101
|
Hirashima T, Adachi T. Polarized cellular mechano-response system for maintaining radial size in developing epithelial tubes. Development 2019; 146:dev.181206. [PMID: 31619390 PMCID: PMC6918744 DOI: 10.1242/dev.181206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Size control in biological tissues involves multicellular communication via mechanical forces during development. Although fundamental cellular behaviours in response to mechanical stimuli underlie size maintenance during morphogenetic processes, the mechanisms underpinning the cellular mechano-response system that maintains size along an axis of a polarized tissue remain elusive. Here, we show how the diameter of an epithelial tube is maintained during murine epididymal development by combining quantitative imaging, mechanical perturbation and mathematical modelling. We found that epithelial cells counteract compressive forces caused by cell division exclusively along the circumferential axis of the tube to produce polarized contractile forces, eventually leading to an oriented cell rearrangement. Moreover, a mathematical model that includes the polarized mechano-responsive regime explains how the diameter of proliferating tubes is maintained. Our findings pave the way for an improved understanding of the cellular response to mechanical forces that involves collective multicellular behaviours for organizing diverse tissue morphologies. Summary: Polarized cellular constriction responding to mechanical stress controls the diameter of a developing epithelial tube during murine epididymal development.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, 6068501, Kyoto, Japan .,Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 6068501, Kyoto, Japan
| |
Collapse
|
102
|
Balducci S, Conti F, Sacchetti M, Russo CR, Argento G, Haxhi J, Orlando G, Rapisarda G, D'Errico V, Cardelli P, Pugliese L, Laghi A, Vitale M, Bollanti L, Zanuso S, Nicolucci A, Pugliese G. Study to Weigh the Effect of Exercise Training on BONE quality and strength (SWEET BONE) in type 2 diabetes: study protocol for a randomised clinical trial. BMJ Open 2019; 9:e027429. [PMID: 31690602 PMCID: PMC6858163 DOI: 10.1136/bmjopen-2018-027429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 09/13/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is associated with an increased fracture risk despite normal-to-increased bone mineral density, suggesting reduced bone quality. Exercise may be effective in reducing fracture risk by ameliorating muscle dysfunction and reducing risk of fall, though it is unclear whether it can improve bone quality. METHODS AND ANALYSIS The 'Study to Weigh the Effect of Exercise Training on BONE quality and strength (SWEET BONE) in T2D' is an open-label, assessor-blinded, randomised clinical trial comparing an exercise training programme of 2-year duration, specifically designed for improving bone quality and strength, with standard care in T2D individuals. Two hundred T2D patients aged 65-75 years will be randomised 1:1 to supervised exercise training or standard care, stratified by gender, age ≤ or >70 years and non-insulin or insulin treatment. The intervention consists of two weekly supervised sessions, each starting with 5 min of warm-up, followed by 20 min of aerobic training, 30 min of resistance training and 20 min of core stability, balance and flexibility training. Participants will wear weighted vests during aerobic and resistance training. The primary endpoint is baseline to end-of-study change in trabecular bone score, a parameter of bone quality consistently shown to be reduced in T2D. Secondary endpoints include changes in other potential measures of bone quality, as assessed by quantitative ultrasound and peripheral quantitative CT; bone mass; markers of bone turnover; muscle strength, mass and power; balance and gait. Falls and asymptomatic and symptomatic fractures will be evaluated over 7 years, including a 5-year post-trial follow-up. The superiority of the intervention will be assessed by comparing between-groups baseline to end-of-study changes. ETHICS AND DISSEMINATION This study was approved by the institutional ethics committee. Written informed consent will be obtained from all participants. The study results will be submitted for peer-reviewed publication. TRIAL REGISTRATION NUMBER NCT02421393; Pre-results.
Collapse
Affiliation(s)
- Stefano Balducci
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Monterotondo, Rome, Italy
| | - Francesco Conti
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Massimo Sacchetti
- Department of Human Movement and Sport Sciences, Foro Italico University, Rome, Italy
| | | | | | - Jonida Haxhi
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Monterotondo, Rome, Italy
- Department of Human Movement and Sport Sciences, Foro Italico University, Rome, Italy
| | - Giorgio Orlando
- Department of Human Movement and Sport Sciences, Foro Italico University, Rome, Italy
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Gianvito Rapisarda
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Monterotondo, Rome, Italy
| | - Valeria D'Errico
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Monterotondo, Rome, Italy
| | - Patrizia Cardelli
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Laboratory of Clinical Chemistry, Sant'Andrea University Hospital, Rome, Italy
| | - Luca Pugliese
- Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
- Department of Diagnostic Imaging, "Tor Vergata" University, Rome, Italy
| | - Andrea Laghi
- Radiology Unit, Sant'Andrea University Hospital, Rome, Italy
- Department of Radiological Sciences, Oncology and Pathology, ''La Sapienza'' University, Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Lucilla Bollanti
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Silvano Zanuso
- Centre for Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| | - Antonio Nicolucci
- Centre for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, La Sapienza University, Rome, Italy
- Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| |
Collapse
|
103
|
Nguyen C, Peetz D, Elbanna AE, Carlson JM. Characterization of fracture in topology-optimized bioinspired networks. Phys Rev E 2019; 100:042402. [PMID: 31770939 DOI: 10.1103/physreve.100.042402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Designing strong and robust bioinspired structures requires an understanding of how function arises from the architecture and geometry of materials found in nature. We draw from trabecular bone, a lightweight bone tissue that exhibits a complex, anisotropic microarchitecture, to generate networked structures using multiobjective topology optimization. Starting from an identical volume, we generate multiple different models by varying the objective weights for compliance, surface area, and stability. We examine the relative effects of these objectives on how resultant models respond to simulated mechanical loading and element failure. We adapt a network-based method developed initially in the context of modeling trabecular bone to describe the topology-optimized structures with a graph-theoretical framework, and we use community detection to characterize locations of fracture. This complementary combination of computational methods can provide valuable insights into the strength of bioinspired structures and mechanisms of fracture.
Collapse
Affiliation(s)
- Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Darin Peetz
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
104
|
Saers JP, Ryan TM, Stock JT. Trabecular bone structure scales allometrically in the foot of four human groups. J Hum Evol 2019; 135:102654. [DOI: 10.1016/j.jhevol.2019.102654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/26/2022]
|
105
|
Yuan A, Munz A, Reinert S, Hoefert S. Histologic analysis of medication-related osteonecrosis of the jaw compared with antiresorptive-exposed bone and other infectious, inflammatory, and necrotic jaw diseases. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:133-140. [PMID: 31606424 DOI: 10.1016/j.oooo.2019.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study characterized histologic features of medication-related osteonecrosis of the jaw (MRONJ) through analysis of tissues from patients and healthy individuals. STUDY DESIGN Bone biopsies were collected from various infectious, inflammatory, and necrotic jaw diseases. Samples were divided into bone exposed to bisphosphonates or denosumab, as well as bisphosphonate-related osteonecrosis of the jaw (BRONJ), denosumab-related osteonecrosis of the jaw (DRONJ), and mixed necrosis, enabling us to identify features of single agent necrosis without influence from previous therapies. Hematoxylin and eosin (H&E), receptor activator of nuclear factor κ-Β ligand (RANKL), tartrate-resistant acid phosphatase (TRAP), osteoprotegerin, toluidine blue, CD14, and CD68 staining and micro-computed tomography (micro-CT) analysis were performed. Groups were compared by using analysis of variance (ANOVA). RESULTS In total, 156 bone samples were collected from 105 patients. MRONJ variants exhibited more infectious infiltration. Bisphosphonate (P < .001) and mixed necrosis (P = .002) demonstrated more RANKL- and TRAP-positive osteoclasts. Denosumab necrosis (P = .007), and bone exposed to bisphosphonates (P = .028) in combination with denosumab (P = .022) demonstrated significantly lower numbers of osteocytes per area. CD14 and CD68 positivity was increased for BRONJ (P = .008; P < .001, respectively). MRONJ variants exhibited the widest trabecular width and decreased medullary space to bone. No diminished vascular network in MRONJ samples was observed. CONCLUSIONS Histologic features differ among MRONJ variants, with oversuppressed bone turnover, dysfunctional bone resorption, and a disturbed osteocyte network as potential mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Anna Yuan
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany.
| | - Adelheid Munz
- Medical Technical Assistant, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Siegmar Reinert
- Professor and Department Head, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hoefert
- Senior Surgeon, Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
106
|
Meiburger KM, Chen Z, Sinz C, Hoover E, Minneman M, Ensher J, Kittler H, Leitgeb RA, Drexler W, Liu M. Automatic skin lesion area determination of basal cell carcinoma using optical coherence tomography angiography and a skeletonization approach: Preliminary results. JOURNAL OF BIOPHOTONICS 2019; 12:e201900131. [PMID: 31100191 PMCID: PMC7065618 DOI: 10.1002/jbio.201900131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 05/05/2023]
Abstract
Cutaneous blood flow plays a key role in numerous physiological and pathological processes and has significant potential to be used as a biomarker to diagnose skin diseases such as basal cell carcinoma (BCC). The determination of the lesion area and vascular parameters within it, such as vessel density, is essential for diagnosis, surgical treatment and follow-up procedures. Here, an automatic skin lesion area determination algorithm based on optical coherence tomography angiography (OCTA) images is presented for the first time. The blood vessels are segmented within the OCTA images and then skeletonized. Subsequently, the skeleton is searched over the volume and numerous quantitative vascular parameters are calculated. The vascular density is then used to segment the lesion area. The algorithm is tested on both nodular and superficial BCC, and comparing with dermatological and histological results, the proposed method provides an accurate, non-invasive, quantitative and automatic tool for BCC lesion area determination.
