101
|
Souza RWA, Fernandez GJ, Cunha JPQ, Piedade WP, Soares LC, Souza PAT, de Campos DHS, Okoshi K, Cicogna AC, Dal-Pai-Silva M, Carvalho RF. Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure. Am J Physiol Heart Circ Physiol 2015; 309:H1629-41. [DOI: 10.1152/ajpheart.00941.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 08/23/2015] [Indexed: 11/22/2022]
Abstract
Exercise training (ET) has beneficial effects on the myocardium in heart failure (HF) patients and in animal models of induced cardiac hypertrophy and failure. We hypothesized that if microRNAs (miRNAs) respond to changes following cardiac stress, then myocardial profiling of these miRNAs may reveal cardio-protective mechanisms of aerobic ET in HF. We used ascending aortic stenosis (AS) inducing HF in Wistar rats. Controls were sham-operated animals. At 18 wk after surgery, rats with cardiac dysfunction were randomized to 10 wk of aerobic ET (HF-ET) or to a heart failure sedentary group (HF-S). ET attenuated cardiac remodeling as well as clinical and pathological signs of HF with maintenance of systolic and diastolic function when compared with that of the HF-S. Global miRNA expression profiling of the cardiac tissue revealed 53 miRNAs exclusively dysregulated in animals in the HF-ET, but only 11 miRNAs were exclusively dysregulated in the HF-S. Out of 23 miRNAs that were differentially regulated in both groups, 17 miRNAs exhibited particularly high increases in expression, including miR-598, miR-429, miR-224, miR-425, and miR-221. From the initial set of deregulated miRNAs, 14 miRNAs with validated targets expressed in cardiac tissue that respond robustly to ET in HF were used to construct miRNA-mRNA regulatory networks that revealed a set of 203 miRNA-target genes involved in programmed cell death, TGF-β signaling, cellular metabolic processes, cytokine signaling, and cell morphogenesis. Our findings reveal that ET attenuates cardiac abnormalities during HF by regulating cardiac miRNAs with a potential role in cardio-protective mechanisms through multiple effects on gene expression.
Collapse
Affiliation(s)
- Rodrigo W. A. Souza
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Geysson J. Fernandez
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - João P. Q. Cunha
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Warlen P. Piedade
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Luana C. Soares
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Paula A. T. Souza
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Dijon H. S. de Campos
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Antonio C. Cicogna
- Department of Internal Medicine, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| | - Robson F. Carvalho
- From the Department of Morphology, São Paulo State University, Botucatu, São Paulo, Brazil; and
| |
Collapse
|
102
|
Liu HL, Zhu JG, Liu YQ, Fan ZG, Zhu C, Qian LM. Identification of the microRNA expression profile in the regenerative neonatal mouse heart by deep sequencing. Cell Biochem Biophys 2015; 70:635-42. [PMID: 24756729 DOI: 10.1007/s12013-014-9967-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are involved in key biological processes, including development, differentiation, and regeneration. The global miRNA expression profile that regulates the regenerative potential of the neonatal mouse heart has not been reported. We performed deep sequencing to determine the genome-wide miRNA expression profile of the neonatal mouse heart at three key ages (1, 6, and 7 days). The miRNAs at least 1.4-fold differentially expressed between the three time points were selected for further analysis. Two miRNAs (mmu-miR-22-5p and mmu-miR-338-3p) were significantly upregulated, and nine miRNAs (mmu-miR-324-5p, mmu-miR-337-5p, mmu-miR-339-5p, mmu-miR-365-1-5p, mmu-miR-500-3p, mmu-miR-505-5p, mmu-miR-542-5p, mmu-miR-668-3p, and mmu-miR-92a-1-5p) were significantly downregulated in cardiac tissue of 7-day-old mice compared to 1- and 6-day-old mice. The expression patterns of five significantly different miRNAs were verified by quantitative real-time PCR. Furthermore, the potential targets of these putative miRNAs were suggested using miRNA target prediction tools. The candidate target genes are involved in the myocardial regenerative process, with a prominent role for the Notch signaling pathway. Our study provides a valuable resource for future investigation of the biological function of miRNAs in heart regeneration.
Collapse
Affiliation(s)
- H L Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
103
|
Holzem KM, Marmerstein JT, Madden EJ, Efimov IR. Diet-induced obesity promotes altered remodeling and exacerbated cardiac hypertrophy following pressure overload. Physiol Rep 2015; 3:3/8/e12489. [PMID: 26290533 PMCID: PMC4562575 DOI: 10.14814/phy2.12489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heart failure (HF) is the end stage of cardiovascular disease, in which hypertrophic remodeling no longer meets cardiac output demand. Established animal models of HF have provided insights into disease pathogenesis. However, these models are developed on dissimilar metabolic backgrounds from humans – patients with HF are frequently overweight or obese, whereas animal models of HF are typically lean. Thus, we aimed to develop and investigate model for cardiac hypertrophy and failure that also recapitulates the cardiometabolic state of HF in humans. We subjected mice with established diet-induced obesity (DIO) to cardiac pressure overload provoked by transverse aortic constriction (TAC). Briefly, we fed WT male mice a normal chow or high-fat diet for 10 weeks prior to sham/TAC procedures and until surgical follow-up. We then analyzed cardiac hypertrophy, mechanical function, and electrophysiology at 5–6 weeks after surgery. In DIO mice with TAC, hypertrophy and systolic dysfunction were exacerbated relative to chow TAC animals, which showed minimal remodeling with our moderate constriction intensity. Normalized heart weight was 55.8% greater and fractional shortening was 30.9% less in DIO TAC compared with chow TAC hearts. However, electrophysiologic properties were surprisingly similar between DIO sham and TAC animals. To examine molecular pathways activated by DIO and TAC, we screened prohypertrophic signaling cascades, and the exacerbated remodeling was associated with early activation of the c-Jun-N-terminal kinase (JNK1/2) signaling pathway. Thus, DIO aggravates the progression of hypertrophy and HF caused by pressure overload, which is associated with JNK1/2 signaling, and cardiometabolic state can significantly modify HF pathogenesis.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph T Marmerstein
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
104
|
Wang W, Wang H, Geng QX, Wang HT, Miao W, Cheng B, Zhao D, Song GM, Leanne G, Zhao Z. Augmentation of autophagy by atorvastatin via Akt/mTOR pathway in spontaneously hypertensive rats. Hypertens Res 2015. [PMID: 26224487 DOI: 10.1038/hr.2015.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Autophagy is activated in hypertension-induced cardiac hypertrophy. However, the mechanisms and significance of an activated autophagy are not clear. This study was designed to determine the role of atorvastatin (ATO) in cardiac autophagy and associated benefits on cardiac remodeling and left ventricular function in spontaneously hypertensive rats (SHRs). Twenty-eight male SHRs at 8 weeks of age were randomized to treatment with vehicle (saline solution; SHR+V) or ATO (SHR+ATO; 50 mg kg(-1) per day) for 6 or 12 months. Age-matched male Wistar-Kyoto (WKY) rats were used as normotensive controls. Cardiac magnetic resonance was used to evaluate cardiac function and structure. Compared with WKY rats, SHRs showed significant left ventricle (LV) dysfunction, remodeling and increases in cardiomyocyte size, which were all attenuated by 6 and 12 months of ATO treatment. Compared with WKY rats, autophagy was activated in the hearts of SHRs and this effect was amplified by chronic ATO treatment, particularly following 12 months of treatment. Protein expression levels of microtubule-associated protein-1 light chain 3-II and beclin-1, the biomarkers of an activated cardiac autophagy, were significantly elevated in ATO-treated versus vehicle-treated SHRs and control WKY rats. Cardiac Akt and phosphorylated mammalian target of rapamycin (mTOR) expression were also increased in the hearts of SHR versus WKY rats, and this effect was attenuated by ATO treatment. These findings suggest that ATO-mediated improvements in LV function and structure in SHRs may be, in part, through its regulation of cardiac autophagy via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiovascular Surgery, Shandong University Qilu Hospital, Shandong, China.,Department of Cardiology, Shandong Provincial Chest Hospital, Shandong, China
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qing-Xin Geng
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Hua-Ting Wang
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Wei Miao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Bo Cheng
- Department of Cardiology, Shandong Provincial Chest Hospital, Shandong, China
| | - Di Zhao
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Guang-Min Song
- Department of Cardiovascular Surgery, Shandong University Qilu Hospital, Shandong, China
| | - Groban Leanne
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| |
Collapse
|
105
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol 2015; 409:59-72. [PMID: 25869400 DOI: 10.1016/j.mce.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Thrombin and COX-2 regulating cardiac hypertrophy are via various signaling cascades. Several transcriptional factors including CREB involve in COX-2 expression. However, the interplay among thrombin, CREB, and COX-2 in primary human neonatal ventricular cardiomyocytes remains unclear. In this study, thrombin-induced COX-2 promoter activity, mRNA and protein expression, and PGE2 synthesis were attenuated by pretreatment with the inhibitors of c-Src (PP1), Pyk2 (PF431396), EGFR (AG1478), PI3K/Akt (LY294002/SH-5), and p300 (GR343), or transfection with siRNAs of c-Src, Pyk2, EGFR, p110, Akt, CREB, and p300. Moreover, thrombin-stimulated phosphorylation of c-Src, Pyk2, EGFR, Akt, CREB and p300 was attenuated by their respective inhibitors. These results indicate that thrombin-induced COX-2 expression is mediated through PAR-1/c-Src/Pyk2/EGFR/PI3K/Akt linking to CREB and p300 cascades. Functionally, thrombin-induced hypertrophy and ANF/BNP release were, at least in part, mediated through a PAR-1/COX-2-dependent pathway. We uncover the importance of COX-2 regarding human cardiomyocyte hypertrophy that will provide a therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Sciences, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.
