101
|
Ruan L, Osawa M, Hosoda N, Imai S, Machiyama A, Katada T, Hoshino SI, Shimada I. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. J Biol Chem 2010; 285:27624-31. [PMID: 20595394 DOI: 10.1074/jbc.m110.138867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation termination-coupled deadenylation is the first and often the rate-limiting step of eukaryotic mRNA decay in which two deadenylases, Ccr4-Caf1 and Pan2, play key roles. One of the deadenylases, Caf1, associates with Tob, which recruits Caf1 to the poly(A) tail through interactions with a cytoplasmic poly(A)-binding protein 1 (PABPC1). We previously proposed that the competition between Tob and eRF3 (a translation termination factor that interacts with PABPC1) is responsible for the regulation of deadenylase activity. However, the molecular mechanism of the regulation should be addressed by investigating the binding affinity and the cellular levels of these proteins. In this work, we characterized the human Tob interactions with Caf1 and a C-terminal domain of PABPC1 (PABC). Nuclear magnetic resonance (NMR) and Western blot analyses revealed that Tob consists of a structured N-terminal BTG-Tob domain and an unstructured C-terminal region with two conserved PAM2 (PABPC1-interacting motif 2) motifs. The BTG-TOB domain associates with Caf1, whereas the C-terminal PAM2 motif binds to PABC, with a K(d) value of 20 microM. Furthermore, we demonstrated that the levels of eRF3 and Tob in HeLa cells are 4-5 microM and less than 0.2 microM, respectively. On the basis of these results, we propose a thermodynamic mechanism for the translation termination-coupled deadenylation mediated by the Tob-Caf1 complex.
Collapse
Affiliation(s)
- Lin Ruan
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Abstract
Resistance to glucocorticoids (GCs) is a major clinical problem in the treatment of acute lymphoblastic leukemia (ALL), but the underlying mechanisms are not well understood. Although mutations in the glucocorticoid receptor (GR) gene can give rise to therapy resistance in vitro, acquired somatic mutations in the GR are rarely encountered in patients. Here we report that the protein encoded by the BTG1 gene, which is frequently deleted in (pediatric) ALL, is a key determinant of GC responsiveness. Using RNA interference, we show that loss of BTG1 expression causes GC resistance both by decimating GR expression and by controlling GR-mediated transcription. Conversely, reexpression of BTG1 restores GC sensitivity by potentiating GC-induced GR expression, a phenomenon known as GR autoinduction. In addition, the arginine methyltransferase PRMT1, a BTG1-binding partner and transcriptional coactivator, is recruited to the GR gene promoter in a BTG1-dependent manner. These results implicate the BTG1/PRMT1 complex in GR-mediated gene expression and reveal that deregulation of a nuclear receptor coactivator complex can give rise to GC resistance. Further characterization of this complex as part of the GR regulatory circuitry could offer novel opportunities for improving the efficacy of GC-based therapies in ALL and other hematologic malignancies.
Collapse
|
103
|
Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases. Mol Cell Biol 2010; 30:260-72. [PMID: 19858291 DOI: 10.1128/mcb.00645-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified by both asymmetric and symmetric arginine methylation in vivo. Furthermore, Fop plays an important role in the ligand-dependent activation of estrogen receptor target genes, including TFF1 (pS2). Fop depletion results in an almost complete block of estradiol-induced promoter occupancy by the estrogen receptor. Our data indicate that Fop recruitment to the promoter is an early critical event in the activation of estradiol-dependent transcription.
Collapse
|
104
|
|
105
|
Van Landeghem L, Mahé MM, Teusan R, Léger J, Guisle I, Houlgatte R, Neunlist M. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics 2009; 10:507. [PMID: 19883504 PMCID: PMC2778665 DOI: 10.1186/1471-2164-10-507] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 11/02/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. RESULTS EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. CONCLUSION This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions.
Collapse
|
106
|
Mauxion F, Chen CYA, Séraphin B, Shyu AB. BTG/TOB factors impact deadenylases. Trends Biochem Sci 2009; 34:640-7. [PMID: 19828319 DOI: 10.1016/j.tibs.2009.07.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
BTG/TOB factors are a family of antiproliferative proteins whose expression is altered in numerous cancers. They have been implicated in cell differentiation, development and apoptosis. Although proposed to affect transcriptional regulation, these factors interact with CAF1, a subunit of the main eukaryotic deadenylase, and with poly(A)-binding-proteins, strongly suggesting a role in post-transcriptional regulation of gene expression. The recent determination of the structures of BTG2, TOB1 N-terminal domain (TOB1N138) and TOB1N138-CAF1 complexes support a role for BTG/TOB proteins in mRNA deadenylation, a function corroborated by recently published functional characterizations. We highlight molecular mechanisms by which BTG/TOB proteins influence deadenylation and discuss the need for a better understanding of BTG/TOB physiological functions.
Collapse
Affiliation(s)
- Fabienne Mauxion
- Equipe Labellisée La Ligue, Centre de Génétique Moléculaire, CNRS FRE3144, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
107
|
O'Malley S, Su H, Zhang T, Ng C, Ge H, Tang CK. TOB suppresses breast cancer tumorigenesis. Int J Cancer 2009; 125:1805-13. [PMID: 19569230 DOI: 10.1002/ijc.24490] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transducer of ErbB-2 (TOB) is a member of the TOB/Btg gene family. A role for TOB in the suppression of human tumorigenesis has been proposed, based on the observations that TOB-knockout mice spontaneously form tumors and TOB expression is lost in human lung and thyroid cancers. However, the role of TOB in human breast cancer remains unknown. To evaluate the this role, we screened a panel of breast cancer cell lines for TOB expression levels and found that they are inversely correlated with the tumorigenicity and metastatic potential of the cell lines. In addition, we demonstrated for the first time that TOB expression is inversely correlated with breast cancer progression in clinical specimens. These results strongly indicate that the loss of TOB expression plays a role in breast cancer progression. We have also provided the first evidence that TOB functions as a tumor suppressor in breast cancer MCF-7 cells, using gain-of-function and loss-of-function approaches to manipulate TOB expression. Cell-cycle analysis further revealed that TOB can prolong the G1-S phase transition by inducing arrest at G1-S phase. Moreover, upregulation of the cyclin-dependent kinase inhibitor p27 and downregulation of the antiapoptotic proteins Bcl-2 and Bcl-XL were observed in MCF7/TOB transfectants. Conversely, opposite results were observed in shRNA-TOB transfectants. Furthermore, decreased activity of Erk2, AKT, CrkL, PDK1, and Smads were observed in TOB-overexpressing cells. Taken together, these data provide evidence that TOB can function as a tumor suppressor in breast cancer through modulation and regulation of multiple signaling pathways.
Collapse
Affiliation(s)
- Sean O'Malley
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, NW, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
108
|
Hayata T, Blitz IL, Iwata N, Cho KWY. Identification of embryonic pancreatic genes using Xenopus DNA microarrays. Dev Dyn 2009; 238:1455-66. [PMID: 19191222 DOI: 10.1002/dvdy.21868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pancreas is both an exocrine and endocrine endodermal organ involved in digestion and glucose homeostasis. During embryogenesis, the anlagen of the pancreas arise from dorsal and ventral evaginations of the foregut that later fuse to form a single organ. To better understand the molecular genetics of early pancreas development, we sought to isolate markers that are uniquely expressed in this tissue. Microarray analysis was performed comparing dissected pancreatic buds, liver buds, and the stomach region of tadpole stage Xenopus embryos. A total of 912 genes were found to be differentially expressed between these organs during early stages of organogenesis. K-means clustering analysis predicted 120 of these genes to be specifically enriched in the pancreas. Of these, we report on the novel expression patterns of 24 genes. Our analyses implicate the involvement of previously unsuspected signaling pathways during early pancreas development. Developmental Dynamics 238:1455-1466, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
109
|
Li F, Liu J, Park ES, Jo M, Curry TE. The B cell translocation gene (BTG) family in the rat ovary: hormonal induction, regulation, and impact on cell cycle kinetics. Endocrinology 2009; 150:3894-902. [PMID: 19359386 PMCID: PMC2717857 DOI: 10.1210/en.2008-1650] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The B cell translocation gene (BTG) family regulates gene transcription and cellular differentiation and inhibits proliferation. The present study investigated the spatiotemporal expression pattern of BTG members and their potential role in the rat ovary during the periovulatory period. Immature female rats (22-23 d old) were injected with pregnant mare serum gonadotropin to stimulate follicular development. Ovaries or granulosa cells were collected at various times after hCG administration (n = 3 per time point). Real-time PCR analysis revealed that mRNA for Btg1, Btg2, and Btg3 were highly induced both in intact ovaries and granulosa cells by 4-8 h after hCG treatment, although their temporal expression patterns differed. In situ hybridization analysis demonstrated that Btg1 mRNA expression was highly induced in theca cells at 4 h after hCG, primarily localized to granulosa cells at 8 h, and decreased at 24 h. Btg2 and Btg3 mRNA was also induced in granulosa cells; however, Btg2 mRNA was observed in newly forming corpora lutea. Inhibition of progesterone action and the epidermal growth factor pathway did not change Btg1 and Btg2 mRNA expression, whereas inhibition of prostaglandin synthesis or RUNX activity diminished Btg2 mRNA levels. Overexpression of BTG1 or BTG2 arrested granulosa cells at the G0/G1 phase of the cell cycle and decreased cell apoptosis. In summary, hCG induced Btg1, Btg2, and Btg3 mRNA expression predominantly in the granulosa cell compartment. Our findings suggest that the induction of the BTG family may be important for theca and granulosa cell differentiation into luteal cells by arresting cell cycle progression.
