101
|
Abstract
Over the past two decades, therapeutics for diabetes have evolved from drugs with known heart failure risk to classes with potential benefit for patients with heart failure. As many as 25 to 35 % of patients with heart failure carry a diagnosis of type 2 diabetes mellitus. Therefore, newer drug classes including dipeptidyl peptidase 4 (DPP-4) inhibitors, glucagon-like peptide 1 (GIP-1) agonists, and sodium-glucose cotransporter 2 (SGLT-2) inhibitors are being examined for cardiovascular safety as well as their effects on left ventricular function, quality of life, and other measures of disease progression. The purpose of this review is to summarize the existing evidence on these classes of anti-diabetic agents in patients with heart failure.
Collapse
|
102
|
胡 静, 谷 小, 孟 炎, 王 娅, 高 琴, 李 正, 李 晓, 程 向. [Effect of dexmedetomidine postconditioning on myocardial ischemia-reperfusion injury and inflammatory response in diabetic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1506-1511. [PMID: 29180332 PMCID: PMC6779648 DOI: 10.3969/j.issn.1673-4254.2017.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the effect of dexmedetomidine postconditioning in alleviating myocardial ischemia-reperfusion (IR) injury and inflammation in diabetic mellitus rats. METHODS Thirty normal male Sprauge Dawley (SD) rats were randomly allocated into 3 groups (n=10), namely the sham-operated group, IR group, and dexmedetomidine postconditioning (DP) group. Similarly, another thirty diabetic SD rats were also randomly allocated into diabetic sham (DM-S) group, diabetic IR (DM-IR) group and diabetic dexmedetomidine postconditioning (DM-DP) group. The mean arterial pressure (MAP), heart rate (HR) and the rate pressure product (RPP) were recorded at baseline, after 30 min of ischemia, and at 30 and 120 min during reperfusion. Myocardial infarct size was analyzed by TTC double staining method, and plasma levels of CTnI, TNF-a, IL-6, IL-10 and IL-1β were measured at 120 min of reperfusion. RESULTS Compared with those in the sham-operated group, normal and diabetic rats in IR and DP groups showed significantly lowered MAP, HR, and RPP and increased levels of plasma CTnI, TNF-a, IL-6, IL-10 and IL-1β levels after 30 min of ischemia and at 30 min and 120 min of reperfusion (P<0.05). Compared with those in the IR group, the normal rats in DP group showed decreased MAP, HR, and RPP at 30 min of ischemia and at 30 min of reperfusion, which increased at 120 min of reperfusion (P<0.05); the infarct size and plasma CTnI, TNF-a, IL-6 and IL-1β levels were decreased while IL-10 was increased in DP group (P<0.05). Compared with those in DP group, the rats in DM-DP group showed similar MAP, HR and RPP (P>0.05) but significantly increased infarct size and plasma CTnI, TNF-a, IL-6 and IL-1β levels (P<0.05). CONCLUSION Dexmedetomidine postconditioning may produce a cardioprotective effect against myocardial IR injury in normal rats by alleviating inflammation, but can not reduce the release of inflammatory mediators in diabetic rats to improve myocardial infarction.
Collapse
Affiliation(s)
- 静 胡
- 蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233004Deparment of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院生理教研室,安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 小雨 谷
- 蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233004Deparment of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院生理教研室,安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 炎 孟
- 蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233004Deparment of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 娅 王
- 蚌埠医学院生理教研室,安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 琴 高
- 蚌埠医学院生理教研室,安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 正红 李
- 蚌埠医学院生理教研室,安徽 蚌埠 233030Department of Physiology, Bengbu Medical College, Bengbu 233030, China
| | - 晓红 李
- 蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233004Deparment of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 向阳 程
- 蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233004Deparment of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
103
|
Kumas M, Altintas O, Karatas E, Kocyigit A. Protective Effect of Ischemic Preconditioning on Myocardium Against Remote Tissue Injury Following Transient Focal Cerebral Ischemia in Diabetic Rats. Arq Bras Cardiol 2017; 109:516-526. [PMID: 29160389 PMCID: PMC5783432 DOI: 10.5935/abc.20170164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022] Open
Abstract
Background Remote ischemic preconditioning (IPreC) could provide tissue-protective
effect at a remote site by anti-inflammatory, neuronal, and humoral
signaling pathways. Objectives The aim of the study was to investigate the possible protective effects of
remote IPreC on myocardium after transient middle cerebral artery occlusion
(MCAo) in streptozotocin- induced diabetic (STZ) and non-diabetic rats. Methods 48 male Spraque Dawley rats were divided into eight groups: Sham, STZ, IPreC,
MCAo, IPreC+MCAo, STZ+IPreC, STZ+MCAo and STZ+IPreC+MCAo groups. We induced
transient MCAo seven days after STZ-induced diabetes, and performed IPreC 72
hours before transient MCAo. Remote myocardial injury was investigated
histopathologically. Bax, Bcl2 and caspase-3 protein levels were measured by
Western blot analysis. Total antioxidant status (TAS), total oxidant status
(TOS) of myocardial tissue were measured by colorimetric assay. Oxidative
stress index(OSI) was calculated as TOS-to-TAS ratio. For all statistical
analysis, p values < 0.05 were considered significant. Results We observed serious damage including necrosis, congestion and mononuclear
cell infiltration in myocardial tissue of the diabetic and ischemic groups.
In these groups TOS and OSI levels were significantly higher; TAS levels
were lower than those of IPreC related groups (p < 0.05). IPreC had
markedly improved histopathological alterations and increased TAS levels in
IPreC+MCAo and STZ+IPreC+MCAo compared to MCAo and STZ+MCAo groups (p <
0.05). In non-diabetic rats, MCAo activated apoptotic cell death via
increasing Bax/Bcl2 ratio and caspase-3 levels. IPreC reduced apoptotic cell
death by suppressing pro-apoptotic proteins. Diabetes markedly increased
apoptotic protein levels and the effect did not reversed by IPreC. Conclusions We could suggest that IPreC attenuates myocardial injury via ameliorating
histological findings, activating antioxidant mechanisms, and inducing
antiapoptotic activity in diabetic rats.