Collapse
Affiliation(s)
- Kristen M. Meiburger
- Biolab, Department of Electronics and TelecommunicationsPolitecnico di TorinoTorinoItaly
| | - Zhe Chen
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Christoph Sinz
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | | | | | - Harald Kittler
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
107
|
Ofer L, Dumont M, Rack A, Zaslansky P, Shahar R. New insights into the process of osteogenesis of anosteocytic bone. Bone 2019; 125:61-73. [PMID: 31085351 DOI: 10.1016/j.bone.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The bone material of almost all vertebrates contains the same cellular components. These comprise osteoblasts that produce bone, osteoclasts that resorb bone and osteocytes, which are the master regulators of bone metabolism, particularly bone modeling and remodeling. It is thus surprising that the largest group of extant vertebrates, neoteleost fish, lacks osteocytes entirely (anosteocytic bone). Osteocytes are the progeny of osteoblasts, which become entrapped in the osteoid they secrete, then undergo several morphologic and functional changes, to finally form an intricate network of living cells in the bone matrix. While the process of osteogenesis of osteocytic bone has been thoroughly studied, osteogenesis of anosteocytic bone is less well understood. The current paradigm for formation of anosteocytic bone suggests that osteoblasts remain always on the external surface of the formed bone, and do not become entrapped in the osteoid. Such a process requires the osteoblasts to function in a fundamentally-different way from osteoblasts of all other bony vertebrates. Here we present a comparative structural study of the osteocytic bones of zebrafish and anosteocytic bones of medaka and show that they are remarkably similar in structure at several hierarchical levels. Scanning electron microscopy and phase contrast-enhanced μCT reveal the presence of numerous mineralized objects in the matrix of anosteocytic bone. These objects resemble osteocytic lacunae in zebrafish bone, and their locations and distribution are similar to those of osteocytes in zebrafish bone. Our findings provide support for the occurrence of a process of anosteocytic bone osteogenesis that has so far been rejected. In this process osteoblasts become entrapped in the bone matrix (as occurs in osteogenesis of osteocytic bone), but then undergo apoptosis, become mineralized and end up as part of the mineralized bone matrix.
Collapse
Affiliation(s)
- Lior Ofer
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maitena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Alexander Rack
- ESRF - The European Synchrotron, CS40220, F-38043 Grenoble, France
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
108
|
Salamanca L, Mechawar N, Murai KK, Balling R, Bouvier DS, Skupin A. MIC-MAC: An automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia 2019; 67:1496-1509. [PMID: 30983036 PMCID: PMC6617786 DOI: 10.1002/glia.23623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/29/2019] [Indexed: 12/29/2022]
Abstract
The phenotypic changes of microglia in brain diseases are particularly diverse and their role in disease progression, beneficial, or detrimental, is still elusive. High-throughput molecular approaches such as single-cell RNA-sequencing can now resolve the high heterogeneity in microglia population for a specific physiological condition, however, the relation between the different microglial signatures and their surrounding brain microenvironment is barely understood. Thus, better tools to characterize the phenotypic variations of microglia in situ are needed, particularly for human brain postmortem samples analysis. To address this challenge, we developed MIC-MAC, a Microglia and Immune Cells Morphologies Analyser and Classifier pipeline that semiautomatically segments, extracts, and classifies all microglia and immune cells labeled in large three-dimensional (3D) confocal image stacks of mouse and human brain samples. Our imaging-based approach enables automatic 3D-morphology characterization and classification of thousands of individual microglia in situ and revealed species- and disease-specific morphological phenotypes in mouse aging, human Alzheimer's disease, and dementia with Lewy Bodie's samples. MIC-MAC is a precision diagnostic tool that allows a rapid, unbiased, and large-scale analysis of microglia morphological states in mouse models and patient brain samples.
Collapse
Affiliation(s)
- Luis Salamanca
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
- Swiss Data Science Center, ETH ZürichZürichSwitzerland
| | - Naguib Mechawar
- Douglas Mental Health University InstituteDepartment of Psychiatry, McGill UniversityMontrealQuebecCanada
| | - Keith K. Murai
- Centre for Research in Neuroscience, Department of Neurology and NeurosurgeryThe Research Institute of the McGill University Health Centre, Montreal General HospitalMontrealQuebecCanada
| | - Rudi Balling
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | - David S. Bouvier
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
- National Biomedical Computation ResourceUniversity California San DiegoLa JollaCalifornia
| |
Collapse
|
109
|
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant bone cells. They are completely encased in mineralized tissue, sitting inside lacunae that are connected by a multitude of canaliculi. In recent years, the osteocyte network has been shown to fulfill endocrine functions and to communicate with a number of other organs. This review addresses emerging knowledge on the connectome of the lacunocanalicular network in different types of bone tissue. RECENT FINDINGS Recent advances in three-dimensional imaging technology started to reveal parameters that are well known from general theory to characterize the function of networks, such as network density, degree of nodes, or shortest path length through the network. The connectome of the lacunocanalicular network differs in some aspects between lamellar and woven bone and seems to change with age. More research is needed to relate network structure to function, such as intercellular transport or communication and its role in mechanosensation, as well as to understand the effect of diseases.
Collapse
Affiliation(s)
- Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| | - Philip Kollmannsberger
- Center for Computational and Theoretical Biology, Universität Würzburg, Campus Hubland Nord 32, 97074, Würzburg, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany.
| |
Collapse
|
110
|
Wittig NK, Laugesen M, Birkbak ME, Bach-Gansmo FL, Pacureanu A, Bruns S, Wendelboe MH, Brüel A, Sørensen HO, Thomsen JS, Birkedal H. Canalicular Junctions in the Osteocyte Lacuno-Canalicular Network of Cortical Bone. ACS NANO 2019; 13:6421-6430. [PMID: 31095362 DOI: 10.1021/acsnano.8b08478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The osteocyte lacuno-canalicular network (LCN) is essential for bone remodeling because osteocytes regulate cell recruitment. This has been proposed to occur through liquid-flow-induced shear forces in the canaliculi. Models of the LCN have thus far assumed that it contains canaliculi connecting the osteocyte lacunae. However, here, we reveal that enlarged spaces occur at places where several canaliculi cross; we name these spaces canalicular junctions. We characterize them in detail within mice cortical bone using synchrotron nanotomography at two length scales, with 50 and 130 nm voxel size, and show that canalicular junctions occur at a density similar to that of osteocyte lacunae and that canalicular junctions tend to cluster. Through confocal laser scanning microscopy, we show that canalicular junctions are widespread as we have observed them in cortical bone from several species, even though the number density of the canalicular junctions was not universal. Fluid flow simulations of a simple model system with and without a canalicular junction clearly show that liquid mass transport and flow velocities are altered by the presence of canalicular junctions. We suggest that these canalicular junctions may play an important role in osteocyte communication and possibly also in canalicular fluid flow. Therefore, we believe that they constitute an important component in the bone osteocyte network.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefan Bruns
- Department of Chemistry, University of Copenhagen , 2100 Copenhagen Ø , Denmark
| | | | | | | | | | | |
Collapse
|
111
|
The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. Structure 2019; 27:1211-1223.e5. [PMID: 31230946 DOI: 10.1016/j.str.2019.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Actin waves are dynamic supramolecular structures involved in cell migration, cytokinesis, adhesion, and neurogenesis. Although wave-like propagation of actin networks is a widespread phenomenon, the actin architecture underlying wave propagation remained unknown. In situ cryo-electron tomography of Dictyostelium cells unveils the wave architecture and provides evidence for wave progression by de novo actin nucleation. Subtomogram averaging reveals the structure of Arp2/3 complex-mediated branch junctions in their native state, and enables quantitative analysis of the 3D organization of branching within the waves. We find an excess of branches directed toward the substrate-attached membrane, and tent-like structures at sites of branch clustering. Fluorescence imaging shows that Arp2/3 clusters follow accumulation of the elongation factor VASP. We propose that filament growth toward the membrane lifts up the actin network as the wave propagates, until depolymerization of oblique filaments at the back causes the collapse of horizontal filaments into a compact layer.
Collapse
|
112
|
Roschger A, Roschger P, Wagermaier W, Chen J, van Tol AF, Repp F, Blouin S, Berzlanovich A, Gruber GM, Klaushofer K, Fratzl P, Weinkamer R. The contribution of the pericanalicular matrix to mineral content in human osteonal bone. Bone 2019; 123:76-85. [PMID: 30898694 DOI: 10.1016/j.bone.2019.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023]
Abstract
The osteocyte lacunar-canalicular network (LCN) penetrates bone and houses the osteocytes and their processes. Despite its rather low volume fraction, the LCN represents an outstanding large surface that is possibly used by the osteocytes to interact with the surrounding mineralized bone matrix thereby contributing to mineral homeostasis. The aim of this study was to quantitatively describe such contributions by spatially correlating the local density of the LCN with the mineral content at the same location in micrometer-sized volume elements in human osteons. For this purpose, 65 osteons from the femur midshaft from healthy adults (n = 4) and children (n = 2) were structurally characterized with two different techniques. The 3D structure of the LCN in the osteons was imaged with confocal laser scanning microscopy after staining the bone samples with rhodamine. Subsequent image analysis provided the canalicular length density, i.e. the total length of the canaliculi per unit volume (μm/μm3). Quantitative information on the mineral content (wt%Ca) from the identical regions was obtained using quantitative backscattered electron imaging. As the LCN-porosity lowers the mineral content, a negative correlation between Ca content and network density was expected. Calculations predict a reduction of around -0.97 fmol Ca per μm of network. However, the experiment revealed for 62 out of 65 osteons a positive correlation resulting in an average additional Ca loading of +1.15 fmol per μm of canalicular network, i.e. an accumulation of mineral has occurred at dense network regions. We hypothesize that this accumulation happens in the close vicinity of canaliculi forming mineral reservoirs that can be utilized by osteocytes. Significant differences found between individuals indicate that the extent of mineral loading of the reservoir zone reflects an important parameter for mineral homeostasis.