Collapse
Affiliation(s)
- Feixue Li
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
110
|
Hinman RM, Nichols WA, Diaz TM, Gallardo TD, Castrillon DH, Satterthwaite AB. Foxo3-/- mice demonstrate reduced numbers of pre-B and recirculating B cells but normal splenic B cell sub-population distribution. Int Immunol 2009; 21:831-42. [PMID: 19502585 PMCID: PMC2699488 DOI: 10.1093/intimm/dxp049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 04/30/2009] [Indexed: 12/20/2022] Open
Abstract
B cell antigen receptor (BCR) cross-linking promotes proliferation and survival of mature B cells. Phosphoinositide-3-kinase-mediated down-regulation of pro-apoptotic and anti-mitogenic genes such as the Foxo family of transcription factors is an important component of this process. Previously, we demonstrated that BCR signaling decreases expression of transcripts for Foxo1, Foxo3 and Foxo4. We now show that BCR-induced down-regulation of Foxo3 and Foxo4 mRNA expression occurs via distinct mechanisms from those established for Foxo1. While Foxo1, Foxo3 and Foxo4 bind the same DNA sequence, the differential control of their expression upon B cell activation suggests that they may have unique functions in the B lineage. To begin to address this issue, we evaluated B cell development and function in Foxo3-/- mice. No effect of Foxo3 deficiency was observed with respect to the following parameters in the splenic B cell compartment: sub-population distribution, proliferation, in vitro differentiation and expression of the Foxo target genes cyclin G2 and B cell translocation gene 1. However, Foxo3-/- mice demonstrated increased basal levels of IgG2a, IgG3 and IgA. A significant reduction in pre-B cell numbers was also observed in Foxo3-/- bone marrow. Finally, recirculating B cells in the bone marrow and peripheral blood were decreased in Foxo3-/- mice, perhaps due to lower than normal expression of receptor for sphingosine-1 phosphate, which mediates egress from lymphoid organs. Thus, Foxo3 makes a unique contribution to B cell development, B cell localization and control of Ig levels.
Collapse
Affiliation(s)
- Rochelle M Hinman
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
Schizophrenia and autism are neurodevelopmental diseases that have genetic as well as environmental etiologies. Both disorders have been associated with prenatal viral infection. Brain imaging and postmortem studies have found alterations in the structure of the cerebellum as well as changes in gene expression. Our laboratory has developed an animal model using prenatal infection of mice with human influenza virus that has demonstrated changes in behavior, pharmacology, structure, and gene expression in the brains of exposed offspring. In the current communication we describe altered expression of cerebellar genes associated with development of brain disorder in a mouse model for schizophrenia and autism and correlate these changes with those involved in the pathology of these two disorders.
Collapse
|
112
|
Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, Kawamura-Tsuzuku J, Takahasi K, Yamamoto T, Inagaki F. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. J Biol Chem 2009; 284:13244-55. [PMID: 19276069 PMCID: PMC2676056 DOI: 10.1074/jbc.m809250200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/09/2009] [Indexed: 01/29/2023] Open
Abstract
The Tob/BTG family is a group of antiproliferative proteins containing two highly homologous regions, Box A and Box B. These proteins all associate with CCR4-associated factor 1 (Caf1), which belongs to the ribonuclease D (RNase D) family of deadenylases and is a component of the CCR4-Not deadenylase complex. Here we determined the crystal structure of the complex of the N-terminal region of Tob and human Caf1 (hCaf1). Tob exhibited a novel fold, whereas hCaf1 most closely resembled the catalytic domain of yeast Pop2 and human poly(A)-specific ribonuclease. Interestingly, the association of hCaf1 was mediated by both Box A and Box B of Tob. Cell growth assays using both wild-type and mutant proteins revealed that deadenylase activity of Caf1 is not critical but complex formation is crucial to cell growth inhibition. Caf1 tethers Tob to the CCR4-Not deadenylase complex, and thereby Tob gathers several factors at its C-terminal region, such as poly(A)-binding proteins, to exert antiproliferative activity.
Collapse
Affiliation(s)
- Masataka Horiuchi
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction 2009; 137:843-55. [PMID: 19225042 PMCID: PMC3118672 DOI: 10.1530/rep-08-0457] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LH acts on periovulatory granulosa cells by activating the PKA pathway as well as other cell signaling cascades to increase the transcription of specific genes necessary for ovulation and luteinization. Collectively, these cell signaling responses occur rapidly (within minutes); however, presently no high throughput studies have reported changes before 4 h after the LH surge. To identify early response genes that are likely critical for initiation of ovulation and luteinization, mouse granulosa cells were collected before and 1 h after hCG. Fifty-seven gene transcripts were significantly (P<0.05) upregulated and three downregulated following hCG. Twenty-four of these transcripts were known to be expressed after the LH/hCG surge at later time points, while 36 were unknown to be expressed by periovulatory granulosa cells. Temporal expression of several transcripts, including the transcription factors Nr4a1, Nr4a2, Egr1, Egr2, Btg1, and Btg2, and the epidermal growth factor (EGF)-like ligands Areg and Ereg, were analyzed by quantitative RT-PCR, and their putative roles in granulosa cell function are discussed. Epigen (Epgn), another member of the family of EGF-like ligands was identified for the first time in granulosa cells as rapidly induced by LH/hCG. We demonstrate that Epgn initiates cumulus expansion, similar to the other EGF-receptor ligands Areg and Ereg. These studies illustrate that a number of changes in gene expression occur in vivo in response to LH, and that many of the differentially expressed genes are transcription factors that we would predict in turn modulate granulosa cell gene expression to ultimately impact the processes of ovulation and luteinization.
Collapse
Affiliation(s)
- Martha Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3075 KLSIC, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
114
|
Wada KI, Hamaguchi Y, Furukawa K, Taniguchi A. DNA damage sensible engineered promoter for cellular biosensing of cytotoxicity. Biotechnol Bioeng 2009; 102:1460-5. [DOI: 10.1002/bit.22180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
115
|
Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A, Ventura M, Eramo PO, Viscomi C, Arbitrio M, Rossi M, Caraglia M, Munshi NC, Anderson KC, Tassone P. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 2009; 143:520-31. [PMID: 18986388 DOI: 10.1111/j.1365-2141.2008.07387.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Valproic acid (VPA) is a well-tolerated anticonvulsant that exerts anti-tumour activity as a histone deacetylase inhibitor. This study investigated the in vitro and in vivo activity of VPA against multiple myeloma (MM) cells. In vitro exposure of interleukin-6-dependent or -independent MM cells to VPA inhibited cell proliferation in a time- and dose-dependent manner and induced apoptosis. In a cohort of severe combined immunodeficiency mice bearing human MM xenografts, VPA induced tumour growth inhibition and survival advantage in treated animals versus controls. Flow cytometric analysis performed on MM cells from excised tumours showed increase of G(0)-G(1) and a decreased G(2)/M- and S-phase following VPA treatment, indicating in vivo effects of VPA on cell cycle regulation. Gene expression profiling of MM cells exposed to VPA showed downregulation of genes involved in cell cycle progression, DNA replication and transcription, as well as upregulation of genes implicated in apoptosis and chemokine pathways. Pathfinder analysis of gene array data identified cell growth, cell cycle, cell death, as well as DNA replication and repair as the most important signalling networks modulated by VPA. Taken together, our data provide the preclinical rationale for VPA clinical evaluation as a single agent or in combination, to improve patient outcome in MM.
Collapse
Affiliation(s)
- Paola Neri
- Medical Oncology Unit, Magna Graecia University and Tommaso Campanella Cancer Center, Campus Salvatore Venuta, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
A key goal in cancer research is to identify the total complement of genetic and epigenetic alterations that contribute to tumorigenesis. We are currently witnessing the rapid evolution and convergence of multiple genome-wide platforms that are making this goal a reality. Leading this effort are studies of the molecular lesions that underlie pediatric acute lymphoblastic leukemia (ALL). The recent application of microarray-based analyses of DNA copy number abnormalities (CNAs) in pediatric ALL, complemented by transcriptional profiling, resequencing and epigenetic approaches, has identified a high frequency of common genetic alterations in both B-progenitor and T-lineage ALL. These approaches have identified abnormalities in key pathways, including lymphoid differentiation, cell cycle regulation, tumor suppression, and drug responsiveness. Moreover, the nature and frequency of CNAs differ markedly among ALL genetic subtypes. In this article, we review the key findings from the published data on genome-wide analyses of ALL and highlight some of the technical aspects of data generation and analysis that must be carefully controlled to obtain optimal results.
