101
|
Hazeldine J, Dinsdale RJ, Harrison P, Lord JM. Traumatic Injury and Exposure to Mitochondrial-Derived Damage Associated Molecular Patterns Suppresses Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:685. [PMID: 31001279 PMCID: PMC6455291 DOI: 10.3389/fimmu.2019.00685] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Major traumatic injury induces significant remodeling of the circulating neutrophil pool and loss of bactericidal function. Although a well-described phenomenon, research to date has only analyzed blood samples acquired post-hospital admission, and the mechanisms that initiate compromised neutrophil function post-injury are therefore poorly understood. Here, we analyzed pre-hospital blood samples acquired from 62 adult trauma patients (mean age 44 years, range 19-95 years) within 1 h of injury (mean time to sample 39 min, range 13-59 min). We found an immediate impairment in neutrophil extracellular trap (NET) generation in response to phorbol 12-myristate 13-acetate (PMA) stimulation, which persisted into the acute post-injury phase (4-72 h). Reduced NET generation was accompanied by reduced reactive oxygen species production, impaired activation of mitogen-activated protein kinases, and a reduction in neutrophil glucose uptake and metabolism to lactate. Pre-treating neutrophils from healthy subjects with mitochondrial-derived damage-associated molecular patterns (mtDAMPs), whose circulating levels were significantly increased in our trauma patients, reduced NET generation. This mtDAMP-induced impairment in NET formation was associated with an N-formyl peptide mediated activation of AMP-activated protein kinase (AMPK), a negative regulator of aerobic glycolysis and NET formation. Indeed, activation of AMPK via treatment with the AMP-mimetic AICAR significantly reduced neutrophil lactate production in response to PMA stimulation, a phenomenon that we also observed for neutrophils pre-treated with mtDAMPs. Furthermore, the impairment in NET generation induced by mtDAMPs was partially ameliorated by pre-treating neutrophils with the AMPK inhibitor compound C. Taken together, our data demonstrate an immediate trauma-induced impairment in neutrophil anti-microbial function and identify mtDAMP release as a potential initiator of acute post-injury neutrophil dysfunction.
Collapse
Affiliation(s)
- Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Robert J Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
102
|
Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, Levit RD. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol 2019; 105:1225-1234. [PMID: 30907983 DOI: 10.1002/jlb.3vma0918-374r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmune, thrombotic, malignant, and inflammatory diseases; however, little is known of their endogenous regulation under basal conditions. Inflammatory effects of neutrophils are modulated by extracellular purines such as adenosine (ADO) that is inhibitory or ATP that generally up-regulates effector functions. In order to evaluate the effects of ADO on NETs, human neutrophils were isolated from peripheral venous blood from healthy donors and stimulated to make NETs. Treatment with ADO inhibited NET production as quantified by 2 methods: SYTOX green fluorescence and human neutrophil elastase (HNE)-DNA ELISA assay. Specific ADO receptor agonist and antagonist were tested for their effects on NET production. The ADO 2A receptor (A2A R) agonist CSG21680 inhibited NETs to a similar degree as ADO, whereas the A2A R antagonist ZM241385 prevented ADO's NET-inhibitory effects. Additionally, CD73 is a membrane bound ectonucleotidase expressed on mesenchymal stromal cells (MSCs) that allows manipulation of extracellular purines in tissues such as bone marrow. The effects of MSCs on NET formation were evaluated in coculture. MSCs reduced NET formation in a CD73-dependent manner. These results imply that extracellular purine balance may locally regulate NETosis and may be actively modulated by stromal cells to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Kai Xu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Cardiovascular Medicine, Xiangya Hospital, Changsha, China
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juline N Deppen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney C Ginn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
103
|
Propofol specifically reduces PMA-induced neutrophil extracellular trap formation through inhibition of p-ERK and HOCl. Life Sci 2019; 221:178-186. [PMID: 30771312 DOI: 10.1016/j.lfs.2019.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Neutrophil extracellular traps (NETs) are net-like chromatin fibers that can trap and kill microorganisms. Although several anti-inflammatory effects of intravenous anesthetics have been reported, it has not been investigated whether intravenous anesthetics influence NET formation. AIMS To compare the effects of four intravenous anesthetics (propofol, thiamylal sodium, midazolam, and ketamine) on phorbol myristate acetate (PMA)-induced NET formation and analyze the associated signaling pathways. MATERIALS AND METHODS PMA-stimulated NETs formed in the absence or presence of intravenous anesthetics were stained with SYTOX Green and then quantified. Inhibitors were applied to investigate the related mechanism, which was confirmed by western blotting, and ROS were detected. KEY FINDINGS The neutrophils incubated with propofol showed the lowest degree of NET formation compared with those incubated with the other intravenous anesthetics. Propofol significantly reduced the level of myeloperoxidase (MPO)-derived HOCl but not that of superoxide. Aminopyrine, an MPO inhibitor, markedly decreased the number of PMA-induced NETs, indicating the involvement of HOCl in the inhibitory effect of propofol on NET formation. According to western blotting results, the level of p-ERK was reduced by propofol during PMA-induced NET formation. The ERK inhibitor PD98059 decreased NET formation but did not inhibit PMA-induced HOCl generation, and aminopyrine did not reduce ERK phosphorylation. SIGNIFICANCE Through this study, we define a new anti-inflammatory effect of intravenous anesthetics. Of the four intravenous anesthetics tested, propofol was the most potent inhibitor of NET formation. Moreover, propofol resulted in a decrease in PMA-induced NET formation by two independent mechanisms: inhibition of HOCl and p-ERK.
Collapse
|
104
|
Yang CT, Chen L, Chen WL, Li N, Chen MJ, Li X, Zheng X, Zhao YZ, Wu YX, Xian M, Liu J. Hydrogen sulfide primes diabetic wound to close through inhibition of NETosis. Mol Cell Endocrinol 2019; 480:74-82. [PMID: 30339820 DOI: 10.1016/j.mce.2018.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 01/13/2023]
Abstract
Diabetes-induced neutrophil NETosis impairs wound healing through neutrophil extracellular traps (NETs). Reactive oxygen species (ROS)-triggered activation of mitogen-activated protein kinase (MAPK) ERK1/2 and p38 is involved in NETosis. Hydrogen sulfide (H2S), an endogenous signaling molecule, accelerates diabetic wound healing (DWH), and inhibits ROS production, ERK1/2 and p38 activation, while its level is decreased in diabetes. However, it remains unknown whether H2S could accelerate DWH through inhibition of NETosis, and whether this inhibitory effect was associated with blockage of ROS-induced ERK1/2 and p38 activation. In order to solve these problems, serum NETs content was measured in diabetic foot patients and healthy individuals. Wound was created in dorsal skin of LepRdb/db and control mice and NETs content in wound tissues was tested. An in vitro NETosis model was induced by phorbol 12-myristate 13-acetate (PMA) in isolated neutrophils. Effects of H2S in form of Na2S on skin wound healing and NETosis were investigated both in vivo and in vitro. It was found that NETs level was highly increased in diabetic foot patients. Comparing with LepRm+/db mice, DWH was delayed in LepRdb/db mice, accompanied with high NETs level. In PMA-induced NETosis model, peptidylarginine deiminase (PAD)-4 and citrullinated histone H3, as well as NETs components dsDNA framework, myeloperoxidase and neutrophil elastase, were significantly increased. PMA-induced neutrophil NETosis and NETs formation were abolished by treatment with H2S. The delayed DWH of diabetic mice was partially restored by intraperitoneal injection of H2S, meanwhile, the highly expressed NETosis and NETs release were also down-regulated. The treatment with H2S not only attenuated ROS production but also abolished MAPK ERK1/2 and p38 activation. Like the effects of H2S, inhibition of MAPK ERK1/2 or p38 could decrease NETs release. These findings suggests that H2S attenuates NETosis and primes diabetic wound to heal through blockage of ROS-mediated MAPK ERK1/2 and p38 activation.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li Chen
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Ling Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Na Li
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mei-Ji Chen
- Department of Pediatrics, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510700, China
| | - Xiang Li
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue-Ze Zhao
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Xing Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511447, China
| | - Ming Xian
- Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, 511436, China; Department of Chemistry, Washington State University, Pullman, WA, 99164, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
105
|
Hu S, Liu X, Gao Y, Zhou R, Wei M, Dong J, Yan H, Zhao Y. Hepatitis B Virus Inhibits Neutrophil Extracellular Trap Release by Modulating Reactive Oxygen Species Production and Autophagy. THE JOURNAL OF IMMUNOLOGY 2018; 202:805-815. [DOI: 10.4049/jimmunol.1800871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
|
106
|
Ma F, Chang X, Wang G, Zhou H, Ma Z, Lin H, Fan H. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2. Front Immunol 2018; 9:2854. [PMID: 30581435 PMCID: PMC6292872 DOI: 10.3389/fimmu.2018.02854] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collapse
Affiliation(s)
- Fang Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
107
|
Li RHL, Tablin F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front Vet Sci 2018; 5:291. [PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 01/03/2023] Open
Abstract
Sepsis is the leading cause of critical illness and mortality in human beings and animals. Neutrophils are the primary effector cells of innate immunity during sepsis. Besides degranulation and phagocytosis, neutrophils also release neutrophil extracellular traps (NETs), composed of cell-free DNA, histones, and antimicrobial proteins. Although NETs have protective roles in the initial stages of sepsis, excessive NET formation has been found to induce thrombosis and multiple organ failure in murine sepsis models. Since the discovery of NETs nearly a decade ago, many investigators have identified NETs in various species. However, many questions remain regarding the exact mechanisms and fate of neutrophils following NET formation. In humans and mice, platelet-neutrophil interactions via direct binding or soluble mediators seem to play an important role in mediating NET formation during sepsis. Preliminary data suggest that these interactions may be species dependent. Regardless of these differences, there is increasing evidence in human and veterinary medicine suggesting that NETs play a crucial role in the pathogenesis of intravascular thrombosis and multiple organ failure in sepsis. Because the outcome of sepsis is highly dependent on early recognition and intervention, detection of NETs or NET components can aid in the diagnosis of sepsis in humans and veterinary species. In addition, the use of novel therapies such as deoxyribonuclease and non-anticoagulant heparin to target NET components shows promising results in murine septic models. Much work is needed in translating these NET-targeting therapies to clinical practice.
