101
|
Abstract
The cadherin family is classified into classical cadherins, desmosomal cadherins and protocadherins (PCDHs). Genomic structures distinguish between PCDHs and other cadherins, and between clustered and non-clustered PCDHs. The phylogenetic analysis with full sequences of non-clustered PCDHs enabled them to be further classified into three subgroups: δ1 (PCDH1, PCDH7, PCDH9, PCDH11 and PCDH20), δ2 (PCDH8, PCDH10, PCDH12, PCDH17, PCDH18 and PCDH19) and ε (PCDH15, PCDH16, PCDH21 and MUCDHL). ε-PCDH members except PCDH21 have either higher or lower numbers of cadherin repeats than those of other PCDHs. Non-clustered PCDHs are expressed predominantly in the nervous system and have spatiotemporally diverse expression patterns. Especially, the region-specific expressions of non-clustered PCDHs have been observed in cortical area of early postnatal stage and in caudate putaman and/or hippocampal formation of mature brains, suggesting that non-clustered PCDHs play roles in the circuit formation and maintenance. The non-clustered PCDHs appear to have homophilic/heterophilc cell-cell adhesion properties, and each member has diverse cell signaling partnership distinct from those of other members (PCDH7/TAF1; PCDH8/TAO2β; PCDH10/Nap1; PCDH11/β-catenin; PCDH18/mDab1). Furthermore, each PCDH has several isoforms with differential cytoplasmic sequences, suggesting that one PCDH isoform could activate intracellular signaling differential from other isoforms. These facts suggest that non-clustered PCDHs play roles as a mediator of a regulator of other molecules as well as cell-cell adhesion. Furthermore, some non-clustered PCDHs have been considered to be involved in neuronal diseases such as autism-spectrum disorders, schizophrenia, and female-limited epilepsy and cognitive impairment, suggesting that they play multiple, tightly regulated roles in normal brain function. In addition, some non-clustered PCDHs have been suggested as candidate tumor suppressor genes in several tissues. Although molecular adhesive and regulatory properties of some PCDHs began to be unveiled, the endeavor to understand the molecular mechanism of non-clustered PCDH is still in its infancy and requires future study.
Collapse
Affiliation(s)
- Soo-Young Kim
- Department of Anatomy and Division of Brain Korea, Korea University College of Medicine; Anam-Dong, Seoul, South Korea
| | | | | | | | | |
Collapse
|
102
|
Li Z, Xie J, Li W, Tang A, Li X, Jiang Z, Han Y, Ye J, Jing J, Gui Y, Cai Z. Identification and characterization of human PCDH10 gene promoter. Gene 2011; 475:49-56. [PMID: 21237250 DOI: 10.1016/j.gene.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 01/16/2023]
Abstract
Recent studies have suggested roles for PCDH10 as a novel tumor suppressor gene. In our previous work, we located the core promoter of PCDH10 to a 462-bp segment of 5'-flanking region characterized by a high GC content. Here we further identified and characterized the promoter for PCDH10. Transient transfection of PC3 and LNCaP cells with a series of deleted promoter constructs indicated that the minimal promoter region was between nucleotides -144 and -99. This segment contained a CAAT box, a GT box, and a putative transcription factor binding site for AP-4. Mutational analysis identified that the CAAT box and GT box are necessary for promoter activity. Ectopic expression of NF-Ys increased reporter gene activity, whereas expression of a dominant-negative NF-YA decreased reporter gene activity. Co-transfection of Sp1/Sp3 expression plasmids enhanced reporter gene activity in a dose-dependent manner. Mithramycin A, an inhibitor of Sp-DNA interaction, reduced PCDH10 promoter activity. Electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated binding of transcription factors Sp1/Sp3 to the promoter region in vitro and in vivo. Our data show that Sp1/Sp3 and CBF/NF-Y transcription factors play a crucial role in the basal expression of the human PCDH10 gene.
Collapse
Affiliation(s)
- Zesong Li
- Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, 1120 Lianhua Road, Shenzhen, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fang X, Yoon JG, Li L, Yu W, Shao J, Hua D, Zheng S, Hood L, Goodlett DR, Foltz G, Lin B. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics 2011; 12:11. [PMID: 21211035 PMCID: PMC3022822 DOI: 10.1186/1471-2164-12-11] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/06/2011] [Indexed: 12/13/2022] Open
Abstract
Background SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined. Results We show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells. Conclusions We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community.
Collapse
Affiliation(s)
- Xuefeng Fang
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, WA 98122, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Lack of association between PCDH11X genetic variation and late-onset Alzheimer's disease in a Han Chinese population. Brain Res 2010; 1357:152-6. [DOI: 10.1016/j.brainres.2010.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/01/2010] [Accepted: 08/04/2010] [Indexed: 01/21/2023]
|
105
|
Li Y, Serwanski DR, Miralles CP, Fiondella CG, LoTurco JJ, Rubio ME, De Blas AL. Synaptic and nonsynaptic localization of protocadherin-gammaC5 in the rat brain. J Comp Neurol 2010; 518:3439-63. [PMID: 20589908 PMCID: PMC3209968 DOI: 10.1002/cne.22390] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It has been proposed that gamma-protocadherins (Pcdh-gammas) are involved in the establishment of specific patterns of neuronal connectivity. Contrary to the other Pcdh-gammas, which are expressed in the embryo, Pcdh-gammaC5 is expressed postnatally in the brain, coinciding with the peak of synaptogenesis. We have developed an antibody specific for Pcdh-gammaC5 to study the expression and localization of Pcdh-gammaC5 in brain. Pcdh-gammaC5 is highly expressed in the olfactory bulb, corpus striatum, dentate gyrus, CA1 region of the hippocampus, layers I and II of the cerebral cortex, and molecular layer of the cerebellum. Pcdh-gammaC5 is expressed in both neurons and astrocytes. In hippocampal neuronal cultures, and in the absence of astrocytes, a significant percentage of synapses, more GABAergic than glutamatergic, have associated Pcdh-gammaC5 clusters. Some GABAergic axons show Pcdh-gammaC5 in the majority of their synapses. Nevertheless, many Pcdh-gammaC5 clusters are not associated with synapses. In the brain, significant numbers of Pcdh-gammaC5 clusters are located at contact points between neurons and astrocytes. Electron microscopic immunocytochemistry of the rat brain shows that 1) Pcdh-gammaC5 is present in some GABAergic and glutamatergic synapses both pre- and postsynaptically; 2) Pcdh-gammaC5 is also extrasynaptically localized in membranes and in cytoplasmic organelles of neurons and astrocytes; and 3) Pcdh-gammaC5 is also localized in perisynaptic astrocyte processes. The results support the notions that 1) Pcdh-gammaC5 plays a role in synaptic specificity and/or synaptic maturation and 2) Pcdh-gammaC5 is involved in neuron-neuron synaptic interactions and in neuron-astrocyte interactions, including perisynaptic neuron-astrocyte interactions.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - David R. Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - Christopher G. Fiondella
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - Maria E. Rubio
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269 USA
| |
Collapse
|
106
|
Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 2010; 107:14893-8. [PMID: 20679223 DOI: 10.1073/pnas.1004526107] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The specificity of interactions between neurons is believed to be mediated by diverse cell adhesion molecules, including members of the cadherin superfamily. Whereas mechanisms of classical cadherin adhesion have been studied extensively, much less is known about the related protocadherins (Pcdhs), which together make up the majority of the superfamily. Here we use quantitative cell aggregation assays and biochemical analyses to characterize cis and trans interactions among the 22-member gamma-Pcdh family, which have been shown to be critical for the control of synaptogenesis and neuronal survival. We show that gamma-Pcdh isoforms engage in trans interactions that are strictly homophilic. In contrast to classical cadherins, gamma-Pcdh interactions are only partially Ca(2+)-dependent, and their specificity is mediated through the second and third extracellular cadherin (EC) domains (EC2 and EC3), rather than through EC1. The gamma-Pcdhs also interact both covalently and noncovalently in the cis-orientation to form multimers both in vitro and in vivo. In contrast to gamma-Pcdh trans interactions, cis interactions are highly promiscuous, with no isoform specificity. We present data supporting a model in which gamma-Pcdh cis-tetramers represent the unit of their adhesive trans interactions. Unrestricted tetramerization in cis, coupled with strictly homophilic interactions in trans, predicts that the 22 gamma-Pcdhs could form 234,256 distinct adhesive interfaces. Given the demonstrated role of the gamma-Pcdhs in synaptogenesis, our data have important implications for the molecular control of neuronal specificity.