Collapse
|
117
|
Kamaid A, Giráldez F. Btg1 and Btg2 gene expression during early chick development. Dev Dyn 2008; 237:2158-69. [PMID: 18651656 DOI: 10.1002/dvdy.21616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Btg/Tob genes encode for a new family of proteins with antiproliferative functions, which are also able to stimulate cell differentiation. Btg1 and Btg2 are the most closely related members in terms of gene sequence. We analyzed their expression patterns in avian embryos by in situ hybridization, from embryonic day 1 to 3. Btg1 was distinctively expressed in the Hensen's node, the notochord, the cardiogenic mesoderm, the lens vesicle, and in the apical ectodermal ridge and mesenchyme of the limb buds. On the other hand, Btg2 expression domains included the neural plate border, presomitic mesoderm, trigeminal placode, and mesonephros. Both genes were commonly expressed in the myotome, epibranchial placodes, and dorsal neural tube. The results suggest that Btg1 and Btg2 are involved in multiple developmental processes. Overlapping expression of Btg1 and Btg2 may imply redundant functions, but unique expression patterns suggest also differential regulation and function.
Collapse
Affiliation(s)
- Andrés Kamaid
- Developmental Biology Group, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
| | | |
Collapse
|
118
|
Tumor growth suppression by adenovirus-mediated introduction of a cell-growth-suppressing gene tob in a pancreatic cancer model. Biomed Pharmacother 2008; 63:275-86. [PMID: 18657378 DOI: 10.1016/j.biopha.2008.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/29/2008] [Indexed: 01/07/2023] Open
Abstract
TOB (transducer of ErbB-2) is a tumor suppressor that interacts with protein-tyrosine kinase receptors, including ErbB-2. Introduction of the tob gene into NIH3T3 cells results in cell growth suppression. In this study, we evaluated the effect of tob expression in pancreatic cell lines (AsPC-1, BxPC-3, SOJ) and discuss the tumor-suppressing effects of adenoviral vector expressing tob cDNA. We first measured the levels of endogenous tob mRNA being expressed in all pancreatic cancer cell lines. Then, we examined the effect of adenoviral vector containing tob cDNA (Ad-tob vector) on cancer cell lines. The viral vector was expanded with transfection in 293 cells. The titer of the vector was 350x10(6) pfu/ml. These cancer cells were able to be transfected with MOI 20 without adenoviral toxicity. The transfection of Ad-tob vector results in growth suppression of SOJ and AsPC-1 cell lines. The magnitude of the expression of the Ad-tob gene in cancer is correlated to tumor suppressive activity. We prepared pancreatic cancer peritonitis models using a peritoneal injection of AsPC-1 cells. In this model, bloody ascites and multiple tumor nodules were seen at the mesentery after 16 days. AdCAtob (50x10(6) pfu/day) was administered from day 5 to day 9 after 4 days of peritoneal injection of 2x10(6) AsPC-1 cells. Tumor growth suppression occurred 10 days after peritoneal injection of AdCAtob compared with the control group. There were no tumor nodules in the abdomen and no bloody ascites. These results suggest that the peritoneal injection of AdCAtob has potential to suppress the formation of pancreatic cancer peritonitis, and can be applied for chemotherapy-resistant cancer peritonitis.
Collapse
|
119
|
Park TJ, Kim JY, Oh SP, Kang SY, Kim BW, Wang HJ, Song KY, Kim HC, Lim IK. TIS21 negatively regulates hepatocarcinogenesis by disruption of cyclin B1-Forkhead box M1 regulation loop. Hepatology 2008; 47:1533-43. [PMID: 18393292 DOI: 10.1002/hep.22212] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED A functional and biochemical interaction of TIS21(/BTG2/PC3) with Forkhead box M1 (FoxM1), essential transcription factor for hepatocyte regeneration and a master regulator of mitotic gene expression, was explored. Growth of hepatocellular carcinoma (HCC), developed by a single injection of diethylnitrosamine (DEN), was the same in both the TIS21(+/+) and TIS21(-/-) mice until 6 months, whereas it was significantly higher in the TIS21(-/-) mice at 9 months. Expression of TIS21 was significantly lower in both human and murine HCCs than in the surrounding tissues. Forced expression of TIS21 impaired growth, proliferation, and tumorigenic potential of Huh7 cells. At the mechanistic level, TIS21 inhibited FoxM1 phosphorylation, a required modification for its activation, by reducing cyclin B1-cdk1 activity, examined by in vitro kinase assay and FoxM1 mutant analyses. These observations were further confirmed in vivo by the reciprocal control of TIS21 expression and FoxM1 phosphorylation in the diethylnitrosamine-induced HCCs and TIS21(-/-) mouse embryonic fibroblast (MEF), in addition to increased expression of cyclin B1 and cdk1 activity. CONCLUSION TIS21 negatively regulated hepatocarcinogenesis in part by disruption of the FoxM1-cyclin B1 regulatory loop, thereby inhibiting proliferation of transformed cells developed in mouse and human livers.
Collapse
Affiliation(s)
- Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Miyasaka T, Morita M, Ito K, Suzuki T, Fukuda H, Takeda S, Inoue JI, Semba K, Yamamoto T. Interaction of antiproliferative protein Tob with the CCR4-NOT deadenylase complex. Cancer Sci 2008; 99:755-61. [PMID: 18377426 PMCID: PMC11158977 DOI: 10.1111/j.1349-7006.2008.00746.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tob protein, when overexpressed, suppresses growth of NIH3T3 cells, presumably by regulating expression of various growth-related genes. However, the molecular mechanisms underlying Tob-mediated regulation of gene expression have been obscure. To address this issue we established stable Tob-expressing cell lines and used a proteomics approach to identify Tob-interacting proteins. We found that Tob associates with the CCR4-NOT complex. The carboxyl-terminal half of Tob interacted with Cnot1, a core protein of the CCR4-NOT complex. We further showed that the deadenylase activity associated with the complex was suppressed in vitro by Tob. These results suggest that the antiproliferative activity of Tob is shown post-transcriptionally by controlling the stability of the target mRNAs in addition to its involvement in transcriptional regulation, reported previously.
Collapse
Affiliation(s)
- Takashi Miyasaka
- Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Terragni J, Graham JR, Adams KW, Schaffer ME, Tullai JW, Cooper GM. Phosphatidylinositol 3-kinase signaling in proliferating cells maintains an anti-apoptotic transcriptional program mediated by inhibition of FOXO and non-canonical activation of NFkappaB transcription factors. BMC Cell Biol 2008; 9:6. [PMID: 18226221 PMCID: PMC2268685 DOI: 10.1186/1471-2121-9-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 01/28/2008] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phosphatidylinositol (PI) 3-kinase is activated by a variety of growth factor receptors and the PI 3-kinase/Akt signaling pathway is a key regulator of cell proliferation and survival. The downstream targets of PI 3-kinase/Akt signaling include direct regulators of cell cycle progression and apoptosis as well as a number of transcription factors. Growth factor stimulation of quiescent cells leads to robust activation of PI 3-kinase, induction of immediate-early genes, and re-entry into the cell cycle. A lower level of PI 3-kinase signaling is also required for the proliferation and survival of cells maintained in the presence of growth factors, but the gene expression program controlled by PI 3-kinase signaling in proliferating cells has not been elucidated. RESULTS We used microarray analyses to characterize the changes in gene expression resulting from inhibition of PI 3-kinase in proliferating cells. The genes regulated by inhibition of PI 3-kinase in proliferating cells were distinct from genes induced by growth factor stimulation of quiescent cells and highly enriched in genes that regulate programmed cell death. Computational analyses followed by chromatin immunoprecipitations demonstrated FOXO binding to both previously known and novel sites in promoter regions of approximately one-third of the up-regulated genes, consistent with activation of FOXO1 and FOXO3a in response to inhibition of PI 3-kinase. NFkappaB binding sites were similarly identified in promoter regions of over one-third of the down-regulated genes. RelB was constitutively bound to promoter regions in cells maintained in serum, however binding decreased following PI 3-kinase inhibition, indicating that PI 3-kinase signaling activates NFkappaB via the non-canonical pathway in proliferating cells. Approximately 70% of the genes targeted by FOXO and NFkappaB regulate cell proliferation and apoptosis, including several regulators of apoptosis that were not previously known to be targeted by these transcription factors. CONCLUSION PI 3-kinase signaling in proliferating cells regulates a novel transcriptional program that is highly enriched in genes that regulate apoptosis. At least one-third of these genes are regulated either by FOXO transcription factors, which are activated following PI 3-kinase inhibition, or by RelB, which is activated by PI 3-kinase via the non-canonical pathway in proliferating cells.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
122
|
Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci U S A 2008; 105:955-60. [PMID: 18195366 DOI: 10.1073/pnas.0704723105] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into "single-cell" expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation.