Collapse
Affiliation(s)
- Meltem Kumas
- BezmiAlem Vakif University - Vocational School of Health Services - Medical Laboratory Techniques; - Turquia
| | - Ozge Altintas
- Kirklareli State Hospital, Neurology Clinic; - Turquia
| | - Ersin Karatas
- Gebze Technical University, Department of Molecular Biology and Genetics;- Turquia
| | - Abdurrahim Kocyigit
- Bezmialem Vakif University - Medical Faculty - Medical Biochemistry Department - Turquia
| |
Collapse
|
104
|
Durak A, Olgar Y, Tuncay E, Karaomerlioglu I, Kayki Mutlu G, Arioglu Inan E, Altan VM, Turan B. Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Can J Physiol Pharmacol 2017; 95:1335-1342. [DOI: 10.1139/cjpp-2017-0054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical activity of the heart is adversely affected in metabolic syndrome (MetS) characterized by increased body mass and marked insulin resistance. Herein, we examined the effects of high carbohydrate intake on cardiac function abnormalities by evaluating in situ heart work, heart rate, and electrocardiograms (ECGs) in rats. MetS was induced in male Wistar rats by adding 32% sucrose to drinking water for 22–24 weeks and was confirmed by insulin resistance, increased body weight, increased blood glucose and serum insulin, and increased systolic and diastolic blood pressures in addition to significant loss of left ventricular integrity and increased connective tissue around myofibrils. Analysis of in situ ECG recordings showed a markedly shortened QT interval and decreased QRS amplitude with increased heart rate. We also observed increased oxidative stress and decreased antioxidant defense characterized by decreases in serum total thiol level and attenuated paraoxonase and arylesterase activities. Our data indicate that increased heart rate and a shortened QT interval concomitant with higher left ventricular developed pressure in response to β-adrenoreceptor stimulation as a result of less cyclic AMP release could be regarded as a natural compensation mechanism in overweight rats with MetS. In addition to the persistent insulin resistance and obesity associated with MetS, one should consider the decreased heart work, increased heart rate, and shortened QT interval associated with high carbohydrate intake, which may have more deleterious effects on the mammalian heart.
Collapse
Affiliation(s)
- Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Irem Karaomerlioglu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ebru Arioglu Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Vecdi Melih Altan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
105
|
Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells. Cells 2017; 6:cells6040035. [PMID: 29057797 PMCID: PMC5755494 DOI: 10.3390/cells6040035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/30/2022] Open
Abstract
We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.
Collapse
|
106
|
Activation of nuclear β-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 2017; 493:1573-1580. [PMID: 28989026 DOI: 10.1016/j.bbrc.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
Myocardial oxidative stress injury plays a crucial role in the pathogenesis of diabetic cardiomyopathy (DCM). Wnt/β-catenin signaling has been reported to involve in various heart diseases. However, the underlying mechanism associated with β-catenin in DCM remains elusive. This study intended to explore the effect of β-catenin on oxidative damage of DCM by establishing streptozotocin (STZ)-induced diabetic mouse model and hydrogen peroxide (H2O2)-treated myocardial cell model. Cardiac oxidative stress in DCM was detected by measurements of lipid peroxidation and anti-oxidative enzyme activities as well as DHE staining. Nuclear β-catenin activity and oxidative damage degree were measured by western blotting, qPCR, MTT assay and TUNEL staining. Cardiac function and morphology were evaluated by echocardiography and histopathology. Under diabetic oxidative stress or H2O2 stimulation, nuclear β-catenin accumulation upregulated downstream c-Myc and further facilitated DNA damage and p53-mediated apoptosis as well as cell viability reduction, followed by phenotypic changes of cardiac dysfunction, interstitial fibrosis deposition and myocardial atrophy. Conversely, through directly inhibiting nuclear β-catenin/c-Myc axis, not only did siRNA knockdown of β-catenin or c-Myc attenuate cell injury in H2O2-stimulated cardiomyocytes, but also diabetic cardiac-specific β-catenin-knockout mice displayed the same prevention of heart injury as insulin-treated diabetic mice. The present study demonstrated that activated nuclear β-catenin/c-Myc axis was responsible for oxidative cardiac impairment of DCM. Therefore, repressing functional nuclear β-catenin may provide a hopeful therapeutic strategy for DCM.
Collapse
|
107
|
Ahmed N, Linardi D, Muhammad N, Chiamulera C, Fumagalli G, Biagio LS, Gebrie MA, Aslam M, Luciani GB, Faggian G, Rungatscher A. Sphingosine 1-Phosphate Receptor Modulator Fingolimod (FTY720) Attenuates Myocardial Fibrosis in Post-heterotopic Heart Transplantation. Front Pharmacol 2017; 8:645. [PMID: 28966593 PMCID: PMC5605636 DOI: 10.3389/fphar.2017.00645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background and Objective: Sphingosine 1-phosphate (S1P), and S1P receptor modulator fingolimod have been suggested to play important cardioprotective role in animal models of myocardial ischemia/reperfusion injuries. To understand the cardioprotective function of S1P and its mechanism in vivo, we analyzed apoptotic, inflammatory biomarkers, and myocardial fibrosis in an in vivo heterotopic rat heart transplantation model. Methods: Heterotopic heart transplantation is performed in 60 Sprague–Dawley (SD) rats (350–400 g). The heart transplant recipients (n = 60) are categorized into Group A (control) and Group B (fingolimod treated 1 mg/kg intravenous). At baseline with 24 h after heart transplantation, blood and myocardial tissue are collected for analysis of myocardial biomarkers, apoptosis, inflammatory markers, oxidative stress, and phosphorylation of Akt/Erk/STAT-3 signaling pathways. Myocardial fibrosis was investigated using Masson’s trichrome staining and L-hydroxyline. Results: Fingolimod treatment activates both Reperfusion Injury Salvage Kinase (RISK) and Survivor Activating Factor Enhancement (SAFE) pathways as evident from activation of anti-apoptotic and anti-inflammatory pathways. Fingolimod treatment caused a reduction in myocardial oxidative stress and hence cardiomyocyte apoptosis resulting in a decrease in myocardial reperfusion injury. Moreover, a significant (p < 0.001) reduction in collagen staining and hydroxyproline content was observed in fingolimod treated animals 30 days after transplantation demonstrating a reduction in cardiac fibrosis. Conclusion: S1P receptor activation with fingolimod activates anti-apoptotic and anti-inflammatory pathways, leading to improved myocardial salvage causing a reduction in cardiac fibrosis.
