathological processes, via altered gene regulatory networks and/or via epigenetic programming. For example, microvesicle-mediated genetic transfer can regulate the maintenance of stem cell plasticity and induce beneficial cell phenotype modulation. Alternatively, such vesicles play a role in tumor pathogenesis and the spread of neurodegenerative diseases via the transfer of specific microRNAs and pathogenic proteins. Given this natural property for genetic information transfer, the possibility of exploiting these vesicles for therapeutic purposes is now being investigated. Stem cell-derived microvesicles appear to be naturally equipped to mediate tissue regeneration under certain conditions, while recent evidence suggests that exosomes might be harnessed for the targeted delivery of human genetic therapies via the introduction of exogenous genetic cargoes such as siRNA. Thus, extracellular vesicles are emerging as potent genetic information transfer agents underpinning a range of biological processes and with therapeutic potential.
Collapse
Affiliation(s)
- Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
148
|
Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, De Leo G, Alessandro R. Carboxyamidotriazole-orotate inhibits the growth of imatinib-resistant chronic myeloid leukaemia cells and modulates exosomes-stimulated angiogenesis. PLoS One 2012; 7:e42310. [PMID: 22879938 DOI: 10.1371/journal.pone.0042310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
The Bcr/Abl kinase has been targeted for the treatment of chronic myelogenous leukaemia (CML) by imatinib mesylate. While imatinib has been extremely effective for chronic phase CML, blast crisis CML are often resistant. New therapeutic options are therefore needed for this fatal disease. Although more common in solid tumors, increased microvessel density was also reported in chronic myelogenous leukaemia and was associated with a significant increase of angiogenic factors, suggesting that vascularity in hematologic malignancies is a controlled process and may play a role in the leukaemogenic process thus representing an alternative therapeutic target. Carboxyamidotriazole-orotate (CTO) is the orotate salt form of carboxyamidotriazole (CAI), an orally bioavailable signal transduction inhibitor that in vitro has been shown to possess antileukaemic activities. CTO, which has a reduced toxicity, increased oral bioavailability and stronger efficacy when compared to the parental compound, was tested in this study for its ability to affect imatinib-resistant CML tumor growth in a xenograft model. The active cross talk between endothelial cells and leukemic cells in the bone marrow involving exosomes plays an important role in modulating the process of neovascularization in CML. We have thus investigated the effects of CTO on exosome-stimulated angiogenesis. Our results indicate that CTO may be effective in targeting both cancer cell growth and the tumor microenvironment, thus suggesting a potential therapeutic utility for CTO in leukaemia patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cell Adhesion/drug effects
- Cell Adhesion Molecules/metabolism
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Exosomes/drug effects
- Exosomes/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Imatinib Mesylate
- Interleukin-8/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
- Orotic Acid/analogs & derivatives
- Orotic Acid/pharmacology
- Orotic Acid/therapeutic use
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chiara Corrado
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Sezione di Biologia e Genetica, Università di Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Shi HS, Gao X, Li D, Zhang QW, Wang YS, Zheng Y, Cai LL, Zhong RM, Rui A, Li ZY, Zheng H, Chen XC, Chen LJ. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int J Nanomedicine 2012; 7:2601-11. [PMID: 22679371 PMCID: PMC3368513 DOI: 10.2147/ijn.s31439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Radiation pneumonitis (RP) is an important dose-limiting toxicity during thoracic radiotherapy. Previous investigations have shown that curcumin is used for the treatment of inflammatory conditions and cancer, suggesting that curcumin may prevent RP and sensitize cancer cells to irradiation. However, the clinical advancement of curcumin is limited by its poor water solubility and low bioavailability after oral administration. Here, a water-soluble liposomal curcumin system was developed to investigate its prevention and sensitizing effects by an intravenous administration manner in mice models. The results showed that liposomal curcumin inhibited nuclear factor-κB pathway and downregulated inflammatory factors including tumor necrosis factor-α, interleukin (IL)-6, IL-8, and transforming growth factor-β induced by thoracic irradiation. Furthermore, the combined treatment with liposomal curcumin and radiotherapy increased intratumoral apoptosis and microvessel responses to irradiation in vivo. The significantly enhanced inhibition of tumor growth also was observed in a murine lung carcinoma (LL/2) model. There were no obvious toxicities observed in mice. The current results indicate that liposomal curcumin can effectively mitigate RP, reduce the fibrosis of lung, and sensitize LL/2 cells to irradiation. This study also suggests that the systemic administration of liposomal curcumin is safe and deserves to be investigated for further clinical application.
Collapse
Affiliation(s)
- Hua-shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medicine School, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
García-Olmo DC, Picazo MG, García-Olmo D. Transformation of non-tumor host cells during tumor progression: theories and evidence. Expert Opin Biol Ther 2012; 12 Suppl 1:S199-207. [PMID: 22509743 DOI: 10.1517/14712598.2012.681370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Most cancer deaths are due to the development of metastases and this phenomenon is still a hard challenge for researchers. A number of theories have tried to unravel the metastatic machinery, but definitive results that link the evidence with conventional concepts of metastatic disease remain to be reported. AREAS COVERED Considerable evidence suggests interactions between tumor cells and host cells that might be essential for tumor progression and metastasis. Most such evidence is suggestive of fusion phenomena, but some suggest the transfer of cell-free DNA (cfDNA). Such evidence is often ignored or overlooked in the assessment and management of malignancy. In this article, we review the available evidence for the importance of cell fusion and cfDNA in metastasis, and we present some preliminary data that support the hypothesis that tumor progression might be based not only on the division of tumor cells but also on the transformation of normal cells. EXPERT OPINION Future success in the search for cancer therapies will surely require advances in our knowledge of the pathways of tumor invasion by unexpected mechanisms. Thus, no well supported evidence for roles of cell-free nucleic acids and fusion of cells or of cells with vesicles should be ignored.
Collapse
Affiliation(s)
- Dolores C García-Olmo
- General University Hospital of Albacete, Experimental Research Unit, Albacete, Spain.
| | | | | |
Collapse
|