Collapse
Affiliation(s)
- Ronald H L Li
- Department of Radiological and Surgical Sciences, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| | - Fern Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis Davis, CA, United States
| |
Collapse
|
108
|
Khan MA, Pace-Asciak C, Al-Hassan JM, Afzal M, Liu YF, Oommen S, Paul BM, Nair D, Palaniyar N. Furanoid F-Acid F6 Uniquely Induces NETosis Compared to C16 and C18 Fatty Acids in Human Neutrophils. Biomolecules 2018; 8:biom8040144. [PMID: 30428625 PMCID: PMC6315434 DOI: 10.3390/biom8040144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/01/2023] Open
Abstract
Various biomolecules induce neutrophil extracellular trap (NET) formation or NETosis. However, the effect of fatty acids on NETosis has not been clearly established. In this study, we focused on the NETosis-inducing ability of several lipid molecules. We extracted the lipid molecules present in Arabian Gulf catfish (Arius bilineatus, Val) skin gel, which has multiple therapeutic activities. Gas chromatography⁻mass spectrometry (GC-MS) analysis of the lipid fraction-3 from the gel with NETosis-inducing activity contained fatty acids including a furanoid F-acid (F6; 12,15-epoxy-13,14-dimethyleicosa-12,14-dienoic acid) and common long-chain fatty acids such as palmitic acid (PA; C16:0), palmitoleic acid (PO; C16:1), stearic acid (SA; C18:0), and oleic acid (OA; C18:1). Using pure molecules, we show that all of these fatty acids induce NETosis to different degrees in a dose-dependent fashion. Notably, F6 induces a unique form of NETosis that is rapid and induces reactive oxygen species (ROS) production by both NADPH oxidase (NOX) and mitochondria. F6 also induces citrullination of histone. By contrast, the common fatty acids (PA, PO, SA, and OA) only induce NOX-dependent NETosis. The activation of the kinases such as ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) is important for long-chain fatty acid-induced NETosis, whereas, in F-acid-induced NETosis, Akt is additionally needed. Nevertheless, NETosis induced by all of these compounds requires the final chromatin decondensation step of transcriptional firing. These findings are useful for understanding F-acid- and other fatty acid-induced NETosis and to establish the active ingredients with therapeutic potential for regulating diseases involving NET formation.
Collapse
Affiliation(s)
- Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Cecil Pace-Asciak
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Departments of Pharmacology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jassim M Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait.
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait.
| | - Yuan Fang Liu
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Sosamma Oommen
- Department of Zoology, CMS College, Kottayam 686001, India.
| | - Bincy M Paul
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait.
| | - Divya Nair
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat 13060, Kuwait.
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Departments of Lab Medicine and Pathobiology, and Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
109
|
Wang X, Zhao J, Cai C, Tang X, Fu L, Zhang A, Han L. A Label-Free Quantitative Proteomic Analysis of Mouse Neutrophil Extracellular Trap Formation Induced by Streptococcus suis or Phorbol Myristate Acetate (PMA). Front Immunol 2018; 9:2615. [PMID: 30555459 PMCID: PMC6282035 DOI: 10.3389/fimmu.2018.02615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus suis (S. suis) ranks among the five most important porcine pathogens worldwide and occasionally threatens human health, particularly in people who come into close contact with pigs or pork products. An S. suis infection induces the formation of neutrophil extracellular traps (NETs) in vitro and in vivo, and the NET structure plays an essential role in S. suis clearance. However, the signaling pathway by which S. suis induces NET formation remains to be elucidated. In the present study, we used a label-free quantitative proteomic analysis of mouse NET formation induced by S. suis or phorbol myristate acetate (PMA), a robust NET inducer. Greater than 50% of the differentially expressed proteins in neutrophils infected by S. suis showed similar changes as observed following PMA stimulation, and PKC, NADPH oxidase, and MPO were required for NET formation induced by both stimuli. Because PMA induced robust NET formation while S. suis (MOI = 2) induced only weak NET formation, the association between the inducer and NET formation was worth considering. Interestingly, proteins involved in peptidase activity showed significant differential changes in response to each inducer. Of these peptidases, MMP-8 expression was obviously decreased in response to PMA, but it was not significantly changed in response to S. suis. A subsequent study further confirmed that MMP-8 activity was inversely correlated with NET formation induced by both stimuli. Therefore, the present study provides potentially important information about the manner by which neutrophils responded to the inducers to form NETs.
Collapse
Affiliation(s)
- Xiaoping Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Cong Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China
| | - Xiaojuan Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, International Joint Research Center for Animal Disease Control, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
110
|
Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur J Med Chem 2018; 162:176-193. [PMID: 30445266 DOI: 10.1016/j.ejmech.2018.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
[1,2,3]Triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines were synthesized with the aim to investigate their photocytotoxic activity. Upon irradiation, oxazolo-naphtapyridines induced light-dependent cell death at nanomolar/low micromolar concentrations (EC50 0.01-6.59 μM). The most photocytotoxic derivative showed very high selectivity and photocytotoxicity indexes (SI = 72-86, PTI>5000), along with a triplet excited state with exceptionally long lifetime (18.0 μs) and high molar absorptivity (29781 ± 180 M-1cm-1 at λmax 315 nm). The light-induced production of ROS promptly induced an unquenchable apoptotic process selectively in tumor cells, with mitochondrial and lysosomal involvement. Altogether, these results demonstrate that the most active compound acts as a promising singlet oxygen sensitizer for biological applications.
Collapse
|
111
|
Ricci E, Ronchetti S, Gabrielli E, Pericolini E, Gentili M, Roselletti E, Vecchiarelli A, Riccardi C. GILZ restrains neutrophil activation by inhibiting the MAPK pathway. J Leukoc Biol 2018; 105:187-194. [PMID: 30371949 DOI: 10.1002/jlb.3ab0718-255r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/11/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) exerts anti-inflammatory effects on the immune cells. However, less is known about GILZ function in neutrophils. We aimed to define the specific role of GILZ in basal neutrophil activity during an inflammatory response. GILZ knockdown resulted in a persistent activation state of neutrophils, as evidenced by increased phagocytosis, killing activity, and oxidative burst in GILZ-knockout (KO) neutrophils. This enhanced response caused severe disease in a dinitrobenzene sulfonic acid (DNBS)-induced colitis model, where GILZ-KO mice had prominent granulocytic infiltrate and excessive inflammatory state. We used a Candida albicans intraperitoneal infection model to unravel the intracellular pathways affected by GILZ expression in activated neutrophils. GILZ-KO neutrophils had stronger ability to clear the infectious agent than the wild-type (WT) neutrophils, and there was more activation of the NOX2 (NADPH oxidase 2) and p47phox proteins, which are directly involved in oxidative burst. Similarly, the MAPK pathway components, that is, ERK and p38, which are involved in the oxidative burst pathway, were highly phosphorylated in GILZ-KO neutrophils. Evaluation of GILZ expression kinetics during C. albicans infection revealed down-regulation that correlated inversely with the state of neutrophil activation, which was evaluated as oxidative burst. Overall, our findings define GILZ as a regulator of neutrophil functions, as its expression contributes to limiting neutrophil activation by reducing the activation of the signaling pathways that control the basal neutrophil functions. Controlling GILZ expression could help regulate a continuous inflammatory state that can result in chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Erika Ricci
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Elena Gabrielli
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Eva Pericolini
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Gentili
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Elena Roselletti
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Department of Medicine, Microbiology Section, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| |
Collapse
|
112
|
Muraro SP, De Souza GF, Gallo SW, Da Silva BK, De Oliveira SD, Vinolo MAR, Saraiva EM, Porto BN. Respiratory Syncytial Virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci Rep 2018; 8:14166. [PMID: 30242250 PMCID: PMC6154957 DOI: 10.1038/s41598-018-32576-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of diseases of the respiratory tract in young children and babies, being mainly associated with bronchiolitis. RSV infection occurs primarily in pulmonary epithelial cells and, once infection is established, an immune response is triggered and neutrophils are recruited. In this study, we investigated the mechanisms underlying NET production induced by RSV. We show that RSV induced the classical ROS-dependent NETosis in human neutrophils and that RSV was trapped in DNA lattices coated with NE and MPO. NETosis induction by RSV was dependent on signaling by PI3K/AKT, ERK and p38 MAPK and required histone citrullination by PAD-4. In addition, RIPK1, RIPK3 and MLKL were essential to RSV-induced NETosis. MLKL was also necessary to neutrophil necrosis triggered by the virus, likely promoting membrane-disrupting pores, leading to neutrophil lysis and NET extrusion. Finally, we found that RSV infection of alveolar epithelial cells or lung fibroblasts triggers NET-DNA release by neutrophils, indicating that neutrophils can identify RSV-infected cells and respond to them by releasing NETs. The identification of the mechanisms responsible to mediate RSV-induced NETosis may prove valuable to the design of new therapeutic approaches to treat the inflammatory consequences of RSV bronchiolitis in young children.