Collapse
|
107
|
Tai K, Kubota M, Shiono K, Tokutsu H, Suzuki ST. Adhesion properties and retinofugal expression of chicken protocadherin-19. Brain Res 2010; 1344:13-24. [PMID: 20438721 DOI: 10.1016/j.brainres.2010.04.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/22/2010] [Accepted: 04/26/2010] [Indexed: 11/17/2022]
Abstract
Protocadherin-19 has been implicated in some neurological diseases, but even the basic properties of this protocadherin have not yet been characterized well. Hence, various basic properties of chicken protocadherin-19 were examined to elucidate its biological role. The protocadherin-19 expressed in L cells was localized at the intercellular contact sites and showed Ca(2+)-dependent homophilic cell aggregation activity that was relatively weak but showed stringent specificity. The results of a pull-down assay using fusion proteins of the cytoplasmic domain and glutathione S-transferase yielded specifically bound proteins. In the bound fractions, liquid chromatography-mass spectrometry identified Nck-associated protein 1 and cytoplasmic FMP1 interacting protein 2, which have been reported to bind to glutathione S-transferase fused with the cytoplasmic domain of OL-protocadherin, suggesting that these proteins generally have affinity for delta protocadherins. Protocadherin-19 was mainly expressed in the central nervous system. In the chicken retina, protocadherin-19 was expressed as early as embryonic day 5 and was localized in the ganglion cell layer, inner plexiform layer, and optic nerve layer. Chicken protocadherin-19 was co-localized with syntaxin 1 in inner plexiform layer and was also expressed in the optic nerve and in specific layers of optic tectum. These results suggest that protocadherin-19 plays a role as an adhesion protein in optic nerve fiber bundling, optic nerve targeting, and/or synapse formation.
Collapse
Affiliation(s)
- Kiyoto Tai
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Nanobiology Center, 2-1 Gakuen, Sanda-shi, Hyogo-ken 669-1337, Japan
| | | | | | | | | |
Collapse
|
108
|
Krahn MP, Rizk S, Alfalah M, Behrendt M, Naim HY. Protocadherin of the liver, kidney, and colon associates with detergent-resistant membranes during cellular differentiation. J Biol Chem 2010; 285:13193-200. [PMID: 20159971 DOI: 10.1074/jbc.m109.080051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protocadherin LKC (PLKC) is a member of the heterogeneous subgroup of protocadherins that was identified and described as a potential tumor-suppressor gene involved in contact inhibition (Okazaki, N., Takahashi, N., Kojima, S., Masuho, Y., and Koga, H. (2002) Carcinogenesis 23, 1139-1148 and Ose, R., Yanagawa, T., Ikeda, S., Ohara, O., and Koga, H. (2009) Mol. Oncol. 3, 54-66). Several aspects of the structure, posttranslational processing, targeting, and function of this new protocadherin are still not known. Here, we demonstrate that the expression of PLKC at the apical membrane domain and its concentration at regions of cell-cell contacts occur concomitantly with significant elevation of PLKC-mRNA levels. Furthermore, it can be found within the adherens junctions, but it does not colocalize with tight junctions proteins ZO-1 and occludin, respectively. Additionally, unlike E-cadherin, PLKC is not redistributed upon Ca(2+) removal. Biosynthetic labeling revealed N- and O-glycosylation as posttranslational modifications as well as a fast transport to the cell surface and a low turnover rate. During differentiation, PLKC associates with detergent-resistant membranes that trigger its redistribution from intracellular membranes to the cell surface. This association occurs concomitant with alterations in the glycosylation pattern. We propose a role for PLKC in the establishment of a proper epithelial cell polarity that requires O-linked glycosylation and association of the protein with detergent-resistant membranes.
Collapse
Affiliation(s)
- Michael P Krahn
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover D-30559, Germany
| | | | | | | | | |
Collapse
|
109
|
Han MH, Lin C, Meng S, Wang X. Proteomics analysis reveals overlapping functions of clustered protocadherins. Mol Cell Proteomics 2009; 9:71-83. [PMID: 19843561 DOI: 10.1074/mcp.m900343-mcp200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-alpha, Pcdh-beta, and Pcdh-gamma, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-gamma-associated protein complexes. We identified a list of 154 non-redundant proteins in the PCDH-gamma complexes. This list includes nearly 30 members of clustered Pcdh-alpha, -beta, and -gamma families as core components of the complexes and additionally over 120 putative PCDH-associated proteins. We validated a selected subset of PCDH-gamma-associated proteins using specific antibodies. Analysis of the identities of PCDH-associated proteins showed that the majority of them overlap with the proteomic profile of postsynaptic density preparations. Further analysis of membrane protein complexes revealed that several validated PCDH-gamma-associated proteins exhibit reduced levels in Pcdh-gamma-deficient brain tissues. Therefore, PCDH-gamma s are required for the integrity of the complexes. However, the size of the overall complexes and the abundance of many other proteins remained unchanged, raising a possibility that PCDH-alphas and PCDH-betas might compensate for PCDH-gamma function in complex formation. As a test of this idea, RNA interference knockdown of both PCDH-alphas and PCDH-gamma s showed that PCDHs have redundant functions in regulating neuronal survival in the chicken spinal cord. Taken together, our data provide evidence that clustered PCDHs coexist in large protein complexes and have overlapping functions during vertebrate neural development.
Collapse
Affiliation(s)
- Meng-Hsuan Han
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
110
|
Noguchi Y, Hirabayashi T, Katori S, Kawamura Y, Sanbo M, Hirabayashi M, Kiyonari H, Nakao K, Uchimura A, Yagi T. Total expression and dual gene-regulatory mechanisms maintained in deletions and duplications of the Pcdha cluster. J Biol Chem 2009; 284:32002-14. [PMID: 19797050 DOI: 10.1074/jbc.m109.046938] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The clustered protocadherin-alpha (Pcdha) genes, which are expressed in the vertebrate brain, encode diverse membrane proteins whose functions are involved in axonal projection and in learning and memory. The Pcdha cluster consists of 14 tandemly arranged genes (Pcdha1-Pcdha12, Pcdhac1, and Pcdhac2, from 5' to 3'). Each first exon (the variable exons) is transcribed from its own promoter, and spliced to the constant exons, which are common to all the Pcdha genes. Cerebellar Purkinje cells show dual expression patterns for Pcdha. In individual Purkinje cells, different sets of the 5' genes in the cluster, Pcdha1-12, are randomly expressed, whereas both 3' genes, Pcdhac1 and Pcdhac2, are expressed constitutively. To elucidate the relationship between the genomic structure of the Pcdha cluster and their expression in Purkinje cells, we deleted or duplicated multiple variable exons and analyzed the expression of Pcdha genes in the mouse brain. In all mutant mice, transcript levels of the constant exons and the dual expression patterns were maintained. In the deletion mutants, the missing genes were flexibly compensated by the remaining variable exons. On the other hand, in duplication mutants, the levels of the duplicated genes were trimmed. These results indicate that the Pcdha genes are comprehensively regulated as a cluster unit, and that the regulators that randomly and constitutively drive Pcdha gene expression are intact in the deleted or duplicated mutant alleles. These dual regulatory mechanisms may play important roles in the diversity and fundamental functions of neurons.
Collapse
Affiliation(s)
- Yukiko Noguchi
- Course of Medical Biosignaling, Graduate School of Medicine, Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Koppelman GH, Meyers DA, Howard TD, Zheng SL, Hawkins GA, Ampleford EJ, Xu J, Koning H, Bruinenberg M, Nolte IM, van Diemen CC, Boezen HM, Timens W, Whittaker PA, Stine OC, Barton SJ, Holloway JW, Holgate ST, Graves PE, Martinez FD, van Oosterhout AJ, Bleecker ER, Postma DS. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med 2009; 180:929-35. [PMID: 19729670 DOI: 10.1164/rccm.200810-1621oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Asthma is a chronic inflammatory airway disease that affects more than 300 million individuals worldwide. Asthma is caused by interaction of genetic and environmental factors. Bronchial hyperresponsiveness (BHR) is a hallmark of asthma and results from increased sensitivity of the airways to physical or chemical stimulants. BHR and asthma are linked to chromosome 5q31-q33. OBJECTIVES To identify a gene for BHR on chromosome 5q31-q33. METHODS In 200 Dutch families with asthma, linkage analysis and fine mapping were performed, and the Protocadherin 1 gene (PCDH1) was identified. PCDH1 was resequenced in 96 subjects from ethnically diverse populations to identify novel sequence variants. Subsequent replication studies were undertaken in seven populations from The Netherlands, the United Kingdom, and the United States, including two general population samples, two family samples, and three case-control samples. PCDH1 mRNA and protein expression was investigated using polymerase chain reaction, Western blotting, and immunohistochemistry. MEASUREMENTS AND MAIN RESULTS In seven out of eight populations (n = 6,168) from The Netherlands, United Kingdom, and United States, PCHD1 gene variants were significantly associated with BHR (P values, 0.005-0.05) This association was present in both families with asthma and general populations. PCDH1 mRNA and protein were expressed in airway epithelial cells and in macrophages. CONCLUSIONS PCDH1 is a novel gene for BHR in adults and children. The identification of PCDH1 as a BHR susceptibility gene may suggest that a structural defect in the integrity of the airway epithelium, the first line of defense against inhaled substances, contributes to the development of BHR.