Collapse
Affiliation(s)
- Naseer Ahmed
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy.,Faculty of Health Sciences, University of PunjabLahore, Pakistan.,Research Unit, Faculty of Allied Health Sciences, University of LahoreLahore, Pakistan.,Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Daniele Linardi
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Nazeer Muhammad
- COMSATS Institute of Information TechnologyWah Cantt, Pakistan
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Livio San Biagio
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Mebratu A Gebrie
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy.,Department of Anatomy, Università di Addis AbebaAddis Ababa, Ethiopia
| | - Muhammad Aslam
- Department of Internal Medicine, Cardiology and Angiology, University Hospital, Justus Liebig UniversityGiessen, Germany
| | - Giovanni Battista Luciani
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Giuseppe Faggian
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| | - Alessio Rungatscher
- Section of Cardiac Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of VeronaVerona, Italy
| |
Collapse
|
108
|
NLRP3 Inflammasome Activation-Mediated Pyroptosis Aggravates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9743280. [PMID: 29062465 PMCID: PMC5618779 DOI: 10.1155/2017/9743280] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
The reactive oxygen species- (ROS-) induced nod-like receptor protein-3 (NLRP3) inflammasome triggers sterile inflammatory responses and pyroptosis, which is a proinflammatory form of programmed cell death initiated by the activation of inflammatory caspases. NLRP3 inflammasome activation plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Our present study investigated whether diabetes aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Type 1 diabetic rat model was established by intraperitoneal injection of streptozotocin (60 mg/kg). MI/R was induced by ligating the left anterior descending artery (LAD) for 30 minutes followed by 2 h reperfusion. H9C2 cardiomyocytes were exposed to high glucose (HG, 30 mM) conditions and hypoxia/reoxygenation (H/R) stimulation. The myocardial infarct size, CK-MB, and LDH release in the diabetic rats subjected to MI/R were significantly higher than those in the nondiabetic rats, accompanied with increased NLRP3 inflammasome activation and increased pyroptosis. Inhibition of inflammasome activation with BAY11-7082 significantly decreased the MI/R injury. In vitro studies showed similar effects, as BAY11-7082 or the ROS scavenger N-acetylcysteine, attenuated HG and H/R-induced H9C2 cell injury. In conclusion, hyperglycaemia-induced NLRP3 inflammasome activation may be a ROS-dependent process in pyroptotic cell death, and NLRP3 inflammasome-induced pyroptosis aggravates MI/R injury in diabetic rats.
Collapse
|
109
|
Gao W, Zhao B, Liu L, Yuan Q, Wu X, Xia Z. Myocardial ischemic post-conditioning protects the lung against myocardial ischemia/reperfusion-induced damage by activating GSK-3β. Acta Cir Bras 2017; 32:376-387. [PMID: 28591367 DOI: 10.1590/s0102-865020170050000007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 11/22/2022] Open
Abstract
Purpose: To investigate whether modulating GSK-3β could attenuate myocardial ischemia reperfusion injury (MIRI) induced acute lung injury (ALI) and analyze the underlying mechanism. Methods: Male SD rats were subjected to MIRI with or without myocardial ischemic post-conditioning in the presence or absence of GSK-3β inhibitor. GSK-3β inhibitor was injected peritoneally 10min before MIRI. Lung W/D weight ratio, MPO, PMNs, histopathological changes, TUNEL, Bax, Bcl-2, IL-6, IL-8, IL-10, GSK-3β, and caspase-3 were evaluated in the lung tissues of all rats. Results: After MIRI, lung injury was significantly increased manifested as significant morphological changes and increased leukocytes in the interstitial capillaries, Lung W/D ratio, MPO, and PMN in BALF, which was associated with enhanced inflammation evidenced by increased expressions of IL-6, IL-8 and reduced expression of IL-10. MIRI significantly increased cell apoptosis in the lung as increased levels of apoptotosis, Bax, cleaved caspase-3, and reduced expression of Bcl-2 was observed, which was concomitant with reduced p-GSK-3β. All these changes were reversed/prevented by ischemic post-conditioning, while these beneficial effects of ischemic post-conditioning were abolished by GSK-3β inhibition. Conclusion: Myocardial ischemia reperfusion injury induces acute lung injury by induction of inflammation and cell apoptosis. Ischemic post-conditioning protects the lung from ALI following MIRI by increasing p-GSK-3β.
Collapse
Affiliation(s)
- Wenwei Gao
- Doctor of Medicine, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China. Conception and design of the study, acquisition and interpretation of data, manuscript writing
| | - Bo Zhao
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Conception and design of the study, critical revision
| | - Lian Liu
- Master of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Quan Yuan
- Master of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Xiaojing Wu
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Acquisition and interpretation of data
| | - Zhongyuan Xia
- Doctor of Medicine, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China. Design and supervised all phases of the study
| |
Collapse
|
110
|
Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R. Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2- O-β-D-glucoside. Nutr Metab (Lond) 2017; 14:45. [PMID: 28702068 PMCID: PMC5504778 DOI: 10.1186/s12986-017-0200-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC) Infruitec- Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
111
|
High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7921363. [PMID: 28698769 PMCID: PMC5494101 DOI: 10.1155/2017/7921363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptations produced by diabetes. For this, diabetes was induced in rats by a single dose of alloxan. Diabetic rats were randomly assigned to a sedentary group or submitted to a program of exercise on a treadmill for 4 weeks at 80% of maximal performance. Another group of normoglycemic rats was used as control. Diabetic rat hearts presented cardiomyocyte hypertrophy and interstitial fibrosis. Chronic exercise reduced both parameters but increased apoptosis. Diabetes increased the myocardial levels of the mRNA and proteins of NADPH oxidases NOX2 and NOX4. These altered levels were not reduced by exercise. Diabetes also increased the level of uncoupled endothelial nitric oxide synthase (eNOS) that was not reversed by exercise. Finally, diabetic rats showed a lower degree of phosphorylated phospholamban and reduced levels of SERCA2 that were not restored by high-intensity exercise. These results suggest that high-intensity chronic exercise was able to reverse remodeling in the diabetic heart but was unable to restore the nitroso-redox imbalance imposed by diabetes.