| |
Collapse
|
106
|
Moreira-Gonçalves D, Henriques-Coelho T, Fonseca H, Ferreira R, Padrão AI, Santa C, Vieira S, Silva AF, Amado F, Leite-Moreira A, Duarte JA. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult. J Physiol 2015; 593:3885-97. [PMID: 26010517 DOI: 10.1113/jp270685] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and magnitude of the stimuli, may play a role in the development of an adaptive or maladaptive phenotype.
Collapse
Affiliation(s)
- Daniel Moreira-Gonçalves
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Tiago Henriques-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Hélder Fonseca
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Ana Isabel Padrão
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Cátia Santa
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Sara Vieira
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Filipa Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Amado
- Department of Chemistry, Organic Chemistry Natural and Agrofood Products (QOPNA) and Department of Chemistry, University of Aveiro (DQ/UA), Aveiro, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.,Cardiovascular Research Centre and Department of Cardiothoracic Surgery, Centro Hospitalar São João, Porto, Portugal
| | - José Alberto Duarte
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
107
|
Wang J, Chen H, Liu Y, Zhou W, Sun R, Xia M. Retinol binding protein 4 induces mitochondrial dysfunction and vascular oxidative damage. Atherosclerosis 2015; 240:335-44. [DOI: 10.1016/j.atherosclerosis.2015.03.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/08/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
108
|
Puhl SL, Müller A, Wagner M, Devaux Y, Böhm M, Wagner DR, Maack C. Exercise attenuates inflammation and limits scar thinning after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2015; 309:H345-59. [PMID: 26001415 DOI: 10.1152/ajpheart.00683.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 05/10/2015] [Indexed: 12/16/2022]
Abstract
Although exercise mediates beneficial effects in patients after myocardial infarction (MI), the underlying mechanisms as well as the question of whether an early start of exercise after MI is safe or even beneficial are incompletely resolved. The present study analyzed the effects of exercise before and reinitiated early after MI on cardiac remodeling and function. Male C57BL/6N mice were housed sedentary or with the opportunity to voluntarily exercise for 6 wk before MI induction (ligation of the left anterior descending coronary artery) or sham operation. After a 5-day exercise-free phase after MI, mice were allowed to reexercise for another 4 wk. Exercise before MI induced adaptive hypertrophy with moderate increases in heart weight, cardiomyocyte diameter, and left ventricular (LV) end-diastolic volume, but without fibrosis. In sedentary mice, MI induced eccentric LV hypertrophy with massive fibrosis but maintained systolic LV function. While in exercised mice gross LV end-diastolic volumes and systolic function did not differ from sedentary mice after MI, LV collagen content and thinning of the infarcted area were reduced. This was associated with ameliorated activation of inflammation, mediated by TNF-α, IL-1β, and IL-6, as well as reduced activation of matrix metalloproteinase 9. In contrast, no differences in the activation patterns of various MAPKs or adenosine receptor expressions were observed 5 wk after MI in sedentary or exercised mice. In conclusion, continuous exercise training before and with an early reonset after MI ameliorates adverse LV remodeling by attenuating inflammation, fibrosis, and scar thinning. Therefore, an early reonset of exercise after MI can be encouraged.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Andreas Müller
- Klinik für Interventionelle Radiologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Michael Wagner
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public-Santé, Luxembourg; and
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| | - Daniel R Wagner
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany; and
| |
Collapse
|
109
|
Sturgeon K, Muthukumaran G, Ding D, Bajulaiye A, Ferrari V, Libonati JR. Moderate-intensity treadmill exercise training decreases murine cardiomyocyte cross-sectional area. Physiol Rep 2015; 3:3/5/e12406. [PMID: 25991723 PMCID: PMC4463834 DOI: 10.14814/phy2.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine the impact of moderate-intensity treadmill exercise on the structure and function of the murine heart and its associated impact on Akt–AMPK–mTOR signaling. A secondary aim was to test whether the exercise phenotype was altered following a cardiotoxic bolus dose of doxorubicin (DOX). Two-month-old C57Bl/6J female mice remained sedentary (SED, n = 12) or were progressively trained with treadmill running for 2 months up to 18 m/min; 60 min/day, 5 days/weeks (EX, n = 11) or EX + DOX (15 mg/kg/dose) (EX + DOX, n = 6). Following treadmill training, mice underwent graded exercise tolerance testing and echocardiography. Training improved graded exercise tolerance by 68 ± 5% relative to SED, and this effect was not altered with bolus DOX. There were no changes in relative heart size with EX or EX + DOX versus SED. Regional posterior wall thickening was improved in EX and abrogated in EX + DOX. EX had a reduced cardiomyocyte cross-sectional area (CSA) relative to SED, and CSA was further attenuated with DOX. Following EX, AMPK-associated phosphorylation of ULK1(ser317) tended to be lower relative to SED. Akt-associated phosphorylation of TSC2(thr1462) and mTOR(ser2448) were also decreased relative to SED. We observed an increase in AMPK activity with DOX that was not translated to downstream AMPK phosphorylation sites. We conclude that 2 months of moderate treadmill exercise training improves regional cardiac function and exercise capacity, but does not induce relative physiologic hypertrophy in female mice. Differential responses in Akt–AMPK–mTOR signaling may mediate the observed phenotype.
Collapse
Affiliation(s)
- Kathleen Sturgeon
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Dennis Ding
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akinyemi Bajulaiye
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victor Ferrari
- School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph R Libonati
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
110
|
van der Laarse A, Cobbaert CM, Umar S. Stem and progenitor cell therapy for pulmonary arterial hypertension: effects on the right ventricle (2013 Grover Conference Series). Pulm Circ 2015; 5:73-80. [PMID: 25992272 DOI: 10.1086/679701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
In experimental animals and in patients with pulmonary arterial hypertension (PAH), a wide spectrum of structural and functional conditions is known that may be responsible for the switch of a state of "compensated" right ventricular (RV) hypertrophy to a state of RV failure. In recent years, therapy with differentiated cells, endothelial progenitor cells, and mesenchymal stem cells has been shown to cause partial or complete reversal of pathological characteristics of PAH. The therapeutic effects of stem or progenitor cell therapy are considered to be (1) paracrine effects from stem or progenitor cells that had engrafted in the myocardium (or elsewhere), by compounds that have anti-inflammatory, antiapoptotic, and proangiogenic actions and (2) unloading effects on the right ventricle due to stem or progenitor cell-induced decrease in pulmonary vascular resistance and decrease in pulmonary artery pressure.
Collapse
Affiliation(s)
- Arnoud van der Laarse
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands ; Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| |
Collapse
|
111
|
Kusch A, Schmidt M, Gürgen D, Postpieszala D, Catar R, Hegner B, Davidson MM, Mahmoodzadeh S, Dragun D. 17ß-Estradiol regulates mTORC2 sensitivity to rapamycin in adaptive cardiac remodeling. PLoS One 2015; 10:e0123385. [PMID: 25880554 PMCID: PMC4399939 DOI: 10.1371/journal.pone.0123385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”.