Collapse
Affiliation(s)
- Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Emond MR, Biswas S, Jontes JD. Protocadherin-19 is essential for early steps in brain morphogenesis. Dev Biol 2009; 334:72-83. [PMID: 19615992 DOI: 10.1016/j.ydbio.2009.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
One of the earliest stages of brain morphogenesis is the establishment of the neural tube during neurulation. While some of the cellular mechanisms responsible for neurulation have been described in a number of vertebrate species, the underlying molecular processes are not fully understood. We have identified the zebrafish homolog of protocadherin-19, a member of the cadherin superfamily, which is expressed in the anterior neural plate and is required for brain morphogenesis. Interference with Protocadherin-19 function with antisense morpholino oligonucleotides leads to a severe disruption in early brain morphogenesis. Despite these pronounced effects on neurulation, axial patterning of the neural tube appears normal, as assessed by in situ hybridization for otx2, pax2.1 and krox20. Characterization of embryos early in development by in vivo 2-photon timelapse microscopy reveals that the observed disruption of morphogenesis results from an arrest of cell convergence in the anterior neural plate. These results provide the first functional data for protocadherin-19, demonstrating an essential role in early brain development.
Collapse
Affiliation(s)
- Michelle R Emond
- Center for Molecular Neurobiology and Department of Neuroscience, 115 Rightmire Hall, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
113
|
Mohan R, Lee B, Panjwani N. Molecular cloning of the E-cadherin cDNAs from rabbit corneal epithelium. Curr Eye Res 2009. [DOI: 10.3109/02713689508995820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
114
|
Redies C, Heyder J, Kohoutek T, Staes K, Van Roy F. Expression of protocadherin-1 (Pcdh1) during mouse development. Dev Dyn 2009; 237:2496-505. [PMID: 18729229 DOI: 10.1002/dvdy.21650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Protocadherin-1 (Pcdh1) is a member of the delta-protocadherin subgroup of non-clustered protocadherins. We studied the expression of Pcdh1 from the early embryonic to the adult stage of mouse development by semi-quantitative RT-PCR and in situ hybridization. Pcdh1 can be detected as early as embryonic day 9.5. In early embryogenesis, expression is especially prominent in blood vessels. During later development and in the adult mouse, organs derived from the embryonic gut, such as the esophagus, intestines, liver, lung, and submandibular gland, contain epithelia and other types of tissues that are Pcdh1-positive. Other positive organs include the brain, spinal cord, retina, peripheral ganglia, the inner ear, hair follicles, kidney, vagina, uterus, placenta, testis, prostate, and the seminal gland. The tight spatial and temporal regulation of Pcdh1 expression suggests that this protocadherin plays multiple roles not only during development but also in mature tissues and organs in the mouse.
Collapse
Affiliation(s)
- Christoph Redies
- Institute of Anatomy I, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | |
Collapse
|
115
|
Prasad T, Wang X, Gray PA, Weiner JA. A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster. Development 2008; 135:4153-64. [PMID: 19029045 PMCID: PMC2755264 DOI: 10.1242/dev.026807] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although the role of developmental apoptosis in shaping the complement and connectivity of sensory and motoneurons is well documented, the extent to which cell death affects the 13 cardinal classes of spinal interneurons is unclear. Using a series of genetic manipulations in vivo, we demonstrate for the first time a differential pattern of developmental apoptosis in molecularly identified spinal interneuron populations, and implicate the adhesion molecule family encoded by the 22-member protocadherin-gamma (Pcdh-gamma) gene cluster in its control. In constitutive Pcdh-gamma null mouse embryos, many interneuron populations undergo increased apoptosis, but to differing extents: for example, over 80% of En1-positive V1 neurons are lost, whereas only 30% of Chx10-positive V2a neurons are lost and there is no reduction in the number of V1-derived Renshaw cells. We show that this represents an exacerbation of a normal, underlying developmental pattern: the extent of each population's decrease in Pcdh-gamma mutants is precisely commensurate both with the extent of its loss during normal embryogenesis and with the extent of its increase in Bax(-/-) mice, in which apoptosis is genetically blocked. Interneuron apoptosis begins during the first wave of synaptogenesisis in the spinal cord, occurring first among ventral populations (primarily between E14 and E17), and only later among dorsal populations (primarily after P0). Utilizing a new, conditional Pcdh-gamma mutant allele, we show that the gamma-Pcdhs can promote survival non-cell-autonomously: mutant neurons can survive if they are surrounded by normal neurons, and normal neurons can undergo apoptosis if they are surrounded by mutant neurons.
Collapse
Affiliation(s)
- Tuhina Prasad
- Department of Biology, The University of Iowa, Iowa City, IA 52242
| | - Xiaozhong Wang
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208
| | - Paul A. Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua A. Weiner
- Department of Biology, The University of Iowa, Iowa City, IA 52242
- Neuroscience Graduate Program, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
116
|
Bononi J, Cole A, Tewson P, Schumacher A, Bradley R. Chicken protocadherin-1 functions to localize neural crest cells to the dorsal root ganglia during PNS formation. Mech Dev 2008; 125:1033-47. [PMID: 18718533 PMCID: PMC2651685 DOI: 10.1016/j.mod.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
In vertebrate embryos, neural crest cells emerge from the dorsal neural tube and migrate along well defined pathways to form a wide diversity of tissues, including the majority of the peripheral nervous system (PNS). Members of the cadherin family of cell adhesion molecules play key roles during the initiation of migration, mediating the delamination of cells from the neural tube. However, a role for cadherins in the sorting and re-aggregation of the neural crest to form the PNS has not been established. We report the requirement for a protocadherin, chicken protocadherin-1 (Pcdh1), in neural crest cell sorting during the formation of the dorsal root ganglia (DRG). In embryos, cPcdh1 is highly expressed in the developing DRG, where it co-localizes with the undifferentiated and mitotically active cells along the perimeter. Pcdh1 can promote cell adhesion in vivo and disrupting Pcdh1 function in embryos results in fewer neural crest cells localizing to the DRG, with a concomitant increase in cells that migrate to the sympathetic ganglia. Furthermore, those cells that still localize to the DRG, when Pcdh1 is inhibited, are no longer found at the perimeter, but are instead dispersed throughout the DRG and are now more likely to differentiate along the sensory neuron pathway. These results demonstrate that Pcdh1-mediated cell adhesion plays an important role as neural crest cells coalesce to form the DRG, where it serves to sort cells to the mitotically active perimeter.
Collapse
Affiliation(s)
- Judy Bononi
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Angela Cole
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Paul Tewson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Andrew Schumacher
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Roger Bradley
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| |
Collapse
|
117
|
Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2008; 41:349-69. [PMID: 18848899 DOI: 10.1016/j.biocel.2008.09.027] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 02/02/2023]
Abstract
This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
118
|
Hertel N, Krishna-K, Nuernberger M, Redies C. A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol 2008; 508:511-28. [DOI: 10.1002/cne.21696] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
119
|
Analysis of protocadherin alpha gene deletion variant in bipolar disorder and schizophrenia. Psychiatr Genet 2008; 18:110-5. [DOI: 10.1097/ypg.0b013e3282fa1838] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
120
|
Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 2008; 318:335-46. [PMID: 18468594 DOI: 10.1016/j.ydbio.2008.03.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/20/2022]
Abstract
Protocadherin-18a (Pcdh18a) belongs to the delta 2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.
Collapse
|
121
|
Abstract
Differential treatment of cells with trypsin can be used to distinguish Ca(2+)-dependent adhesion (CDS) from Ca(2+)-independent adhesion (CIDS). Cadherins appear to be a unique family of molecules whose structure and function as adhesion molecules are protected from trypsin in the presence of Ca(2+). This unit provides protocols for preparation and analysis of cells for cadherin-dependent adhesion in short-term and long-term aggregation assays. The functions of different cadherins can be assessed in mixed aggregate assays. Fluorescence antibody-based assays are used to identify specific cadherins and their associated catenins, and transformation of cells with specific constructs can be used to assay adhesion in cells with loss of cadherin activity.