Collapse
|
112
|
Yan X, Xun M, Dou X, Wu L, Han Y, Zheng J. Regulation of Na +-K +-ATPase effected high glucose-induced myocardial cell injury through c-Src dependent NADPH oxidase/ROS pathway. Exp Cell Res 2017; 357:243-251. [PMID: 28551376 DOI: 10.1016/j.yexcr.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 01/25/2023]
Abstract
Depressed Na+/K+-ATPase activity has long been reported to be involved in diabetic-related cardiomyocyte death and cardiac dysfunction. However, the nature of directly regulating Na+-K+-ATPase in diabetic-related myocardial diseases remains unknown. Hyperglycemia is believed as one of major factors responsible for diabetic-related myocardial apoptosis and dysfunction. In this study, whether inhibiting Na+-K+-ATPase by ouabain or activating Na+-K+-ATPase by DRm217 has functions on high glucose (HG) -induced myocardial injury was investigated. Here we found that addition of DRm217 or ouabain to HG-treated cells had opposite effects. DRm217 decreased but ouabain increased HG-induced cell injury and apoptosis. This was mediated by changing Na+-K+-ATPase activity and Na+-K+-ATPase cell surface expression. The inhibition of Na+-K+-ATPase endocytosis alleviated HG-induced ROS accumulation. Na+-K+-ATPase·c-Src dependent NADPH oxidase/ROS pathway was also involved in the effects of ouabain and DRm217 on HG-induced cell injury. These novel results may help us to understand the important role of the Na+-K+-ATPase in diabetic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Xun
- Department of Immunology and Microbiology, Health Science center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaojuan Dou
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
113
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
114
|
Potential Protective Effects of Bioactive Constituents from Chinese Propolis against Acute Oxidative Stress Induced by Hydrogen Peroxide in Cardiac H9c2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7074147. [PMID: 28337227 PMCID: PMC5350327 DOI: 10.1155/2017/7074147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Chinese propolis (CP) is known as a health food but its beneficial effects in protecting cardiomyocytes remain elusive. Here, we investigated the effects of CP and its active compounds on hydrogen peroxide (H2O2) induced rats cardiomyocytes (H9c2) oxidative injury. Cell viability decreases induced by H2O2 were mitigated by different CP extracts using various solvents. From these active fractions, six active compounds were separated and identified. Among tested isolated compound, the cytoprotective activities of three caffeates, caffeic acid phenethyl ester (CAPE), benzyl caffeate (BZC), and cinnamyl caffeate (CNC), exerted stronger effects than chrysin, pinobanksin, and 3,4-dimethoxycinnamic acid (DMCA). These three caffeates also increased H9c2 cellular antioxidant potential, decreased intracellular calcium ion ([Ca2+]i) level, and prevented cell apoptosis. Overall, the cardiovascular protective effects of the CP might be attributed to its caffeates constituents (CAPE, BZC, and CNC) and provide evidence for its usage in complementary and alternative medicine.
Collapse
|
115
|
Ding M, Dong Q, Liu Z, Liu Z, Qu Y, Li X, Huo C, Jia X, Fu F, Wang X. Inhibition of dynamin-related protein 1 protects against myocardial ischemia-reperfusion injury in diabetic mice. Cardiovasc Diabetol 2017; 16:19. [PMID: 28173848 PMCID: PMC5297196 DOI: 10.1186/s12933-017-0501-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/31/2017] [Indexed: 01/05/2023] Open
Abstract
Background Many cardioprotective pharmacological agents failed to exert their protective effects in diabetic hearts subjected to myocardial ischemia/reperfusion (MI/R). Identify the molecular basis linking diabetes with MI/R injury is scientifically important and may provide effective therapeutic approaches. Dynamin-related protein 1 (Drp1)-mediated mitochondrial fission plays an important role in MI/R injury under non-diabetic conditions. Importantly, recent studies indicated that Drp1-mediated mitochondrial fission is enhanced in the myocardium of diabetic mice. The above evidences suggested that Drp1 may be one critical molecule linking diabetes with MI/R injury. We hypothesized that inhibition of Drp1 may be effective to reduce MI/R injury in diabetic hearts. Methods High-fat diet and streptozotocin-induced diabetic mice were subjected to MI/R or sham operation. Mdivi-1 (1.2 mg/kg), a small molecule inhibitor of Drp1 or vehicle was administrated 15 min before the onset of reperfusion. Outcome measures included mitochondrial morphology, mitochondrial function, myocardial injury, cardiac function and oxidative stress. Results Mitochondrial fission was significantly increased following MI/R as evidenced by enhanced translocation of Drp1 to mitochondria and decreased mitochondrial size. Delivery of Mdivi-1 into diabetic mice markedly inhibited Drp1 translocation to the mitochondria and reduced mitochondrial fission following MI/R. Inhibition of Drp1 in diabetic hearts improved mitochondrial function and cardiac function following MI/R. Moreover, inhibition of Drp1 reduced myocardial infarct size and serum cardiac troponin I and lactate dehydrogenase activities. These cardioprotective effects were associated with decreased cardiomyocyte apoptosis and malondialdehyde production and increased activities of antioxidant enzyme manganese superoxide dismutase. Conclusions Pharmacological inhibition of Drp1 prevents mitochondrial fission and reduces MI/R injury in diabetic mice. The findings suggest Drp1 may be a potential novel therapeutic target for diabetic cardiac complications.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Geriatrics, Xi'an Central Hospital, Xi'an, 710003, China.,Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Qianqian Dong
- Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenghua Liu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China
| | - Zheng Liu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China
| | - Yinxian Qu
- Department of Geriatrics, Xi'an Central Hospital, Xi'an, 710003, China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China.