Collapse
Affiliation(s)
- Angelika Kusch
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Maria Schmidt
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Dennis Gürgen
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Postpieszala
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Björn Hegner
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Merci M. Davidson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Shokoufeh Mahmoodzadeh
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Intensive Care Medicine, Charité—Campus Virchow Klinikum, Universitätsmedizin Berlin, Berlin, Germany
- Center for Cardiovascular Research, Charité, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
112
|
Song HK, Kim J, Lee JS, Nho KJ, Jeong HC, Kim J, Ahn Y, Park WJ, Kim DH. Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway. PLoS One 2015; 10:e0122251. [PMID: 25826393 PMCID: PMC4380398 DOI: 10.1371/journal.pone.0122251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/10/2015] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jiyeon Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jong Sub Lee
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyoung Jin Nho
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hae Chang Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jihwa Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Woo Jin Park
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
113
|
Ramasamy S, Velmurugan G, Shanmugha Rajan K, Ramprasath T, Kalpana K. MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One 2015; 10:e0121401. [PMID: 25793527 PMCID: PMC4368613 DOI: 10.1371/journal.pone.0121401] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Physiological cardiac hypertrophy is an adaptive mechanism, induced during chronic exercise. As it is reversible and not associated with cardiomyocyte death, it is considered as a natural tactic to prevent cardiac dysfunction and failure. Though, different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy, their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs was validated by qPCR. In silico prediction of target genes by miRanda, miRdB and TargetScan and subsequent qPCR analysis unraveled that miRNAs including miR-99b, miR-100, miR-19b, miR-10, miR-208a, miR-133, miR-191a, miR-22, miR-30e and miR-181a are targeting the genes that primarily regulate cell proliferation and cell death. Gene ontology and pathway mapping showed that the differentially expressed miRNAs and their target genes were mapped to apoptosis and cell death pathways principally via PI3K/Akt/mTOR and MAPK signaling. In summary, our data indicates that regulation of these miRNAs with apoptosis regulating potential can be one of the major key factors in determining pathological or physiological hypertrophy by controlling fibrosis, apoptosis and cell death mechanisms.
Collapse
Affiliation(s)
- Subbiah Ramasamy
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
- * E-mail:
| | - Ganesan Velmurugan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - K. Shanmugha Rajan
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | | | - Krishnan Kalpana
- Department of Plant Pathology, Regional Research Station, Tamilnadu Agricultural University, Krishangiri, Tamilnadu, India
| |
Collapse
|
114
|
Jia G, Habibi J, Bostick BP, Ma L, DeMarco VG, Aroor AR, Hayden MR, Whaley-Connell AT, Sowers JR. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension 2015; 65:531-9. [PMID: 25489061 PMCID: PMC4370431 DOI: 10.1161/hypertensionaha.114.04737] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rising obesity rates parallel increased consumption of a Western diet, high in fat and fructose, which is associated with increased uric acid. Population-based data support that elevated serum uric acids are associated with left ventricular hypertrophy and diastolic dysfunction. However, the mechanism by which excess uric acid promotes these maladaptive cardiac effects has not been explored. In assessing the role of Western diet-induced increases in uric acid, we hypothesized that reductions in uric acid would prevent Western diet-induced development of cardiomyocyte hypertrophy, cardiac stiffness, and impaired diastolic relaxation by reducing growth and profibrotic signaling pathways. Four-weeks-old C57BL6/J male mice were fed excess fat (46%) and fructose (17.5%) with or without allopurinol (125 mg/L), a xanthine oxidase inhibitor, for 16 weeks. The Western diet-induced increases in serum uric acid along with increases in cardiac tissue xanthine oxidase activity temporally related to increases in body weight, fat mass, and insulin resistance without changes in blood pressure. The Western diet induced cardiomyocte hypertrophy, myocardial oxidative stress, interstitial fibrosis, and impaired diastolic relaxation. Further, the Western diet enhanced activation of the S6 kinase-1 growth pathway and the profibrotic transforming growth factor-β1/Smad2/3 signaling pathway and macrophage proinflammatory polarization. All results improved with allopurinol treatment, which lowered cardiac xanthine oxidase as well as serum uric acid levels. These findings support the notion that increased production of uric acid with intake of a Western diet promotes cardiomyocyte hypertrophy, inflammation, and oxidative stress that lead to myocardial fibrosis and associated impaired diastolic relaxation.
Collapse
Affiliation(s)
- Guanghong Jia
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Javad Habibi
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Brian P Bostick
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Lixin Ma
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Vincent G DeMarco
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Annayya R Aroor
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Melvin R Hayden
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - Adam T Whaley-Connell
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.)
| | - James R Sowers
- From the Division of Endocrinology and Metabolism, Department of Medicine (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), Division of Nephrology and Hypertension, Department of Medicine (A.T.W.-C.), Department of Medical Pharmacology and Physiology (V.G.D., J.R.S.), Diabetes and Cardiovascular Center (G.J., J.H., B.P.B., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.), and Department of Radiology (L.M.), University of Missouri School of Medicine, Columbia; and Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO (G.J., J.H., B.P.B., L.M., V.G.D., A.R.A., M.R.H., A.T.W.-C., J.R.S.).
| |
Collapse
|
115
|
Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats. Mol Cell Biochem 2015; 402:193-202. [DOI: 10.1007/s11010-015-2326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
|
116
|
Yao H, Han X, Han X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 2014; 14:433-42. [PMID: 25160498 DOI: 10.1007/s40256-014-0089-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis occurs frequently in myocardial infarction, oxidative stress injury, and ischemia/reperfusion injury, and plays a pivotal role in the development of heart diseases. Inhibition of apoptosis alone does not necessarily lead to meaningful rescue in terms of either cardiomyocyte survival or function. Activation of the PI3K/Akt signaling pathway induced by insulin not only inhibits cardiomyocyte apoptosis but also substantially preserves and even improves regional and overall cardiac function. Insulin can protect cardiomyocytes from apoptosis by regulating a number of signaling molecules, such as eNOS, FOXOs, Bad, GSK-3β, mTOR, NDRG2, and Nrf2, through activating PI3K and Akt. This review focuses on the protective mechanisms and targets of insulin identified in the prevention and treatment of myocardial injury.
Collapse
|
117
|
mTOR and the health benefits of exercise. Semin Cell Dev Biol 2014; 36:130-9. [DOI: 10.1016/j.semcdb.2014.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 01/06/2023]
|
118
|
Moc C, Taylor AE, Chesini GP, Zambrano CM, Barlow MS, Zhang X, Gustafsson ÅB, Purcell NH. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc Res 2014; 105:160-70. [PMID: 25411382 DOI: 10.1093/cvr/cvu243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. METHODS AND RESULTS To investigate the in vivo requirement for 'physiological' control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. CONCLUSION Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Courtney Moc
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Amy E Taylor
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Gino P Chesini
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Cristina M Zambrano
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Melissa S Barlow
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| | - Xiaoxue Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA
| |
Collapse
|
119
|
Locatelli J, de Assis LVM, Isoldi MC. Calcium handling proteins: structure, function, and modulation by exercise. Heart Fail Rev 2014; 19:207-25. [PMID: 23436107 DOI: 10.1007/s10741-013-9373-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a serious public health issue with a growing prevalence, and it is related with the aging of the population. Hypertension is identified as the main precursor of left ventricular hypertrophy and therefore can lead to diastolic dysfunction and heart failure. Scientific studies have confirmed the beneficial effects of the physical exercise by reducing the blood pressure and improving the functional status of the heart in hypertension. Several proteins are involved in the mobilization of calcium during the coupling excitation-contraction process in the heart among those are sarcoplasmic reticulum Ca(2+)-ATPase, phospholamban, calsequestrin, sodium-calcium exchanger, L-type calcium's channel, and ryanodine receptors. Our goal is to address the beneficial effects of exercise on the calcium handling proteins in a heart with hypertension.