Collapse
Affiliation(s)
- A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - W Wagermaier
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - J Chen
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; College of Engineering, Mathematics, and Physical Science, University of Exeter, Exeter EX4 4QF, UK
| | - A F van Tol
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - F Repp
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - A Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - G M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - R Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| |
Collapse
|
113
|
Krohn S, Froeling M, Leemans A, Ostwald D, Villoslada P, Finke C, Esteban FJ. Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multiple-acquisition MRI. Hum Brain Mapp 2019; 40:3299-3320. [PMID: 31090254 DOI: 10.1002/hbm.24599] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/26/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Fractal analysis represents a promising new approach to structural neuroimaging data, yet systematic evaluation of the fractal dimension (FD) as a marker of structural brain complexity is scarce. Here we present in-depth methodological assessment of FD estimation in structural brain MRI. On the computational side, we show that spatial scale optimization can significantly improve FD estimation accuracy, as suggested by simulation studies with known FD values. For empirical evaluation, we analyzed two recent open-access neuroimaging data sets (MASSIVE and Midnight Scan Club), stratified by fundamental image characteristics including registration, sequence weighting, spatial resolution, segmentation procedures, tissue type, and image complexity. Deviation analyses showed high repeated-acquisition stability of the FD estimates across both data sets, with differential deviation susceptibility according to image characteristics. While less frequently studied in the literature, FD estimation in T2-weighted images yielded robust outcomes. Importantly, we observed a significant impact of image registration on absolute FD estimates. Applying different registration schemes, we found that unbalanced registration induced (a) repeated-measurement deviation clusters around the registration target, (b) strong bidirectional correlations among image analysis groups, and (c) spurious associations between the FD and an index of structural similarity, and these effects were strongly attenuated by reregistration in both data sets. Indeed, differences in FD between scans did not simply track differences in structure per se, suggesting that structural complexity and structural similarity represent distinct aspects of structural brain MRI. In conclusion, scale optimization can improve FD estimation accuracy, and empirical FD estimates are reliable yet sensitive to image characteristics.
Collapse
Affiliation(s)
- Stephan Krohn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.,Computational Cognitive Neuroscience Laboratory, Freie Universität Berlin, Berlin, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dirk Ostwald
- Computational Cognitive Neuroscience Laboratory, Freie Universität Berlin, Berlin, Germany.,Center for Adaptive Rationality, Max-Planck Institute for Human Development, Berlin, Germany
| | - Pablo Villoslada
- Center of Neuroimmunology, Institut d'Investigacions Biomediques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Carsten Finke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
114
|
Crosby CO, Zoldan J. An In Vitro 3D Model and Computational Pipeline to Quantify the Vasculogenic Potential of iPSC-Derived Endothelial Progenitors. J Vis Exp 2019. [PMID: 31132046 DOI: 10.3791/59342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a patient-specific, proliferative cell source that can differentiate into any somatic cell type. Bipotent endothelial progenitors (EPs), which can differentiate into the cell types necessary to assemble mature, functional vasculature, have been derived from both embryonic and induced pluripotent stem cells. However, these cells have not been rigorously evaluated in three-dimensional environments, and a quantitative measure of their vasculogenic potential remains elusive. Here, the generation and isolation of iPSC-EPs via fluorescent-activated cell sorting are first outlined, followed by a description of the encapsulation and culture of iPSC-EPs in collagen hydrogels. This extracellular matrix (ECM)-mimicking microenvironment encourages a robust vasculogenic response; vascular networks form after a week of culture. The creation of a computational pipeline that utilizes open-source software to quantify this vasculogenic response is delineated. This pipeline is specifically designed to preserve the 3D architecture of the capillary plexus to robustly identify the number of branches, branching points, and the total network length with minimal user input.
Collapse
Affiliation(s)
- Cody O Crosby
- Department of Biomedical Engineering, University of Texas at Austin
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin;
| |
Collapse
|
115
|
Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone 2019; 122:101-113. [PMID: 30743014 PMCID: PMC6638547 DOI: 10.1016/j.bone.2019.01.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Osteoporosis is an aging-related disease of reduced bone mass that is particularly prevalent in post-menopausal women, but also affects the aged male population and is associated with increased fracture risk. Osteoporosis is the result of an imbalance whereby bone formation by osteoblasts no longer keeps pace with resorption of bone by osteoclasts. Osteocytes are the most abundant cells in bone and, although previously thought to be quiescent, they are now known to be active, multifunctional cells that play a key role in the maintenance of bone mass by regulating both osteoblast and osteoclast activity. They are also thought to regulate bone mass through their role as mechanoresponsive cells in bone that coordinate adaptive responses to mechanical loading. Osteocytes form an extensive interconnected network throughout the mineralized bone matrix and receive their nutrients as well as hormones and signaling factors through the lacunocanalicular system. Several studies have shown that the extent and connectivity of the lacunocanalicular system and osteocyte networks degenerates in aged humans as well as in animal models of aging. It is also known that the bone anabolic response to loading is decreased with aging. This review summarizes recent research on the degenerative changes that occur in osteocytes and their lacunocanalicular system as a result of aging and discusses the implications for skeletal health and homeostasis as well as potential mechanisms that may underlie these degenerative changes. Since osteocytes are such key regulators of skeletal homeostasis, maintaining the health of the osteocyte network would seem critical for maintenance of bone health. Therefore, a more complete understanding of the structure and function of the osteocyte network, its lacunocanalicular system, and the degenerative changes that occur with aging should lead to advances in our understanding of age related bone loss and potentially lead to improved therapies.
Collapse
Affiliation(s)
- LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America.
| |
Collapse
|
116
|
Crosby CO, Valliappan D, Shu D, Kumar S, Tu C, Deng W, Parekh SH, Zoldan J. Quantifying the Vasculogenic Potential of Induced Pluripotent Stem Cell-Derived Endothelial Progenitors in Collagen Hydrogels. Tissue Eng Part A 2019; 25:746-758. [PMID: 30618333 PMCID: PMC6535961 DOI: 10.1089/ten.tea.2018.0274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/01/2019] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT Our work reinforces the role of extracellular matrix (ECM) density and matrix metalloprotease activity on the formation of microvasculature from induced pluripotent stem cell (iPSC)-derived vascular cells. The cell-matrix interactions discussed in this study underscore the importance of understanding the role of mechanoregulation and matrix degradation on vasculogenesis and can potentially drive the development of ECM-mimicking angiogenic biomaterials. Furthermore, our work has broader implications concerning the response of iPSC-derived cells to the mechanics of engineered microenvironments. An understanding of these interactions will be critical to creating physiologically relevant transplantable tissue replacements.
Collapse
Affiliation(s)
- Cody O. Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Deepti Valliappan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - David Shu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sachin Kumar
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chengyi Tu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Wei Deng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
117
|
Mondal A, Nguyen C, Ma X, Elbanna AE, Carlson JM. Network models for characterization of trabecular bone. Phys Rev E 2019; 99:042406. [PMID: 31108725 DOI: 10.1103/physreve.99.042406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Trabecular bone is a lightweight, compliant material organized as a web of struts and rods (trabeculae) that erode with age and the onset of bone diseases like osteoporosis, leading to increased fracture risk. The traditional diagnostic marker of osteoporosis, bone mineral density (BMD), has been shown in ex vivo experiments to correlate poorly with fracture resistance when considered on its own, while structural features in conjunction with BMD can explain more of the variation in trabecular bone strength. We develop a network-based model of trabecular bone by creating graphs from micro-computed tomography images of human bone, with weighted links representing trabeculae and nodes representing branch points. These graphs enable calculation of quantitative network metrics to characterize trabecular structure. We also create finite element models of the networks in which each link is represented by a beam, facilitating analysis of the mechanical response of the bone samples to simulated loading. We examine the structural and mechanical properties of trabecular bone at the scale of individual trabeculae (of order 0.1 mm) and at the scale of selected volumes of interest (approximately a few mm), referred to as VOIs. At the VOI scale, we find significant correlations between the stiffness of VOIs and 10 different structural metrics. Individually, the volume fraction of each VOI is most strongly correlated to the stiffness of the VOI. We use multiple linear regression to identify the smallest subset of variables needed to capture the variation in stiffness. In a linear fit, we find that node degree, weighted node degree, Z-orientation, weighted Z-orientation, trabecular spacing, link length, and the number of links are the structural metrics that are most significant (p<0.05) in capturing the variation of stiffness in trabecular networks.