Collapse
|
122
|
Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 2007; 19:584-92. [DOI: 10.1016/j.ceb.2007.09.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 09/05/2007] [Indexed: 12/13/2022]
|
123
|
Novel subdomains of the mouse olfactory bulb defined by molecular heterogeneity in the nascent external plexiform and glomerular layers. BMC DEVELOPMENTAL BIOLOGY 2007; 7:48. [PMID: 17506891 PMCID: PMC1885806 DOI: 10.1186/1471-213x-7-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
Background In the mouse olfactory system, the role of the olfactory bulb in guiding olfactory sensory neuron (OSN) axons to their targets is poorly understood. What cell types within the bulb are necessary for targeting is unknown. What genes are important for this process is also unknown. Although projection neurons are not required, other cell-types within the external plexiform and glomerular layers also form synapses with OSNs. We hypothesized that these cells are important for targeting, and express spatially differentially expressed guidance cues that act to guide OSN axons within the bulb. Results We used laser microdissection and microarray analysis to find genes that are differentially expressed along the dorsal-ventral, medial-lateral, and anterior-posterior axes of the bulb. The expression patterns of these genes divide the bulb into previously unrecognized subdomains. Interestingly, some genes are expressed in both the medial and lateral bulb, showing for the first time the existence of symmetric expression along this axis. We use a regeneration paradigm to show that several of these genes are altered in expression in response to deafferentation, consistent with the interpretation that they are expressed in cells that interact with OSNs. Conclusion We demonstrate that the nascent external plexiform and glomerular layers of the bulb can be divided into multiple domains based on the expression of these genes, several of which are known to function in axon guidance, synaptogenesis, and angiogenesis. These genes represent candidate guidance cues that may act to guide OSN axons within the bulb during targeting.
Collapse
|
124
|
Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2007; 20:3199-214. [PMID: 17158740 DOI: 10.1101/gad.1486806] [Citation(s) in RCA: 759] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cadherins may have originated to facilitate mechanical cell-cell adhesion, they have evolved to function in many other aspects of morphogenesis. These additional roles rely on cadherin interactions with a wide range of binding partners that modify their expression and adhesion activity by local regulation of the actin cytoskeleton and diverse signaling pathways. Here we examine how different members of the cadherin family act in different developmental contexts, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jennifer M Halbleib
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
125
|
Zou C, Huang W, Ying G, Wu Q. Sequence analysis and expression mapping of the rat clustered protocadherin gene repertoires. Neuroscience 2007; 144:579-603. [PMID: 17110050 DOI: 10.1016/j.neuroscience.2006.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 09/14/2006] [Accepted: 10/04/2006] [Indexed: 11/30/2022]
Abstract
Three closely-linked clusters of protocadherin (Pcdh) genes (alpha, beta, and gamma) encoding more than 50 distinct mRNAs have been identified in humans and mice, and proposed to play important roles in neuronal connectivity in the CNS. The human and mouse Pcdh alpha and gamma clusters each span a region of about 300 kb genomic DNA, and are each organized into a tandem array of more than a dozen highly-similar "variable" exons, and three downstream "constant" exons. Little is known about the expression patterns of the alpha and gamma repertoires in the CNS. Here, we comprehensively analyzed the one megabase rat Pcdh genomic DNA sequences at the nucleotide level using various computational methods. We found that the clustered rat Pcdh genes display strict orthologous relationships with those of mice but not humans. Moreover, each rat Pcdh variable exon is preceded by a distinct promoter. We designed two complete sets of isoform-specific probes and extensively mapped the expression patterns for each member of the alpha and gamma repertoires in the adult rat CNS by non-isotopic in situ hybridization experiments. We found that most alpha and gamma mRNA isoforms are broadly expressed in similar patterns in subsets of cells (with some displaying interesting cortical layer-specific expression) throughout various CNS regions, including the olfactory bulb, cerebral cortex, hippocampus, cerebellum, and spinal cord. The broad expression of most alpha or gamma mRNAs throughout various regions of the CNS is consistent with the hypothesis that these genes may be used for neurons to establish their individuality and also provide the adhesive diversity required for complex synaptic connectivity in the mammalian CNS.
Collapse
Affiliation(s)
- C Zou
- Department of Human Genetics, University of Utah Medical School, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
126
|
Ribich S, Tasic B, Maniatis T. Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 2006; 103:19719-24. [PMID: 17172445 PMCID: PMC1750919 DOI: 10.1073/pnas.0609445104] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered protocadherins (Pcdh) are encoded by three closely linked gene clusters (Pcdh-alpha, -beta, and -gamma) that span nearly 1 million base pairs of DNA. The Pcdh-alpha gene cluster encodes a family of 14 distinct cadherin-like cell surface proteins that are expressed in neurons and are present at synaptic junctions. Individual Pcdh-alpha mRNAs are assembled from one of 14 "variable" (V) exons and three "constant" exons in a process that involves both differential promoter activation and alternative pre-mRNA splicing. In individual neurons, only one (and rarely two) of the Pcdh alpha1-12 promoters is independently and randomly activated on each chromosome. Thus, in most cells, this unusual form of monoallelic expression leads to the expression of two different Pcdh-alpha 1-12 V exons, one from each chromosome. The two remaining V exons in the cluster (Pcdh-alphaC1 and alphaC2) are expressed biallelically in every neuron. The mechanisms that underlie promoter choice and monoallelic expression in the Pcdh-alpha gene cluster are not understood. Here we report the identification of two long-range cis-regulatory elements in the Pcdh-alpha gene cluster, HS5-1 and HS7. We show that HS5-1 is required for maximal levels of expression from the Pcdh alpha1-12 and alphaC1 promoters, but not the Pcdh-alphaC2 promoter. The nearly cluster-wide requirement of the HS5-1 element is consistent with the possibility that the monoallelic expression of Pcdh-alpha V exons is a consequence of competition between individual V exon promoters for the two regulatory elements.
Collapse
Affiliation(s)
- Scott Ribich
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Bosiljka Tasic
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. ACTA ACUST UNITED AC 2006; 174:301-13. [PMID: 16847104 PMCID: PMC2064189 DOI: 10.1083/jcb.200602062] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | |
Collapse
|
128
|
Chen X, Gumbiner BM. Crosstalk between different adhesion molecules. Curr Opin Cell Biol 2006; 18:572-8. [PMID: 16859906 DOI: 10.1016/j.ceb.2006.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/10/2006] [Indexed: 11/29/2022]
Abstract
Cell adhesion molecules mediate cell-cell and cell-extracellular matrix adhesions, and coordination between these molecules is essential for tissue formation and morphogenesis. Crosstalk between integrins and cadherins may result from a physical response to integrin-mediated adhesion, complex cell differentiation processes, or direct signaling pathways linking the two adhesion systems. Nectins have recently been shown to regulate the organization of cadherins into adherens junctions and the formation of tight junctions by several processes. Furthermore, protocadherins can interact with extracellular matrix proteins or function by regulating classical cadherins.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, P.O. Box 800732, 1300 Jefferson Park Ave., Charlottesville, VA 22908, USA
| | | |
Collapse
|
129
|
Piechotta K, Dudanova I, Missler M. The resilient synapse: insights from genetic interference of synaptic cell adhesion molecules. Cell Tissue Res 2006; 326:617-42. [PMID: 16855838 DOI: 10.1007/s00441-006-0267-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 05/31/2006] [Indexed: 01/05/2023]
Abstract
Synaptic cell adhesion molecules (SCAMs) are mostly membrane-anchored molecules with extracellular domains that extend into the synaptic cleft. Prototypical SCAMs interact with homologous or heterologous molecules on the surface of adjacent cells, ensuring the precise apposition of pre- and postsynaptic elements. More recent definitions of SCAMs often include molecules involved in axon pathfinding, cell recognition and synaptic differentiation events, making SCAMs functionally and molecularly a highly diverse group. In this review, we summarize the proposed in vivo functions of a large variety of SCAMs. We mainly focus on results obtained from analyses of genetic model organisms, mostly mouse knockout mutants, lacking expression of the respective candidate genes. In contrast to the substantial effect yielded by some knockouts of molecules involved in synaptic vesicle release, no SCAM mutant has been reported thus far that shows a prominently altered structure of the majority of synapses or even lacks synapses altogether. This surprising resilience of synaptic structure might be explained by a high redundancy between different SCAMs, by the assumption that the crucial molecular players in synapse structure have yet to be discovered or by a grand variability in the mechanisms of synapse formation that underlies the diversity of synapses. Whatever the final answer turns out to be, the genetic dissection of the SCAM superfamilies has led to a much better understanding of the different steps required to form, differentiate and modify a synapse.