Collapse
Affiliation(s)
- Jamille Locatelli
- Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Prêto, Brazil
| | | | | |
Collapse
|
120
|
Wright PT, Tranter MH, Morley-Smith AC, Lyon AR. Pathophysiology of takotsubo syndrome: temporal phases of cardiovascular responses to extreme stress. Circ J 2014; 78:1550-8. [PMID: 24954393 DOI: 10.1253/circj.cj-14-0623] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Takotsubo syndrome (TTS), also known as takotsubo cardiomyopathy, is an acute heart failure syndrome that typically occurs after a period of great emotional stress. The archetypal patient is a postmenopausal woman who presents with chest pain, ST-segment elevation and acute hypokinesia of the apical and middle segment of the left ventricle that extends beyond the territory of a single coronary artery, coupled with hyperkinesia of the basal myocardium. Recent preclinical and clinical studies have shown the importance of high catecholamine levels in precipitating TTS. We propose that this is caused by activation of β-adrenoceptors and the subsequent activation of a negatively-inotropic pathway, perhaps to protect the heart from catecholamine overload. We explore the pathophysiology of TTS according to its "phases", both preclinically and clinically. This will show that the condition is not one of static apical hypokinesia that simply improves, but rather a dynamic condition that changes as the disease progresses. We hope that further exploration of TTS using its "phases" will aid in its characterization, diagnosis and treatment.
Collapse
Affiliation(s)
- Peter T Wright
- National Heart and Lung Institute, Imperial College London
| | | | | | | |
Collapse
|
121
|
Woodall MC, Ciccarelli M, Woodall BP, Koch WJ. G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 2014; 114:1661-70. [PMID: 24812353 DOI: 10.1161/circresaha.114.300513] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting >23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor kinase-2 (GRK2), a kinase originally discovered to be involved in G protein-coupled receptor desensitization, especially β-adrenergic receptors. Higher levels of GRK2 can impair β-adrenergic receptor-mediated inotropic reserve and its inhibition, or molecular reduction has shown to improve pump function in several animal models including a preclinical pig model of HF. Recently, nonclassical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role in G protein-coupled receptor desensitization. In this review, classical and nonclassical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development.
Collapse
Affiliation(s)
- Meryl C Woodall
- From the Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, PA (M.C.W., B.P.W., W.J.K.); and Department of Medicine and Surgery, University of Salerno, Salerno, Italy (M.C.)
| | | | | | | |
Collapse
|
122
|
Morgan KY, Black LD. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med 2014; 11:342-353. [PMID: 24916022 DOI: 10.1002/term.1915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/17/2014] [Accepted: 04/22/2014] [Indexed: 11/07/2022]
Abstract
Mechanical stimulation has been used extensively to improve the function of cardiac engineered tissue, as it mimics the physical environment in which the tissue is situated during normal development. However, previous mechanical stimulation has been carried out under a constant frequency that more closely resembles a diseased heart. The goal of this study was to create a bioreactor system that would allow us to control the mechanical stimulation of engineered cardiac tissue on a cycle-by-cycle basis. This unique system allows us to determine the effects on cardiac construct function of introducing variability to the mechanical stretch. To test our bioreactor system, constructs created from neonatal rat cardiomyocytes entrapped in fibrin hydrogels were stimulated under various regimes for 2 weeks and then assessed for functional outcomes. No differences were observed in the final cell number in each condition, indicating that variability in frequency did not have a negative effect on viability. The forces were higher for all mechanical stimulation groups compared to static controls, although no differences were observed between the mechanically stimulated conditions, indicating that variable frequency on a cycle-by-cycle basis has limited effects on the resulting force. Although differences in the observed twitch force were not observed, differences in the protein expression indicate that variable-frequency mechanical stimulation had an effect on cell-cell coupling and growth pathway activation in the constructs. Thus, this bioreactor system provides a valuable tool for further development and optimization of engineered myocardial tissue as a repair or replacement strategy for patients undergoing heart failure. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
123
|
Morgan KY, Black LD. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 2014; 20:1654-67. [PMID: 24410342 PMCID: PMC4029049 DOI: 10.1089/ten.tea.2013.0355] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023] Open
Abstract
Electrical and mechanical stimulation have both been used extensively to improve the function of cardiac engineered tissue as each of these stimuli is present in the physical environment during normal development in vivo. However, to date, there has been no direct comparison between electrical and mechanical stimulation and current published data are difficult to compare due to the different systems used to create the engineered cardiac tissue and the different measures of functionality studied as outcomes. The goals of this study were twofold. First, we sought to directly compare the effects of mechanical and electrical stimulation on engineered cardiac tissue. Second, we aimed to determine the importance of the timing of the two stimuli in relation to each other in combined electromechanical stimulation. We hypothesized that delaying electrical stimulation after the beginning of mechanical stimulation to mimic the biophysical environment present during isovolumic contraction would improve construct function by improving proteins responsible for cell-cell communication and contractility. To test this hypothesis, we created a bioreactor system that would allow us to electromechanically stimulate engineered tissue created from neonatal rat cardiac cells entrapped in fibrin gel during 2 weeks in culture. Contraction force was higher for all stimulation groups as compared with the static controls, with the delayed combined stimulation constructs having the highest forces. Mechanical stimulation alone displayed increased final cell numbers but there were no other differences between electrical and mechanical stimulation alone. Delayed combined stimulation resulted in an increase in SERCA2a and troponin T expression levels, which did not happen with synchronous combined stimulation, indicating that the timing of combined stimulation is important to maximize the beneficial effect. Increases in Akt protein expression levels suggest that the improvements are at least in part induced by hypertrophic growth. In summary, combined electromechanical stimulation can create engineered cardiac tissue with improved functional properties over electrical or mechanical stimulation alone, and the timing of the combined stimulation greatly influences its effects on engineered cardiac tissue.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
124
|
Yang L, Jia Z, Yang L, Zhu M, Zhang J, Liu J, Wu P, Tian W, Li J, Qi Z, Tang X. Exercise protects against chronic β-adrenergic remodeling of the heart by activation of endothelial nitric oxide synthase. PLoS One 2014; 9:e96892. [PMID: 24809512 PMCID: PMC4014558 DOI: 10.1371/journal.pone.0096892] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 04/13/2014] [Indexed: 01/10/2023] Open
Abstract
Extensive data have shown that exercise training can provide cardio-protection against pathological cardiac hypertrophy. However, how long the heart can retain cardio-protective phenotype after the cessation of exercise is currently unknown. In this study, we investigated the time course of the loss of cardio-protection after cessation of exercise and the signaling molecules that are responsible for the possible sustained protection. Mice were made to run on a treadmill six times a week for 4 weeks and then rested for a period of 0, 1, 2 and 4 weeks followed by isoproterenol injection for 8 days. Morphological, echocardiographic and hemodynamic changes were measured, gene reactivation was determined by real-time PCR, and the expression and phosphorylation status of several cardio-protective signaling molecules were analyzed by Western-blot. HW/BW, HW/TL and LW/BW decreased significantly in exercise training (ER) mice. The less necrosis and lower fetal gene reactivation induced by isoproterenol injection were also found in ER mice. The echocardiographic and hemodynamic changes induced by β-adrenergic overload were also attenuated in ER mice. The protective effects can be sustained for at least 2 weeks after the cessation of the training. Western-blot analysis showed that the alterations in the phosphorylation status of endothelial nitric oxide synthase (eNOS) (increase in serine 1177 and decrease in threonine 495) continued for 2 weeks after the cessation of the training whereas increases of the phosphorylation of Akt and mTOR disappeared. Further study showed that L-NG-Nitroarginine methyl ester (L-NAME) treatment abolished the cardio-protective effects of ER. Our findings demonstrate that stimulation of eNOS in mice through exercise training provides acute and sustained cardioprotection against cardiac hypertrophy.