Collapse
Affiliation(s)
- Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90610-000, Brazil
| | - Gabriela F De Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90610-000, Brazil
| | - Stephanie W Gallo
- Laboratory of Immunology and Microbiology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90610-000, Brazil
| | - Bruna K Da Silva
- Laboratory of Immunoinflammation, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Sílvia D De Oliveira
- Laboratory of Immunology and Microbiology, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90610-000, Brazil
| | - Marco Aurélio R Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Elvira M Saraiva
- Laboratory of Immunobiology of Leishmaniasis, Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
113
|
Exogenous hydrogen sulfide protects from endothelial cell damage, platelet activation, and neutrophils extracellular traps formation in hyperhomocysteinemia rats. Exp Cell Res 2018; 370:434-443. [DOI: 10.1016/j.yexcr.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022]
|
114
|
Nissen G, Hollaender H, Tang FSM, Wegmann M, Lunding L, Vock C, Bachmann A, Lemmel S, Bartels R, Oliver BG, Burgess JK, Becker T, Kopp MV, Weckmann M. Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clin Exp Allergy 2018; 48:1483-1493. [PMID: 30028047 DOI: 10.1111/cea.13236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/11/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease with structural changes present. Burgess and colleagues recently found tumstatin markedly reduced in adult asthmatic lung tissue compared with nonasthmatics. ECM fragments such as tumstatin are named matrikines and act independently of the parent molecule. The role of Col IV matrikines in neutrophil inflammation (eg. exacerbation in asthma) has not been investigated to date. Severe adult asthma phenotypes are dominated by neutrophilic inflammation and show a high frequency of severe exacerbations. OBJECTIVE This study sought to investigate the role of a novel active region within tumstatin (CP17) and its implication in neutrophil inflammatory responses related to asthma exacerbation. METHODS For reactive oxygen production, isolated neutrophils were preincubated with peptides or vehicle for 1 hour and stimulated (PMA). Luminescence signal was recorded (integration over 10 seconds) for 1.5 hours. Neutrophil migration was performed according to the SiMA protocol. Mice were sensitized to OVA/Alumn by intraperitoneal (i.p.) injections. Mice were then treated with CP17, vehicle (PBS) or scrambled peptide (SP17) after OVA exposure (days 27 and 28, polyI:C stimulation). All animals were killed on day 29 with lung function measurement, histology and lavage. RESULTS CP17 decreased total ROS production rate to 52.44% (0.5 μmol/L, P < 0.05 vs SP17), reduced the in vitro directionality (vs SP17, P = 1 × 10-6 ) and migration speed (5 μmol/L, P = 1 × 10-3 ). In vivo application of CP17 decreased neutrophil inflammation ~1.8-fold (P < 0.001 vs SP17) and reduced numbers of mucus-producing cells (-29%, P < 0.05). CONCLUSION CP17 reduced the ROS production rate, migrational speed and selectively inhibited neutrophil accumulation in the lung interstitium and lumen. CLINICAL RELEVANCE CP17 may serve as a potential precursor for drug development to combat overwhelming neutrophil inflammation.
Collapse
Affiliation(s)
- Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Henrike Hollaender
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Francesca S M Tang
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael Wegmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Asthma Exacerbation & Regulation, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lars Lunding
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Asthma Exacerbation & Regulation, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christina Vock
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Division of Experimental Pneumology, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Anna Bachmann
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Solveig Lemmel
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Rainer Bartels
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Program Area Asthma & Allergy, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Division of Structural Biochemistry, Program Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Brian G Oliver
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Janette K Burgess
- Respiratory Cell and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tim Becker
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany.,Division of Cell Technology, Fraunhofer Institute for Marine Biotechnology (Fraunhofer EMB), Lübeck, Germany
| | - Matthias V Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| | - Markus Weckmann
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Luebeck, Germany
| |
Collapse
|
115
|
Lou H, Pickering MC. Extracellular DNA and autoimmune diseases. Cell Mol Immunol 2018; 15:746-755. [PMID: 29553134 PMCID: PMC6141478 DOI: 10.1038/cmi.2017.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
Extracellular DNA is secreted from various sources including apoptotic cells, NETotic neutrophils and bacterial biofilms. Extracellular DNA can stimulate innate immune responses to induce type-I IFN production after being endocytosed. This process is central in antiviral responses but it also plays important role in the pathogenesis of a range of autoimmune diseases such as systemic lupus erythematosus. We discuss the recent advances in the understanding of the role of extracellular DNA, released from apoptotic and NETotic cells, in autoimmunity.
Collapse
Affiliation(s)
- Hantao Lou
- Molecular Immunology, Imperial College London, London, UK, W12 0NN.
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College London, London, UK, W12 0NN
| |
Collapse
|
116
|
Cheng C, Zou Y, Peng J. Oregano Essential Oil Attenuates RAW264.7 Cells from Lipopolysaccharide-Induced Inflammatory Response through Regulating NADPH Oxidase Activation-Driven Oxidative Stress. Molecules 2018; 23:molecules23081857. [PMID: 30049950 PMCID: PMC6222776 DOI: 10.3390/molecules23081857] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Oregano is an aromatic plant widely distributed throughout the Mediterranean area and in Asia. Recent studies have revealed that the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. This study determined whether oregano essential oil (OEO) exerts an anti-inflammatory effect on lipopolysaccharide (LPS)-treated murine macrophage cells (RAW264.7 cells) in vitro and elucidated the possible underlying molecular mechanisms. The results showed that OEO (2.5–10 μg/mL) inhibited the expression and secretion of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in RAW264.7 cells treated with LPS (1 μg/mL). Consistent with the pro-inflammatory gene expression, the OEO treatment efficiently reduced the LPS-induced activation of mitogen-activated protein kinase, protein kinase B, and nuclear factor κB in RAW264.7 cells. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition in Nox2 protein-silenced cells attenuated the mRNA expression of IL-1β, IL-6, and TNF-α in the LPS-induced RAW264.7 cells. The OEO inhibited the LPS-induced elevation of NADPH oxidase and oxidative stress. This result suggests that LPS induces RAW264.7 cell inflammation through the NADPH oxidase-mediated production of reactive oxygen species (ROS). In conclusion, OEO protects against the LPS-induced RAW264.7 cell inflammatory response through the NADPH oxidase/ROS pathway.
Collapse
Affiliation(s)
- Chuanshang Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yi Zou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
117
|
Claushuis TAM, van der Donk LEH, Luitse AL, van Veen HA, van der Wel NN, van Vught LA, Roelofs JJTH, de Boer OJ, Lankelma JM, Boon L, de Vos AF, van 't Veer C, van der Poll T. Role of Peptidylarginine Deiminase 4 in Neutrophil Extracellular Trap Formation and Host Defense during Klebsiella pneumoniae-Induced Pneumonia-Derived Sepsis. THE JOURNAL OF IMMUNOLOGY 2018; 201:1241-1252. [PMID: 29987161 DOI: 10.4049/jimmunol.1800314] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022]
Abstract
Peptidylarginine deiminase 4 (PAD4) catalyzes citrullination of histones, an important step for neutrophil extracellular trap (NET) formation. We aimed to determine the role of PAD4 during pneumonia. Markers of NET formation were measured in lavage fluid from airways of critically ill patients. NET formation and host defense were studied during pneumonia-derived sepsis caused by Klebsiella pneumoniae in PAD4+/+ and PAD4-/- mice. Patients with pneumosepsis, compared with those with nonpulmonary disease, showed increased citrullinated histone 3 (CitH3) levels in their airways and a trend toward elevated levels of NET markers cell-free DNA and nucleosomes. During murine pneumosepsis, CitH3 levels were increased in the lungs of PAD4+/+ but not of PAD4-/- mice. Combined light and electron microscopy showed NET-like structures surrounding Klebsiella in areas of CitH3 staining in the lung; however, these were also seen in PAD4-/- mice with absent CitH3 lung staining. Moreover, cell-free DNA and nucleosome levels were mostly similar in both groups. Moreover, Klebsiella and LPS could still induce NETosis in PAD4-/- neutrophils. Both groups showed largely similar bacterial growth, lung inflammation, and organ injury. In conclusion, these data argue against a major role for PAD4 in NET formation, host defense, or organ injury during pneumonia-derived sepsis.