Collapse
Affiliation(s)
- Avik Mondal
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Chantal Nguyen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Xiao Ma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ahmed E Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
118
|
Elliott MR, Kim D, Molony DS, Morris L, Samady H, Joshi S, Timmins LH. Establishment of an Automated Algorithm Utilizing Optical Coherence Tomography and Micro-Computed Tomography Imaging to Reconstruct the 3-D Deformed Stent Geometry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:710-720. [PMID: 30843790 PMCID: PMC6407623 DOI: 10.1109/tmi.2018.2870714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Percutaneous coronary intervention (PCI) is the prevalent treatment for coronary artery disease, with hundreds of thousands of stents implanted annually. Computational studies have demonstrated the role of biomechanics in the failure of vascular stents, but clinical studies is this area are limited by a lack of understanding of the deployed stent geometry, which is required to accurately model and predict the stent-induced in vivo biomechanical environment. Herein, we present an automated method to reconstruct the 3-D deployed stent configuration through the fusion of optical coherence tomography (OCT) and micro-computed tomography ( μ CT) imaging data. In an experimental setup, OCT and μ CT data were collected in stents deployed in arterial phantoms ( n=4 ). A constrained iterative deformation process directed by diffeomorphic metric mapping was developed to deform μ CT data of a stent wireframe to the OCT-derived sparse point cloud of the deployed stent. Reconstructions of the deployed stents showed excellent agreement with the ground-truth configurations, with the distance between corresponding points on the reconstructed and ground-truth configurations of [Formula: see text]. Finally, reconstructions required <30 min of computational time. In conclusion, the developed and validated reconstruction algorithm provides a complete spatially resolved reconstruction of a deployed vascular stent from commercially available imaging modalities and has the potential, with further development, to provide more accurate computational models to evaluate the in vivo post-stent mechanical environment, as well as clinical visualization of the 3-D stent geometry immediately following PCI.
Collapse
|
119
|
Bolognin S, Fossépré M, Qing X, Jarazo J, Ščančar J, Moreno EL, Nickels SL, Wasner K, Ouzren N, Walter J, Grünewald A, Glaab E, Salamanca L, Fleming RMT, Antony PMA, Schwamborn JC. 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800927. [PMID: 30643711 PMCID: PMC6325628 DOI: 10.1002/advs.201800927] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/31/2018] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD)-specific neurons, grown in standard 2D cultures, typically only display weak endophenotypes. The cultivation of PD patient-specific neurons, derived from induced pluripotent stem cells carrying the LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated image analysis algorithms are implemented to enable pharmacophenomics in disease-relevant conditions. In contrast to 2D cultures, this 3D approach reveals robust endophenotypes. High-content imaging data show decreased dopaminergic differentiation and branching complexity, altered mitochondrial morphology, and increased cell death in LRRK2-G2019S neurons compared to isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, a holistic analysis of all studied features shows that the genetic background of the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest contribution to the phenotypes. These data support the use of advanced in vitro models for future patient stratification and personalized drug development.
Collapse
Affiliation(s)
- Silvia Bolognin
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Marie Fossépré
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Xiaobing Qing
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Janez Ščančar
- Department of Environmental SciencesJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Edinson Lucumi Moreno
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Sarah L. Nickels
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Kobi Wasner
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jonas Walter
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Braingineering Technologies SARL9 avenue des Hauts‐ForneauxEsch‐sur‐AlzetteL‐4362Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
- Institute of NeurogeneticsUniversity of Lübeck23562LübeckGermany
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Ronan M. T. Fleming
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Paul M. A. Antony
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems BiomedicineUniversity of Luxembourg6 avenue du SwingBelvauxL‐4367Luxembourg
| |
Collapse
|
120
|
Moriconi S, Zuluaga MA, Jager HR, Nachev P, Ourselin S, Cardoso MJ. Inference of Cerebrovascular Topology With Geodesic Minimum Spanning Trees. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:225-239. [PMID: 30059296 PMCID: PMC6319031 DOI: 10.1109/tmi.2018.2860239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
A vectorial representation of the vascular network that embodies quantitative features-location, direction, scale, and bifurcations-has many potential cardio- and neuro-vascular applications. We present VTrails, an end-to-end approach to extract geodesic vascular minimum spanning trees from angiographic data by solving a connectivity-optimized anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Evaluating real and synthetic vascular images, we compare VTrails against the state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field. The inferred geodesic trees are then quantitatively evaluated within a topologically aware framework, by comparing the proposed method against popular vascular segmentation tool kits on clinical angiographies. VTrails potentials are discussed towards integrating groupwise vascular image analyses. The performance of VTrails demonstrates its versatility and usefulness also for patient-specific applications in interventional neuroradiology and vascular surgery.
Collapse
|
121
|
Choudhary S, Ramasundaram P, Dziopa E, Mannion C, Kissin Y, Tricoli L, Albanese C, Lee W, Zilberberg J. Human ex vivo 3D bone model recapitulates osteocyte response to metastatic prostate cancer. Sci Rep 2018; 8:17975. [PMID: 30568232 PMCID: PMC6299475 DOI: 10.1038/s41598-018-36424-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among American men. Unfortunately, there is no cure once the tumor is established within the bone niche. Although osteocytes are master regulators of bone homeostasis and remodeling, their role in supporting PCa metastases remains poorly defined. This is largely due to a lack of suitable ex vivo models capable of recapitulating the physiological behavior of primary osteocytes. To address this need, we integrated an engineered bone tissue model formed by 3D-networked primary human osteocytes, with conditionally reprogrammed (CR) primary human PCa cells. CR PCa cells induced a significant increase in the expression of fibroblast growth factor 23 (FGF23) by osteocytes. The expression of the Wnt inhibitors sclerostin and dickkopf-1 (Dkk-1), exhibited contrasting trends, where sclerostin decreased while Dkk-1 increased. Furthermore, alkaline phosphatase (ALP) was induced with a concomitant increase in mineralization, consistent with the predominantly osteoblastic PCa-bone metastasis niche seen in patients. Lastly, we confirmed that traditional 2D culture failed to reproduce these key responses, making the use of our ex vivo engineered human 3D bone tissue an ideal platform for modeling PCa-bone interactions.
Collapse
Affiliation(s)
- Saba Choudhary
- Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Poornema Ramasundaram
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Eugenia Dziopa
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Ciaran Mannion
- Department of Pathology, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yair Kissin
- Insall Scott Kelly Institute for Orthopedics and Sports Medicine, New York, NY, USA.,Hackensack University Medical Center, Hackensack, NJ, USA.,Lenox Hill Hospital, New York, NY, USA
| | - Lucas Tricoli
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Christopher Albanese
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Woo Lee
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jenny Zilberberg
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
| |
Collapse
|
122
|
3DMorph Automatic Analysis of Microglial Morphology in Three Dimensions from Ex Vivo and In Vivo Imaging. eNeuro 2018; 5:eN-MNT-0266-18. [PMID: 30627639 PMCID: PMC6325541 DOI: 10.1523/eneuro.0266-18.2018] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/18/2018] [Accepted: 10/28/2018] [Indexed: 11/21/2022] Open
Abstract
Microglia are dynamic immune cells of the central nervous system, and their morphology is commonly used as a readout of cellular function. However, current morphological analysis techniques rely on either tracing of cells or two-dimensional projection analysis, which are time-consuming, subject to bias, and may ignore important three-dimensional (3D) information. Therefore, we have created 3DMorph, a MATLAB-based script that analyzes microglial morphology from 3D data. The program initially requires input of threshold levels, cell size expectations, and preferred methods of skeletonization. This makes 3DMorph easily scalable and adaptable to different imaging parameters or cell types. After these settings are defined, the program is completely automatic and can batch process files without user input. Output data includes cell volume, territorial volume, branch length, number of endpoints and branch points, and average distance between cells. We show that 3DMorph is accurate compared to manual tracing, with significantly decreased user input time. Importantly, 3DMorph is capable of processing in vivo microglial morphology, as well as other 3D branching cell types, from mouse cranial windows or acute hippocampal slices. Therefore, we present a novel, user-friendly, scalable, and semiautomatic method of analyzing cell morphology in 3 dimensions. This method should improve the accuracy of cell measurements, remove user bias between conditions, increase reproducibility between experimenters and labs, and reduce user input time. We provide this open source code on GitHub so that it is free and accessible to all investigators.
Collapse
|
123
|
Saers JPP, Ryan TM, Stock JT. Trabecular bone functional adaptation and sexual dimorphism in the human foot. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:154-169. [DOI: 10.1002/ajpa.23732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jaap P. P. Saers
- Department of Archaeology, University of Cambridge McDonald Institute for Archaeological Research Cambridge United Kingdom
| | - Timothy M. Ryan
- Department of Anthropology Pennsylvania State University State College Pennsylvania
| | - Jay T. Stock
- Department of Archaeology, University of Cambridge McDonald Institute for Archaeological Research Cambridge United Kingdom
- Department of Anthropology University of Western Ontario London Ontario Canada
- Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
| |
Collapse
|
124
|
Zhao X, Gold N, Fang Y, Xu S, Zhang Y, Liu J, Gupta A, Huang H. Vertebral artery fusiform aneurysm geometry in predicting rupture risk. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180780. [PMID: 30473829 PMCID: PMC6227986 DOI: 10.1098/rsos.180780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Cerebral aneurysms affect a significant portion of the adult population worldwide. Despite significant progress, the development of robust techniques to evaluate the risk of aneurysm rupture remains a critical challenge. We hypothesize that vertebral artery fusiform aneurysm (VAFA) morphology may be predictive of rupture risk and can serve as a deciding factor in clinical management. To investigate the VAFA morphology, we use a combination of image analysis and machine learning techniques to study a geometric feature set computed from a depository of 37 (12 ruptured and 25 un-ruptured) aneurysm images. Of the 571 unique features we compute, we distinguish five features for use by our machine learning classification algorithm by an analysis of statistical significance. These machine learning methods achieve state-of-the-art classification performance (81.43 ± 13.08%) for the VAFA morphology, and identify five features (cross-sectional area change of aneurysm, maximum diameter of nearby distal vessel, solidity of aneurysm, maximum curvature of nearby distal vessel, and ratio of curvature between aneurysm and its nearby proximal vessel) as effective predictors of VAFA rupture risk. These results suggest that the geometric features of VAFA morphology may serve as useful non-invasive indicators for the prediction of aneurysm rupture risk in surgical settings.