Collapse
|
123
|
Feng Z, Tang ZL, Li K, Liu B, Yu M, Zhao SH. Molecular characterization of the BTG2 and BTG3 genes in fetal muscle development of pigs. Gene 2007; 403:170-7. [PMID: 17890019 DOI: 10.1016/j.gene.2007.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/03/2007] [Accepted: 08/10/2007] [Indexed: 11/19/2022]
Abstract
BTG2 and BTG3 are two members of the B-cell translocation gene family with anti-proliferative properties. BTG1 gene in this gene family has been reported to play a key role in muscle growth. In this study, we identified and characterized the porcine BTG2 and BTG3 genes, mapped the two genes to porcine chromosomes, and analyzed their expression differences in the longissimus dorci muscle of 33 dpc (day postconception), 65 dpc and 90 dpc in the lean Landrace and fatty Chinese Tongcheng pig breeds. Expression changes in differentiated C2C12 cells were also investigated with myogenin as internal control. The results showed that the porcine BTG2 and BTG3 genes were mapped on SSC9q21-25 and SSC13q47, respectively. BTG2 gene expressed at high levels in skeletal muscle and heart in both Tongcheng and Landrace pigs whereas BTG3 gene expressed at lower levels in skeletal muscle and heart than in other tissues. Furthermore, BTG3 expressed at higher levels in skeletal muscle of Tonghceng compared with Landrace pig. The expression of BTG2 and BTG3 was significantly different in skeletal muscle among different developmental stages and between the two breeds. Expression analysis in murine myoblast cells showed that both genes were induced in differentiated C2C12 cells, suggesting a role of them in myogenic differentiation. Our study indicated that BTG2 and BTG3, especially BTG3 gene, may be important genes for skeletal muscle growth.
Collapse
Affiliation(s)
- Zheng Feng
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | | | |
Collapse
|
124
|
Ou YH, Chung PH, Hsu FF, Sun TP, Chang WY, Shieh SY. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J 2007; 26:3968-80. [PMID: 17690688 PMCID: PMC1994125 DOI: 10.1038/sj.emboj.7601825] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 07/17/2007] [Indexed: 01/09/2023] Open
Abstract
Proper regulation of cell cycle progression is pivotal for maintaining genome stability. In a search for DNA damage-inducible, CHK1-modulated genes, we have identified BTG3 (B-cell translocation gene 3) as a direct p53 target. The p53 transcription factor binds to a consensus sequence located in intron 2 of the gene both in vitro and in vivo, and depletion of p53 by small interfering RNA (siRNA) abolishes DNA damage-induced expression of the gene. Furthermore, ablation of BTG3 by siRNA in cancer cells results in accelerated exit from the DNA damage-induced G2/M block. In vitro, BTG3 binds to and inhibits E2F1 through an N-terminal domain including the conserved box A. Deletion of the interaction domain in BTG3 abrogates not only its growth suppression activity, but also its repression on E2F1-mediated transactivation. We also present evidence that by disrupting the DNA binding activity of E2F1, BTG3 participates in the regulation of E2F1 target gene expression. Therefore, our studies have revealed a previously unidentified pathway through which the activity of E2F1 may be guarded by activated p53.
Collapse
Affiliation(s)
- Yi-Hung Ou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Han Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Fei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, Molecular Medicine Program, National Yang-Ming University, Taipei, Taiwan
| | - Te-Ping Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Ying Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sheau-Yann Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei 115, Taiwan. Tel.: +886 2 26523916; Fax: +886 2 27829143; E-mail:
| |
Collapse
|
125
|
Abstract
Members of the Btg/Tob protein family share a conserved N-terminal region that confers the activity to inhibit cell proliferation. Tob1 and Tob2 proteins, which constitute a Tob subfamily, have a longer C-terminal region than BTG proteins. Apparently, genomes of invertebrates and teleost species contain only a single Tob locus, whereas genomes of mammalian, avian, and amphibian species contain two Tob loci (Tob1 and Tob2). Tob genes are expressed in oocytes, sperm, early embryos, and various adult tissues, depending on the species. Recent reports indicate that Tob proteins play important roles in spermatogenesis, embryonic dorsoventral patterning, osteogenesis, T-cell activation, and learning and memory. Accumulating evidence supports the hypothesis that Tob proteins act primarily as transcriptional repressors in several signaling pathways.
Collapse
Affiliation(s)
- Shunji Jia
- Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.
| | | |
Collapse
|
126
|
Hoffmann MS, Singh P, Wolk R, Romero-Corral A, Raghavakaimal S, Somers VK. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea. Antioxid Redox Signal 2007; 9:661-9. [PMID: 17511582 DOI: 10.1089/ars.2007.1589] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea (OSA), the commonest form of sleep-disordered breathing, is characterized by recurrent episodes of intermittent hypoxia and sleep fragmentation. This study evaluated microarray measures of gene transcript levels in OSA subjects compared to age and BMI matched healthy controls. Measurements were obtained before and after: (a) a night of normal sleep in controls; and (b) a night of untreated apnea in OSA patients. All subjects underwent full polysomnography. mRNA from the whole blood samples was analyzed by HG-U133A and B Affymetrix GeneChip arrays using Spotfire 7.2 data analysis platform. After sleep in OSA patients, changes were noted in several genes involved in modulation of reactive oxygen species (ROS), including heme oxygenase 1, superoxide dismutase 1 and 2, and catalase. Changes were also observed in genes involved in cell growth, proliferation, and the cell cycle such as cell division cycle 25B, signaling lymphocyte activating molecule (SLAM), calgizzarin S100A11, B-cell translocation gene, Src-like adapter protein (SLAP), and eukaryotic translation initiation factor 4E binding protein 2. These overnight changes in OSA patients are suggestive of activation of several mechanisms to modulate, and adapt to, increased ROS developing in response to the frequent episodes of intermittent hypoxia.
Collapse
Affiliation(s)
- Michal S Hoffmann
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
127
|
Tsuzuki S, Karnan S, Horibe K, Matsumoto K, Kato K, Inukai T, Goi K, Sugita K, Nakazawa S, Kasugai Y, Ueda R, Seto M. Genetic abnormalities involved in t(12;21) TEL-AML1 acute lymphoblastic leukemia: analysis by means of array-based comparative genomic hybridization. Cancer Sci 2007; 98:698-706. [PMID: 17374122 PMCID: PMC11159317 DOI: 10.1111/j.1349-7006.2007.00443.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The TEL (ETV6)-AML1 (RUNX1) chimeric gene fusion is the most common genetic abnormality in childhood acute lymphoblastic leukemias. Evidence suggests that this chimeric gene fusion constitutes an initiating mutation that is necessary but insufficient for the development of leukemia. In a search for additional genetic events that could be linked to the development of leukemia, we applied a genome-wide array-comparative genomic hybridization technique to 24 TEL-AML1 leukemia samples and two cell lines. It was found that at least two chromosomal imbalances were involved in all samples. Recurrent regions of chromosomal imbalance (>10% of cases) and representative involved genes were gain of chromosomes 10 (17%) and 21q (25%; RUNX1) and loss of 12p13.2 (87%; TEL), 9p21.3 (29%; p16INK4a/ARF), 9p13.2 (25%; PAX5), 12q21.3 (25%; BTG1), 3p21 (21%; LIMD1), 6q21 (17%; AIM1 and BLIMP1), 4q31.23 (17%; NR3C2), 11q22-q23 (13%; ATM) and 19q13.11-q13.12 (13%; PDCD5). Enforced expression of TEL and to a lesser extent BTG1, both single genes known to be located in their respective minimum common region of loss, inhibited proliferation of the TEL-AML1 cell line Reh. Together, these findings suggest that some of the genes identified as lost by array-comparative genomic hybridization may partly account for the development of leukemia.