Collapse
Affiliation(s)
- Theodora A M Claushuis
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| | - Lieve E H van der Donk
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Anna L Luitse
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Henk A van Veen
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jacqueline M Lankelma
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Louis Boon
- Bioceros, 3584 CM Utrecht, the Netherlands; and
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
118
|
Li Y, Cao X, Liu Y, Zhao Y, Herrmann M. Neutrophil Extracellular Traps Formation and Aggregation Orchestrate Induction and Resolution of Sterile Crystal-Mediated Inflammation. Front Immunol 2018; 9:1559. [PMID: 30034398 PMCID: PMC6043642 DOI: 10.3389/fimmu.2018.01559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) to immobilize pathogens represents a novel antimicrobial strategy of the immune system. The microcrystals related to human diseases are classified into endogenous microcrystals, including monosodium urate (MSU), calcium pyrophosphate dihydrate, calcium carbonate, calcium phosphate, calcium oxalate, cholesterol, and exogenous material like crystals from silica. Although microcrystals possess distinct compositions and shapes, they have a common characteristic: they stimulate neutrophils to release NETs. In low and high densities, neutrophils form NETs and aggregated NETs (aggNETs) that reportedly orchestrate the initiation and resolution of sterile crystal-mediated inflammation, respectively. Here, we summarize the different roles of NETs and aggNETs stimulated by the crystals mentioned above in related inflammatory reactions. The NETosis-derived products may represent a potential therapeutic target in crystal-mediated diseases.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Cao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
119
|
Fonseca Z, Díaz-Godínez C, Mora N, Alemán OR, Uribe-Querol E, Carrero JC, Rosales C. Entamoeba histolytica Induce Signaling via Raf/MEK/ERK for Neutrophil Extracellular Trap (NET) Formation. Front Cell Infect Microbiol 2018; 8:226. [PMID: 30023352 PMCID: PMC6039748 DOI: 10.3389/fcimb.2018.00226] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/15/2018] [Indexed: 12/25/2022] Open
Abstract
Amoebiasis, the disease caused by Entamoeba histolytica is the third leading cause of human deaths among parasite infections. E. histolytica was reported associated with around 100 million cases of amoebic dysentery, colitis and amoebic liver abscess that lead to almost 50,000 fatalities worldwide in 2010. E. histolytica infection is associated with the induction of inflammation characterized by a large number of infiltrating neutrophils. These neutrophils have been implicated in defense against this parasite, by mechanisms not completely described. The neutrophil antimicrobial mechanisms include phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs). Recently, our group reported that NETs are also produced in response to E. histolytica trophozoites. But, the mechanism for NETs induction remains unknown. In this report we explored the possibility that E. histolytica leads to NETs formation via a signaling pathway similar to the pathways activated by PMA or the Fc receptor FcγRIIIb. Neutrophils were stimulated by E. histolytica trophozoites and the effect of various pharmacological inhibitors on amoeba-induced NETs formation was assessed. Selective inhibitors of Raf, MEK, and NF-κB prevented E. histolytica-induced NET formation. In contrast, inhibitors of PKC, TAK1, and NADPH-oxidase did not block E. histolytica-induced NETs formation. E. histolytica induced phosphorylation of ERK in a Raf and MEK dependent manner. These data show that E. histolytica activates a signaling pathway to induce NETs formation, that involves Raf/MEK/ERK, but it is independent of PKC, TAK1, and reactive oxygen species (ROS). Thus, amoebas activate neutrophils via a different pathway from the pathways activated by PMA or the IgG receptor FcγRIIIb.
Collapse
Affiliation(s)
- Zayda Fonseca
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - César Díaz-Godínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nancy Mora
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar R Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
120
|
Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med Hypotheses 2018; 116:61-73. [DOI: 10.1016/j.mehy.2018.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 10/27/2017] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
|
121
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
122
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
123
|
Soustek MS, Balsa E, Barrow JJ, Jedrychowski M, Vogel R, Jan Smeitink, Gygi SP, Puigserver P. Inhibition of the ER stress IRE1α inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death Dis 2018; 9:658. [PMID: 29855477 PMCID: PMC5981317 DOI: 10.1038/s41419-018-0696-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial mutations cause bioenergetic defects associated with failures to use the electron transfer chain and oxidize substrates. These defects are exacerbated under energetic stress conditions and ultimately cause cell deterioration and death. However, little is known about cellular strategies that rescue mitochondrial stress failures and maintain cell survival under these conditions. Here, we have designed and performed a high-throughput chemical screen to identify small molecules that rescue human mitochondrial complex I mutations from energetic stress-induced cell death. The top positive hits were a series of sulfonylureas that efficiently maintain prolonged cell survival and growth under energetic stress conditions. The addition of galactose instead of glucose, to experimentally force mitochondrial respiration, triggered an initial ER stress response that was associated with IRE1α-dependent inflammatory signals including JNK and p38 MAP kinases in mutant cells. Sulfonylureas, similar to inhibition of IRE1α and p38 MAP kinase, potently blocked this ER stress inflammatory and cell death pathway and maintained viability and cell growth under severe energetic stress conditions. These studies reveal that sulfonylureas and specific inhibition of the IRE1α inflammatory pathway protect against cell death and can be used to rescue bioenergetic failures in mitochondrial complex I-mutated cells under stress conditions.
Collapse
Affiliation(s)
- Meghan S Soustek
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Joeva J Barrow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Mark Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Rutger Vogel
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
124
|
Bruschi M, Petretto A, Vaglio A, Santucci L, Candiano G, Ghiggeri GM. Annexin A1 and Autoimmunity: From Basic Science to Clinical Applications. Int J Mol Sci 2018; 19:ijms19051348. [PMID: 29751523 PMCID: PMC5983684 DOI: 10.3390/ijms19051348] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023] Open
Abstract
Annexin A1 is a protein with multifunctional roles in innate and adaptive immunity mainly devoted to the regulation of inflammatory cells and the resolution of inflammation. Most of the data regarding Annexin A1 roles in immunity derive from cell studies and from mice models lacking Annexin A1 for genetic manipulation (Annexin A1−/−); only a few studies sought to define how Annexin A1 is involved in human diseases. High levels of anti-Annexin A1 autoantibodies have been reported in systemic lupus erythematosus (SLE), suggesting this protein is implicated in auto-immunity. Here, we reviewed the evidence available for an association of anti-Annexin A1 autoantibodies and SLE manifestations, in particular in those cases complicated by lupus nephritis. New studies show that serum levels of Annexin A1 are increased in patients presenting renal complications of SLE, but this increment does not correlate with circulating anti-Annexin A1 autoantibodies. On the other hand, high circulating Annexin A1 levels cannot explain per se the development of autoantibodies since post-translational modifications are necessary to make a protein immunogenic. A hypothesis is presented here and discussed regarding the possibility that Annexin A1 undergoes post-translational modifications as a part of neutrophil extracellular traps (NETs) that are produced in response to viral, bacterial, and/or inflammatory triggers. In particular, focus is on the process of citrullination of Annexin A1, which takes place within NETs and that mimics, to some extent, other autoimmune conditions, such as rheumatoid arthritis, that are characterized by the presence of anti-citrullinated peptides in circulation. The description of pathologic pathways leading to modification of Annexin A1 as a trigger of autoimmunity is a cognitive evolution, but requires more experimental data before becoming a solid concept for explaining autoimmunity in human beings.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini, Largo Gaslini n 5, 16147 Genoa, Italy.
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Largo Gaslini n 5, 16147 Genoa, Italy.
| | - Augusto Vaglio
- Nephrology Unit, University Hospital, University of Parma, Viale Gramsci n 14, 43100 Parma, Italy.
| | - Laura Santucci
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini, Largo Gaslini n 5, 16147 Genoa, Italy.
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, Istituto Giannina Gaslini, Largo Gaslini n 5, 16147 Genoa, Italy.
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, and Transplantation, Scientific Institute for Research and Health Care (IRCCS), Istituto Giannina Gaslini, Largo Gaslini n 5, 16148 Genoa, Italy.
| |
Collapse
|
125
|
Lavoie SS, Dumas E, Vulesevic B, Neagoe PE, White M, Sirois MG. Synthesis of Human Neutrophil Extracellular Traps Contributes to Angiopoietin-Mediated In Vitro Proinflammatory and Proangiogenic Activities. THE JOURNAL OF IMMUNOLOGY 2018; 200:3801-3813. [DOI: 10.4049/jimmunol.1701203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/02/2018] [Indexed: 01/08/2023]
|
126
|
Chicca IJ, Milward MR, Chapple ILC, Griffiths G, Benson R, Dietrich T, Cooper PR. Development and Application of High-Content Biological Screening for Modulators of NET Production. Front Immunol 2018; 9:337. [PMID: 29556228 PMCID: PMC5844942 DOI: 10.3389/fimmu.2018.00337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA-based antimicrobial web-like structures whose release is predominantly mediated by reactive oxygen species (ROS); their purpose is to combat infections. However, unbalanced NET production and clearance is involved in tissue injury, circulation of auto-antibodies and development of several chronic diseases. Currently, there is lack of agreement regarding the high-throughput methods available for NET investigation. This study, therefore, aimed to develop and optimize a high-content analysis (HCA) approach, which can be applied for the assay of NET production and for the screening of compounds involved in the modulation of NET release. A suitable paraformaldehyde fixation protocol was established to enable HCA of neutrophils and NETs. Bespoke and in-built bioinformatics algorithms were validated by comparison with standard low-throughput approaches for application in HCA of NETs. Subsequently, the optimized protocol was applied to high-content screening (HCS) of a pharmaceutically derived compound library to identify modulators of NETosis. Of 56 compounds assessed, 8 were identified from HCS for further characterization of their effects on NET formation as being either inducers, inhibitors or biphasic modulators. The effects of these compounds on naïve neutrophils were evaluated by using specific assays for the induction of ROS and NET production, while their modulatory activity was validated in phorbol 12-myristate 13-acetate-stimulated neutrophils. Results indicated the involvement of glutathione reductase, Src family kinases, molecular-target-of-Rapamycin, and mitogen-activated-protein-kinase pathways in NET release. The compounds and pathways identified may provide targets for novel therapeutic approaches for treating NET-associated pathologies.