Collapse
Affiliation(s)
- Kerstin Piechotta
- Center for Physiology and Pathophysiology, Georg-August University, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
130
|
Nonnenmacher M, Salmon J, Jacob Y, Orth G, Breitburd F. Cottontail rabbit papillomavirus E8 protein is essential for wart formation and provides new insights into viral pathogenesis. J Virol 2006; 80:4890-900. [PMID: 16641280 PMCID: PMC1472083 DOI: 10.1128/jvi.80.10.4890-4900.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cottontail rabbit papillomavirus (CRPV) a and b subtypes display a conserved E8 open reading frame encoding a 50-amino-acid hydrophobic protein, with structural similarities to the E5 transmembrane oncoprotein of genital human PVs (HPVs). CRPV E8 has been reported to play a role in papilloma growth but not to be essential in papilloma formation. Here we report that the knockout of E8 start codon almost prevented wart induction upon biobalistic inoculation of viral DNA onto rabbit skin. The scarce warts induced showed very slow growth, despite sustained expression of E6 and E7 oncogenes. This points to an essential role of E8 in disturbing epidermal homeostasis. Using a yeast two-hybrid screen, we found that E8 interacted with the zinc transporter ZnT1, protocadherin 1 (PCDH1), and AHNAK/desmoyokin, three proteins as yet unrelated to viral pathogenesis or cell transformation. HPV16 E5 also interacted with these proteins in two-hybrid assay. CRPV E8 mainly localized to the Golgi apparatus and the early endosomes of transfected keratinocytes and colocalized with ZnT1, PCDH1, and AHNAK. We showed that ZnT1 and PCDH1 formed a complex and that E8 disrupted this complex. CRPV E8, like HPV16 E5, increased epidermal growth factor (EGF)-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and both the EGF-dependent and the EGF-independent activity of activating protein-1 (AP-1). Competition experiments with a nonfunctional truncated ZnT1 protein showed that E8-ZnT1 interaction was required for AP-1 activation. Our data identify CRPV E8 as a key player in papilloma induction and unravel novel cellular targets for inducing the proliferation of keratinocytes.
Collapse
|
131
|
Rangarajan J, Luo T, Sargent TD. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus. Dev Biol 2006; 295:206-18. [PMID: 16674935 DOI: 10.1016/j.ydbio.2006.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Protocadherins (Pcdhs), a major subfamily of cadherins, play an important role in specific intercellular interactions in development. These molecules are characterized by their unique extracellular domain (EC) with more than 5 cadherin-like repeats, a transmembrane domain (TM) and a variable cytoplasmic domain. PCNS (Protocadherin in Neural crest and Somites), a novel Pcdh in Xenopus, is initially expressed in the mesoderm during gastrulation, followed by expression in the cranial neural crest (CNC) and somites. PCNS has 65% amino acid identity to Xenopus paraxial protocadherin (PAPC) and 42-49% amino acid identity to Pcdh 8 in human, mouse, and zebrafish genomes. Overexpression of PCNS resulted in gastrulation failure but conferred little if any specific adhesion on ectodermal cells. Loss of function accomplished independently with two non-overlapping antisense morpholino oligonucleotides resulted in failure of CNC migration, leading to severe defects in the craniofacial skeleton. Somites and axial muscles also failed to undergo normal morphogenesis in these embryos. Thus, PCNS has essential functions in these two important developmental processes in Xenopus.
Collapse
Affiliation(s)
- Janaki Rangarajan
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
132
|
Imoto I, Izumi H, Yokoi S, Hosoda H, Shibata T, Hosoda F, Ohki M, Hirohashi S, Inazawa J. Frequent silencing of the candidate tumor suppressor PCDH20 by epigenetic mechanism in non-small-cell lung cancers. Cancer Res 2006; 66:4617-26. [PMID: 16651412 DOI: 10.1158/0008-5472.can-05-4437] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protocadherins are a major subfamily of the cadherin superfamily, but little is known about their functions and intracellular signal transduction. We identified a homozygous loss of protocadherin 20 (PCDH20, 13q21.2) in the course of a program to screen a panel of non-small-cell lung cancer (NSCLC) cell lines (1 of 20 lines) for genomic copy number aberrations using an in-house array-based comparative genomic hybridization. PCDH20 mRNA was expressed in normal lung tissue but was not expressed in the majority of NSCLC cell lines without a homozygous deletion of this gene (10 of 19 lines, 52.6%). Expression of PCDH20 mRNA was restored in gene-silenced NSCLC cells after treatment with 5-aza 2'-deoxycytidine. The DNA methylation status of the PCDH20 CpG-rich region correlated inversely with the expression of the gene and a putative target region for methylation showed clear promoter activity in vitro. Methylation of this PCDH20 promoter was frequently observed in primary NSCLC tissues (32 of 59 tumors, 54.2%). Among our primary NSCLC cases, the methylated PCDH20 seemed to be associated with a shorter overall survival (P = 0.0140 and 0.0211 in all and stage I tumors, respectively; log-rank test), and a multivariate analysis showed that the PCDH20 methylation status was an independent prognosticator. Moreover, restoration of PCDH20 expression in NSCLC cells reduced cell numbers in colony formation and anchorage-independent assays. These results suggest that epigenetic silencing by hypermethylation of the CpG-rich promoter region of PCDH20 leads to loss of PCDH20 function, which may be a factor in the carcinogenesis of NSCLC.
Collapse
Affiliation(s)
- Issei Imoto
- Department of Molecular Cytogenetics, Medical Research Institute and Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Murakami T, Hijikata T, Matsukawa M, Ishikawa H, Yorifuji H. Zebrafish protocadherin 10 is involved in paraxial mesoderm development and somitogenesis. Dev Dyn 2006; 235:506-14. [PMID: 16261626 DOI: 10.1002/dvdy.20622] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, we present the first report of the molecular cloning of zebrafish protocadherin 10 (Pcdh10, OL-protocadherin) and describe its functional analyses in the development of segmental plate. Epitope-tagged Pcdh10 expressed in embryos was localized on cell peripheries of adjacent cells. In situ hybridization showed that pcdh10 was expressed in the paraxial mesoderm (PAM) and developing somites, and in the pineal body, the diencephalon, and the vicinity of otocysts. Expression in PAM increased in the last few presumptive somites, reached the maximum level in the latest segmenting somites, and decreased thereafter during somite maturation. These expression patterns suggested that Pcdh10 is involved in development of PAM and somites. This was confirmed by morpholino knockdown and dominant-negative inhibition of Pcdh10 in embryos, which disturbed movements of PAM cells and somite segmentation. Comparative studies showed that pcdh10 expression lasted up to approximately three times longer in maturing somites than that of paraxial protocadherin (pcdh8). They also indicated that the adaxial cells expressed pcdh8 but not pcdh10. We propose that Pcdh10 is involved in the morphogenic movements of PAM cells and somite segmentation and that differential adhesion of Pcdh8 and Pcdh10 plays a role in the morphogenic machinery of somites and adaxial cells.
Collapse
Affiliation(s)
- Tohru Murakami
- Neuromuscular and Developmental Anatomy, Gunma University Graduate School of Medical Sciences, Gunma, Japan.
| | | | | | | | | |
Collapse
|
134
|
Chu YS, Eder O, Thomas WA, Simcha I, Pincet F, Ben-Ze'ev A, Perez E, Thiery JP, Dufour S. Prototypical Type I E-cadherin and Type II Cadherin-7 Mediate Very Distinct Adhesiveness through Their Extracellular Domains. J Biol Chem 2006; 281:2901-10. [PMID: 16253998 DOI: 10.1074/jbc.m506185200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Using a dual pipette assay that measures the force required to separate adherent cell doublets, we have quantitatively compared intercellular adhesiveness mediated by Type I (E- or N-cadherin) or Type II (cadherin-7 or -11) cadherins. At similar cadherin expression levels, cells expressing Type I cadherins adhered much more rapidly and strongly than cells expressing Type II cadherins. Using chimeric cadherins, we found that the extracellular domain exerts by far the dominant effect on cell adhesivity, that of E-cadherin conferring high adhesivity, and that of cadherin-7 conferring low adhesivity. Type I cadherins were incorporated to a greater extent into detergent-insoluble cytoskeletal complexes, and their cytoplasmic tails were much more effective in disrupting strong adherent junctions, suggesting that Type II cadherins form less stable complexes with beta-catenin. The present study demonstrates compellingly, for the first time, that cadherins are dramatically different in their ability to promote intercellular adhesiveness, a finding that has profound implications for the regulation of tissue morphogenesis.