Collapse
Affiliation(s)
- Liang Yang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Zhe Jia
- Departments of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
| | - Lei Yang
- Departments of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
| | - Mengmeng Zhu
- Departments of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
| | - Jincai Zhang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jie Liu
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Ping Wu
- Departments of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
| | - Wencong Tian
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| | - Jing Li
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
- * E-mail: (JL); (ZQ)
| | - Zhi Qi
- Departments of Histology and Embryology, Nankai University School of Medicine, Tianjin, China
- * E-mail: (JL); (ZQ)
| | - Xiangdong Tang
- Department of Pharmacology, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
125
|
Menaouar A, Florian M, Wang D, Danalache B, Jankowski M, Gutkowska J. Anti-hypertrophic effects of oxytocin in rat ventricular myocytes. Int J Cardiol 2014; 175:38-49. [PMID: 24852833 DOI: 10.1016/j.ijcard.2014.04.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 03/11/2014] [Accepted: 04/14/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oxytocin (OT) and functional OT receptor (OTR) are expressed in the heart and are involved in blood pressure regulation and cardioprotection. Cardiac OTR signaling is associated with atrial natriuretic peptide (ANP) and nitric oxide (NO) release. During the synthesis of OT, its precursor, termed OT-Gly-Lys-Arg (OT-GKR), is accumulated in the developing rat heart. Consequently, we hypothesized that an OT-related mechanism of ANP controls cardiomyocyte (CM) hypertrophy. METHODS The experiments were carried out in newborn and adult rat CM cultures. The enhanced protein synthesis and increased CM volume were mediated by a 24-h treatment with endothelin-1 or angiotensin II. RESULTS The treatment of CM with OT or its abundant cardiac precursor, OT-GKR, revealed ANP accumulation in the cell peri-nuclear region and increased intracellular cGMP. Consequently, the CM hypertrophy was abolished by the treatment of 10nM OT or 10nM OT-GKR. The ANP receptor antagonist (anantin) and NO synthases inhibitor (l-NAME) inhibited cGMP production in CMs exposed to OT. STO-609 and compound C inhibition of anti-hypertrophic OT effects in CMs indicated the contribution of calcium-calmodulin kinase kinase and AMP-activated protein kinase pathways. Moreover, in ET-1 stimulated cells, OT treatment normalized the reduced Akt phosphorylation, prevented abundant accumulation of ANP and blocked ET-1-mediated translocation of nuclear factor of activated T-cells (NFAT) into the cell nuclei. CONCLUSION cGMP/protein kinase G mediates OT-induced anti-hypertrophic response with the contribution of ANP and NO. OT treatment represents a novel approach in attenuation of cardiac hypertrophy during development and cardiac pathology.
Collapse
Affiliation(s)
- Ahmed Menaouar
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Maria Florian
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Donghao Wang
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Bogdan Danalache
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, CRCHUM, Department of Medicine, University of Montreal Quebec, Canada
| |
Collapse
|
126
|
Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 2014; 114:565-71. [PMID: 24481846 DOI: 10.1161/circresaha.114.300507] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac hypertrophy is an adaptive response to physiological and pathological overload. In response to the overload, individual cardiac myocytes become mechanically stretched and activate intracellular hypertrophic signaling pathways to re-use embryonic transcription factors and to increase the synthesis of various proteins, such as structural and contractile proteins. These hypertrophic responses increase oxygen demand and promote myocardial angiogenesis to dissolve the hypoxic situation and to maintain cardiac contractile function; thus, these responses suggest crosstalk between cardiac myocytes and microvasculature. However, sustained pathological overload induces maladaptation and cardiac remodeling, resulting in heart failure. In recent years, specific understanding has increased with regard to the molecular processes and cell-cell interactions that coordinate myocardial growth and angiogenesis. In this review, we summarize recent advances in understanding the regulatory mechanisms of coordinated myocardial growth and angiogenesis in the pathophysiology of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Toru Oka
- From the Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan (T.O., A.T.N., I.K.); Departments of Advanced Clinical Science and Therapeutics (H.A.) and Cardiovascular Medicine (H.A., A.T.N., I.K.), The University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; and Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Chiyoda-ku, Tokyo, Japan (T.O., H.A., A.T.N., I.K.)
| | | | | | | |
Collapse
|
127
|
Abstract
The protein kinase mammalian or mechanistic target of rapamycin (mTOR) is an atypical serine/threonine kinase that exerts its main cellular functions by interacting with specific adaptor proteins to form 2 different multiprotein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 regulates protein synthesis, cell growth and proliferation, autophagy, cell metabolism, and stress responses, whereas mTORC2 seems to regulate cell survival and polarity. The mTOR pathway plays a key regulatory function in cardiovascular physiology and pathology. However, the majority of information available about mTOR function in the cardiovascular system is related to the role of mTORC1 in the unstressed and stressed heart. mTORC1 is required for embryonic cardiovascular development and for postnatal maintenance of cardiac structure and function. In addition, mTORC1 is necessary for cardiac adaptation to pressure overload and development of compensatory hypertrophy. However, partial and selective pharmacological and genetic inhibition of mTORC1 was shown to extend life span in mammals, reduce pathological hypertrophy and heart failure caused by increased load or genetic cardiomyopathies, reduce myocardial damage after acute and chronic myocardial infarction, and reduce cardiac derangements caused by metabolic disorders. The optimal therapeutic strategy to target mTORC1 and increase cardioprotection is under intense investigation. This article reviews the information available regarding the effects exerted by mTOR signaling in cardiovascular physiology and pathological states.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- From the Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ (S.S., J.S.); IRCCS Neuromed, Pozzilli, Italy (S.S., M.V.); and Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University Sapienza, Rome, Italy (M.V.)
| | | | | |
Collapse
|
128
|
Kivelä R, Bry M, Robciuc MR, Räsänen M, Taavitsainen M, Silvola JMU, Saraste A, Hulmi JJ, Anisimov A, Mäyränpää MI, Lindeman JH, Eklund L, Hellberg S, Hlushchuk R, Zhuang ZW, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med 2014; 6:307-21. [PMID: 24448490 PMCID: PMC3958306 DOI: 10.1002/emmm.201303147] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease. Subject Categories Cardiovascular System; Metabolism See also: C Kupatt and R Hinkel (March 2014)
Collapse
Affiliation(s)
- Riikka Kivelä
- Wihuri Research Institute and Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Nardosinone protects H9c2 cardiac cells from angiotensin II-induced hypertrophy. ACTA ACUST UNITED AC 2013; 33:822-826. [DOI: 10.1007/s11596-013-1205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 09/12/2013] [Indexed: 10/25/2022]
|
130
|
Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A 2013; 110:20164-9. [PMID: 24284169 DOI: 10.1073/pnas.1315155110] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac hypertrophy, initially an adaptive response of the myocardium to stress, can progress to heart failure. The epigenetic signature underlying this phenomenon is poorly understood. Here, we report on the genome-wide distribution of seven histone modifications in adult mouse cardiomyocytes subjected to a prohypertrophy stimulus in vivo. We found a set of promoters with an epigenetic pattern that distinguishes specific functional classes of genes regulated in hypertrophy and identified 9,207 candidate active enhancers whose activity was modulated. We also analyzed the transcriptional network within which these genetic elements act to orchestrate hypertrophy gene expression, finding a role for myocyte enhancer factor (MEF)2C and MEF2A in regulating enhancers. We propose that the epigenetic landscape is a key determinant of gene expression reprogramming in cardiac hypertrophy and provide a basis for understanding the role of chromatin in regulating this phenomenon.
Collapse
|
131
|
Moschella PC, McKillop J, Pleasant DL, Harston RK, Balasubramanian S, Kuppuswamy D. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells. Cell Signal 2013; 25:1904-12. [PMID: 23673367 PMCID: PMC3704180 DOI: 10.1016/j.cellsig.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023]
Abstract
Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation.
Collapse
Affiliation(s)
- Phillip C. Moschella
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - John McKillop
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Dorea L. Pleasant
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Rebecca K. Harston
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Sundaravadivel Balasubramanian
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Dhandapani Kuppuswamy
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| |
Collapse
|
132
|
Dobrzyn P, Pyrkowska A, Duda MK, Bednarski T, Maczewski M, Langfort J, Dobrzyn A. Expression of lipogenic genes is upregulated in the heart with exercise training-induced but not pressure overload-induced left ventricular hypertrophy. Am J Physiol Endocrinol Metab 2013; 304:E1348-58. [PMID: 23632628 DOI: 10.1152/ajpendo.00603.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac hypertrophy is accompanied by molecular remodeling that affects different cellular pathways, including fatty acid (FA) utilization. In the present study, we show that cardiac lipid metabolism is differentially regulated in response to physiological (endurance training) and pathological [abdominal aortic banding (AAB)] hypertrophic stimuli. Physiological hypertrophy was accompanied by an increased expression of lipogenic genes and the activation of sterol regulatory element-binding protein-1c and Akt signaling. Additionally, FA oxidation pathways regulated by AMP-activated protein kinase (AMPK) and peroxisome proliferator activated receptor-α (PPARα) were induced in trained hearts. Cardiac lipid content was not changed by physiological stimulation, underlining balanced lipid utilization in the trained heart. Moreover, pathological hypertrophy induced the AMPK-regulated oxidative pathway, whereas PPARα and expression of its downstream targets, i.e., acyl-CoA oxidase and carnitine palmitoyltransferase I, were not affected by AAB. In contrast, pathological hypertrophy leads to cardiac triglyceride (TG) and diacylglycerol (DAG) accumulation, although the expression of lipogenic genes and the levels of FA transport proteins (CD36 and FATP) were not changed or reduced compared with the sham group. A possible explanation for this phenomenon is a decrease in lipolysis, as evidenced by the increased content of adipose triglyceride lipase inhibitor G0S2, the increased phosphorylation of hormone-sensitive lipase at Ser(565), and the decreased protein levels of DAG lipase that attenuate TG and DAG contents. The increased TG and DAG accumulation observed in AAB-induced hypertrophy might have lipotoxic effects, thereby predisposing to cardiomyopathy and heart failure in the future.