Collapse
MESH Headings
- Adolescent
- Cell Line, Tumor
- Cell Proliferation
- Child
- Child, Preschool
- Chromosome Deletion
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Neoplasm Proteins/genetics
- Nucleic Acid Hybridization/methods
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Translocation, Genetic
Collapse
Affiliation(s)
- Shinobu Tsuzuki
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Nahta R, Yuan LXH, Fiterman DJ, Zhang L, Symmans WF, Ueno NT, Esteva FJ. B cell translocation gene 1 contributes to antisense Bcl-2-mediated apoptosis in breast cancer cells. Mol Cancer Ther 2006; 5:1593-601. [PMID: 16818519 DOI: 10.1158/1535-7163.mct-06-0133] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antiapoptotic protein Bcl-2 is overexpressed in a majority of breast cancers, and is associated with a diminished apoptotic response and resistance to various antitumor agents. Bcl-2 inhibition is currently being explored as a possible strategy for sensitizing breast cancer cells to standard chemotherapeutic agents. Antisense Bcl-2 oligonucleotides represent one method for blocking the antiapoptotic effects of Bcl-2. In this study, we show that antisense Bcl-2 efficiently blocks Bcl-2 expression, resulting in the apoptosis of breast cancer cells. Antisense Bcl-2-mediated cytotoxicity was associated with the induction of the B cell translocation gene 1 (BTG1). Importantly, knockdown of BTG1 reduced antisense Bcl-2-mediated cytotoxicity in breast cancer cells. Furthermore, BTG1 expression seems to be negatively regulated by Bcl-2, and exogenous expression of BTG1 induced apoptosis. These results suggest that BTG1 is a Bcl-2-regulated mediator of apoptosis in breast cancer cells, and that its induction contributes to antisense Bcl-2-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Rita Nahta
- Department of Breast Medical Oncology, Unit 1354, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Urzúa U, Roby KF, Gangi LM, Cherry JM, Powell JI, Munroe DJ. Transcriptomic analysis of an in vitro murine model of ovarian carcinoma: functional similarity to the human disease and identification of prospective tumoral markers and targets. J Cell Physiol 2006; 206:594-602. [PMID: 16245302 DOI: 10.1002/jcp.20522] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ovarian cancer is an aggressive disease of poor prognostic when detected at advanced stage. It is widely accepted that the ovarian surface epithelium plays a central role in disease etiology, but little is known about disease progression at the molecular level. To identify genes involved in ovarian tumorigenesis, we carried out a genome-wide transcriptomic analysis of six spontaneously transformed mouse ovarian surface epithelial (MOSE) cell lines, an in vitro model for human ovarian carcinoma. Loess normalization followed by statistical analysis with control of multiple testing resulted in 509 differentially expressed genes using an adjusted P-value < or = 0.05 as cut-off. The top 20 differentially expressed genes included 10 genes (Spp1, Cyp1b1, Btg1, Cfh, Mt1, Mt2, Igfbp5, Gstm1, Gstm2, and Esr1) implicated in various aspects of ovarian carcinomas, and other 3 genes (Gsto1, Lcn7, and Alcam) associated to breast cancer. Upon functional analysis, the majority of alterations affected genes involved in glutathione metabolism and MAPK signaling pathways. Interestingly, over 20% of the aberrantly expressed genes were related to extracellular components, suggestive of potential markers of disease progression. In addition, we identified the genes Pura, Cnn3, Arpc1b, Map4k4, Tgfb1i4, and Crsp2 correlated to in vivo tumorigenic parameters previously reported for these cells. Taken together, our findings support the utility of MOSE cells in studying ovarian cancer biology and as a source of novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Universidad de Chile, Independencia, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
130
|
Buhl AM, Jurlander J, Jørgensen FS, Ottesen AM, Cowland JB, Gjerdrum LM, Hansen BV, Leffers H. Identification of a gene on chromosome 12q22 uniquely overexpressed in chronic lymphocytic leukemia. Blood 2006; 107:2904-11. [PMID: 16339396 DOI: 10.1182/blood-2005-07-2615] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The pathogenesis of chronic lymphocytic leukemia (CLL) is unknown but may involve aberrant activation of signaling pathways. Somatic hypermutations in rearranged immunoglobulin heavy-chain (IgVH) genes allow a division of CLL patients into 2 categories: mutated IgVH genes are associated with an indolent disease, whereas unmutated IgVH genes define an aggressive form. Using differential display to compare gene expression in CLL cells with and without IgVH hypermutations, we identified a novel gene, CLL up-regulated gene 1 (CLLU1), that was highly up-regulated in CLL cells without IgVH hypermutations. CLLU1 mapped to chromosome 12q22, within a cluster of genes that are active in germinal center B cells. However, appreciable levels of CLLU1 were detectable only in CLL cells and not in a panel of normal tissue extracts or in any other tested hematologic malignancy. High expression of CLLU1 in CLL samples occurred irrespective of trisomy 12 or large chromosomal rearrangements. CLLU1 encodes 6 mRNAs with no sequence homology to any known gene, and most transcripts appear to be noncoding. Two transcripts, however, potentially encode a peptide with remarkable structural similarity to human interleukin 4. These data, in particular the unique and restricted expression pattern, suggest that CLLU1 is the first disease-specific gene identified in CLL.
Collapse
MESH Headings
- Chromosome Mapping
- Chromosomes, Human, Pair 12
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- Neoplasm Proteins/genetics
- RNA, Long Noncoding
Collapse
Affiliation(s)
- Anne Mette Buhl
- Department of Hematology, 4041, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, DK.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Rahmani Z. APRO4 negatively regulates Src tyrosine kinase activity in PC12 cells. J Cell Sci 2006; 119:646-58. [PMID: 16434477 DOI: 10.1242/jcs.02778] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Src nonreceptor tyrosine kinase plays an important role in multiple signalling pathways that regulate several cellular functions including proliferation, differentiation and transformation. The activity of Src is tightly regulated in vivo and can be modulated by interactions of its SH2 and SH3 domains with high-affinity ligands. APRO4 (anti-proliferative 4) belongs to a new antiproliferative gene family involved in the negative control of the cell cycle. This report shows that APRO4 associates with Src via its C-terminal proline-rich domain, and downregulates Src kinase activity. Moreover, overexpression of APRO4 leads to inhibition of neurite outgrowth and Ras/MAP kinase signalling in PC12 cells. Furthermore, the kinetics of endogenous Src inactivation correlates with an increase in endogenous APRO4 co-immunoprecipitation in FGF-stimulated PC12 cells. Finally, downregulation of endogenous APRO4 by expression of antisense RNA induces the activation of Src and spontaneous formation of neurites in PC12 cells. Therefore, by controlling the basal threshold of Src activity, APRO4 constitutes an important negative regulatory mechanism for Src-mediated signalling.
Collapse
Affiliation(s)
- Zohra Rahmani
- INSERM U584, Faculté de Médecine Necker-Enfants Malades, 156 Rue de Vaugirard, 75730 Paris CEDEX 15, France.
| |
Collapse
|
132
|
Wang Y, Shao C, Shi CH, Zhang L, Yue HH, Wang PF, Yang B, Zhang YT, Liu F, Qin WJ, Wang H, Shao GX. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Asian J Androl 2006; 7:375-80. [PMID: 16281084 DOI: 10.1111/j.1745-7262.2005.00031.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To explore the effect of androgen receptor (AR) on the expression of the cell cycle-related genes, such as CDKN1A and BTG1, in prostate cancer cell line LNCaP. METHODS After AR antagonist flutamide treatment and confirmation of its effect by phase contrast microscope and flow cytometry, the differential expression of the cell cycle-related genes was analyzed by a cDNA microarray. The flutamide treated cells were set as the experimental group and the LNCaP cells as the control. We labeled cDNA probes of the experimental group and control group with Cy5 and Cy3 dyes, respectively, through reverse transcription. Then we hybridized the cDNA probes with cDNA microarrays, which contained 8 126 unique human cDNA sequences and the chip was scanned to get the fluorescent values of Cy5 and Cy3 on each spot. After primary analysis, reverse transcription polymerase chain reaction (RT-PCR) tests were carried out to confirm the results of the chips. RESULTS After AR antagonist flutamide treatment, three hundred and twenty-six genes (3.93%) expressed differentially, 97 down-regulated and 219 up-regulated. Among them, eight up-regulated genes might be cell cycle-related, namely CDC10, NRAS, BTG1, Wee1, CLK3, DKFZP564A122, CDKN1A and BTG2. The CDKN1A and BTG1 gene mRNA expression was confirmed to be higher in the experimental group by RT-PCR, while p53 mRNA expression had no significant changes. CONCLUSION Flutamide treatment might up-regulate CDKN1A and BTG1 expression in prostate cancer cells. The protein expressions of CDKN1A and BTG1 play an important role in inhibiting the proliferation of cancer cells. CDKN1A has a great impact on the cell cycle of prostate cancer cells and may play a role in the cancer cells in a p53-independent pathway. The prostate cancer cells might affect the cell cycle-related genes by activating AR and thus break the cell cycle control.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, Tangdu Hospital, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Tob-deficiency Prevents Ovariectomy-induced Bone Loss through the Super-enhancement of Osteoblastic Activities. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
134
|
Park GT, Seo EY, Lee KM, Lee DY, Yang JM. Tob is a potential marker gene for the basal layer of the epidermis and is stably expressed in human primary keratinocytes. Br J Dermatol 2005; 154:411-8. [PMID: 16445768 DOI: 10.1111/j.1365-2133.2005.07037.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epidermis consists of multiple layers, from the proliferating basal layer to terminal differentiated cornified layers, and these layers are defined by differentiation status. Tob gene product is known to be a member of the BTG antiproliferative protein family. We investigated the expression pattern of Tob gene product to understand the possible role in differentiation of keratinocytes and epidermis. OBJECTIVES In this study, we examined the expression of Tob gene product in the primary cultured human keratinocytes and in the in vivo epidermis. METHODS The expression of Tob gene product was assessed by Western blotting analysis. Cellular localization of Tob was detected using the green fluorescent protein-tagged Tob cDNA expression construct. In vivo expression of Tob gene product in the epidermis was determined by immunohistochemistry with paraffin sections. RESULTS Tob family members are degraded by the ubiquitine-proteasome system triggered by the growth signal. Tob is stably and abundantly expressed in primary cultured human keratinocytes. Furthermore, the expression of Tob in the keratinocytes persists during the differentiation induced by calcium; however, it was not detected in primary cultured fibroblasts. Also, the subcellular localization of Tob is mainly in the cellular membrane in the primary human keratinocytes. We evaluated Tob expression in normal skin, oral mucosa and different diseases, such as psoriasis, X-linked ichthyosis and squamous cell carcinoma (SCC). Using immunohistochemical analysis, we observed that Tob was selectively expressed in the basal layer of X-linked ichythyosis and the hyperproliferative basal layer of psoriasis and oral mucosa as well as in normal epidermis. In SCC, the expression of Tob gene product was relatively decreased. CONCLUSIONS Tob is stably expressed in primary human keratinocytes and it is specifically expressed in the basal layer of in vivo epidermis.