Collapse
Affiliation(s)
- Yeh-Shiu Chu
- UMR 144 CNRS-Institut Curie, 75248 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Galindo CL, Gutierrez C, Chopra AK. Potential involvement of galectin-3 and SNAP23 in Aeromonas hydrophila cytotoxic enterotoxin-induced host cell apoptosis. Microb Pathog 2006; 40:56-68. [PMID: 16426811 DOI: 10.1016/j.micpath.2005.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/03/2005] [Accepted: 11/07/2005] [Indexed: 11/23/2022]
Abstract
We investigated the potential of the cytotoxic enterotoxin (Act) of Aeromonas hydrophila to bind to 1869 human and 4319 yeast proteins, using protein microarray technology. Act was capable of binding nine different human proteins, including the SNARE complex scaffolding protein synaptosomal-associated protein 23 (SNAP23), galectin-3, and guanylate kinase 1 (GUK-1). Act was also able to bind to four of the yeast proteins examined, which included the vesicle tethering protein Vsp52. We verified interaction of Act with murine and human SNAP23, galectin-3, and GUK-1 by sandwich Western blot analysis. In order to determine the physiological relevance of Act binding to these three proteins, we performed small interfering RNA (siRNA) gene knockdown experiments in RAW 264.7 cells, a murine macrophage cell line in which Act-induced signaling and cell death is well characterized. Based on real-time reverse transcriptase-polymerase chain reaction, siRNA transfection of RAW 264.7 cells with specific oligonucleotides reduced the expression of genes encoding SNAP23, galectin-3, and GUK-1 by 62, 63, and 99%, respectively. Knockdown of galectin-3 and SNAP23, but not GUK-1, significantly reduced Act-induced apoptosis of host cells, as determined by TUNEL (TdT-mediated dUTP nick end labeling) assay, lactate dehydrogenase release, Giemsa staining, and reduction in activation of caspase 3, compared to toxin-treated macrophages that were transfected with a random sequence control siRNA. We also performed these assays using a human intestinal epithelial cell line (HT-29) and observed a similar trend of galectin-3 and SNAP23 association with Act-induced apoptosis. This is the first report of putative protein binding partners for this toxin and potential mediators/regulators of Act-induced apoptosis.
Collapse
Affiliation(s)
- C L Galindo
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Medical Research Building, 301 University Boulevard, Galveston, Texas 77555-1070, USA
| | | | | |
Collapse
|
136
|
Nakao S, Uemura M, Aoki E, Suzuki ST, Takeichi M, Hirano S. Distribution of OL-protocadherin in axon fibers in the developing chick nervous system. ACTA ACUST UNITED AC 2005; 134:294-308. [PMID: 15836925 DOI: 10.1016/j.molbrainres.2004.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 11/02/2004] [Accepted: 11/04/2004] [Indexed: 01/15/2023]
Abstract
OL-protocadherin (OL-pc) is a homophilic cell adhesion molecule that belongs to the cadherin gene superfamily. We cloned and characterized the chicken homologue of OL-pc and examined its expression pattern in chick embryos mainly from embryonic day (E) 3.5 to E6.5. The structure of chick OL-pc was found to be essentially the same as that of mammalian OL-pc's except for some small deletions and insertions in the amino acid sequence. OL-pc protein was detected prominently along developing axonal fibers in the brain and also in the peripheral nervous system. In addition, it was detected in some mesenchymal cells and in the embryonic ectoderm of the mandible and limb bud. In the spinal cord, OL-pc was specifically expressed in motor neurons, and the protein was distributed along motor nerves. Motor nerves merged gradually with sensory nerves showing negative/faint OL-pc expression, but their fibers remained separated as small bundles in the nerves. Interestingly, OL-pc-positive motor nerves such as those to the sternocoracoideus became segregated from OL-pc-faint/weak motor nerves at the plexus region. Moreover, OL-pc was distributed along the path of the branchial nerves. These results suggest that OL-pc might play some roles in axon navigation such as in axon elongation, selective fasciculation, and pathfinding in the early stage of neural development.
Collapse
Affiliation(s)
- Shinsuke Nakao
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuou-ku Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
137
|
Miki R, Hattori K, Taguchi Y, Tada MN, Isosaka T, Hidaka Y, Hirabayashi T, Hashimoto R, Fukuzako H, Yagi T. Identification and characterization of coding single-nucleotide polymorphisms within human protocadherin-α and -β gene clusters. Gene 2005; 349:1-14. [PMID: 15777644 DOI: 10.1016/j.gene.2004.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/09/2004] [Accepted: 11/24/2004] [Indexed: 11/29/2022]
Abstract
The human protocadherin (Pcdh) gene clusters are located on chromosome 5q31. Single-nucleotide polymorphisms (SNPs) were detected in the Pcdh-alpha and -beta variable exons, and in the Pcdh-alpha constant exon, in samples from 104 individuals. Among coding SNPs (cSNPs), nonsynonymous (amino acid exchange) SNPs were 2.2 times more common than synonymous (silent) changes in the Pcdh-alpha variable exons, but only 1.2 times more common in the Pcdh-beta variable exons. The nonsynonymous SNPs were high in the ectodomain (EC) 1 encoding region of Pcdh-alpha but not of Pcdh-beta. One 48-kb region of extensive linkage disequilibrium (LD) is reported that has two haplotypes extending from the alpha1 to alpha7 genes in the Pcdh-alpha cluster. Here we identified 15 amino acid exchanges in these two major haplotypes; therefore, the two haplotypes encode different sets of Pcdh-alpha proteins in the brain. The distribution of cSNPs was different for each EC region of Pcdh-alpha or -beta. The frequency of cSNPs was negatively correlated with the paralogous sequence diversity. These results suggested that gene conversion events in homologous regions of the Pcdh-alpha and Pcdh-beta clusters generated the cSNPs. Within the cSNPs, gene conversions were found in Pcdh-alpha4 in the major haplotype, and in Pcdh-beta9. These gene conversions were caused by the unequal crossing-over of homologous sequence regions. Thus, nonsynonymous variations in the Pcdh-alpha and -beta genes are possible contributors to the variations in human brain function.
Collapse
Affiliation(s)
- Rie Miki
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Rampon C, Prandini MH, Bouillot S, Pointu H, Tillet E, Frank R, Vernet M, Huber P. Protocadherin 12 (VE-cadherin 2) is expressed in endothelial, trophoblast, and mesangial cells. Exp Cell Res 2005; 302:48-60. [PMID: 15541725 DOI: 10.1016/j.yexcr.2004.08.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/11/2004] [Indexed: 11/29/2022]
Abstract
Protocadherin 12 protein (PCDH12, VE-cadherin 2) is a cell adhesion molecule that has been isolated from endothelial cells. Here, we have used Northern and Western blots, immunohistology, and flow cytometry to examine the distribution of PCDH12 in mouse tissues. It is an N-glycosylated protein of 150-kDa mass. In the endothelium, PCDH12 immunoreactivity was variable and dependent upon the vascular bed. In both the embryo and embryonic stem cell differentiation system, signals were localized in vasculogenic rather than angiogenic endothelium. In addition, the protein was strongly expressed in a subset of invasive cells of the placenta, which were identified as glycogen-rich trophoblasts. In adult mice, strong PCDH12 signals were observed in mesangial cells of kidney glomeruli whereas expression was not detected in other types of perivascular cells. As opposed to most protocadherins, PCDH12 is not expressed in early embryonic (day 12.5) and adult brains. As a first approach to obtain insight into PCDH12 function, we produced transgenic mice deficient in PCDH12, which were viable and fertile. They did not display any obvious histomorphological defects. We conclude that PCDH12 has a unique expression pattern and that its deficiency does not lead to conspicuous abnormalities. Moreover, PCDH12 is the first specific marker for both glycogen-rich trophoblasts and mesangial cells.