Collapse
Affiliation(s)
- Pawel Dobrzyn
- Laboratory of Molecular and Medical Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
133
|
Willis MS, Min JN, Wang S, McDonough H, Lockyer P, Wadosky KM, Patterson C. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct 2013; 31:724-35. [PMID: 23553918 DOI: 10.1002/cbf.2962] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Bozi LHM, Maldonado IRDSC, Baldo MP, Silva MFD, Moreira JBN, Novaes RD, Ramos RMS, Mill JG, Brum PC, Felix LB, Gomes TNP, Natali AJ. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats. Clinics (Sao Paulo) 2013; 68:549-56. [PMID: 23778353 PMCID: PMC3634970 DOI: 10.6061/clinics/2013(04)18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The present study was performed to investigate 1) whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2) whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM), sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05). RESULTS Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.
Collapse
|
135
|
Hua Y, Zhang Y, Dolence J, Shi GP, Ren J, Nair S. Cathepsin K knockout mitigates high-fat diet-induced cardiac hypertrophy and contractile dysfunction. Diabetes 2013; 62:498-509. [PMID: 23069627 PMCID: PMC3554365 DOI: 10.2337/db12-0350] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cysteine protease cathepsin K has been implicated in pathogenesis of cardiovascular disease. We hypothesized that ablation of cathepsin K protects against obesity-associated cardiac dysfunction. Wild-type mice fed a high-fat diet exhibited elevated heart weight, enlarged cardiomyocytes, increased left ventricular wall thickness, and decreased fractional shortening. All these changes were reconciled in cathepsin K knockout mice. Cathepsin K knockout partly reversed the impaired cardiomyocyte contractility and dysregulated calcium handling associated with high-fat diet. Additionally, cathepsin K knockout alleviated whole-body glucose intolerance and improved insulin-stimulated Akt phosphorylation in high-fat diet-fed mice. High-fat feeding increased the expression of cardiac hypertrophic proteins and apoptotic markers, which were inhibited by cathepsin K knockout. Furthermore, high-fat feeding resulted in cathepsin K release from lysosomes into the cytoplasm. In H9c2 myoblasts, silencing of cathepsin K inhibited palmitic acid-induced release of cytochrome c from mitochondria and expression of proapoptotic signaling molecules. Collectively, our data indicate that cathepsin K contributes to the development of obesity-associated cardiac hypertrophy and may represent a potential target for the treatment to obesity-associated cardiac anomalies.
Collapse
Affiliation(s)
- Yinan Hua
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, Wyoming
| | - Yingmei Zhang
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, Wyoming
| | - Julia Dolence
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, Wyoming
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, Wyoming
- Corresponding author: Sreejayan Nair, , or Jun Ren,
| | - Sreejayan Nair
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, Wyoming
- Corresponding author: Sreejayan Nair, , or Jun Ren,
| |
Collapse
|
136
|
Witham WG, Yester KA, McGaffin KR. A high leucine diet mitigates cardiac injury and improves survival after acute myocardial infarction. Metabolism 2013; 62:290-302. [PMID: 22935555 DOI: 10.1016/j.metabol.2012.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/17/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Evidence suggests that branched chain amino acids (BCAAs) are beneficial in treating human disease. It is unknown, however, what impact BCAAs have on outcomes in acute myocardial infarction (MI). This study was performed to test the hypothesis that the specific BCAA leucine mitigates cardiac injury and improves survival post-MI. MATERIALS/METHODS 11-12 week old male C57BL/6 mice were subjected to experimental MI or sham procedure, and provided regular chow (RC; 1.5% leucine) or a high leucine diet (HLD; 5% leucine), and followed for 3½ or 28 days. All mice were studied by echocardiography and cardiac catheterization, and all hearts were collected for histologic measurements of hypertrophy, fibrosis and apoptosis. Inflammation, hypertrophic gene expression, signal transduction, and glucose, palmitate and leucine metabolism were also measured in 3½day hearts. RESULTS Except for increased leucine and decreased glucose oxidation, an HLD had no effect on measured outcomes in sham mice. With MI, cardiac structure, function, and survival were significantly improved with an HLD. At 3½days post-MI, an HLD increased cardiac hypertrophic signaling and decreased inflammation. Cardiac leucine oxidation was decreased in RC mice post-MI, but significantly increased with an HLD. These changes in metabolism were accompanied by a significant increase in cardiac ATP content in the HLD group. Finally, at both 3½ and 28 days post-MI, an HLD increased compensatory hypertrophy, and attenuated cardiac fibrosis and apoptosis. CONCLUSIONS An HLD increases compensatory hypertrophy, attenuates fibrosis and apoptosis, and positively modulates oxidative metabolism to improve cardiac structure, function, and survival post-MI.
Collapse
Affiliation(s)
- William G Witham
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
137
|
Doenst T. Invited commentary. Ann Thorac Surg 2012; 94:1517-8. [PMID: 23098933 DOI: 10.1016/j.athoracsur.2012.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 11/25/2022]
Affiliation(s)
- Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital, Friedrich Schiller University of Jena, Erlanger Allee 101, 07747 Jena, Germany.
| |
Collapse
|
138
|
Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, Dyck JRB. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. J Physiol 2012; 590:2783-99. [PMID: 22473781 DOI: 10.1113/jphysiol.2012.230490] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exercise training (ET) improves endurance capacity by increasing both skeletal muscle mitochondrial number and function, as well as contributing to favourable cardiac remodelling.Interestingly, some of the benefits of regular exercise can also be mimicked by the naturally occurring polyphenol, resveratrol (RESV). However, it is not known whether RESV enhances physiological adaptations to ET. To investigate this, male Wistar rats were randomly assigned to a control chow diet or a chow diet that contained RESV (4 g kg⁻¹ of diet) and subsequently subjected to a programme of progressive treadmill running for 12 weeks. ET-induced improvements in exercise performance were enhanced by 21% (P <0.001) by the addition of RESV to the diet. In soleus muscle, ET+RESV increased both the twitch (1.8-fold; P <0.05) and tetanic(1.2-fold; P <0.05) forces generated during isometric contraction, compared to ET alone. In vivo echocardiography demonstrated that ET+RESV also increased the resting left ventricular ejection fraction by 10% (P <0.05), and reduced left ventricular wall stress compared to ET alone.These functional changes were accompanied by increased cardiac fatty acid oxidation (1.2-fold;P <0.05) and favourable changes in cardiac gene expression and signal transduction pathways that optimized the utilization of fatty acids in ET+RESV compared to ET alone. Overall, our findings provide evidence that the capacity for fatty acid oxidation is augmented by the addition of RESV to the diet during ET, and that this may contribute to the improved physical performance of rats following ET.