Collapse
Affiliation(s)
- Xiukun Zhao
- Centre for Quantitative Analysis and Modelling (CQAM), The Fields Institute, Toronto, Ontario M5T 3J1, Canada
- The Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
| | - Nathan Gold
- Centre for Quantitative Analysis and Modelling (CQAM), The Fields Institute, Toronto, Ontario M5T 3J1, Canada
- Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yibin Fang
- The Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shixin Xu
- Centre for Quantitative Analysis and Modelling (CQAM), The Fields Institute, Toronto, Ontario M5T 3J1, Canada
- The Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
| | - Yongxin Zhang
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Arvind Gupta
- Centre for Quantitative Analysis and Modelling (CQAM), The Fields Institute, Toronto, Ontario M5T 3J1, Canada
- The Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3J1, Canada
| | - Huaxiong Huang
- Centre for Quantitative Analysis and Modelling (CQAM), The Fields Institute, Toronto, Ontario M5T 3J1, Canada
- The Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada
- Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
125
|
Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ. Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 2018; 15:20180193. [PMID: 30232240 PMCID: PMC6170774 DOI: 10.1098/rsif.2018.0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Spiders are abundantly found in nature and most ecosystems, making up more than 47 000 species. This ecological success is in part due to the exceptional mechanics of the spider web, with its strength, toughness, elasticity and robustness, which originate from its hierarchical structures all the way from sequence design to web architecture. It is a unique example in nature of high-performance material design. In particular, to survive in different environments, spiders have optimized and adapted their web architecture by providing housing, protection, and an efficient tool for catching prey. The most studied web in literature is the two-dimensional (2D) orb web, which is composed of radial and spiral threads. However, only 10% of spider species are orb-web weavers, and three-dimensional (3D) webs, such as funnel, sheet or cobwebs, are much more abundant in nature. The complex spatial network and microscale size of silk fibres are significant challenges towards determining the topology of 3D webs, and only a limited number of previous studies have attempted to quantify their structure and properties. Here, we focus on developing an innovative experimental method to directly capture the complete digital 3D spider web architecture with micron scale resolution. We built an automatic segmentation and scanning platform to obtain high-resolution 2D images of individual cross-sections of the web that were illuminated by a sheet laser. We then developed image processing algorithms to reconstruct the digital 3D fibrous network by analysing the 2D images. This digital network provides a model that contains all of the structural and topological features of the porous regions of a 3D web with high fidelity, and when combined with a mechanical model of silk materials, will allow us to directly simulate and predict the mechanical response of a realistic 3D web under mechanical loads. Our work provides a practical tool to capture the architecture of sophisticated 3D webs, and could lead to studies of the relation between architecture, material and biological functions for numerous 3D spider web applications.
Collapse
Affiliation(s)
- Isabelle Su
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Tomás Saraceno
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Adrian Krell
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Roland Mühlethaler
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Ally Bisshop
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
126
|
Lee S, Kang BM, Kim JH, Min J, Kim HS, Ryu H, Park H, Bae S, Oh D, Choi M, Suh M. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice. Sci Rep 2018; 8:13064. [PMID: 30166586 PMCID: PMC6117335 DOI: 10.1038/s41598-018-30875-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023] Open
Abstract
Chronic stress disrupts brain homeostasis and adversely affects the cerebro-vascular system. Even though the effects of chronic stress on brain system have been extensively studied, there are few in vivo dynamic studies on the effects of chronic stress on the cerebro-vascular system. In this study, the effects of chronic stress on cerebral vasculature and BBB permeability were studied using in vivo two-photon (2p) microscopic imaging with an injection of fluorescence-conjugated dextran. Our real-time 2p imaging results showed that chronic stress reduced the vessel diameter and reconstructed vascular volume, regardless of vessel type and branching order. BBB permeability was investigated with two different size of tracers. Stressed animals exhibited a greater BBB permeability to 40-kDa dextran, but not to 70-kDa dextran, which is suggestive of weakened vascular integrity following stress. Molecular analysis revealed significantly higher VEGFa mRNA expression and a reduction in claudin-5. In summary, chronic stress decreases the size of cerebral vessels and increases BBB permeability. These results may suggest that the sustained decrease in cerebro-vascular volume due to chronic stress leads to a hypoxic condition that causes molecular changes such as VEGF and claudin-5, which eventually impairs the function of BBB.
Collapse
Affiliation(s)
- Sohee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jiwoong Min
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyung Seok Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyunwoo Ryu
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyejin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Department of Biological Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sungjun Bae
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Daehwan Oh
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea. .,Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. .,Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
127
|
Rau R, Kruizinga P, Mastik F, Belau M, de Jong N, Bosch JG, Scheffer W, Maret G. 3D functional ultrasound imaging of pigeons. Neuroimage 2018; 183:469-477. [PMID: 30118869 DOI: 10.1016/j.neuroimage.2018.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 01/21/2023] Open
Abstract
Recent advances in ultrasound Doppler imaging have facilitated the technique of functional ultrasound (fUS) which enables visualization of brain-activity due to neurovascular coupling. As of yet, this technique has been applied to rodents as well as to human subjects during awake craniotomy surgery and human newborns. Here we demonstrate the first successful fUS studies on awake pigeons subjected to auditory and visual stimulation. To allow successful fUS on pigeons we improved the temporal resolution of fUS up to 20,000 frames per second with real-time visualization and continuous recording. We show that this gain in temporal resolution significantly increases the sensitivity for detecting small fluctuations in cerebral blood flow and volume which may reflect increased local neural activity. Through this increased sensitivity we were able to capture the elaborate 3D neural activity pattern evoked by a complex stimulation pattern, such as a moving light source. By pushing the limits of fUS further, we have reaffirmed the enormous potential of this technique as a new standard in functional brain imaging with the capacity to unravel unknown, stimulus related hemodynamics with excellent spatiotemporal resolution with a wide field of view.
Collapse
Affiliation(s)
- Richard Rau
- Department of Physics, University of Konstanz, Konstanz, Germany. http://cms.uni-konstanz.de/physik/maret/
| | - Pieter Kruizinga
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands; Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Markus Belau
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Delft University of Technology, Delft, the Netherlands
| | - Johannes G Bosch
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | | | - Georg Maret
- Department of Physics, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
128
|
Abstract
In lamellar bone, a network of highly oriented interconnected osteocytes is organized in concentric layers. Through their cellular processes contained within canaliculi, osteocytes are highly mechanosensitive and locally modulate bone remodeling. We review the recent developments demonstrating the significance of the osteocyte lacuno-canalicular network in bone maintenance around implant biomaterials. Drilling during implant site preparation triggers osteocyte apoptosis, the magnitude of which correlates with drilling speed and heat generation, resulting in extensive remodeling and delayed healing. In peri-implant bone, osteocytes physically communicate with implant surfaces via canaliculi and are responsive to mechanical loading, leading to changes in osteocyte numbers and morphology. Certain implant design features allow peri-implant osteocytes to retain a less aged phenotype, despite highly advanced extracellular matrix maturation. Physicochemical properties of anodically oxidized surfaces stimulate bone formation and remodeling by regulating the expression of RANKL (receptor activator of nuclear factor-κB ligand), RANK, and OPG (osteoprotegerin) from implant-adherent cells. Modulation of certain osteocyte-related molecular signaling mechanisms (e.g., sclerostin blockade) may enhance the biomechanical anchorage of implants. Evaluation of the peri-implant osteocyte lacuno-canalicular network should therefore be a necessary component in future investigations of osseointegration to more completely characterize the biological response to materials for load-bearing applications in dentistry and orthopedics.
Collapse
Affiliation(s)
- F A Shah
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - P Thomsen
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - A Palmquist
- 1 Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
129
|
Ciani A, Toumi H, Pallu S, Tsai EHR, Diaz A, Guizar-Sicairos M, Holler M, Lespessailles E, Kewish CM. Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model. Bone Rep 2018; 9:122-131. [PMID: 30246062 PMCID: PMC6146379 DOI: 10.1016/j.bonr.2018.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 01/15/2023] Open
Abstract
Ptychographic X-ray computed tomography (PXCT) is a quantitative imaging modality that non-destructively maps the 3D electron density inside an object with tens of nanometers spatial resolution. This method provides unique access to the morphology and structure of the osteocyte lacuno-canalicular network (LCN) and nanoscale density of the tissue in the vicinity of an osteocyte lacuna. Herein, we applied PXCT to characterize the lacunae and LCN in a male Wistar rat model of glucocorticoid-induced osteoporosis (GIO). The ptychographic images revealed significant (p < 0.05) differences in the number of canaliculi originating from the lacuna per ellipsoidal surface unit, Ca.Nb (p = 0.0106), and the 3D morphology of the lacuna (p = 0.0064), between GIO and SHAM groups. Moreover, the mean canalicular diameter, Ca.Dm, was slightly statistically un-significantly smaller in GIO (152 ± 6.5) nm than in SHAM group (165 ± 8) nm (p = 0.053). Our findings indicate that PXCT can non-destructively provide detailed, nanoscale information on the 3D organization of the LCN in correlative studies of pathologies, such as osteoporosis, leading to improved diagnosis and therapy.