Collapse
Affiliation(s)
- G T Park
- Clinical Research Centre, Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | |
Collapse
|
135
|
Milner E, Barnea E, Beer I, Admon A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 2005; 5:357-65. [PMID: 16272561 DOI: 10.1074/mcp.m500241-mcp200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides presented by the major histocompatibility complex (MHC) are derived from the degradation of cellular proteins. Thus, the repertoire of these peptides (the MHC peptidome) should correlate better with the cellular protein degradation scheme (the degradome) than with the cellular proteome. To test the validity of this statement and to determine whether the majority of MHC peptides are derived from short lived proteins, from defective ribosome products, or from regular long lived cellular proteins we analyzed in parallel the turnover kinetics of both MHC peptides and cellular proteins in the same cancer cells. The analysis was performed by pulse-chase experiments based on stable isotope labeling in tissue culture followed by capillary chromatography and tandem mass spectrometry. Indeed only a limited correlation was observed between the proteome and the MHC peptidome observed in the same cells. Moreover a detailed analysis of the turnover kinetics of the MHC peptides helped to assign their origin to normal, to short lived or long lived proteins, or to the defective ribosome products. Furthermore the analysis of the MHC peptides turnover kinetics helped to direct attention to abnormalities in the degradation schemes of their source proteins. These observations can be extended to search for cancer-related abnormalities in protein degradation, including those that lead to loss of tumor suppressors and cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Elena Milner
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | | | | |
Collapse
|
136
|
Konrad MAP, Zúñiga-Pflücker JC. The BTG/TOB family protein TIS21 regulates stage-specific proliferation of developing thymocytes. Eur J Immunol 2005; 35:3030-42. [PMID: 16163674 DOI: 10.1002/eji.200526345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As thymocytes undergo differentiation in the thymus, they progress through distinct phases of quiescence and proliferation. Identifying cellular mechanisms that maintain thymocytes in a non-dividing state is critical to fully understand T cell development. A member of the B cell translocation gene/transducer of ErbB-2 (BTG/TOB) family of anti-proliferative proteins was identified as a key mediator of the quiescent state in peripheral anergic and unstimulated T cells. Here, we demonstrate that the BTG/TOB family member TPA-inducible sequence 21 (TIS21) is expressed in quiescent CD44+ CD25- early progenitor thymocytes and CD44- CD25+ cells prior to TCR beta-selection. However, TIS21 expression is decreased in proliferating CD25+ CD44+ progenitor thymocytes and CD25(low) CD44- beta-selected cells, suggesting that its regulated expression may enable thymocytes to remain quiescent in the absence of mitogenic signals. We addressed the role of TIS21 in regulating thymocyte stage-specific expansion by ectopically expressing TIS21 in developing thymocytes and hematopoietic progenitors. Dysregulated expression of TIS21 inhibited the expansion of thymocytes even in the presence of endogenous mitogenic signals, while thymocyte differentiation was unimpeded. These findings imply that the intracellular mechanisms regulating thymocyte differentiation and proliferation, which are induced downstream of developmental cues, function independently during early T cell development.
Collapse
Affiliation(s)
- Mark A P Konrad
- Department of Immunology, University of Toronto, Sunnybrook and Women's Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
137
|
Wessely O, Kim JI, Tran U, Fuentealba L, De Robertis EM. xBtg-x regulates Wnt/beta-Catenin signaling during early Xenopus development. Dev Biol 2005; 283:17-28. [PMID: 15975429 PMCID: PMC2278116 DOI: 10.1016/j.ydbio.2005.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 11/19/2022]
Abstract
In Xenopus, two signaling systems, maternal beta-Catenin and Nodal-related, are required for induction of the Spemann organizer and establishment of the body plan. By screening cDNA macroarrays for genes activated by these two signaling pathways, we identified Xenopus xBtg-x, a novel member of the Btg/Tob gene family of antiproliferative proteins. We show that xBtg-x is expressed in the dorsal mesendoderm (Spemann organizer tissue) of gastrula stage embryos and that its expression is regulated by both beta-Catenin and Nodal-related signals. Microinjection of synthetic xBtg-x mRNA into Xenopus embryos induced axis duplication and completely rescued the ventralizing effects of UV irradiation through the activation of the canonical Wnt/beta-Catenin signaling pathway. Interestingly, xBtg-x stimulated beta-Catenin-dependent transcription without affecting the stability of beta-Catenin protein. These data suggest that xBtg-x is a novel component of the Wnt/beta-Catenin signaling pathway regulating early embryonic patterning.
Collapse
Affiliation(s)
- Oliver Wessely
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | |
Collapse
|
138
|
Gustafsson AC, Kupershmidt I, Edlundh-Rose E, Greco G, Serafino A, Krasnowska EK, Lundeberg T, Bracci-Laudiero L, Romano MC, Parasassi T, Lundeberg J. Global gene expression analysis in time series following N-acetyl L-cysteine induced epithelial differentiation of human normal and cancer cells in vitro. BMC Cancer 2005; 5:75. [PMID: 16001974 PMCID: PMC1182358 DOI: 10.1186/1471-2407-5-75] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 07/07/2005] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer prevention trials using different types of antioxidant supplements have been carried out at several occasions and one of the investigated compounds has been the antioxidant N-acetyl-L-cysteine (NAC). Studies at the cellular level have previously demonstrated that a single supplementation of NAC induces a ten-fold more rapid differentiation in normal primary human keratinocytes as well as a reversion of a colon carcinoma cell line from neoplastic proliferation to apical-basolateral differentiation. The investigated cells showed an early change in the organization of the cytoskeleton, several newly established adherens junctions with E-cadherin/beta-catenin complexes and increased focal adhesions, all features characterizing the differentiation process. METHODS In order to investigate the molecular mechanisms underlying the proliferation arrest and accelerated differentiation induced by NAC treatment of NHEK and Caco-2 cells in vitro, we performed global gene expression analysis of NAC treated cells in a time series (1, 12 and 24 hours post NAC treatment) using the Affymetrix GeneChip Human Genome U95Av2 chip, which contains approximately 12,000 previously characterized sequences. The treated samples were compared to the corresponding untreated culture at the same time point. RESULTS Microarray data analysis revealed an increasing number of differentially expressed transcripts over time upon NAC treatment. The early response (1 hour) was transient, while a constitutive trend was commonly found among genes differentially regulated at later time points (12 and 24 hours). Connections to the induction of differentiation and inhibition of growth were identified for a majority of up- and down-regulated genes. All of the observed transcriptional changes, except for seven genes, were unique to either cell line. Only one gene, ID-1, was mutually regulated at 1 hour post treatment and might represent a common mediator of early NAC action. The detection of several genes that previously have been identified as stimulated or repressed during the differentiation of NHEK and Caco-2 provided validation of results. In addition, real-time kinetic PCR analysis of selected genes also verified the differential regulation as identified by the microarray platform. CONCLUSION NAC induces a limited and transient early response followed by a more consistent and extensively different expression at later time points in both the normal and cancer cell lines investigated. The responses are largely related to inhibition of proliferation and stimulation of differentiation in both cell types but are almost completely lineage specific. ID-1 is indicated as an early mediator of NAC action.