Collapse
Affiliation(s)
- Vernon W Dolinsky
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
139
|
Schoepe M, Schrepper A, Schwarzer M, Osterholt M, Doenst T. Exercise can induce temporary mitochondrial and contractile dysfunction linked to impaired respiratory chain complex activity. Metabolism 2012; 61:117-26. [PMID: 21816448 DOI: 10.1016/j.metabol.2011.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/09/2011] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
Abstract
Exercise is considered to elicit a physiological response of the heart. Previous studies investigated the influence of repetitive exercise only at the end of the training period. We assessed the impact of 2 exercise protocols, differing in their treadmill inclination, on cardiac and mitochondrial function at different times during the training period. Within 10 weeks, animals trained with 16% incline developed hypertrophy (left ventricular posterior wall thickness: 1.6 ± 0.1 vs 2.4 ± 0.1 mm; P < .05) with normal function (ejection fraction: 75.2% ± 2.5% vs 75.6% ± 2.1%). However, at 6 weeks, there was temporary impairment of contractile function (ejection fraction: 74.5% ± 1.67% vs 65.8% ± 2.3%; P < .05) associated with decreased mitochondrial respiratory capacity (state 3 respiration: 326 ± 71 vs 161 ± 22 natoms/[min mg protein]; P < .05) and a gene expression shift from the adult (α) to the fetal (β) myosin heavy chain isoform. Although peroxisome proliferator-activated receptor gamma coactivator-1α expression was normal, nuclear respiratory factors (NRFs)-1 and -2 were significantly reduced (NRF-1: 1.00 ± 0.16 vs 0.55 ± 0.09; NRF-2: 1.00 ± 0.11 vs 0.63 ± 0.07; P < .05) after 6 weeks. These findings were associated with a reduction of electron transport chain complexes I and IV activity (complex I: 1016 ± 67 vs 758 ± 71 nmol/[min mg protein]; complex IV: 18768 ± 1394 vs 14692 ± 960 nmol/[min mg protein]; P < .05). Messenger RNA expression of selected nuclear encoded subunits of the electron transport chain was unchanged at all investigated time points. In contrast, animals trained with 10% incline showed less hypertrophy and normal function in echocardiography, normal maximal respiratory capacity, and unchanged complex activities at all 3 time points. Repetitive exercise may cause contractile and mitochondrial dysfunction characterized by impaired respiratory chain complex activities. This activity reduction is temporary and intensity related.
Collapse
Affiliation(s)
- Maria Schoepe
- Department of Cardiac Surgery, Heart Center Leipzig, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
140
|
Kemi OJ, MacQuaide N, Hoydal MA, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol 2012; 227:20-6. [PMID: 21465470 DOI: 10.1002/jcp.22771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Impaired cardiac control of intracellular diastolic Ca(2+) gives rise to arrhythmias. Whereas exercise training corrects abnormal cyclic Ca(2+) handling in heart failure, the effect on diastolic Ca(2+) remains unstudied. Here, we studied the effect of exercise training on the generation and propagation of spontaneous diastolic Ca(2+) waves in failing cardiomyocytes. Post-myocardial infarction heart failure was induced in Sprague-Dawley rats by coronary artery ligation. Echocardiography confirmed left ventricular infarctions of 40 ± 5%, whereas heart failure was indicated by increased left ventricular end-diastolic pressures, decreased contraction-relaxation rates, and pathological hypertrophy. Spontaneous Ca(2+) waves were imaged by laser linescanning confocal microscopy (488 nm excitation/505-530 nm emission) in 2 µM Fluo-3-loaded cardiomyocytes at 37°C and extracellular Ca(2+) of 1.2 and 5.0 mM. These studies showed that spontaneous Ca(2+) wave frequency was higher at 5.0 mM than 1.2 mM extracellular Ca(2+) in all rats, but failing cardiomyocytes generated 50% (P < 0.01) more waves compared to sham-operated controls at Ca(2+) 1.2 and 5.0 mM. Exercise training reduced the frequency of spontaneous waves at both 1.2 and 5.0 mM Ca(2+) (P < 0.05), although complete normalization was not achieved. Exercise training also increased the aborted/completed ratio of waves at 1.2 mM Ca(2+) (P < 0.01), but not 5.0 mM. Finally, we repeated these studies after inhibiting the nitric oxide synthase with L-NAME. No differential effects were found; thus, mediation did not involve the nitric oxide synthase. In conclusion, exercise training improved the cardiomyocyte control of diastolic Ca(2+) by reducing the Ca(2+) wave frequency and by improving the ability to abort spontaneous Ca(2+) waves after their generation, but before cell-wide propagation.
Collapse
Affiliation(s)
- Ole J Kemi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
141
|
Hwee DT, Gomes AV, Bodine SC. Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. Am J Physiol Endocrinol Metab 2011; 301:E967-77. [PMID: 21828340 PMCID: PMC3214003 DOI: 10.1152/ajpendo.00165.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle ring finger-1 (MuRF1) is a muscle-specific E3 ubiquitin ligase that has been implicated in the regulation of cardiac mass through its control of the ubiquitin proteasome system. While it has been suggested that MuRF1 is required for cardiac atrophy, a resting cardiac phenotype has not been reported in mice with a null deletion [knockout (KO)] of MuRF1. Here, we report that MuRF1 KO mice have significantly larger hearts than age-matched wild-type (WT) littermates at ≥ 6 mo of age and that loss of cardiac mass can occur in the absence of MuRF1. The objective of this study was to determine whether changes in proteasome activity were responsible for the cardiac phenotypes observed in MuRF1 KO mice. Cardiac function, architecture, and proteasome activity were analyzed at rest and following 28 days of dexamethasone (Dex) treatment in 6-mo-old WT and MuRF1 KO mice. Echocardiography demonstrated normal cardiac function in the enlarged hearts in MURF1 KO mice. At rest, heart mass and cardiomyocyte diameter were significantly greater in MuRF1 KO than in WT mice. The increase in cardiac size in MuRF1 KO mice was related to a decrease in proteasome activity and an increase in Akt signaling relative to WT mice. Dex treatment induced a significant loss of cardiac mass in MuRF1 KO, but not WT, mice. Furthermore, Dex treatment resulted in an increase in proteasome activity in KO, but a decrease in WT, mice. In contrast, Akt/mammalian target of rapamycin signaling decreased in MuRF1 KO mice and increased in WT mice in response to Dex treatment. These findings demonstrate that MuRF1 plays an important role in regulating cardiac size through alterations in protein turnover and that MuRF1 is not required to induce cardiac atrophy.
Collapse
Affiliation(s)
- Darren T Hwee
- 2Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, Davis, California, USA
| | | | | |
Collapse
|
142
|
Gray S, Kim JK. New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 2011; 22:394-403. [PMID: 21680199 PMCID: PMC3183400 DOI: 10.1016/j.tem.2011.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/11/2011] [Accepted: 05/05/2011] [Indexed: 01/06/2023]
Abstract
Insulin resistance is a major characteristic of obesity and type 2 diabetes, and develops in multiple organs, including the heart. Compared with its role in other organs, the physiological role of insulin resistance in the heart is not well understood. The heart uses lipid as a primary fuel, but glucose becomes an important source of energy in ischemia. The impaired ability to utilize glucose might contribute to cell death and abnormal function in the diabetic heart. Recent discoveries regarding the role of inflammation, mitochondrial dysfunction and endoplasmic reticulum (ER) stress in obesity have advanced our understanding of how insulin resistance develops in peripheral organs. In this review, we examine these findings in relation to the diabetic heart to provide new insights into the mechanism of cardiac insulin resistance.
Collapse
Affiliation(s)
- Susan Gray
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
143
|
Kemi OJ, Hoydal MA, Macquaide N, Haram PM, Koch LG, Britton SL, Ellingsen O, Smith GL, Wisloff U. The effect of exercise training on transverse tubules in normal, remodeled, and reverse remodeled hearts. J Cell Physiol 2011; 226:2235-43. [PMID: 21660947 PMCID: PMC3096693 DOI: 10.1002/jcp.22559] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The response of transverse (T)-tubules to exercise training in health and disease remains unclear. Therefore, we studied the effect of exercise training on the density and spacing of left ventricle cardiomyocyte T-tubules in normal and remodeled hearts that associate with detubulation, by confocal laser scanning microscopy. First, exercise training in normal rats increased cardiomyocyte volume by 16% (P < 0.01), with preserved T-tubule density. Thus, the T-tubules adapted to the physiologic hypertrophy. Next, we studied T-tubules in a rat model of metabolic syndrome with pressure overload-induced concentric left ventricle hypertrophy, evidenced by 15% (P < 0.01) increased cardiomyocyte size. These rats had only 85% (P < 0.01) of the T-tubule density of control rats. Exercise training further increased cardiomyocyte volume by 8% (P < 0.01); half to that in control rats, but the T-tubule density remained unchanged. Finally, post-myocardial infarction heart failure induced severe cardiac pathology, with a 70% (P < 0.01) increased cardiomyocyte volume that included both eccentric and concentric hypertrophy and 55% (P < 0.01) reduced T-tubule density. Exercise training reversed 50% (P < 0.01) of the pathologic hypertrophy, whereas the T-tubule density increased by 40% (P < 0.05) compared to sedentary heart failure, but remained at 60% of normal hearts (P < 0.01). Physiologic hypertrophy associated with conserved T-tubule spacing (~1.8-1.9 µm), whereas in pathologic hypertrophy, T-tubules appeared disorganized without regular spacing. In conclusion, cardiomyocytes maintain the relative T-tubule density during physiologic hypertrophy and after mild concentric pathologic hypertrophy, whereas after severe pathologic remodeling with a substantial loss of T-tubules; exercise training reverses the remodeling and partly corrects the T-tubule density.