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, 15 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
116
|
Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int 2017; 34:587-600. [PMID: 28156163 DOI: 10.1080/07420528.2017.1281823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Marjan Aghajani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdieh Faghihi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Imani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,b Occupational Sleep Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Vaez Mahdavi
- c Traditional Medicine Clinical Trial Research Center, Shahed University , Tehran , Iran.,d Department of Physiology , Medical Faculty, Shahed University , Tehran , Iran
| | - Abbas Shakoori
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Tayebeh Rastegar
- f Anatomy Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Hoda Parsa
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Saman Mehrabi
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Moradi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Kazemi Moghaddam
- g Shiraz Burn and Wound Healing Research Center, Amir-al-momenin Burn Hospital, Shiraz University of Medical Sciences , Iran.,h Department of Microbiology , Medical Faculty, Shahed University , Tehran , Iran
| |
Collapse
|
117
|
Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, Kim S, Chiamvimonvat N, Xiang YK. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β 2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol 2017; 595:1973-1986. [PMID: 27983752 PMCID: PMC5350441 DOI: 10.1113/jp273314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications.
Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qingtong Wang
- Department of Pharmacology, University of California, Davis, CA, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yongming Liu
- Department of Pharmacology, University of California, Davis, CA, USA.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- Division of Cardiovascular Medicine, Department of Medicine, University of California, Davis, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Sungjin Kim
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Medicine, University of California, Davis, CA, USA.,VA Northern California Healthcare System, Mather, CA, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, CA, USA.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,VA Northern California Healthcare System, Mather, CA, USA
| |
Collapse
|
118
|
Nemmar A, Al-Salam S, Yuvaraju P, Beegam S, Yasin J, Ali BH. Chronic exposure to water-pipe smoke induces cardiovascular dysfunction in mice. Am J Physiol Heart Circ Physiol 2017; 312:H329-H339. [PMID: 27940964 DOI: 10.1152/ajpheart.00450.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
Water-pipe tobacco smoking is becoming prevalent in all over the world including Western countries. There are limited data on the cardiovascular effects of water-pipe smoke (WPS), in particular following chronic exposure. Here, we assessed the chronic cardiovascular effects of nose-only WPS exposure in C57BL/6 mice. The duration of the session was 30 minutes/day, 5 days/week for 6 consecutive months. Control mice were exposed to air. WPS significantly increased systolic blood pressure. The relative heart weight and plasma concentrations of troponin-I and B-type natriuretic peptide were increased in mice exposed to WPS. Arterial blood gas analysis showed that WPS caused a significant decrease in [Formula: see text] and an increase in [Formula: see text] WPS significantly shortened the thrombotic occlusion time in pial arterioles and venules and increased the number of circulating platelet. Cardiac lipid peroxidation, measured as thiobarbituric acid-reactive substances, was significantly increased, while superoxide dismutase activity, total nitric oxide activity, and glutathione concentration were reduced by WPS exposure. Likewise, immunohistochemical analysis of the heart revealed an increase in the expression of inducible nitric oxide synthase and cytochrome c by cardiomyocytes of WPS-exposed mice. Moreover, hearts of WPS-exposed mice showed the presence of focal interstitial fibrosis. WPS exposure significantly increased heart DNA damage assessed by Comet assay. We conclude that chronic nose-only exposure to WPS impairs cardiovascular homeostasis. Our findings provide evidence that long-term exposure to WPS is harmful to the cardiovascular system and supports interventions to control the spread of WPS, particularly amid youths.NEW & NOTEWORTHY No data are available on the chronic cardiovascular effects of water-pipe smoke (WPS). Our findings provide experimental evidence that chronic exposure to WPS increased blood pressure, relative heart weight, troponin I, and B-type natriuretic peptide in plasma and induced hypoxemia, hypercapnia, and thrombosis. Moreover, WPS caused cardiac oxidative stress, DNA damage, and fibrosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates;
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; and
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| |
Collapse
|
119
|
Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M, Bin Zhang, Jin Z, Yu S, Yang Y, Wang H. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 2017; 7:41337. [PMID: 28120943 PMCID: PMC5264601 DOI: 10.1038/srep41337] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Enhancing mitochondrial biogenesis and reducing mitochondrial oxidative stress have emerged as crucial therapeutic strategies to ameliorate diabetic myocardial ischemia/reperfusion (MI/R) injury. Melatonin has been reported to be a safe and potent cardioprotective agent. However, its role on mitochondrial biogenesis or reactive oxygen species (ROS) production in type 1 diabetic myocardium and the underlying mechanisms remain unknown. We hypothesize that melatonin ameliorates MI/R injury in type 1 diabetic rats by preserving mitochondrial function via AMPK-PGC-1α-SIRT3 signaling pathway. Both our in vivo and in vitro data showed that melatonin reduced MI/R injury by improving cardiac function, enhancing mitochondrial SOD activity, ATP production and oxidative phosphorylation complex (II, III and IV), reducing myocardial apoptosis and mitochondrial MDA, H2O2 generation. Importantly, melatonin also activated AMPK-PGC-1α-SIRT3 signaling and increased SOD2, NRF1 and TFAM expressions. However, these effects were abolished by Compound C (a specific AMPK signaling blocker) administration. Additionally, our cellular experiment showed that SIRT3 siRNA inhibited the cytoprotective effect of melatonin without affecting p-AMPK/AMPK ratio and PGC-1α expression. Taken together, we concluded that melatonin preserves mitochondrial function by reducing mitochondrial oxidative stress and enhancing its biogenesis, thus ameliorating MI/R injury in type 1 diabetic state. AMPK-PGC1α-SIRT3 axis plays an essential role in this process.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China.,Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi 710032, China
| | - Jian Zhang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Zhi Li
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaodong Xue
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yinli Xu
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Dandan Meng
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Buying Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Zhang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Huishan Wang
- Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
120
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
121
|
Zheng XH, Liu CP, Hao ZG, Wang YF, Li XL. Protective effect and mechanistic evaluation of linalool against acute myocardial ischemia and reperfusion injury in rats. RSC Adv 2017. [DOI: 10.1039/c7ra00743d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Linalool causes attenuation of IR induced cell death and apoptosis eitherin vitroorin vivo.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- Department of Cardiology
- Henan Provincial Peoples Hospital
- Zhengzhou
- China
- Second Department of Internal Medicine
| | - Chun-Ping Liu
- Second Department of Internal Medicine
- Anyang District Hospital Henan Province
- Anyang
- China
| | - Zeng-Guang Hao
- Second Department of Internal Medicine
- Anyang District Hospital Henan Province
- Anyang
- China
| | - Yan-Fang Wang
- Second Department of Internal Medicine
- Anyang District Hospital Henan Province
- Anyang
- China
| | - Xian-Li Li
- Second Department of Internal Medicine
- Anyang District Hospital Henan Province
- Anyang
- China
| |
Collapse
|
122
|
Cohen K, Waldman M, Abraham NG, Laniado-Schwartzman M, Gurfield D, Aravot D, Arad M, Hochhauser E. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes. Exp Cell Res 2016; 350:147-153. [PMID: 27884680 DOI: 10.1016/j.yexcr.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs. The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy. METHODS AND RESULTS Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased. CONCLUSIONS Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy.