Collapse
Affiliation(s)
- Antonia Ciani
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France.,EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | - Hechmi Toumi
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Stéphane Pallu
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | | | - Ana Diaz
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Mirko Holler
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eric Lespessailles
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Cameron M Kewish
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| |
Collapse
|
130
|
Tiwari AK, Kumar R, Tripathi D, Badhyal S. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus. J Theor Biol 2018. [DOI: 10.1016/j.jtbi.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
131
|
Ho IL, Nourian Z, Hill MA, Meininger GA, Li WY. Quantification of elastin-fiber reticulation in rat mesenteric arterioles using molecular dynamics optimization. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
132
|
Houri J, Karunamuni R, Connor M, Pettersson N, McDonald C, Farid N, White N, Dale A, Hattangadi-Gluth JA, Moiseenko V. Analyses of regional radiosensitivity of white matter structures along tract axes using novel white matter segmentation and diffusion imaging biomarkers. Phys Imaging Radiat Oncol 2018; 6:39-46. [PMID: 33458387 PMCID: PMC7807616 DOI: 10.1016/j.phro.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Brain radiotherapy (RT) can cause white matter damage and downstream neurocognitive decline. We developed a computational neuroimaging tool to regionally partition individual white matter tracts, then analyze regional changes in diffusion metrics of white matter damage following brain RT. MATERIALS AND METHODS RT dose, diffusion metrics and white matter tract structures were extracted and mapped to a reference brain for 49 patients who received brain RT, and underwent diffusion tensor imaging pre- and 9-12 months post-RT. Based on their elongation, 23 of 48 white matter tracts were selected. The Tract-Crawler software was developed in MATLAB to create cross-sectional slice planes normal to a tract's computed medial axis. We then performed slice- and voxel-wise analysis of radiosensitivity, defined as percent change in mean diffusivity (MD) and fractional anisotropy (FA) as a function of dose relative to baseline. RESULTS Distinct patterns of FA/MD radiosensitivity were seen for specific tracts, including the corticospinal tract, medial lemniscus, and inferior cerebellar peduncle, in particular at terminal ends. These patterns persisted for corresponding tracts in left and right hemispheres. Local sensitivities were as high as 40%/Gy (e.g., voxel-wise: -39 ± 31%/Gy in right corticospinal tract FA, -45 ± 25%/Gy in right inferior cerebellar peduncle FA), p < 0.05. CONCLUSIONS Tract-Crawler, a novel tool to visualize and analyze cuts of white matter structures normal to medial axes, was used to demonstrate that particular white matter tracts exhibit significant regional variations in radiosensitivity based on diffusion biomarkers.
Collapse
Affiliation(s)
- Jordan Houri
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Physics, University of Oxford, Oxford, UK
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Niclas Pettersson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Nathan White
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
133
|
Abadi E, Segars WP, Sturgeon GM, Roos JE, Ravin CE, Samei E. Modeling Lung Architecture in the XCAT Series of Phantoms: Physiologically Based Airways, Arteries and Veins. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:693-702. [PMID: 29533891 PMCID: PMC6434530 DOI: 10.1109/tmi.2017.2769640] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of this paper was to extend the extended cardiac-torso (XCAT) series of computational phantoms to include a detailed lung architecture including airways and pulmonary vasculature. Eleven XCAT phantoms of varying anatomy were used in this paper. The lung lobes and initial branches of the airways, pulmonary arteries, and veins were previously defined in each XCAT model. These models were extended from the initial branches of the airways and vessels to the level of terminal branches using an anatomically-based volume-filling branching algorithm. This algorithm grew the airway and vasculature branches separately and iteratively without intersecting each other using cylindrical models with diameters estimated by order-based anatomical measurements. Geometrical features of the extended branches were compared with the literature anatomy values to quantitatively evaluate the models. These features include branching angle, length to diameter ratio, daughter to parent diameter ratio, asymmetrical branching pattern, diameter, and length ratios. The XCAT phantoms were then used to simulate CT images to qualitatively compare them with the original phantom images. The proposed growth model produced 46369 ± 12521 airways, 44737 ± 11773 arteries, and 39819 ± 9988 veins to the XCAT phantoms. Furthermore, the growth model was shown to produce asymmetrical airway, artery, and vein networks with geometrical attributes close to morphometry and model based studies. The simulated CT images of the phantoms were judged to be more realistic, including more airways and pulmonary vessels compared with the original phantoms. Future work will seek to add a heterogeneous parenchymal background into the XCAT lungs to make the phantoms even more representative of human anatomy, paving the way towards the use of XCAT models as a tool to virtually evaluate the current and emerging medical imaging technologies.
Collapse
|
134
|
Shao J, Zhou Y, Lin J, Nguyen TD, Huang R, Gu Y, Friis T, Crawford R, Xiao Y. Notch expressed by osteocytes plays a critical role in mineralisation. J Mol Med (Berl) 2018; 96:333-347. [PMID: 29455246 DOI: 10.1007/s00109-018-1625-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Notch is actively involved in various life processes including osteogenesis; however, the role of Notch signalling in the terminal mineralisation of bone is largely unknown. In this study, it was noted that Hey1, a downstream target of Notch signalling was highly expressed in mature osteocytes compared to osteoblasts, indicating a potential role of Notch in osteocytes. Using a recently developed thermosensitive cell line (IDG-SW3), we demonstrated that dentin matrix acidic phosphoprotein 1 (DMP1) expression was inhibited and mineralisation process was significantly altered when Notch pathway was inactivated via administration of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of Notch. Dysregulation of Notch in osteocyte differentiation can result in spontaneous deposition of calcium phosphate on collagen fibrils, disturbed transportation of intracellular mineral vesicles, alteration of mineral crystal structure, decreased bonding force between minerals and organic matrix, and suppression of dendrite development coupled with decreased expression of E11. In conclusion, the evidence presented here suggests that Notch plays a critical role in osteocyte differentiation and biomineralisation process. KEY MESSAGES Notch plays a regulatory role in osteocyte phenotype. Notch modulates the mineralisation mediated by osteocytes. Notch activity influences the ultrastructural properties of bone mineralisation.
Collapse
Affiliation(s)
- Jin Shao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Jinying Lin
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Implantology, Xiamen Stomatological Research Institute, Xiamen Stomatological Hospital, Fujian, 361000, China
| | - Trung Dung Nguyen
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Aerospace and Mechanical Engineering, College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Yuantong Gu
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Ross Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia
- The Prince Charles Hospital, Brisbane, QLD, 4059, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
135
|
Wang B, Sun X, Akkus O, Wang L. Elevated solute transport at sites of diffuse matrix damage in cortical bone: Implications on bone repair. J Orthop Res 2018; 36:692-698. [PMID: 28921632 PMCID: PMC5839948 DOI: 10.1002/jor.23742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Diffuse matrix damage in rat cortical bone has been observed to self-repair efficiently in 2 weeks without activating bone remodeling, and unlike the case with linear cracks, the local osteocytes at the sites of diffuse damage remain healthy. However, the reason(s) for such high efficiency of matrix repair remains unclear. We hypothesized that transport of minerals and other compounds essential for damage repair is enhanced at the damaged sites and further increased by the application of tensile loading. To test our hypothesis, diffuse damage was introduced in notched bovine wafers under cyclic tensile loading and unloading. Using the Fluorescence Recovery After Photobleaching (FRAP) approach, we measured the transport of a small fluorescent tracer (sodium fluorescein, 376 Da) in damaged versus undamaged regions and under varying tensile load magnitudes (0.2 N, 10 N, 20 N, and 30 N), which corresponded to nominal strains of 12.5, 625, 1,250, and 1,875 microstrains, respectively. We found a 37% increase in transport of fluorescein in damaged regions relative to undamaged regions and a further ∼18% increase in transport under 20 N and 30 N tension compared to the non-loaded condition, possibly due to the opening of the cracking surfaces. The elevated transport of minerals and other adhesive proteins may, at least partially, account for the highly effective repair of diffuse damage observed in vivo. CLINICAL SIGNIFICANCE Diffuse damage adversely affects bone's fracture resistance and this study provided quantitative data on elevated transport, which may be involved in repairing diffuse damage in vivo. 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:692-698, 2018.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA,Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China,Corresponding Authors: Liyun Wang, Ph.D., 130 Academy Street, University of Delaware, Newark, DE 19716, Phone: (302)-831-2659, Fax: (302)-831-3619, ; Bin Wang, Ph.D., No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, Phone: 86-23-63662443, Fax: 86-23-68485111,
| | - Xuanhao Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Ozan Akkus
- Department of Mechanical and Aerospace Engineering, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA,Corresponding Authors: Liyun Wang, Ph.D., 130 Academy Street, University of Delaware, Newark, DE 19716, Phone: (302)-831-2659, Fax: (302)-831-3619, ; Bin Wang, Ph.D., No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, Phone: 86-23-63662443, Fax: 86-23-68485111,
| |
Collapse
|
136
|
Gkontra P, Norton KA, Żak MM, Clemente C, Agüero J, Ibáñez B, Santos A, Popel AS, Arroyo AG. Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis. Sci Rep 2018; 8:1854. [PMID: 29382844 PMCID: PMC5789835 DOI: 10.1038/s41598-018-19758-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
The microvasculature continuously adapts in response to pathophysiological conditions to meet tissue demands. Quantitative assessment of the dynamic changes in the coronary microvasculature is therefore crucial in enhancing our knowledge regarding the impact of cardiovascular diseases in tissue perfusion and in developing efficient angiotherapies. Using confocal microscopy and thick tissue sections, we developed a 3D fully automated pipeline that allows to precisely reconstruct the microvasculature and to extract parameters that quantify all its major features, its relation to smooth muscle actin positive cells and capillary diffusion regions. The novel pipeline was applied in the analysis of the coronary microvasculature from healthy tissue and tissue at various stages after myocardial infarction (MI) in the pig model, whose coronary vasculature closely resembles that of human tissue. We unravelled alterations in the microvasculature, particularly structural changes and angioadaptation in the aftermath of MI. In addition, we evaluated the extracted knowledge's potential for the prediction of pathophysiological conditions in tissue, using different classification schemes. The high accuracy achieved in this respect, demonstrates the ability of our approach not only to quantify and identify pathology-related changes of microvascular beds, but also to predict complex and dynamic microvascular patterns.