Collapse
Affiliation(s)
- Christine Rampon
- Laboratoire Développement et Vieillissement de l'Endothélium CEA-Inserm EMI-0219, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Gayet O, Labella V, Henderson CE, Kallenbach S. The b1 isoform of protocadherin-gamma (Pcdhγ) interacts with the microtubule-destabilizing protein SCG10. FEBS Lett 2004; 578:175-9. [PMID: 15581637 DOI: 10.1016/j.febslet.2004.10.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/28/2004] [Accepted: 10/29/2004] [Indexed: 11/22/2022]
Abstract
Due to their structural characteristics and their diversity, the 22 members of the protocadherin-gamma (Pcdhgamma) family have been suggested to contribute to the establishment of specific connections in the nervous system. Here, we focus on a single isoform, Pcdhgamma-b1. Its expression is found in different brain regions and in developing spinal cord it is restricted to scattered cells, whereas all cells are labeled using an antibody that recognizes all Pcdhgamma isoforms. As a first step to understanding the signaling mechanisms downstream of Pcdhgamma, we identify the microtubule-destabilizing protein SCG10 as a cytoplasmic interactor for Pcdhgamma-b1 and other isoforms of the Pcdhgamma-b subfamily, and show that SCG10 and Pcdhgamma-b1 are found together in certain neuronal growth cones.
Collapse
Affiliation(s)
- Odile Gayet
- Institut de Biologie du Développement de Marseille, Marseille, France
| | | | | | | |
Collapse
|
140
|
Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T. Interaction with Protocadherin-γ Regulates the Cell Surface Expression of Protocadherin-α. J Biol Chem 2004; 279:49508-16. [PMID: 15347688 DOI: 10.1074/jbc.m408771200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protocadherin-alpha (CNR/Pcdhalpha) and protocadherin-gamma (Pcdhgamma) proteins, members of the cadherin superfamily, are putative cell recognition/adhesion molecules in the brain. Overexpressed cadherins are generally expressed on the cell surface and elicit cell adhesion activity in several cell lines, although hardly any overexpressed CNR/Pcdhalpha proteins are expressed on the cell surface, except on HEK293T cells, which show low expression. We analyzed the expression of CNR/Pcdhalpha and Pcdhgamma in HEK293T cells and found that they formed a protein complex and that Pcdhgamma enhanced the surface expression of CNR/Pcdhalpha. This enhanced surface expression was confirmed by flow cytometry analysis and by marking cell surface proteins with biotin. The enhancement was observed using different combinations of CNR/Pcdhalpha and Pcdhgamma proteins. The surface expression activity was enhanced by the extracellular domains of the proteins, which could bind each other. Their cytoplasmic domains also had binding activity and influenced their localization. Their protein-protein interaction was also detected in extracts of mouse brain and two neuroblastoma cell lines. Thus, interactions between CNR/Pcdhalpha and Pcdhgamma regulate their surface expression and contribute to the combinatorial diversity of cell recognition proteins in the brain.
Collapse
Affiliation(s)
- Yoji Murata
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Erkki Ruoslahti
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
142
|
Abstract
Protocadherin (Pcad) is a group of molecules obtained by polymerase chain reaction (PCR) utilizing the sequence that is well preserved in the extracellular domain of cadherin. Sano et al. analyzed Pcad (PC42,43) that had been cloned from rats, and found that it basically had homology to cadherin, but contained more than six cadherin repeats with a completely different intracellular domains (Sano et al. 1993). In the present study, of the Pcad (Pcad-1,2) cloned from a human cDNA library, as-yet-unspecified Pcad-2 was analyzed for expression in the human fetal central nervous system (CNS). Northern blot analysis of adult human tissue showed that Pcad-2 was expressed in the brain and the placenta, and that Pcad-2 mRNA was expressed in actively dividing neural tumor cell lines. Monoclonal antibodies against Pcad-2 were then made, and the CNS of fetuses were immunohistochemically stained. The expression was hardly visible at the 6th week of pregnancy, and began to become visible along the nerve fiber in the brain stem at the 8th week, and spread over the entire brain at the 11th week. At the 18th week, however, expression in the nerve fascicles, which had been visible by that time, was no longer visible or had decreased. These results suggest that Pcad-2 appears relatively early in the critical stage of development of the fetal CNS, and is involved in the induction, fasciculation, and extension of axons.
Collapse
Affiliation(s)
- Hiroko Omi
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
143
|
Giouzeli M, Williams NA, Lonie LJ, DeLisi LE, Crow TJ. ProtocadherinX/Y, a candidate gene-pair for schizophrenia and schizoaffective disorder: a DHPLC investigation of genomic sequence. Am J Med Genet B Neuropsychiatr Genet 2004; 129B:1-9. [PMID: 15274028 DOI: 10.1002/ajmg.b.30036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protocadherin X and Protocadherin Y (PCDHX and PCDHY) are cell-surface adhesion molecules expressed predominantly in the brain. The PCDHX/Y gene-pair was generated by an X-Y translocation approximately 3 million years ago (MYA) that gave rise to the Homo sapiens-specific region of Xq21.3 and Yp11.2 homology. Genes within this region are expected to code for sexually dimorphic human characteristics, including, for example, cerebral asymmetry a dimension of variation that has been suggested is relevant to psychosis. We examined differences in patients with schizophrenic or schizoaffective psychosis in the genomic sequence of PCDHX and PCDHY in coding and adjacent intronic sequences using denaturing high performance liquid chromatography (DHPLC). Three coding variants were detected in PCDHX and two in PCDHY. However, neither the coding variants nor the intronic polymorphisms could be related to psychosis within families. Low sequence variation suggests selective pressure against sequence change in modern humans in contrast to the structural chromosomal and sequence changes including fixed X-Y differences that occurred in this region earlier in hominid evolution. Our findings exclude sequence variation in PCDHX/Y as relevant to the aetiology of psychosis. However, we note the unusual status of this region with respect to X-inactivation. Further investigation of the epigenetic control of PCDHX/Y in relation to psychosis is warranted.
Collapse
Affiliation(s)
- Maria Giouzeli
- Department of Psychiatry, POWIC SANE Research Centre, University of Oxford, Warneford Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
144
|
Blank M, Triana-Baltzer GB, Richards CS, Berg DK. Alpha-protocadherins are presynaptic and axonal in nicotinic pathways. Mol Cell Neurosci 2004; 26:530-43. [PMID: 15276155 DOI: 10.1016/j.mcn.2004.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/12/2004] [Accepted: 04/15/2004] [Indexed: 11/25/2022] Open
Abstract
The protocadherin families pcdh-alpha, beta, and gamma have been proposed to mediate synaptic specificity via homophilic interactions. Here we report isolation of two pcdh-alpha family members from chick. We find pcdh-alpha mRNA in multiple regions of chick CNS including cerebellum, tectum, olfactory bulb, and forebrain, and in the autonomic nervous system. Immunoblots identify major components of 120 and 140 kDa both in brain and ciliary ganglion extracts. Immunohistochemistry reveals pcdh-alphas in axons and perisynaptically in preganglionic terminals, adjacent to transmitter release sites. Pcdh-alphas appear to be absent from postsynaptic sites: They are nonoverlapping with postsynaptic receptor clusters in the ganglion and are rapidly lost after ganglionic denervation. Similar pcdh-alpha patterns are found in motor axons and at neuromuscular junctions of birds and mammals, and persist into adulthood. The results indicate that pcdh-alphas are widely expressed in nicotinic cholinergic pathways and may engage in heterophilic interactions at synapses and on axons.
Collapse
Affiliation(s)
- Martina Blank
- Neurobiology Section, Division of Biological Sciences, University of California, La Jolla, San Diego, CA 92093-0357, USA
| | | | | | | |
Collapse
|
145
|
Huang H, Okamoto Y, Yokoo H, Heppner FL, Vital A, Fevre-Montange M, Jouvet A, Yonekawa Y, Lazaridis EN, Kleihues P, Ohgaki H. Gene expression profiling and subgroup identification of oligodendrogliomas. Oncogene 2004; 23:6012-22. [PMID: 15208679 DOI: 10.1038/sj.onc.1207781] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The histological diagnosis of low-grade astrocytomas and oligodendrogliomas (WHO grade II) is often challenging, particularly in cases that show both astrocytic and oligodendroglial differentiation. We carried out gene expression profiling on 17 oligodendrogliomas (93% with LOH 1p and/or 19q) and 15 low-grade astrocytomas (71% with a TP53 mutation), using a cDNA array containing 1176 cancer-related genes. In oligodendrogliomas, 40 genes showed on average higher expression (at least a two-fold increase) than in astrocytomas, including DES, TDGF1, TGF-beta, GABA-BR1A, Histone H4, CDKN1A, PCDH43, Rho7 and Jun-D, while 39 genes were expressed at lower levels (at least a two-fold decrease), including JNK2, ITGB4, JNK3A2, RhoC, IFI-56K, AAD14 and EGFR. Immunohistochemistry revealed nuclear staining of Jun-D in oligodendrogliomas, in contrast to the immunoreactivity of cytoplasm and cell processes in low-grade astrocytomas. Partial least-squares analysis of the 79 genes at least two-fold differentially expressed between oligodendrogliomas and low-grade astrocytomas demonstrated perfect separation of oligodendrogliomas from low-grade astrocytomas and normal cerebral white matter. Clustering analysis based on the entire gene set divided the 17 subjects with oligodendrogliomas into two subgroups with significantly different survival (log-rank test, P=0.0305; survival to 5-years, 80 vs 0%, P=0.048). These results demonstrate that oligodendrogliomas and low-grade astrocytomas differ in their gene expression profiles, and that there are subgroups of oligodendroglioma with distinct expression profiles related to clinical outcome.