Collapse
Affiliation(s)
- Keren Cohen
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel; Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | - Danny Gurfield
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel Aviv University, Israel.
| |
Collapse
|
123
|
Malondialdehyde levels can be measured in serum and saliva by using a fast HPLC method with visible detection / Determinarea printr-o metodă HPLC-VIS rapidă a concentraţiilor serice şi salivare ale malondialdehidei. REV ROMANA MED LAB 2016. [DOI: 10.1515/rrlm-2016-0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Oxidative stress appears when the amount of free radicals that are formed in a living organism exceed its spin-trapping ability. One of the most dangerous free radicals that are formed in the human body is the hydroxyl radical. It can alter several biomolecules, including the unsaturated fatty acids; this process is known as lipid peroxidation and can lead to cell necrosis and generation of several harmful byproducts including malondialdehyde, which serves also as a biomarker of oxidative stress. A new HPLC method with visible detection was developed for the detection of malondialdehyde in human serum and saliva samples. The method was verified in terms of specificity, linearity, limits of detection (0.35 ng/ml), limit of quantification (1.19 ng/ml), recovery (90.13±10.25 – 107.29±14.33) and precision (3.84±1.49% – 6.66±1.76%). An analysis time of only 1 minute was obtained and no interferences from the matrices were observed. Statistical analysis (Pearson correlation test) showed a moderate correlation (R = 0.5061, p = 0.0099) between serum and saliva concentrations (N = 25). The possibility of measuring salivary concentrations of malondialdehyde extents the applications of oxidative stress/lipid peroxidation estimations to categories of population unreachable before (pregnant women, small children, etc); repeated sample studies are also easier to make.
Collapse
|
124
|
Yan X, Xun M, Li J, Wu L, Dou X, Zheng J. Activation of Na+/K+-ATPase attenuates high glucose-induced H9c2 cell apoptosis via suppressing ROS accumulation and MAPKs activities by DRm217. Acta Biochim Biophys Sin (Shanghai) 2016; 48:883-893. [PMID: 27563007 DOI: 10.1093/abbs/gmw079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/23/2016] [Indexed: 01/08/2023] Open
Abstract
Hyperglycemia is one of the major factors responsible for the myocardial apoptosis and dysfunction in diabetes. Many studies have proved that there is a close relationship between decreased Na+/K+-ATPase activity and diabetic cardiomyopathy. However, the effect of directly activated Na+/K+-ATPase on high glucose-induced myocardial injury is still unknown. Here we found that DRm217, a Na+/K+-ATPase's DR-region specific monoclonal antibody and direct activator, could prevent high glucose-induced H9c2 cell injury, reactive oxygen species (ROS) release, and mitochondrial dysfunction. High glucose-treatment decreased Na+/K+-ATPase activity and increased intracellular Ca2+ level, whereas DRm217 increased Na+/K+-ATPase activity and alleviated Ca2+ overload. Inhibition of Ca2+ overload or closing sodium calcium exchanger (NCX channel) could reverse high glucose-induced ROS increasing and cell injury. In addition, DRm217 could significantly attenuate high glucose-induced p38, JNK and ERK1/2 phosphorylation, which were involved in high glucose-induced cell injury and ROS accumulation. Our findings suggest that DRm217 may protect against the deleterious effects of high glucose in the heart. Prevention of high glucose-induced myocardial cell injury by specific Na+/K+-ATPase activator may be an attractive therapeutic option.
Collapse
Affiliation(s)
- Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Xun
- Department of Immunology and Microbiology, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaojuan Dou
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
125
|
Gonçalves N, Gomes-Ferreira C, Moura C, Roncon-Albuquerque R, Leite-Moreira A, Falcão-Pires I. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus. Int J Cardiol 2016; 217:195-204. [DOI: 10.1016/j.ijcard.2016.04.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/19/2016] [Accepted: 04/30/2016] [Indexed: 12/17/2022]
|
126
|
Jiang X, Ma H, Li C, Cao Y, Wang Y, Zhang Y, Liu Y. Effects of neonatal dexamethasone administration on cardiac recovery ability under ischemia-reperfusion in 24-wk-old rats. Pediatr Res 2016; 80:128-35. [PMID: 26991264 DOI: 10.1038/pr.2016.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evaluations of stress-induced cardiac functional alterations in adults after neonatal glucocorticoid (GC) treatment have been limited. In the present study, we evaluated adult cardiac functional recovery during postischemic reperfusion and measured cardiac gene expression involved energy metabolism in rats neonatally treated with dexamethasone (DEX). METHOD Male Wistar rats were injected DEX in first 3 d after birth and controls were received saline (SAL). At 24 wk of age, insulin tolerance tests were performed, plasma lipid levels were measured, and left ventricular function and myocardial infarct size were evaluated. Expressions of genes involved in cardiac energy metabolism were measured by quantitative real-time polymerase chain reaction (PCR) and western blot. RESULTS In 24-wk-old rats, neonatal DEX administration caused dyslipidemia, impaired cardiac recovery function and increased size of infarction, decreased cardiac expression of glucose transporter 4(GLUT4), peroxisome proliferative-activated receptor gamma coactivator 1α (PGC-1α) and ratios of phospho-forkhead box O1/forkhead box O1 (p-FoxO1/FoxO1) and phospho AMP-activated protein kinase/AMP-activated protein kinase (p-AMPK/AMPK) but increased pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) expression compared with controls. CONCLUSION Neonatal DEX administration impairs cardiac functional recovery during reperfusion following ischemia in 24-wk-old rats. Reduced cardiac glucose utilization may contribute to the long-term detrimental effects caused by neonatal DEX treatment.