Collapse
Affiliation(s)
- Anna C Gustafsson
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Ilya Kupershmidt
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
- Silicon Genetics, 2601 Spring Street, Redwood City, California 94063, USA
| | - Esther Edlundh-Rose
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | - Giulia Greco
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Annalucia Serafino
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Eva K Krasnowska
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Thomas Lundeberg
- Rehabilitation Medicine, Karolinska University Hospital, 117 76 Stockholm, Sweden
| | - Luisa Bracci-Laudiero
- Associazione Italiana Iniziativa Medicina Sociale, Corso Trieste 16, 00185 Roma, Italy
| | - Maria-Concetta Romano
- Associazione Italiana Iniziativa Medicina Sociale, Corso Trieste 16, 00185 Roma, Italy
| | - Tiziana Parasassi
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Viale Marx 15-43, 00137 Roma, Italy
| | - Joakim Lundeberg
- Royal Institute of Technology, AlbaNova University Center, Department of Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| |
Collapse
|
139
|
Ito Y, Suzuki T, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Yamamoto T, Miyauchi A. Phosphorylation and inactivation of Tob contributes to the progression of papillary carcinoma of the thyroid. Cancer Lett 2005; 220:237-42. [PMID: 15766599 DOI: 10.1016/j.canlet.2004.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/02/2004] [Accepted: 08/09/2004] [Indexed: 11/25/2022]
Abstract
Tob, a member of the Tob/BTG family, is a novel anti-proliferative protein, but it becomes inactive when phosphorylated. In this study, we investigated whether Tob is phosphorylated and inactive in various thyroid neoplasms in order to elucidate how this event plays a role in their progression. Tob phosphorylation was only occasionally seen in normal follicular cells. A high level of Tob phosphorylation was observed in 42.1% of follicular adenoma, 14.3% of follicular carcinoma. In papillary carcinoma, the Tob phosphorylation level was elevated more frequently than that in follicular carcinoma, and 39.7% of specimens were classified in the high group. Tob phosphorylation level in papillary carcinoma was directly linked to tumor size, lymph node metastasis, extrathyroid extension and the presence of poorly differentiated lesion. In anaplastic carcinoma, surprisingly, Tob phosphorylation was not observed in any cases, but the deficiency of Tob expression was also observed in all these cases. These results suggest that (1) Tob phosphorylation contributes to the progression of papillary carcinoma especially in the later phase through cancellation of its anti-proliferative function, and (2) the deficiency of Tob expression is attributable to the lack of Tob phosphorylation in anaplastic carcinoma.
Collapse
|
140
|
Tzachanis D, Lafuente EM, Li L, Boussiotis VA. Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk Lymphoma 2005; 45:1959-67. [PMID: 15370239 DOI: 10.1080/1042819042000219494] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The outcome of an immune response is dependent on the interplay and complex interactions of positive (stimulatory) and negative (inhibitory) pathways and a major goal of modern immunology is to dissect these physiologic interactions in order to apply these physiologic mechanisms therapeutically. The balance of stimulatory and inhibitory signals is critical for maximizing the ability of the adoptive immune response to defend the host while maintaining immunologic tolerance and preventing autoimmunity. Cellular quiescence is a state characterized by decreased cell size and metabolic activity. The quiescent state of unstimulated T lymphocytes is thought to be due to the lack of activation signals. However, recent studies have shown that quiescence in lymphocytes is not a default state, but an actively maintained gene program. This program regulates intrinsic expression of quiescence factors in T lymphocytes. In addition to intrinsic mechanisms regulating T cell quiescence, CD4 + CD25 + regulatory T cells (Treg) naturally arising in the thymus, engage in the maintenance of immunological self-tolerance by preventing autoimmunity in vivo in a non cell-autonomous manner. Although there is still only a rudimentary knowledge of the molecular mechanisms that govern the activity of the intrinsic quiescence factors and the development of Treg, it is now clear that immune quiescence is regulated by constitutively ongoing active mechanisms.
Collapse
Affiliation(s)
- Dimitrios Tzachanis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
141
|
Cho JW, Kim JJ, Park SG, Lee DH, Lee SC, Kim HJ, Park BC, Cho S. Identification of B-cell translocation gene 1 as a biomarker for monitoring the remission of acute myeloid leukemia. Proteomics 2005; 4:3456-63. [PMID: 15449376 DOI: 10.1002/pmic.200400968] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acute myeloid leukemia (AML) is a biologically heterogeneous disease of the hematopoietic system characterized by a clonal accumulation of immature blast cells in bone marrow. We used a proteomic approach based on two-dimensional electrophoresis and mass spectrometry to search for biomarkers related to the complete remission (CR) state of AML patients. We detected one AML-related protein, which was identified as the B-cell translocation gene 1 (BTG1) protein that belongs to anti-proliferative protein family. In the CR state of AML-M2 and M3 patients (by French-American-British subtype classification), the BTG1 protein was upregulated in bone marrow mononuclear cells. It was also expressed robustly in normal bone marrow mononuclear cells. In addition, the BTG1 levels in AML-M2 patients in a non-remission state after therapy did not increase as they did before therapy. Overexpression of BTG1 mRNA was also observed in the CR state of all-trans-retinoic acid (ATRA)-treated AML-M3 patients and ATRA-treated HL-60 cells. Taken together, these results suggest that BTG1 may play a role in the differentiation process of myeloid cells and can therefore be used as a potential treatment-related biomarker for monitoring the remission status of AML-M2 and M3 patients.
Collapse
Affiliation(s)
- Jae-We Cho
- Department of Microbiology, College of Medicine, Seonam University, Namwon, Chunpook, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Busson M, Carazo A, Seyer P, Grandemange S, Casas F, Pessemesse L, Rouault JP, Wrutniak-Cabello C, Cabello G. Coactivation of nuclear receptors and myogenic factors induces the major BTG1 influence on muscle differentiation. Oncogene 2005; 24:1698-710. [PMID: 15674337 DOI: 10.1038/sj.onc.1208373] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The btg1 (B-cell translocation gene 1) gene coding sequence was isolated from a translocation break point in a case of B-cell chronic lymphocytic leukaemia. We have already shown that BTG1, considered as an antiproliferative protein, strongly stimulates myoblast differentiation. However, the mechanisms involved in this influence remained unknown. In cultured myoblasts, we found that BTG1 stimulates the transcriptional activity of nuclear receptors (T3 and all-trans retinoic acid receptors but not RXRalpha and PPARgamma), c-Jun and myogenic factors (CMD1, Myf5, myogenin). Immunoprecipitation experiments performed in cells or using in vitro-synthesized proteins and GST pull-down assays established that BTG1 directly interacts with T3 and all-trans retinoic acid receptors and with avian MyoD (CMD1). These interactions are mediated by the transactivation domain of each transcription factor and the A box and C-terminal part of BTG1. NCoR presence induces the ligand dependency of the interaction with nuclear receptors. Lastly, deletion of BTG1 interacting domains abrogates its ability to stimulate nuclear receptors and CMD1 activity, and its myogenic influence. In conclusion, BTG1 is a novel important coactivator involved in the regulation of myoblast differentiation. It not only stimulates the activity of myogenic factors, but also of nuclear receptors already known as positive myogenic regulators.
Collapse
Affiliation(s)
- Muriel Busson
- UMR 866 Différenciation Cellulaire et Croissance, INRA, 2 place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Embryonic diapause, a condition of temporary suspension of development of the mammalian embryo, occurs due to suppression of cell proliferation at the blastocyst stage. It is an evolutionary strategy to ensure the survival of neonates. Obligate diapause occurs in every gestation of some species, while facultative diapause ensues in others, associated with metabolic stress, usually lactation. The onset, maintenance and escape from diapause are regulated by cascades of environmental, hypophyseal, ovarian and uterine mechanisms that vary among species and between the obligate and facultative condition. In the best-known models, the rodents, the uterine environment maintains the embryo in diapause, while estrogens, in combination with growth factors, reinitiate development. Mitotic arrest in the mammalian embryo occurs at the G0 or G1 phase of the cell cycle, and may be due to expression of a specific cell cycle inhibitor. Regulation of proliferation in non- mammalian models of diapause provide clues to orthologous genes whose expression may regulate the reprise of proliferation in the mammalian context.
Collapse
Affiliation(s)
- Flavia L Lopes
- Centre de Recherche en Reproduction Animale, Facultéde Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada J2S7C6
| | | | | |
Collapse
|
144
|
Okochi K, Suzuki T, Inoue JI, Matsuda S, Yamamoto T. Interaction of anti-proliferative protein Tob with poly(A)-binding protein and inducible poly(A)-binding protein: implication of Tob in translational control. Genes Cells 2005; 10:151-63. [PMID: 15676026 DOI: 10.1111/j.1365-2443.2005.00826.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tob is a member of an emerging family of anti-proliferative proteins that suppress cell growth when over-expressed. tob mRNA is highly expressed in anergic T cells and over-expression of Tob suppresses transcription of interleukin-2 (IL-2) through its interaction with Smads. Here, we identified two types of cDNA clones coding for poly(A)-binding protein (PABP) and inducible PABP (iPABP) by screening an expression cDNA library with the GST-Tob probe. Co-immunoprecipitation and GST-pull down experiments showed that Tob associated with the carboxyl-terminal region of iPABP. We then found that iPABP, like PABP, was involved in regulation of translation: iPABP enhanced translation of IL-2 mRNA in vitro. The enhanced translation of IL-2 mRNA required the 3'UTR and poly(A) sequences. Tob abrogated the enhancement of translation through its interaction with carboxyl-terminal region of iPABP in vitro. Consistently, over-expression of Tob in NIH3T3 cells, in which exogenous iPABP was stably expressed, resulted in suppression of IL-2 production from the simultaneously transfected IL-2 expression plasmid. Finally, Tob, whose expression was induced by anergic stimulation, was co-immunoprecipitated with iPABP in human T cells. These findings suggest that Tob is involved in the translational suppression of IL-2 mRNA in anergic T cells through its interaction with iPABP.