Collapse
Affiliation(s)
- Polyxeni Gkontra
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.,Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Kerri-Ann Norton
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.,Division of Science, Mathematics, and Computing, Bard College, Annandale-on-Hudson, NY, 12504, USA
| | - Magdalena M Żak
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Cristina Clemente
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Jaume Agüero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.,Centro de Investigación Biomédica en Red de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.,Centro de Investigación Biomédica en Red de Enfermedades CardioVasculares (CIBERCV), Madrid, Spain.,IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Andrés Santos
- Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Madrid, Spain
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alicia G Arroyo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
| |
Collapse
|
137
|
Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing. Biomaterials 2017; 157:1-16. [PMID: 29216500 DOI: 10.1016/j.biomaterials.2017.11.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
The purpose of this work was to investigate new bone formation in macroporous iron foams coated with strontium (FeSr) or bisphosphonate (FeBiP) compared to plain iron foam (Fe) and empty defect in a critical size metaphyseal bone defect model in ovariectomized rats. 60 female rats were subjected to bilateral ovariectomy and multi-deficient diet for 3 months. A 4 mm wedge shaped metaphyseal osteotomy was created, fixed with a mini-plate and subsequently filled with Fe, FeSr, FeBiP or left empty. After 6 weeks, μCt analysis revealed a statistically significant increased bone formation at the implant interface in FeSr compared to FeBiP (p = 0.035) and Fe (p = 0.002), respectively. Increased mineralized tissue was also seen within the pores in FeSr (p = 0.023) compared to Fe. Histomorphometry revealed significantly increased bone formation at the implant interface in FeSr (p < 0.001) and FeBiP (p = 0.006) compared to plain Fe with increased osteoblast and decreased osteoclast activity in combination with increased BMP2 and decreased RANKL/OPG in immunohistochemistry. ToF-SIMS analysis showed overlapping Ca signals with Fe for both FeSr and FeBiP thereby indicating tissue in-growth into the scaffolds. In conclusion, iron foam with strontium or bisphosphonate coating are of further interest in metaphyseal fracture defects in osteopenic bone.
Collapse
|
138
|
Javed S, Sohail A, Maqbool K, Butt SI, Chaudhry QA. The Lattice Boltzmann method and computational analysis of bone dynamics-I. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40294-017-0051-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractBone is comprised of an enormously hierarchical construction that promotes transportation of necessary fluids and solids, guaranteeing accurate function and growth. Bone remodeling is a combined process of bone creation and destruction. A number of mathematical models have been developed for the balanced and imbalanced bone remodeling. A brief overview regarding mathematical modeling of bone remodeling is provided. The Lattice Boltzmann method (LBM) has widely been implemented in CFD simulations, and it is becoming more suitable in the application of image processing amongst several others. Mainly, the LBM simulates the communication between synthetic particles dispersed in a lattice. Canaliculi and tortuous channels that have more or less roughly circular structure link among oval bodies identified as lacunae, and are vital to the function of bone. As there is a lack of equipment to inspect flow in channels on the order of measure of canaliculi, so the use of computational methods are more advantageous to give perceptivities into the nature of the flows. In this article, the computational fluid dynamics analysis is descried, using the Lattice Boltzmann method, to examine the result of the microscopic surface roughness of the canalicular wall, which is formed by collagen fibrils, on the flow profiles in the pericellular space.
Collapse
|
139
|
Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomater Sci Eng 2017; 4:3678-3690. [PMID: 33429593 DOI: 10.1021/acsbiomaterials.7b00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The success of osseointegrated biomaterials often depends on the functional interface between the implant and mineralized bone tissue. Several parallels between natural and synthetic interfaces exist on various length scales from the microscale toward the cellular and the atomic scale structure. Interest lies in the development of more sophisticated methods to probe these hierarchical levels in tissues at both biomaterials interfaces and natural tissue interphases. This review will highlight new and emerging perspectives toward understanding mineralized tissues, particularly bone tissue, and interfaces between bone and engineered biomaterials at multilength scales and with multidimensionality. Emphasis will be placed on highlighting novel and correlative X-ray, ion, and electron beam imaging approaches, such as electron tomography, atom probe tomography, and in situ microscopies, as well as spectroscopic and mechanical characterizations. These less conventional approaches to imaging biomaterials are contributing to the evolution of the understanding of the structure and organization in bone and bone integrating materials.
Collapse
|
140
|
Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY) 2017; 9:2190-2208. [PMID: 29074822 PMCID: PMC5680562 DOI: 10.18632/aging.101308] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/15/2017] [Indexed: 11/25/2022]
Abstract
Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.
Collapse
Affiliation(s)
- LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Molly A. Hulbert
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Richard Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Mark R. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Departments of Anatomy and Cell Biology and Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
141
|
Florczyk SJ, Simon M, Juba D, Pine PS, Sarkar S, Chen D, Baker PJ, Bodhak S, Cardone A, Brady MC, Bajcsy P, Simon CG. A Bioinformatics 3D Cellular Morphotyping Strategy for Assessing Biomaterial Scaffold Niches. ACS Biomater Sci Eng 2017; 3:2302-2313. [PMID: 33445289 PMCID: PMC11376592 DOI: 10.1021/acsbiomaterials.7b00473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many biomaterial scaffolds have been advanced to provide synthetic cell niches for tissue engineering and drug screening applications; however, current methods for comparing scaffold niches focus on cell functional outcomes or attempt to normalize materials properties between different scaffold formats. We demonstrate a three-dimensional (3D) cellular morphotyping strategy for comparing biomaterial scaffold cell niches between different biomaterial scaffold formats. Primary human bone marrow stromal cells (hBMSCs) were cultured on 8 different biomaterial scaffolds, including fibrous scaffolds, hydrogels, and porous sponges, in 10 treatment groups to compare a variety of biomaterial scaffolds and cell morphologies. A bioinformatics approach was used to determine the 3D cellular morphotype for each treatment group by using 82 shape metrics to analyze approximately 1000 cells. We found that hBMSCs cultured on planar substrates yielded planar cell morphotypes, while those cultured in 3D scaffolds had elongated or equiaxial cellular morphotypes with greater height. Multivariate analysis was effective at distinguishing mean shapes of cells in flat substrates from cells in scaffolds, as was the metric L1-depth (the cell height along its shortest axis after aligning cells with a characteristic ellipsoid). The 3D cellular morphotyping technique enables direct comparison of cellular microenvironments between widely different types of scaffolds and design of scaffolds based on cell structure-function relationships.
Collapse
Affiliation(s)
| | | | | | | | | | - Desu Chen
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | | | | | | | |
Collapse
|
142
|
Resliced image space construction for coronary artery collagen fibers. PLoS One 2017; 12:e0184972. [PMID: 28953913 PMCID: PMC5617181 DOI: 10.1371/journal.pone.0184972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80–200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.
Collapse
|
143
|
Mosey H, Núñez JA, Goring A, Clarkin CE, Staines KA, Lee PD, Pitsillides AA, Javaheri B. Sost Deficiency does not Alter Bone's Lacunar or Vascular Porosity in Mice. FRONTIERS IN MATERIALS 2017; 4:27. [PMID: 29349060 PMCID: PMC5769812 DOI: 10.3389/fmats.2017.00027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation, and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high-resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6/group) were sacrificed at 12 weeks of age. Fixed tibiae were analyzed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nano-computed tomography at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We, therefore, conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organization, or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.