Collapse
Affiliation(s)
- Xinli Jiang
- Department of Ophthalmology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chunguang Li
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue Cao
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Endocrinology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
127
|
Baldissera MD, Souza CDF, Bertoncheli CM, Silveira KLD, Grando TH, Porto BCZ, Leal DBR, Silva ASD, Mendes RE, Stefani LM, Monteiro SG. Oxidative Stress in the Heart of Rats Infected with Trypanosoma evansi. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:247-52. [PMID: 27417077 PMCID: PMC4977782 DOI: 10.3347/kjp.2016.54.3.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/13/2015] [Accepted: 11/04/2015] [Indexed: 11/23/2022]
Abstract
This study was conducted to investigate the occurrence of oxidative stress in the heart tissue of rats infected with Trypanosoma evansi. Rats were divided into 2 groups (A and B) with 12 animals each, and further subdivided into 4 subgroups (A1 and A2, 6 animals/each; and B1 and B2, 6 animals/each). Animals in the groups B1 and B2 were subcutaneously inoculated with T. evansi. Thiobarbituric acid reactive substances (TBARS), superoxide dismutase activity (SOD), glutathione S-transferase activity (GST), reduced glutathione activity (GSH), and non-protein thiols (NPSH) in the heart tissue were evaluated. At day 5 and 15 post-infection (PI), an increase in the TBARS levels and a decrease in the SOD activity (P<0.05) were observed. GSH and GST activities were decreased in infected animals at day 15 PI (P<0.05). Considering the proper functioning of the heart, it is possible that the changes in the activity of these enzymes involved in the oxidative stress may be related, at least in part, in the pathophysiology of rats infected with T. evansi.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Carine de F Souza
- Department of Pharmacology and Physiology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cláudia M Bertoncheli
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine L da Silveira
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Thirssa H Grando
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bianca C Z Porto
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Ricardo E Mendes
- Section of Veterinary Pathology, Instituto Federal Catarinense (IFC), Concórdia, SC, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| |
Collapse
|
128
|
Li J, Ren Y, Shi E, Tan Z, Xiong J, Yan L, Jiang X. Inhibition of the Let-7 Family MicroRNAs Induces Cardioprotection Against Ischemia-Reperfusion Injury in Diabetic Rats. Ann Thorac Surg 2016; 102:829-835. [PMID: 27217295 DOI: 10.1016/j.athoracsur.2016.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND The expression of the let-7 family microRNAs in the myocardium of streptozotocin-induced diabetic rats was measured, and the cardioprotection of inhibition of let-7 microRNAs against ischemia-reperfusion injury was investigated. METHODS The diabetic rats and nondiabetic rats were subjected to 30 minutes of coronary artery occlusion followed by 120 minutes of reperfusion. The infarct size was determined by triphenyltetrazolium chloride staining. The expression of let-7 was measured by quantitative real-time polymerase chain reaction, and expressions of insulin receptor (InsR), insulin-like growth factor-1 receptor (IGF-1R), glucose transporter type 4 (GLUT4), and the phosphorylation states of Akt and the mammalian target of rapamycin (mTOR) were analyzed using Western blot. Inhibition of let-7 was performed by local transfection of lentivirus gene transfer vectors containing let-7 antimiR. RESULTS Compared with nondiabetic rats, the expression of let-7 was enhanced in the myocardium of diabetic rats (p = 0.029), whereas expressions of InsR, IGF-1R, and GLUT4 were decreased after ischemia-reperfusion (p < 0.01). Local transfection of the let-7 antimiR markedly inhibited the expression of let-7 (p = 0.038) and improved expressions of InsR, IGF-1R, and GLUT4 in the myocardium of diabetic rats (p < 0.01). The infarct size of diabetic rats was much higher than that of nondiabetic rats (p < 0.0001). Transfection of the let-7 antimiR significantly reduced the infarct size of diabetic rats (p < 0.0001), and such an antiinfarct effect was abolished completely by pretreatment of Akt inhibitor LY294002 or mTOR inhibitor rapamycin. CONCLUSIONS Inhibition of the let-7 family microRNAs improves glucose uptake and insulin resistance in the diabetic myocardium and induces cardioprotection against ischemia-reperfusion injury through Akt and mTOR pathways.