Collapse
Affiliation(s)
- Ilaria J Chicca
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom.,Imagen Therapeutics Ltd., Manchester, United Kingdom
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Iain Leslie C Chapple
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Rod Benson
- Imagen Therapeutics Ltd., Manchester, United Kingdom
| | - Thomas Dietrich
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R Cooper
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
127
|
Manfredi AA, Ramirez GA, Rovere-Querini P, Maugeri N. The Neutrophil's Choice: Phagocytose vs Make Neutrophil Extracellular Traps. Front Immunol 2018. [PMID: 29515586 PMCID: PMC5826238 DOI: 10.3389/fimmu.2018.00288] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neutrophils recognize particulate substrates of microbial or endogenous origin and react by sequestering the cargo via phagocytosis or by releasing neutrophil extracellular traps (NETs) outside the cell, thus modifying and alerting the environment and bystander leukocytes. The signals that determine the choice between phagocytosis and the generation of NETs are still poorly characterized. Neutrophils that had phagocytosed bulky particulate substrates, such as apoptotic cells and activated platelets, appear to be “poised” in an unresponsive state. Environmental conditions, the metabolic, adhesive and activation state of the phagocyte, and the size of and signals associated with the tethered phagocytic cargo influence the choice of the neutrophils, prompting either phagocytic clearance or the generation of NETs. The choice is dichotomic and apparently irreversible. Defects in phagocytosis may foster the intravascular generation of NETs, thus promoting vascular inflammation and morbidities associated with diseases characterized by defective phagocytic clearance, such as systemic lupus erythematosus. There is a strong potential for novel treatments based on new knowledge of the events determining the inflammatory and pro-thrombotic function of inflammatory leukocytes.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele, Milano, Italy.,Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
128
|
|
129
|
Dehdashtian E, Mehrzadi S, Yousefi B, Hosseinzadeh A, Reiter RJ, Safa M, Ghaznavi H, Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193:20-33. [DOI: 10.1016/j.lfs.2017.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/19/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
|
130
|
Azithromycin and Chloramphenicol Diminish Neutrophil Extracellular Traps (NETs) Release. Int J Mol Sci 2017; 18:ijms18122666. [PMID: 29292737 PMCID: PMC5751268 DOI: 10.3390/ijms18122666] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are one of the first cells to arrive at the site of infection, where they apply several strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil extracellular traps (NETs). Antibiotics have an immunomodulating effect, and they can influence the properties of numerous immune cells, including neutrophils. The aim of this study was to investigate the effects of azithromycin and chloramphenicol on degranulation, apoptosis, respiratory burst, and the release of NETs by neutrophils. Neutrophils were isolated from healthy donors by density-gradient centrifugation method and incubated for 1 h with the studied antibiotics at different concentrations (0.5, 10 and 50 μg/mL—azithromycin and 10 and 50 μg/mL—chloramphenicol). Next, NET release was induced by a 3 h incubation with 100 nM phorbol 12-myristate 13-acetate (PMA). Amount of extracellular DNA was quantified by fluorometry, and NETs were visualized by immunofluorescent microscopy. Degranulation, apoptosis and respiratory burst were assessed by flow cytometry. We found that pretreatment of neutrophils with azithromycin and chloramphenicol decreases the release of NETs. Moreover, azithromycin showed a concentration-dependent effect on respiratory burst in neutrophils. Chloramphenicol did not affect degranulation, apoptosis nor respiratory burst. It can be concluded that antibiotics modulate the ability of neutrophils to release NETs influencing human innate immunity.
Collapse
|
131
|
Zielonka J, Hardy M, Michalski R, Sikora A, Zielonka M, Cheng G, Ouari O, Podsiadły R, Kalyanaraman B. Recent Developments in the Probes and Assays for Measurement of the Activity of NADPH Oxidases. Cell Biochem Biophys 2017; 75:335-349. [PMID: 28660426 PMCID: PMC5693611 DOI: 10.1007/s12013-017-0813-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 01/18/2023]
Abstract
NADPH oxidases are a family of enzymes capable of transferring electrons from NADPH to molecular oxygen. A major function of NADPH oxidases is the activation of molecular oxygen into reactive oxygen species. Increased activity of NADPH oxidases has been implicated in various pathologies, including cardiovascular disease, neurological dysfunction, and cancer. Thus, NADPH oxidases have been identified as a viable target for the development of novel therapeutics exhibiting inhibitory effects on NADPH oxidases. Here, we describe the development of new assays for measuring the activity of NADPH oxidases enabling the high-throughput screening for NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013, Marseille, France
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
132
|
Richards CE, Vellanki SH, Smith YE, Hopkins AM. Diterpenoid natural compound C4 (Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species. Cell Oncol (Dordr) 2017; 41:35-46. [PMID: 29134467 DOI: 10.1007/s13402-017-0357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Triple-negative breast cancers (TNBC) lack expression of three common cell surface receptors, i.e., estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). Accordingly, TNBCs are associated with fewer treatment options and a relatively poor prognosis. Having screened a National Cancer Institute natural compound library, the purpose of this study was to investigate the bioactivity of compound C4 (Crassin) in TNBC cells. METHODS Cell viability assays were performed in two TNBC cell lines, MDA-MB-231 and 4T1, following C4 treatment in the presence or absence of the antioxidant N-acetyl-L-cysteine (NAC). Phosphorylation of Akt and ERK was assessed by Western blotting. Apoptosis, necrosis, autophagy, necroptosis, ferroptosis and cytostasis assays were performed to explain viability deficits resulting from C4 exposure. RESULTS We found that the viability of the TNBC cells tested decreased in a concentration- and time-dependent fashion following C4 treatment. This decrease coincided with an unexpected increase in the expression of the cell survival effectors pAkt and pERK. In addition, we found that both the decreased cell viability and the increased pAkt/pERK levels could be rescued by the antioxidant NAC, suggesting a central role for reactive oxygen species (ROS) in the mechanism of action of C4. Necrosis, apoptosis, necroptosis and ferroptosis could be ruled out as cell death mechanisms. Instead, we found that C4 induced cytostasis downstream of ROS activation. Finally, we observed a synergistic effect between C4 and the chemotherapeutic drug doxorubicin in TNBC cells. CONCLUSIONS From our in vitro data we conclude that C4 exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species. Its potential value in combination with cytotoxic therapies merits deeper investigation in pre-clinical models.
Collapse
Affiliation(s)
- Cathy E Richards
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sri H Vellanki
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yvonne E Smith
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Royal College of Surgeons in Ireland, RCSI Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
133
|
Kaur H, Siraki AG, Uludağ H, Dederich DN, Flood P, El-Bialy T. Role of Reactive Oxygen Species during Low-Intensity Pulsed Ultrasound Application in MC-3 T3 E1 Pre-osteoblast Cell Culture. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2699-2712. [PMID: 28807447 DOI: 10.1016/j.ultrasmedbio.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/02/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We evaluated the activation of mitogen-activated protein kinase (MAPK) activation through reactive oxygen species (ROS) by application of low-intensity ultrasound (LIPUS) to MC-3 T3 E1 pre-osteoblasts. The cells were subjected to one LIPUS application for either 10 or 20 min, and the control group was exposed to a sham transducer. For ROS inhibition, 10 μM diphenylene iodonium (DPI) was added to the cells an hour before LIPUS application. Samples were collected 1, 3, 6, 12 and 24 h after LIPUS application, and cells were evaluated for ROS generation, cell viability, gene expression and MAPK activation by immunoblot analyses. LIPUS caused a significant increase in ROS and cell viability in the non-DPI-treated group. Expression of RUNX2, OCN and OPN mRNA was higher in the LIPUS-treated groups at 1 h in both the DPI-treated and non-DPI-treated groups; RUNX2 and OCN mRNA levels increased at 6 h. ERK1/2 activation was increased in the LIPUS-treated groups. These results indicate that LIPUS activates MAPK by ROS generation in MC-3 T3 E1 pre-osteoblasts.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Dentistry, University of Alberta, Edmonton, Alberta Canada.