Collapse
Affiliation(s)
- Hervé Huang
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, F-69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Griko N, Candas M, Zhang X, Junker M, Bulla LA. Selective antagonism to the cadherin BT-R1 interferes with calcium-induced adhesion of epithelial membrane vesicles. Biochemistry 2004; 43:1393-400. [PMID: 14756577 DOI: 10.1021/bi0355692] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BT-R(1) is a member of the cadherin superfamily of proteins and is expressed in the midgut epithelium of Manduca sexta during larval development. Previously, we showed that calcium ions influence the structure and stability of BT-R(1) on brush border membrane vesicles (BBMVs) prepared from M. sexta midgut epithelium. In the present study, the effects of calcium and Cry1Ab toxin, produced by Bacillus thuringiensis, on the adhesive properties of BBMVs were investigated. Addition of calcium to a suspension of BBMVs promoted adhesion and aggregation of the vesicles. Treatment of BBMVs with trypsin or lowering the pH (pH 4.0) of the BBMV suspension abolished calcium-induced vesicle aggregation, whereas treatment with deglycosylating enzymes did not affect the aggregation of vesicles, indicating that adhesion and clustering of BBMVs involves protein-protein interactions. Preincubation of BBMVs with Cry1Ab toxin, which specifically binds to BT-R(1) with high affinity and disrupts the midgut epithelium of M. sexta, caused a 50% decrease in calcium-induced vesicle aggregation. The inhibitory effects of the Cry1Ab toxin on BBMV aggregation was blocked completely when the toxin was preincubated with a peptide containing the toxin-binding site of BT-R(1). Cry3A toxin, which is similar in molecular structure to Cry1Ab but does not bind to BT-R(1) and is not toxic to M. sexta larvae, did not affect BBMV aggregation. The results of this study demonstrate that the adhesive function of BT-R(1) is compromised by the Cry1Ab toxin, which acts as a selective antagonist, and supports the notion that BT-R(1) is critical in preserving the integrity of larval midgut epithelium in M. sexta.
Collapse
|
147
|
McGarry LC, Winnie JN, Ozanne BW. Invasion of v-FosFBR-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene 2004; 23:5284-92. [PMID: 15107823 DOI: 10.1038/sj.onc.1207687] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transformation of fibroblasts with the v-fos oncogene produces a highly invasive phenotype that is mediated by changes in gene expression. Inhibition of histone deacetylase (HDAC) activity with trichostatin A (TSA) or valproic acid (VPA) at concentrations that do not affect morphology, motility, chemotaxis or proliferation, strongly inhibits invasion and results in the re-expression of a significant proportion of those genes that are downregulated in the v-Fos-transformed cells. Independent expression of three of these re-expressed genes, (Ring1 and YY1 binding protein (RYBP); protocadherin gamma subfamily C,3 (PCDHGC3); and signal transducer and activator of transcription 6 (STAT6)) in Fos-transformed cells, has no effect on morphology, motility, chemotaxis or proliferation, but strongly inhibits invasion. Therefore, we conclude that the ability of v-Fos-transformed cells to invade is dependent upon repression of gene expression through either direct or indirect HDAC activity.
Collapse
Affiliation(s)
- Lynn C McGarry
- Beatson Laboratories, Beatson Institute for Cancer Research, Cancer Research UK, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
148
|
Wendeler MW, Praus M, Jung R, Hecking M, Metzig C, Gessner R. Ksp-cadherin is a functional cell–cell adhesion molecule related to LI-cadherin. Exp Cell Res 2004; 294:345-55. [PMID: 15023525 DOI: 10.1016/j.yexcr.2003.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Ksp- and LI-cadherin are structurally homologous proteins coexpressed with E-cadherin in renal and intestinal epithelia, respectively. Whereas LI-cadherin has been shown to mediate Ca2+-dependent homotypic cell-cell adhesion independent of stable interactions with the cytoskeleton, little is known about the physiological role of Ksp-cadherin. To analyze its potential adhesive and morphoregulatory functions, we expressed murine Ksp-cadherin in CHO cells. In this report, we show that Ksp-cadherin induces homotypic and Ca2+-dependent cell-cell adhesion that can be specifically blocked with antibodies raised against the cadherin repeats EC1 and EC2. Ksp-cadherin mediates about the same quantitative adhesive effect (aggregation index) as LI- and E-cadherin. However, the cellular phenotype induced by Ksp-cadherin resembles more closely that of LI- than E-cadherin. This could reflect our observation, that Ksp-cadherin, as well as LI-cadherin, does not directly interact with beta-catenin. In conclusion, both cadherins are thus not only structurally but also functionally related and may share other functions within their respective epithelia.
Collapse
Affiliation(s)
- M W Wendeler
- Institute of Laboratory Medicine and Biochemistry, Virchow-Hospital of Charité Medical School, Humboldt University of Berlin, D-13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Mutoh T, Hamada S, Senzaki K, Murata Y, Yagi T. Cadherin-related neuronal receptor 1 (CNR1) has cell adhesion activity with β1 integrin mediated through the RGD site of CNR1. Exp Cell Res 2004; 294:494-508. [PMID: 15023537 DOI: 10.1016/j.yexcr.2003.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Revised: 10/17/2003] [Indexed: 01/22/2023]
Abstract
Cadherin-related neuronal receptor (CNR) proteins are a diverse set of synaptic protocadherins, but little is known about its adhesive properties. We found that overexpressed CNR1 protein localized on the cell surface of HEK293T cells and increased the calcium-dependent cell aggregation potential. However, we could not detect the strong homophilic binding activity of CNR1 EC-Fc fusion protein in vitro. Parental HEK293T cells adhered to Arg-Gly-Asp (RGD) motif of EC1 domain of CNR1-Fc fusion protein. The fusion protein that the Asp73 of EC1 point-mutated to Glu (RGE-Fc) lost the adhesive activity. The adhesion activity of HEK293T cells to CNR1 EC-Fc fusion protein was completely blocked by inhibitors of integrins, including RGDS peptide and anti-beta1 integrin antibodies. The increased cell-aggregative property of CNR1 transfectants was also blocked by RGDS peptides. At cell-cell junctions of the CNR1 transfectants, co-localization between CNR1 and HEK293T endogenous beta1 integrin was observed. Furthermore, the spatiotemporal expression patterns of CNR and beta1 integrin nearly overlapped in the molecular layer of the developing mouse cerebellum in the main stage of synaptogenesis. These results indicate that CNR1 has a heterophilic, calcium-dependent cell adhesion activity with the beta1 integrin subfamily, and raise the possibility of CNR-beta1 integrin association in synaptogenesis.
Collapse
Affiliation(s)
- Tetsuji Mutoh
- KOKORO Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan.
| | | | | | | | | |
Collapse
|
150
|
Abstract
Cadherins are transmembrane glycoproteins that mediate calcium-dependent cell-cell adhesion. The cadherin family is large and diverse, and proteins are considered to be members of this family if they have one or more cadherin repeats in their extracellular domain. Cadherin family members are the transmembrane components of a number of cellular junctions, including adherens junctions, desmosomes, cardiac junctions, endothelial junctions, and synaptic junctions. Cadherin function is critical in normal development, and alterations in cadherin function have been implicated in tumorigenesis. The strength of cadherin interactions can be regulated by a number of proteins, including the catenins, which serve to link the cadherin to the cytoskeleton. Cadherins have been implicated in a number of signaling pathways that regulate cellular behavior, and it is becoming increasingly clear that integration of information received from cell-cell signaling, cell-matrix signaling, and growth factor signaling determines ultimate cellular phenotype and behavior.
Collapse
Affiliation(s)
- Margaret J Wheelock
- Department of Oral Biology, College of Dentistry and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA.
| | | |
Collapse
|