Collapse
Affiliation(s)
- Henry Mosey
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Juan A. Núñez
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Alice Goring
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claire E. Clarkin
- Faculty of Natural and Environmental Sciences, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Katherine A. Staines
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter D. Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Manchester, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
144
|
Poplawsky AJ, Fukuda M, Kang BM, Kim JH, Suh M, Kim SG. Dominance of layer-specific microvessel dilation in contrast-enhanced high-resolution fMRI: Comparison between hemodynamic spread and vascular architecture with CLARITY. Neuroimage 2017; 197:657-667. [PMID: 28822749 DOI: 10.1016/j.neuroimage.2017.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/04/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022] Open
Abstract
Contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI response peaks are specific to the layer of evoked synaptic activity (Poplawsky et al., 2015), but the spatial resolution limit of CBVw fMRI is unknown. In this study, we measured the laminar spread of the CBVw fMRI evoked response in the external plexiform layer (EPL, 265 ± 65 μm anatomical thickness, mean ± SD, n = 30 locations from 5 rats) of the rat olfactory bulb during electrical stimulation of the lateral olfactory tract and examined its potential vascular source. First, we obtained the evoked CBVw fMRI responses with a 55 × 55 μm2 in-plane resolution and a 500-μm thickness at 9.4 T, and found that the fMRI signal peaked predominantly in the inner half of EPL (136 ± 54 μm anatomical thickness). The mean full-width at half-maximum of these fMRI peaks was 347 ± 102 μm and the functional spread was approximately 100 or 200 μm when the effects of the laminar thicknesses of EPL or inner EPL were removed, respectively. Second, we visualized the vascular architecture of EPL from a different rat using a Clear Lipid-exchanged Anatomically Rigid Imaging/immunostaining-compatible Tissue hYdrogel (CLARITY)-based tissue preparation method and confocal microscopy. Microvascular segments with an outer diameter of <11 μm accounted for 64.3% of the total vascular volume within EPL and had a mean segment length of 55 ± 40 μm (n = 472). Additionally, vessels that crossed the EPL border had a mean segment length outside of EPL equal to 73 ± 61 μm (n = 28), which is comparable to half of the functional spread (50-100 μm). Therefore, we conclude that dilation of these microvessels, including capillaries, likely dominate the CBVw fMRI response and that the biological limit of the fMRI spatial resolution is approximately the average length of 1-2 microvessel segments, which may be sufficient for examining sublaminar circuits.
Collapse
Affiliation(s)
| | - Mitsuhiro Fukuda
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bok-Man Kang
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jae Hwan Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute of Basic Science, Suwon, 440-746, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
145
|
Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28:2275-2291. [PMID: 28378291 DOI: 10.1007/s00198-017-4019-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/27/2017] [Indexed: 12/18/2022]
Abstract
Although musculoskeletal diseases such as osteoporosis are diagnosed and treatment outcome is evaluated based mainly on routine clinical outcomes of bone mineral density (BMD) by DXA and biochemical markers, it is recognized that these two indicators, as valuable as they have proven to be in the everyday clinical practice, do not fully account for manifested bone strength. Thus, the term bone quality was introduced, to complement considerations based on bone turnover rates and BMD. Bone quality is an "umbrella" term that incorporates the structural and material/compositional characteristics of bone tissue. Vibrational spectroscopic techniques such as Fourier transform infrared microspectroscopy (FTIRM) and imaging (FTIRI), and Raman spectroscopy, are suitable analytical tools for the determination of bone quality as they provide simultaneous, quantitative, and qualitative information on all main bone tissue components (mineral, organic matrix, tissue water), in a spatially resolved manner. Moreover, the results of such analyses may be readily combined with the outcomes of other techniques such as histology/histomorphometry, small angle X-ray scattering, quantitative backscattered electron imaging, and nanoindentation.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, 1140, Vienna, Austria
| |
Collapse
|
146
|
Coalignment of osteocyte canaliculi and collagen fibers in human osteonal bone. J Struct Biol 2017; 199:177-186. [PMID: 28778734 DOI: 10.1016/j.jsb.2017.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
During bone formation osteocytes get connected with each other via a dense network of canaliculi within the mineralized bone matrix. Important functions attributed to the osteocyte network include the control of bone remodeling and a contribution to mineral homeostasis. To detect structural clues of the formation and functionality of the network, this study analyzes the structure and orientation of the osteocyte lacuno-canalicular network (OLCN), specifically in relation to the concentric bone lamellae within human osteons. The network structure within 49 osteons from four samples of cortical bone from the femoral midshaft of middle-aged healthy women was determined by a combination of rhodamine staining and confocal laser scanning microscopy followed by computational image analysis. A quantitative evaluation showed that 64±1% of the canalicular length has an angle smaller than 30° to the direction towards the osteon center, while the lateral network - defined by an orientation angle larger than 60° - comprises 16±1%. With the same spatial periodicity as the bone lamellae, both radial and lateral network show variations in the network density and order. However, only the preferred orientation of the lateral network twists when crossing a lamella. This twist agrees with the preferred orientation of the fibrous collagen matrix. The chirality of the twist was found to be individual-specific. The coalignment between network and matrix extends to the orientation of the elongated osteocyte lacunae. The intimate link between OLCN and collagen matrix implies an interplay between osteocyte processes and the arrangement of the surrounding collagen fibers during osteoid formation.
Collapse
|
147
|
Jähn K, Kelkar S, Zhao H, Xie Y, Tiede-Lewis LM, Dusevich V, Dallas SL, Bonewald LF. Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. J Bone Miner Res 2017; 32:1761-1772. [PMID: 28470757 PMCID: PMC5550338 DOI: 10.1002/jbmr.3167] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 11/10/2022]
Abstract
Osteocytes appear to mobilize calcium within minutes in response to PTH injections; we have previously shown that osteocytes remove their perilacunar matrix during lactation through activation of the PTH type 1 receptor. Mechanisms utilized by osteocytes to mobilize calcium are unknown but we hypothesized that the molecular components may be similar to those used by osteoclasts. Here we show, using IDG-SW3 cells that ATP6V0D2, an essential component of vacuolar ATPase in osteoclasts, and other genes associated with osteoclastic bone resorption, increase with osteoblast to osteocyte differentiation. Furthermore, PTHrP increases ATP6V0D2 expression and induces proton generation by primary osteocytes, which is blocked by bafilomycin, a vacuolar ATPase inhibitor. These in vitro proton measurements raised the question of osteocyte viability in an acidic environment. Interestingly, osteocytes, showed enhanced viability at pH as low as 5 compared to osteoblasts and fibroblasts in vitro. To study in vivo acidification by osteocytes, virgin and lactating CD1 mice on a low calcium diet were injected with the pH indicator dye, acridine orange, and their osteocyte lacuno-canalicular system imaged by confocal microscopy. Lower pH was observed in lactating compared to virgin animals. In addition, a novel transgenic mouse line with a topaz variant of green fluorescent protein (GFPtpz)-tagged collagen α2(I) chain was used. Instead of the expected reduction in GFP-fluorescence only in the perilacunar matrix, reduced fluorescence was observed in the entire bone matrix of lactating mice. Based on our experiments showing quenching of GFP in vitro, we propose that the observed reduction in GFP fluorescence in lactating mice is due to quenching of GFP by the acidic pH generated by osteocytes. Together these findings provide novel mechanistic insight into how osteocytes remove calcium from their perilacunar/pericanalicular matrices through active acidification of their microenvironment and show that osteocytes, like osteoclasts, are resistant to the negative effects of acid on viability. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Katharina Jähn
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Shilpa Kelkar
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Hong Zhao
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
148
|
Dahdouh S, Andescavage N, Yewale S, Yarish A, Lanham D, Bulas D, du Plessis AJ, Limperopoulos C. In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. J Magn Reson Imaging 2017; 47:449-458. [PMID: 28734056 DOI: 10.1002/jmri.25806] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/20/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To investigate the ability of three-dimensional (3D) MRI placental shape and textural features to predict fetal growth restriction (FGR) and birth weight (BW) for both healthy and FGR fetuses. MATERIALS AND METHODS We recruited two groups of pregnant volunteers between 18 and 39 weeks of gestation; 46 healthy subjects and 34 FGR. Both groups underwent fetal MR imaging on a 1.5 Tesla GE scanner using an eight-channel receiver coil. We acquired T2-weighted images on either the coronal or the axial plane to obtain MR volumes with a slice thickness of either 4 or 8 mm covering the full placenta. Placental shape features (volume, thickness, elongation) were combined with textural features; first order textural features (mean, variance, kurtosis, and skewness of placental gray levels), as well as, textural features computed on the gray level co-occurrence and run-length matrices characterizing placental homogeneity, symmetry, and coarseness. The features were used in two machine learning frameworks to predict FGR and BW. RESULTS The proposed machine-learning based method using shape and textural features identified FGR pregnancies with 86% accuracy, 77% precision and 86% recall. BW estimations were 0.3 ± 13.4% (mean percentage error ± standard error) for healthy fetuses and -2.6 ± 15.9% for FGR. CONCLUSION The proposed FGR identification and BW estimation methods using in utero placental shape and textural features computed on 3D MR images demonstrated high accuracy in our healthy and high-risk cohorts. Future studies to assess the evolution of each feature with regard to placental development are currently underway. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:449-458.
Collapse
Affiliation(s)
- Sonia Dahdouh
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA
| | - Nickie Andescavage
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA.,Division of Neonatology, Children's National Health System, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA
| | - Sayali Yewale
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA
| | - Alexa Yarish
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA
| | - Diane Lanham
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA
| | - Dorothy Bulas
- Diagnostic Imaging & Radiology, Children's National Health System, Washington, DC, USA
| | - Adre J du Plessis
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA.,Fetal & Transitional Medicine, Children's National Health System, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Research Laboratory, Children's National Health System, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA.,Diagnostic Imaging & Radiology, Children's National Health System, Washington, DC, USA
| |
Collapse
|
149
|
Taylor-King JP, Basanta D, Chapman SJ, Porter MA. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation. Phys Rev E 2017; 96:012301. [PMID: 29347066 DOI: 10.1103/physreve.96.012301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Indexed: 11/07/2022]
Abstract
We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.
Collapse
Affiliation(s)
- Jake P Taylor-King
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.,Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - S Jonathan Chapman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Mason A Porter
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.,Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095, USA.,CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP, United Kingdom
| |
Collapse
|
150
|
An automatic and efficient coronary arteries extraction method in CT angiographies. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|