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Biomedical Engineering, Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas N Dederich
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Flood
- Department of Dentistry, Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
134
|
Cheng PW, Lin YT, Ho WY, Lu PJ, Chen HH, Lai CC, Sun GC, Yeh TC, Hsiao M, Tseng CJ, Liu CP. Fructose induced neurogenic hypertension mediated by overactivation of p38 MAPK to impair insulin signaling transduction caused central insulin resistance. Free Radic Biol Med 2017; 112:298-307. [PMID: 28754499 DOI: 10.1016/j.freeradbiomed.2017.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Type 2 diabetes are at a high risk of complications related to hypertension, and reports have indicated that insulin levels may be associated with blood pressure (BP). Fructose intake has recently been reported to promote insulin resistance and superoxide formation. The aim of this study is to investigate whether fructose intake can enhance superoxide generation and impair insulin signaling in the NTS and subsequently elevate BP in rats with fructose-induced hypertension. Treatment with fructose for 4 weeks increased the BP, serum fasting insulin, glucose, homeostatic model assessment-insulin resistance, and triglyceride levels and reduced the serum direct high-density lipoprotein level in the fructose group. The Tempol treatment recovered the fructose-induced decrease in nitric oxide production in the NTS. Immunoblotting and immunofluorescence analyses further showed that fructose increased the p38- and fructose-induced phosphorylation of insulin receptor substrate 1 (IRS1S307) and suppressed AktS473 and neuronal nitric oxide synthase phosphorylation. Similarly, fructose was able to impair insulin sensitivity and increase insulin levels in the NTS. Fructose intake also increased the production of superoxide in the NTS. The results of this study suggest that fructose might induce central insulin resistance and elevate BP by enhancing superoxide production and activating p38 phosphorylation in the NTS.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Yu-Te Lin
- Section of Neurology, Kaohsiung Veterans General Hospital, Taiwan; Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Yu Ho
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chi-Cheng Lai
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tung-Chen Yeh
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Peng Liu
- Department of Administration, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Section of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
135
|
Arumugam S, Girish Subbiah K, Kemparaju K, Thirunavukkarasu C. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: Therapeutic potential of NOX2 and p38MAPK inhibitors. J Cell Physiol 2017; 233:3244-3261. [PMID: 28884828 DOI: 10.1002/jcp.26167] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Neutrophil is a significant contributor to ischemia reperfusion (IR) induced liver tissue damage. However, the exact role of neutrophils in IR induced innate immune activation and liver damage is not quite clear. Our study sheds light on the role of chronic oxidative stress end products in worsening the IR inflammatory process by neutrophil recruitment and activation following liver surgery. We employed specific inhibitors for molecular targets-NOX2 (NADPH oxidase 2) and P38 MAPK (Mitogen activated protein kinase) signal to counteract neutrophil activation and neutrophil extracellular trap (NET) release induced liver damage in IR injury. We found that acrolein initiated neutrophil chemotaxis and induced NET release both in vitro and in vivo. Acrolein exposure caused NET induced nuclear and mitochondrial damage in HepG2 cells as well as aggravated the IR injury in rat liver. Pretreatment with F-apocynin and naringin, efficiently suppressed acrolein induced NET release in vitro. Notably, it suppressed the expression of inflammatory cytokines, P38MAPK-ERK activation, and apoptotic signals in rat liver exposed to acrolein and subjected to IR. Moreover, this combination effectively attenuated acrolein induced NET release and hepatic IR injury. In the current study we have shown that the acrolein accumulation in liver due to chronic stress, is responsible for neutrophil recruitment and its activation leading to NET induced liver damage during surgery. Our study shows that therapeutic targeting of NOX2 and P38MAPK signaling in patients with chronic hepatic disorders would improve post operative hepatic function and survival.
Collapse
Affiliation(s)
- Suyavaran Arumugam
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| | | | | | - Chinnasamy Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
136
|
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Kozik A, Rapala-Kozik M. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:414. [PMID: 28983472 PMCID: PMC5613151 DOI: 10.3389/fcimb.2017.00414] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Karolina Seweryn-Ozog
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
137
|
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0300. [PMID: 27160602 DOI: 10.1098/rstb.2015.0300] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Jeremie Vidal-Dupiol
- Ifremer, UMR 241 EIO, LabexCorail, BP 7004, 98719 Taravao, Tahiti, French Polynesia
| | - Guillaume Mitta
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Yannick Gueguen
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Evelyne Bachère
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| |
Collapse
|
138
|
Zhu S, Luo H, Liu H, Ha Y, Mays ER, Lawrence RE, Winkelmann E, Barrett AD, Smith SB, Wang M, Wang T, Zhang W. p38MAPK plays a critical role in induction of a pro-inflammatory phenotype of retinal Müller cells following Zika virus infection. Antiviral Res 2017; 145:70-81. [PMID: 28739278 DOI: 10.1016/j.antiviral.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
Zika virus (ZIKV) infection has been associated with ocular abnormalities such as chorioretinal atrophy, optic nerve abnormalities, posterior uveitis and idiopathic maculopathy. Yet our knowledge about ZIKV infection in retinal cells and its potential contribution to retinal pathology is still very limited. Here we found that primary Müller cells, the principal glial cells in the retina, expressed a high level of ZIKV entry cofactor AXL gene and were highly permissive to ZIKV infection. In addition, ZIKV-infected Müller cells exhibited a pro-inflammatory phenotype and produced many inflammatory and growth factors. While a number of inflammatory signaling pathways such as ERK, p38MAPK, NF-κB, JAK/STAT3 and endoplasmic reticulum stress were activated after ZIKV infection, inhibition of p38MAPK after ZIKV infection most effectively blocked ZIKV-induced inflammatory and growth molecules. In comparison to ZIKV, Dengue virus (DENV), another Flavivirus infected Müller cells more efficiently but induced much lower pro-inflammatory responses. These data suggest that Müller cells play an important role in ZIKV-induced ocular pathology by induction of inflammatory and growth factors in which the p38MAPK pathway has a central role. Blocking p38MAPK may provide a novel approach to control ZIKV-induced ocular inflammation.
Collapse
Affiliation(s)
- Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Huanle Luo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Elizabeth R Mays
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Ryan E Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Evandro Winkelmann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D Barrett
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Augusta University, Augusta, GA, 30912, USA
| | - Min Wang
- FutraTech Inc., San Diego, CA, 92121, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA; Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
139
|
Wang J, Du H, Nie Y, Wang Y, Dai H, Wang M, Wang D, Xu A. Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans. Toxicol Res (Camb) 2017; 6:412-419. [PMID: 30090509 PMCID: PMC6062295 DOI: 10.1039/c7tx00046d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
Endosulfan as a new member of persistent organic pollutants has been shown to induce apoptosis in various animal models. However, the mechanism underlying endosulfan-induced apoptosis has not been well elucidated thus far. Caenorhabditis elegans N2 wild type and mutant strains were used in the present study to clarify the roles of the mitochondria, the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway, and mitogen-activated protein kinase (MAPK) cascades in α-endosulfan-induced apoptosis. Our results demonstrated a dose- and time-dependent increase of apoptosis in the meiotic zone of the gonad of C. elegans exposed to graded concentrations of endosulfan. The expression levels of sod-3, localized in the mitochondrial matrix, increased greatly after endosulfan exposure. A significant increase in germ cell apoptosis was observed in abnormal methyl viologen sensitivity-1 (mev-1(kn-1)) mutants (with abnormal mitochondrial respiratory chain complex II and higher ROS levels) compared to that in N2 at equal endosulfan concentrations. We found that the insulin/IGF-1 signaling pathway and its downstream Ras/ERK/MAPK did not participate in the endosulfan-induced apoptosis. However, the apoptosis in the loss-of-function strains of JNK and p38 MAPK signaling pathways was completely or mildly suppressed under endosulfan stress. The apoptotic effects of endosulfan were blocked in the mutants of jnk-1/JNK-MAPK, sek-1/MAP2K, and pmk-1/p38-MAPK, suggesting that these downstream genes play an essential role in endosulfan-induced germ cell apoptosis. In contrast, the mkk-4/MAP2K and nsy-1/MAP3K were only partially involved in the apoptosis induction. Our data provide evidence that endosulfan increases germ cell apoptosis, which is regulated by mitochondrial function, JNK and p38 MAPK cascades. These findings contribute to the understanding of the signal transduction pathways involved in endosulfan-induced apoptosis.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Hua Du
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yaguang Nie
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yun Wang
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , P. R. China
| | - Hui Dai
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Mudi Wang
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Dayan Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| |
Collapse
|
140
|
Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, Palaniyar N. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Sci Rep 2017; 7:3409. [PMID: 28611461 PMCID: PMC5469795 DOI: 10.1038/s41598-017-03257-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/27/2017] [Indexed: 01/07/2023] Open
Abstract
Neutrophils cast neutrophil extracellular traps (NETs) to ensnare microbial pathogens. Nevertheless, the molecular rheostats that regulate NETosis in response to bacteria are not clearly established. We hypothesized that stress-activated protein kinase or c-Jun N-terminal Kinase (SAPK/JNK) is a molecular switch that turns on NETosis in response to increasing concentrations of lipopolysaccharide (LPS)- and Gram-negative bacteria. Here we show that Escherichia coli LPS (0111:B4; 10–25 μg/ml), but not phorbol myristate acetate (PMA), activates JNK in human neutrophils in a dose-dependent manner. JNK inhibitors SP600125 and TCSJNK6o, and a TLR4 inhibitor TAK242 suppress reactive oxygen species production and NETosis in LPS-, but not PMA-treated neutrophils. Diphenyleneiodonium suppresses LPS-induced NETosis, confirming that endotoxin induces NADPH oxidase-dependent NETosis. Immunoblots, Sytox Green assays, and confocal microscopy of cleaved caspase-3 and nuclear morphology show that JNK inhibition does not induce apoptosis in LPS-stimulated neutrophils. JNK inhibition also suppresses NETosis induced by two typical Gram-negative bacteria, E. coli and Pseudomonas aeruginosa. Therefore, we propose that neutrophils use a TLR4-dependent, JNK-mediated molecular sensing mechanism to initiate NADPH oxidase-dependent suicidal NETosis in response to increasing concentrations of LPS, and Gram-negative bacteria. The LPS-TLR4-JNK activation axis determines the fate of these cells: to be or not to be NETotic neutrophils.