Collapse
Affiliation(s)
- Kentaro Okochi
- Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
145
|
Feederle R, Delecluse HJ, Rouault JP, Schepers A, Hammerschmidt W. Efficient somatic gene targeting in the lymphoid human cell line DG75. Gene 2004; 343:91-7. [PMID: 15563834 DOI: 10.1016/j.gene.2004.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/09/2004] [Indexed: 11/21/2022]
Abstract
Among the different approaches used to define the function of a protein of interest, alteration and/or deletion of its encoding gene is the most direct strategy. Homologous recombination between the chromosomal gene locus and an appropriately designed targeting vector results in an alteration or knockout of the gene of interest. Homologous recombination is easily performed in yeast or in murine embryonic stem cells, but is cumbersome in more differentiated and diploid somatic cell lines. Here we describe an efficient method for targeting both alleles of a complex human gene locus in DG75 cells, a cell line of lymphoid origin. The experimental approach included a conditional knockout strategy with three genotypic markers, which greatly facilitated the generation and phenotypic identification of targeted recombinant cells. The vector was designed such that it could be reused for two consecutive rounds of recombination to target both alleles. The human DG75 cell line appears similar to the chicken DT40 pre B-cell line, which supports efficient homologous recombination. Therefore, the DG75 cell line is a favorable addition to the limited number of cell lines amenable to gene targeting and should prove useful for studying gene function through targeted gene alteration or deletion in human somatic cells.
Collapse
Affiliation(s)
- Regina Feederle
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistr. 25, Munich D-81377, Germany
| | | | | | | | | |
Collapse
|
146
|
Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A. Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 2004; 138:164-70. [PMID: 15373920 PMCID: PMC1809188 DOI: 10.1111/j.1365-2249.2004.02587.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autoimmune diseases are either tissue-specific like multiple sclerosis (MS) or multisystemic like systemic lupus erythematosus (SLE), although clinically both exhibit common features. To gain insight into the properties of the genes involved in each disease we have investigated the gene expression signature of peripheral blood mononuclear cells (PBMC) in MS and SLE in comparison to healthy subjects. Total RNA was purified, hybridized to Genechip array and analysed in 36 subjects (13 relapsing-remitting MS patients, five SLE patients and 18 age-matched healthy subjects that served as controls). Additional blood samples from 15 relapsing-remitting MS patients, 8 SLE patients and 10 healthy subjects were used for confirmation of microarray gene expression findings by ELISA and RT-PCR. MS and SLE patients demonstrated a common gene expression autoimmune signature of 541 genes which differentiated them from healthy subjects. The autoimmune signature included genes that encode proteins involved in apoptosis, cell cycle, inflammation and regulation of matrix metalloproteinase pathways. Specifically, decreased TIMP1 gene expression in the autoimmunity signature suggests increased MMP activity in target tissues as a result of the lack of feedback mechanism. An additional different disease specific signature identified the gene expression pattern for MS (1031 genes), mainly associated with over-expression of adhesion molecules and down-expression of heat shock proteins; the SLE specific signature (1146 genes) mainly involved DNA damage/repair pathways that result in production of nuclear autoantibodies. These results provide insights into the genetic pathways underlying autoimmune diseases, and identify specific disease-associated signatures that may enable targetted disease-related specific therapies to be developed.
Collapse
Affiliation(s)
- M Mandel
- Blood Bank, Sheba Medical Centre, Tel Hashomer, Israel
| | | | | | | | | |
Collapse
|
147
|
Hess K, Yang Y, Golech S, Sharov A, Becker KG, Weng NP. Kinetic assessment of general gene expression changes during human naive CD4+ T cell activation. Int Immunol 2004; 16:1711-21. [PMID: 15492022 DOI: 10.1093/intimm/dxh172] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consequence of naive CD4+ T cell activation is the differentiation and generation of effector cells. How the engagement of T cell receptors and co-stimulatory receptors leads to profound differential changes is not fully understood. To assess the transcription changes during T cell activation, we developed human T cell specific cDNA microarray gene filters and examined the gene expression profiles in human naive CD4+ T cells for 10 continuous time points during the first 24 h after anti-CD3 plus anti-CD28 (anti-CD3/CD28) stimulation. We report here a global and kinetic analysis of gene expression changes during naive CD4+ T cell activation and identify 196 genes having expression levels that significantly changed after activation. Based on the temporal change, there are 15 genes that changed between 0-1 h (early), 25 genes between 2-8 h (middle) and 156 genes between 16-24 h (late) after stimulation. Further analyses of the functions of those genes indicate their roles in maintenance of resting status, activation, adhesion/migration, cell cycle progression and cytokine production. However, a significant majority of these genes are novel to T cells and their functions in T cell activation require further study. Together, these results present a kinetic view of the gene expression changes of naive CD4+ T cells in response to T cell receptor-mediated activation for the first time, and provide a basis in understanding how the complex network of gene expression regulation is programmed during CD4+ T cell activation.
Collapse
Affiliation(s)
- Krista Hess
- Laboratory of Immunology, National Institutes on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
148
|
Sterrenburg E, Turk R, 't Hoen PAC, van Deutekom JCT, Boer JM, van Ommen GJB, den Dunnen JT. Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord 2004; 14:507-18. [PMID: 15336692 DOI: 10.1016/j.nmd.2004.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/16/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
To study pathways involved in human skeletal myogenesis, we profiled gene expression in human primary myoblast cells derived from three individuals using both oligonucleotide and cDNA microarrays. Following stringent statistical testing (false-positive rate 0.4%), we identified 146 genes differentially expressed over time. Interestingly, 86 of these genes have not been reported to be involved in myogenesis in mouse cell lines. This demonstrates the additional value of human primary cell cultures in the study of muscle differentiation. Many of the identified genes play a role in muscle regeneration, indicating the close relationship of this process with muscle development. In addition, we found overlap with expression profiling studies in muscle from Duchenne muscular dystrophy patients, confirming ongoing muscle regeneration in Duchenne muscular dystrophy. Further study of these genes can bring new insights into the process of muscle differentiation, and they are candidate genes for neuromuscular disorders with an as yet unidentified cause.
Collapse
Affiliation(s)
- Ellen Sterrenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
149
|
Kawamura-Tsuzuku J, Suzuki T, Yoshida Y, Yamamoto T. Nuclear localization of Tob is important for regulation of its antiproliferative activity. Oncogene 2004; 23:6630-8. [PMID: 15235587 DOI: 10.1038/sj.onc.1207890] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TOB: is a member of an antiproliferative gene family that includes btg1, pc3/tis21/btg2, pc3b, ana/btg3, and tob2. Exogenous overexpression of the family proteins suppresses cell proliferation. These proteins participate in transcriptional regulation of several genes. Here, we show that Tob is a nuclear protein that is imported into the nucleus through a nuclear localization signal (NLS)-mediated mechanism. Mutation in the NLS sequence of Tob affects its nuclear localization and impairs antiproliferative activity. Additionally, Tob contains a nuclear export signal (NES). In oncogenic ErbB2-transformed cells, nuclear export of Tob is facilitated by NES-mediated mechanism, resulting in decrease of its antiproliferative activity. These results indicate that regulation of nuclear localization of Tob is important for its antiproliferative activity.
Collapse
Affiliation(s)
- Junko Kawamura-Tsuzuku
- Division of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
150
|
Berthet C, Morera AM, Asensio MJ, Chauvin MA, Morel AP, Dijoud F, Magaud JP, Durand P, Rouault JP. CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Mol Cell Biol 2004; 24:5808-20. [PMID: 15199137 PMCID: PMC480892 DOI: 10.1128/mcb.24.13.5808-5820.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCR4-associated protein CAF1 has been demonstrated to play several roles in the control of transcription and of mRNA decay. To gain further insight into its physiological function, we generated CAF1-deficient mice. They are viable, healthy, and normal in appearance; however, mCAF1(-/-) male mice are sterile. The crossing of mCAF1(+/-) mice gave a Mendelian ratio of mCAF1(+/+), mCAF1(+/-), and mCAF1(-/-) pups, indicating that haploid mCAF1-deficient germ cells differentiate normally. The onset of the defect occurs during the first wave of spermatogenesis at 19 to 20 days after birth, during progression of pachytene spermatocytes to haploid spermatids and spermatozoa. Early disruption of spermatogenesis was evidenced by Sertoli cell vacuolization and tubular disorganization. The most mature germ cells were the most severely depleted, but progressively all germ cells were affected, giving Sertoli cell-only tubes, large interstitial spaces, and small testes. This phenotype could be linked to a defect(s) in germ cells and/or to inadequate Sertoli cell function, leading to seminiferous tubule disorganization and finally to a total disappearance of germ cells. The mCAF1-deficient mouse provides a new model of failed spermatogenesis in the adult that may be relevant to some cases of human male sterility.
Collapse
|