Collapse
Affiliation(s)
- Ole J Kemi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Brum P, Bacurau A, Medeiros A, Ferreira J, Vanzelli A, Negrão C. Aerobic exercise training in heart failure: impact on sympathetic hyperactivity and cardiac and skeletal muscle function. Braz J Med Biol Res 2011; 44:827-35. [DOI: 10.1590/s0100-879x2011007500075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/06/2011] [Indexed: 01/01/2023] Open
Affiliation(s)
| | | | - A. Medeiros
- Universidade de São Paulo, Brasil; Universidade Federal de São Paulo, Brasil
| | | | | | - C.E. Negrão
- Universidade de São Paulo, Brasil; Universidade de São Paulo, Brasil
| |
Collapse
|
145
|
Fernandes T, Soci U, Oliveira E. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44:836-47. [DOI: 10.1590/s0100-879x2011007500112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/25/2011] [Indexed: 12/25/2022] Open
|
146
|
Abstract
The main role of insulin in the heart under physiological conditions is obviously the regulation of substrate utilization. Indeed, insulin promotes glucose uptake and its utilization via glycolysis. Insulin, promoting glucose as the main cardiac energy substrate, reduces myocardial O(2) consumption and increases cardiac efficiency. Moreover, insulin seems to augment cardiomyocyte contraction, while it affects favorably myocardial relaxation, increases ribosomal biogenesis and protein synthesis, stimulates vascular endothelial growth factor (VEGF) and thereby angiogenesis, suppresses apoptosis, promotes cell survival and finally ameliorates both myocardial microcirculation and coronary artery resistance, leading to increased blood perfusion of myocardium. Thus, insulin acts directly on heart muscle, and this action is mediated principally through PKB/Akt signal pathway. Under pathological conditions, such as type 2 diabetes, myocardial ischaemia, and cardiac hypertrophy, insulin signal transduction pathways and action are clearly modified. In this review we summarize the evidence that the heart is an important target of insulin action and that elimination of these actions is important in disease states.
Collapse
Affiliation(s)
- Fotios Iliadis
- Diabetes Division, 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | |
Collapse
|
147
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Foryst-Ludwig A, Kreissl MC, Sprang C, Thalke B, Böhm C, Benz V, Gürgen D, Dragun D, Schubert C, Mai K, Stawowy P, Spranger J, Regitz-Zagrosek V, Unger T, Kintscher U. Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol 2011; 301:H115-22. [DOI: 10.1152/ajpheart.01222.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exercise-induced cardiac hypertrophy has been recently identified to be regulated in a sex-specific manner. In parallel, women exhibit enhanced exercise-mediated lipolysis compared with men, which might be linked to cardiac responses. The aim of the present study was to assess if previously reported sex-dependent differences in the cardiac hypertrophic response during exercise are associated with differences in cardiac energy substrate availability/utilization. Female and male C57BL/6J mice were challenged with active treadmill running for 1.5 h/day (0.25 m/s) over 4 wk. Mice underwent cardiac and metabolic phenotyping including echocardiography, small-animal PET, peri-exercise indirect calorimetry, and analysis of adipose tissue (AT) lipolysis and cardiac gene expression. Female mice exhibited increased cardiac hypertrophic responses to exercise compared with male mice, measured by echocardiography [percent increase in left ventricular mass (LVM): female: 22.2 ± 0.8%, male: 9.0 ± 0.2%; P < 0.05]. This was associated with increased plasma free fatty acid (FFA) levels and augmented AT lipolysis in female mice after training, whereas FFA levels from male mice decreased. The respiratory quotient during exercise was significantly lower in female mice indicative for preferential utilization of fatty acids. In parallel, myocardial glucose uptake was reduced in female mice after exercise, analyzed by PET {injection dose (ID)/LVM [%ID/g]: 36.8 ± 3.5 female sedentary vs. 28.3 ± 4.3 female training; P < 0.05}, whereas cardiac glucose uptake was unaltered after exercise in male counterparts. Cardiac genes involved in fatty acid uptake/oxidation in females were increased compared with male mice. Collectively, our data demonstrate that sex differences in exercise-induced cardiac hypertrophy are associated with changes in cardiac substrate availability and utilization.
Collapse
Affiliation(s)
- Anna Foryst-Ludwig
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | | | - Christiane Sprang
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | - Beata Thalke
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | - Christian Böhm
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | - Verena Benz
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | - Dennis Gürgen
- Department of Nephrology/Intensive Care Medicine, Charité Campus Virchow-Klinikum, and Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin
| | - Duska Dragun
- Department of Nephrology/Intensive Care Medicine, Charité Campus Virchow-Klinikum, and Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin
| | - Carola Schubert
- Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, and Institute of Gender in Medicine, Berlin
| | - Knut Mai
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin; and
| | - Philipp Stawowy
- Department of Cardiology, German Heart Institute, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin; and
| | - Vera Regitz-Zagrosek
- Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, and Institute of Gender in Medicine, Berlin
| | - Thomas Unger
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| | - Ulrich Kintscher
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin
| |
Collapse
|
149
|
Abstract
AKT is a serine/threonine protein kinase, also known as protein kinase B, which regulates cardiac growth, myocardial angiogenesis, glucose metabolism, and cell death in cardiac myocytes. AKT is activated by its phosphorylation at Thr 308 and ser 473 by PDK1 and mTORC2, respectively, in response to trophic stimuli such as insulin and insulin growth factor. c-Jun N-Terminal Kinases (JNKs) phosphorylate AKT at Thr 450 and potentiate its interaction with its downstream effectors. The short-term activation of AKT promotes physiological hypertrophy and protection from myocardial injury; whereas, its long-term activation causes pathological hypertrophy and heart failure. In this review we will discuss the role of AKT in regulating signalling pathways in the heart with special emphasis on the role of AKT in modulating stress induced autophagic cell death in cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
150
|
Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics 2011; 43:665-673. [PMID: 21447748 PMCID: PMC3121159 DOI: 10.1152/physiolgenomics.00145.2010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/29/2011] [Indexed: 12/14/2022] Open
Abstract
MiRNAs regulate cardiac development, hypertrophy, and angiogenesis, but their role in cardiac hypertrophy (CH) induced by aerobic training has not previously been studied. Aerobic training promotes physiological CH preserving cardiac function. This study assessed involvement of miRNAs-29 in CH of trained rats. Female Wistar rats (n=7/group) were randomized into three groups: sedentary (S), training 1 (T1), training 2 (T2). T1: swimming sessions of 60 min/5 days/wk/10 wk. T2: similar to T1 until 8th wk. On the 9th wk rats swam 2×/day, and on the 10th wk 3×/day. MiRNAs analysis was performed by miRNA microarray and confirmed by real-time PCR. We assessed: markers of training, CH by ratio of left ventricle (LV) weight/body wt and cardiomyocytes diameter, pathological markers of CH (ANF, skeletal α-actin, α/β-MHC), collagen I and III (COLIAI and COLIIIAI) by real-time PCR, protein collagen by hydroxyproline (OH-proline) concentration, CF and CH by echocardiography. Training improved aerobic capacity and induced CH. MiRNAs-1, 133a, and 133b were downregulated as observed in pathological CH, however, without pathological markers. MiRNA-29c expression increased in T1 (52%) and T2 (123%), correlated with a decrease in COLIAI and COLIIIAI expression in T1 (27%, 38%) and T2 (33%, 48%), respectively. MiRNA-29c was inversely correlated to OH-proline concentration (r=0.61, P<0.05). The E/A ratio increased in T2, indicating improved LV compliance. Thus, these results show that aerobic training increase miR-29 expression and decreased collagen gene expression and concentration in the heart, which is relevant to the improved LV compliance and beneficial cardiac effects, associated with aerobic high performance training.
Collapse
Affiliation(s)
- U. P. R. Soci
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - T. Fernandes
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - N. Y. Hashimoto
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - G. F. Mota
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - M. A. Amadeu
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| | - K. T. Rosa
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; and
| | - M. C. Irigoyen
- Hypertension Unit, Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; and
| | - M. I. Phillips
- Laboratory of Stem Cells, Keck Graduate Institute of Applied Life Sciences, Claremont, California
| | - E. M. Oliveira
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport
| |
Collapse
|