Collapse
Affiliation(s)
- Meraj A Khan
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Armin Farahvash
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David N Douda
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Johann-Christoph Licht
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil Sweezey
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
141
|
Liu T, Wang FP, Wang G, Mao H. Role of Neutrophil Extracellular Traps in Asthma and Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2017; 130:730-736. [PMID: 28303858 PMCID: PMC5358425 DOI: 10.4103/0366-6999.201608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: Asthma and chronic obstructive pulmonary disease (COPD) are representative chronic inflammatory airway diseases responsible for a considerable burden of disease. In this article, we reviewed the relationship between neutrophil extracellular traps (NETs) and chronic inflammatory airway diseases. Data Sources: Articles published up to January 1, 2017, were selected from the PubMed, Ovid Medline, Embase databases, with the keywords of “asthma” or “pulmonary disease, chronic obstructive”, “neutrophils” and “extracellular traps.” Study Selection: Articles were obtained and reviewed to analyze the role of NETs in asthma and COPD. Results: NETs are composed of extracellular DNA, histones, and granular proteins, which are released from activated neutrophils. Multiple studies have indicated that there are a large amount of NETs in the airways of asthmatics and COPD patients. NETs can engulf and kill invading pathogens in the host. However, disordered regulation of NET formation has shown to be involved in the development of asthma and COPD. An overabundance of NETs in the airways or lung tissue could cause varying degrees of damage to lung tissues by inducing the death of human epithelial and endothelial cells, and thus resulting in impairing pulmonary function and accelerating the progress of the disease. Conclusions: Excessive NETs accumulate in the airways of asthmatics and COPD patients. Although NETs play an essential role in the innate immune system against infection, excessive components of NETs can cause lung tissue damage and accelerate disease progression in asthmatics and COPD patients. These findings suggest that administration of NETs could be a novel approach to treat asthma and COPD. Mechanism studies, clinical practice, and strategies to regulate neutrophil activation or directly interrupt NET function in asthmatics and COPD patients are desperately needed.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Fa-Ping Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Geng Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| | - Hui Mao
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuang 610041, China
| |
Collapse
|
142
|
Behnen M, Möller S, Brozek A, Klinger M, Laskay T. Extracellular Acidification Inhibits the ROS-Dependent Formation of Neutrophil Extracellular Traps. Front Immunol 2017; 8:184. [PMID: 28293240 PMCID: PMC5329032 DOI: 10.3389/fimmu.2017.00184] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
The inflammatory microenvironment is commonly characterized by extracellular acidosis (pH < 7.35). Sensitivity to pH, CO2 or bicarbonate concentrations allows neutrophils to react to changes in their environment and to detect inflamed areas in the tissue. One important antimicrobial effector mechanism is the production of neutrophil extracellular traps (NETs), which are released during a programmed reactive oxygen species (ROS)-dependent cell death, the so-called NETosis. Although several functions of neutrophils have been analyzed under acidic conditions, the effect of extracellular acidosis on NETosis remains mainly unexplored and the available experimental results are contradictory. We performed a comprehensive study with the aim to elucidate the effect of extracellular acidosis on ROS-dependent NETosis of primary human neutrophils and to identify the underlying mechanisms. The study was performed in parallel in a CO2–bicabonate-buffered culture medium, which mimics in vivo conditions, and under HEPES-buffered conditions to verify the effect of pH independent of CO2 or bicarbonate. We could clearly show that extracellular acidosis (pH 6.5, 6.0, and 5.5) and intracellular acidification inhibit the release of ROS-dependent NETs upon stimulation of neutrophils with phorbol myristate acetate and immobilized immune complexes. Moreover, our findings suggest that the diminished NET release is a consequence of reduced ROS production and diminished glycolysis of neutrophils under acidic conditions. It was suggested previously that neutrophils can sense the border of inflamed tissue by the pH gradient and that a drop in pH serves as an indicator for the progress of inflammation. Following this hypothesis, our data indicate that an acidic inflammatory environment results in inhibition of extracellular operating effector mechanisms of neutrophils such as release of ROS and NETs. This way the release of toxic components and tissue damage can be avoided. However, we observed that major antimicrobial effector mechanisms such as phagocytosis and the killing of pathogens by neutrophils remain functional under acidic conditions.
Collapse
Affiliation(s)
- Martina Behnen
- Department for Infectious Diseases and Microbiology, University of Lübeck , Lübeck , Germany
| | - Sonja Möller
- Department for Infectious Diseases and Microbiology, University of Lübeck , Lübeck , Germany
| | - Antonia Brozek
- Department for Infectious Diseases and Microbiology, University of Lübeck , Lübeck , Germany
| | | | - Tamás Laskay
- Department for Infectious Diseases and Microbiology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
143
|
Khan MA, Palaniyar N. Transcriptional firing helps to drive NETosis. Sci Rep 2017; 7:41749. [PMID: 28176807 PMCID: PMC5296899 DOI: 10.1038/srep41749] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/28/2016] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are short-lived innate immune cells. These cells respond quickly to stimuli, and die within minutes to hours; the relevance of DNA transcription in dying neutrophils remains an enigma for several decades. Here we show that the transcriptional activity reflects the degree of DNA decondensation occurring in both NADPH oxidase 2 (Nox)-dependent and Nox-independent neutrophil extracellular trap (NET) formation or NETosis. Transcriptomics analyses show that transcription starts at multiple loci in all chromosomes earlier in the rapid Nox-independent NETosis (induced by calcium ionophore A23187) than Nox-dependent NETosis (induced by PMA). NETosis-specific kinase cascades differentially activate transcription of different sets of genes. Inhibitors of transcription, but not translation, suppress both types of NETosis. In particular, promoter melting step is important to drive NETosis (induced by PMA, E. coli LPS, A23187, Streptomyces conglobatus ionomycin). Extensive citrullination of histones in multiple loci occurs only during calcium-mediated NETosis, suggesting that citrullination of histone contributes to the rapid DNA decondensation seen in Nox-independent NETosis. Furthermore, blocking transcription suppresses both types of NETosis, without affecting the reactive oxygen species production that is necessary for antimicrobial functions. Therefore, we assign a new function for transcription in neutrophils: Transcriptional firing, regulated by NETosis-specific kinases, helps to drive NETosis.
Collapse
Affiliation(s)
- Meraj A Khan
- Innate Immunity Research Lab, Physiology and Experimental Medicine, PGCRL, The Hospital for Sick Children Research Institute, 686 Bay St, Toronto M5G 0A4, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Nades Palaniyar
- Innate Immunity Research Lab, Physiology and Experimental Medicine, PGCRL, The Hospital for Sick Children Research Institute, 686 Bay St, Toronto M5G 0A4, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
144
|
Spanò V, Giallombardo D, Cilibrasi V, Parrino B, Carbone A, Montalbano A, Frasson I, Salvador A, Richter SN, Doria F, Freccero M, Cascioferro S, Diana P, Cirrincione G, Barraja P. Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity. Eur J Med Chem 2017; 128:300-318. [PMID: 28213283 DOI: 10.1016/j.ejmech.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Cilibrasi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Alessia Salvador
- Dipartimento di Scienze Farmeceutiche, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
145
|
Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, Komotar RJ, Graham RM. Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 2017; 17:99. [PMID: 28160777 PMCID: PMC5292151 DOI: 10.1186/s12885-017-3058-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Background Glioblastoma Multiforme (GBM) is the most common and lethal form of primary brain tumor in adults. Following standard treatment of surgery, radiation and chemotherapy, patients are expected to survive 12–14 months. Theorized cause of disease recurrence in these patients is tumor cell repopulation through the proliferation of treatment-resistant cancer stem cells. Current research has revealed curcumin, the principal ingredient in turmeric, can modulate multiple signaling pathways important for cancer stem cell self-renewal and survival. Methods Following resection, tumor specimens were dissociated and glioblastoma stem cells (GSCs) were propagated in neurosphere media and characterized via immunocytochemistry. Cell viability was determined with MTS assay. GSC proliferation, sphere forming and colony forming assays were conducted through standard counting methods. Reactive oxygen species (ROS) production was examined using the fluorescent molecular probe CM-H2DCFA. Effects on cell signaling pathways were elucidated by western blot. Results We evaluate the effects of curcumin on patient-derived GSC lines. We demonstrate a curcumin-induced dose-dependent decrease in GSC viability with an approximate IC50 of 25 μM. Treatment with sub-toxic levels (2.5 μM) of curcumin significantly decreased GSC proliferation, sphere forming ability and colony forming potential. Curcumin induced ROS, promoted MAPK pathway activation, downregulated STAT3 activity and IAP family members. Inhibition of ROS with the antioxidant N-acetylcysteine reversed these effects indicating a ROS dependent mechanism. Conclusions Discoveries made in this investigation may lead to a non-toxic intervention designed to prevent recurrence in glioblastoma by targeting glioblastoma stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3058-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gregor A Rodriguez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eric Barbarite
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Winston M Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kelechi C Ohaeto
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Regina M Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA. .,Department of Neurological Surgery, University of Miami Brain Tumor Initiative (UMBTI) Research Laboratory, Lois Pope LIFE Center, 2nd Floor, 1095 NW 14th Terrace, Miami, Florida, 33136, USA.
| |
Collapse
|
146
|
Ma C, Wang J, Fan L, Guo Y. Inhibition of CD147 expression promotes chemosensitivity in HNSCC cells by deactivating MAPK/ERK signaling pathway. Exp Mol Pathol 2017; 102:59-64. [PMID: 28062212 DOI: 10.1016/j.yexmp.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. CD147, a transmembrane glycoprotein, has been reported to be correlated with cancer progression, metastasis, and chemoresistance in various cancers. In this study, we aimed to investigate the mechanism of CD147 in regulating drug resistance in HNSCC cells. qRT-PCR were used to evaluated the expression of CD147 in 57 HNSCC tumorous tissues and 2 cell lines. Increased expression of CD147 was found in most HNSCC samples, and the expression level of CD147 was correlated with multidrug resistance. CD147 RNA silencing decreased the chemoresistance of HNSCC cells by deactivating MAPK/ERK signaling pathway. Further investigation revealed that either rescue expression of CD147 or treatment of MAPK/ERK activator phorbol 12-myristate 13-acetate (PMA) in CD147 knockdown CRC cell line attenuated the decreased chemoresistance in CD147 knockdown cells. Taken together, our results suggest that CD147 promotes chemoresistance by activating MAPK/ERK signaling pathway in HNSCC.
Collapse
Affiliation(s)
- Chao Ma
- Department of oral and maxillofacial surgery, Cangzhou central hospital of Hebei province, Cangzhou 061001, China
| | - Jianqi Wang
- Department of oral and maxillofacial surgery, Cangzhou central hospital of Hebei province, Cangzhou 061001, China
| | - Longkun Fan
- Department of oral and maxillofacial surgery, Cangzhou central hospital of Hebei province, Cangzhou 061001, China
| | - Yanjun Guo
- Department of oral and maxillofacial surgery, Cangzhou central hospital of Hebei province, Cangzhou 061001, China.
| |
Collapse
|
147
|
Cortjens B, van Woensel JBM, Bem RA. Neutrophil Extracellular Traps in Respiratory Disease: guided anti-microbial traps or toxic webs? Paediatr Respir Rev 2017; 21:54-61. [PMID: 27424227 DOI: 10.1016/j.prrv.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
Neutrophil recruitment to the airways and lungs is a major hallmark of many respiratory diseases. One of the more recently discovered unique innate immune effector mechanisms of neutrophils is the formation of neutrophil extracellular traps (NETs), consisting of an extracellular network of DNA fibers studded with nuclear and granule proteins. Although in the respiratory system NETs contribute to capture and inactivation of bacteria, fungi and viruses, there is a delicate 'balance' between aid and damage to the host. Accumulating evidence now suggests that NETs can have direct cytotoxic effects to lung epithelial and endothelial cells and can contribute to airway obstruction. As such, NETs may play an important role in the pathogenesis of respiratory diseases. The purpose of this review is to give an up-to-date overview of the current status of NETs in respiratory diseases. We examine both experimental and clinical data concerning the role of NETs in host defence as well as immunopathology, with special attention paid to the literature relevant for the paediatric pulmonology community. Finally, we discuss future treatment strategies that may target the formation of NETs in the airways and lungs.
Collapse
Affiliation(s)
- B Cortjens
- Paediatric Intensive Care Unit, Academic Medical Centre, Emma Children's Hospital AMC, Amsterdam.
| | - J B M van Woensel
- Paediatric Intensive Care Unit, Academic Medical Centre, Emma Children's Hospital AMC, Amsterdam
| | - R A Bem
- Paediatric Intensive Care Unit, Academic Medical Centre, Emma Children's Hospital AMC, Amsterdam
| |
Collapse
|
148
|
Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 2016; 199:68-73. [PMID: 28110787 DOI: 10.1016/j.vetmic.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/01/2023]
Abstract
Mycoplasma bovis is a significant pathogen in bovine infections including mastitis, pneumonia, arthritis and otitis media, and is the cause of large economic losses in beef and dairy farms. During infection with M. bovis, recruited neutrophils are not sufficient to eradicate M. bovis from the infection site. The release of neutrophil extracellular traps (NETs) is one of the innate immune responses of neutrophils but the effect of M. bovis on NET formation by bovine neutrophils has not yet been clarified. The objective of our research was to examine the effect of M. bovis on NET formation and the killing activity of bovine neutrophils. We showed that NETs were not detected following stimulation of neutrophils by M. bovis alone or with Phorbol 12-myristate 13-acetat (PMA). Reactive oxygen species production is essential for NET formation but the levels in neutrophils stimulated with M. bovis at multiplicity of infections of 10, 100, and 1000 were similar to those of unstimulated cells. NET formation induced by PMA stimulated neutrophils disappeared following the addition of M. bovis but this phenomenon was not observed when ethylenediaminetetraacetic acid (EDTA) was added. M. bovis colony forming units were significantly decreased by the addition of EDTA in the presence of NETs. Our results suggested that M. bovis infection alone did not induce NETs and that M. bovis nucleases, as hypothesis-based, contributed to resistance against the killing activity of NETs.
Collapse
|
149
|
Konig MF, Andrade F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination. Front Immunol 2016; 7:461. [PMID: 27867381 PMCID: PMC5095114 DOI: 10.3389/fimmu.2016.00461] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
NETosis, an antimicrobial form of neutrophil cell death, is considered a primary source of citrullinated autoantigens in rheumatoid arthritis (RA) and immunogenic DNA in systemic lupus erythematosus (SLE). Activation of the citrullinating enzyme peptidylarginine deiminase type 4 (PAD4) is believed to be essential for neutrophil extracellular trap (NET) formation and NETosis. PAD4 is therefore viewed as a promising therapeutic target to inhibit the formation of NETs in both diseases. In this review, we examine the evidence for PAD4 activation during NETosis and provide experimental data to suggest that protein citrullination is not a universal feature of NETs. We delineate two distinct biological processes, leukotoxic hypercitrullination (LTH) and defective mitophagy, which have been erroneously classified as “NETosis.” While these NETosis mimics share morphological similarities with NETosis (i.e., extracellular DNA release), they are biologically distinct. As such, these processes can be readily classified by their stimuli, activation of distinct biochemical pathways, the presence of hypercitrullination, and antimicrobial effector function. NETosis is an antimicrobial form of cell death that is NADPH oxidase-dependent and not associated with hypercitrullination. In contrast, LTH is NADPH oxidase-independent and not bactericidal. Rather, LTH represents a bacterial strategy to achieve immune evasion. It is triggered by pore-forming pathways and equivalent signals that cumulate in calcium-dependent hyperactivation of PADs, protein hypercitrullination, and neutrophil death. The generation of citrullinated autoantigens in RA is likely driven by LTH, but not NETosis. Mitochondrial DNA (mtDNA) expulsion, the result of a constitutive defect in mitophagy, represents a second NETosis mimic. In the presence of interferon-α and immune complexes, this process can generate highly interferogenic oxidized mtDNA, which has previously been mistaken for NETosis in SLE. Distinguishing NETosis from LTH and defective mitophagy is paramount to understanding the role of neutrophil damage in immunity and the pathogenesis of human diseases. This provides a framework to design specific inhibitors of these distinct biological processes in human disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Felipe Andrade
- Division of Rheumatology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
150
|
Grimberg-Peters D, Büren C, Windolf J, Wahlers T, Paunel-Görgülü A. Hyperbaric Oxygen Reduces Production of Reactive Oxygen Species in Neutrophils from Polytraumatized Patients Yielding in the Inhibition of p38 MAP Kinase and Downstream Pathways. PLoS One 2016; 11:e0161343. [PMID: 27529549 PMCID: PMC4986935 DOI: 10.1371/journal.pone.0161343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in western countries. Among the beneficial role of neutrophils in host defence, excessive priming and activation of neutrophils after major trauma lead to an overwhelming inflammatory response and secondary host tissue injury due to the release of toxic metabolites and enzymes. Hyperbaric oxygen (HBO) therapy has been proposed to possess antiinflammatory effects and might represent an appropriate therapeutic option to lower inflammation in a broad range of patients. Here, we studied the effects of HBO on the activity of neutrophils isolated from severely injured patients (days 1–2 after trauma), in fact on the production of reactive oxygen species (ROS) and release of neutrophil extracellular traps (NETs). We found exposure to HBO therapy to significantly diminish phorbol-12-myristate-13-acetate (PMA)-induced ROS production in neutrophils isolated from patients and healthy volunteers. At the same time, marked decrease in NETs release was found in control cells and a less pronounced reduction in patient neutrophils. Impaired ability to produce ROS following exposure to HBO was demonstrated to be linked to a strong downregulation of the activity of p38 MAPK. Only slight suppression of ERK activity could be found. In addition, HBO did not influence neutrophil chemotaxis or apoptosis, respectively. Collectively, this study shows for the first time that HBO therapy suppresses ROS production in inflammatory human neutrophils, and thus might impair ROS-dependent pathways, e.g. kinases activation and NETs release. Thus, HBO might represent a feasible therapy for patients suffering from systemic inflammation, including those with multiple trauma.
Collapse
Affiliation(s)
- Deborah Grimberg-Peters
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Carina Büren
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Joachim Windolf
- University Hospital Düsseldorf, Department of Trauma and Hand Surgery, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Thorsten Wahlers
- Heart Center of the University of Cologne, Department of Cardiothoracic Surgery, Kerpener Str. 62, 50937, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Heart Center of the University of Cologne, Department of Cardiothoracic Surgery, Kerpener Str. 62, 50937, Cologne, Germany
- * E-mail:
| |
Collapse
|