Collapse
Affiliation(s)
- Juchen Li
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yixing Ren
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enyi Shi
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhibin Tan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Xiong
- Department of Cardiac Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lihui Yan
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojing Jiang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
129
|
Gupta NK, Srivastva N, Bubber P, Puri S. The Antioxidant Potential of Azadirachta indica Ameliorates Cardioprotection Following Diabetic Mellitus-Induced Microangiopathy. Pharmacogn Mag 2016; 12:S371-8. [PMID: 27563227 PMCID: PMC4971959 DOI: 10.4103/0973-1296.185772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/14/2015] [Accepted: 07/07/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cardiac complications associated with diabetes mellitus have become major cause of concern. Antidiabetic drugs, with varied mode of action, are although available, apprehensions exist for their limited action or side effects upon prolonged use. Efforts are therefore inclined toward finding other alternatives. The present study was, thus, undertaken to evaluate the cardioprotective effect of Azadirachta indica (AI) on microangiopathic changes in rat model of diabetes. MATERIALS AND METHODS Diabetes was induced in male rats by single intraperitoneal injection of streptozotocin (60 mg/kg body weight). Seven days after glucose levels are stabilized, aqueous leaf extract of AI (ALE) (600 mg/kg(1) body weight) was administered orally to diabetic animals every day for 7 days. RESULTS High blood glucose characterizing diabetes in these animals was found to show increased lipid peroxidation (LPO), altered antioxidant biomarkers together with microangiopathic alterations. The treatment of diabetic rats with ALE reduced the levels of blood glucose, LPO, and restored the activities of antioxidant enzyme. Light and transmission electron microscopic analysis revealed reduced necrotic areas and inflammation in tissue architecture of ALE treated heart in comparison to untreated diabetic group. CONCLUSION AI provides cardioprotection by ameliorating oxidative stress in rat model of diabetic mellitus. SUMMARY The streptozotocin (STZ) treatment (60 mg/kg body weight) to animals induced diabetic changes such as elevated blood glucose levels, decreased body weight, altered lipid profiles together with development of proxidant state evidenced by elevated levels of lipid peroxidation (LPO), depletion in reduced glutathione (GSH) levels and altered antioxidant enzymes with consequent microangiopathic alterations in heart tissue evinced by localization of necrotic and inflamed areas in heart tissueThe treatment of animals with Azadirachta indica leaf extract (ALE) (600 mg/kg body weight) post-STZ treatment significantly reversed the adverse effects witnessed by normalized blood glucose levels, improvement in reduced body weight and stabilized lipid profilesFurther, ALE treatment also significantly reduced the LPO indices, improvement in GSH content and restoration of antioxidant enzyme activities, suggesting antioxidatant potential of ALEThe microangiopathic changes in the heart tissue consequent to induction of diabetes and oxidative stress by STZ as reiterated through light microscopy and transmission electron microscopy were found to be reversed by ALE treatment. These observations pointed toward cardiopreventive effects of ALE following microangiopathic changes as seen following induction of diabetes mellitus. Abbreviations used: AI: Azadirachta indica, ALE: Azadirachta indica Leaves Extract. STZ: Streptozotocin, LPO Lipid per oxidation, GSH: Glutathione, GSSG: Glutathione disulphide, SOD: Superoxide dismutase, GP: Glutathione peroxidase, GR: Glutathione reductase.
Collapse
Affiliation(s)
- Naveen Kumar Gupta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
- Department of Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | - Nidhi Srivastva
- Department of Biotechnology, Banasthali University, Banasthali, Rajasthan, India
| | | | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
130
|
Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, Muller C, Louw J. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res 2016; 60:922-34. [PMID: 26773306 DOI: 10.1002/mnfr.201500656] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 02/04/2023]
Abstract
SCOPE Energy deprivation in the myocardium is associated with impaired heart function. This study aims to investigate if aspalathin (ASP) can ameliorate hyperglycemic-induced shift in substrate preference and protect the myocardium against cell apoptosis. METHODS AND RESULTS H9c2 cells were exposed to, either normal (5.5 mM) or high (33 mM) glucose concentrations for 48 h. Thereafter, cells exposed to 33 mM glucose were treated with metformin (1 μM) or ASP (1 μM), as well as a combination of metformin and ASP for 6 h. In vitro studies revealed that ASP improved glucose metabolism by decreasing fatty acid uptake and subsequent β-oxidation through the decreased expression of adenosine monophosphate-activated protein kinase threonine 172 (pAMPK (Thr172)) and carnitine palmitoyltransferase 1 (CPT1), while increasing acetyl-CoA carboxylase (ACC) and glucose transporter 4 (GLUT4) expression. ASP inhibited high glucose induced loss of membrane potential in H9c2 cells as observed by an increase in 5' ,6,6'-tetrachloro-1,1',3,3' -tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) ratio (orange\red fluorescence) and decreased apoptosis by reducing intracellular reactive oxygen species and DNA nick formation, while increasing glutathione, superoxide dismutase, uncoupling protein 2 (UCP2), and Bcl-2\Bax ratio. CONCLUSION Our study provides evidence that ASP increases glucose oxidation and modulates fatty acid utilization producing a favorable substrate shift in H9c2 cardiomyocytes exposed to high glucose. Such a favorable shift will be of importance in the protection of cardiomyocytes in the diabetic heart.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform, Cape Town, South Africa
| | - Phiwayinkosi Dludla
- Biomedical Research and Innovation Platform, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Elizabeth Joubert
- Division of Post-Harvest and Wine Technology, Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Faghri February
- Department of Biotechnology, University of Western Cape, Bellville, South Africa
| | | | - Samira Ghoor
- Biomedical Research and Innovation Platform, Cape Town, South Africa
| | - Christo Muller
- Biomedical Research and Innovation Platform, Cape Town, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, Cape Town, South Africa
| |
Collapse
|
131
|
Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B, Scholey JW. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol 2016; 91:11-22. [DOI: 10.1016/j.yjmcc.2015.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/15/2015] [Accepted: 12/20/2015] [Indexed: 01/08/2023]
|
132
|
Ali F, Naqvi SAS, Bismillah M, Wajid N. Comparative analysis of biochemical parameters in diabetic and non-diabetic acute myocardial infarction patients. Indian Heart J 2016; 68:325-31. [PMID: 27316485 DOI: 10.1016/j.ihj.2015.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Diabetes is a metabolic disorder characterized by enhanced production of free radicals hence oxidative stress. The aim of this study was to evaluate the activity of cardiac and antioxidant enzymes in diabetic and non-diabetic acute myocardial infarction (AMI) patients. METHODS This case-control study was conducted on 450 subjects (70-85 years). Subjects were divided into three groups (Normal, N; Non-diabetic AMI, N-AMI; and Diabetic AMI, D-AMI). Each individual was subjected to a detailed history, clinical examination, and cardiovascular parameters analysis (fasting blood sugar, HbA1c, systolic and diasystolic blood pressure, total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), TC/HDL and LDL/HDL ratios). Cardiac markers (Troponin-I, creatine phosphokinase (CPK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), C-reactive protein (CRP) and aspartate aminotransferase (AST)) and oxidative stress markers (superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), catalase (CAT)) were also assessed. All these parameters were compared between diabetic and non-diabetic AMI patients. RESULTS D-AMI individuals had high level of TC, TG, LDL, and low level of HDL in comparison to N-AMI individuals. Study suggests that cardiac markers such as Troponin I, CPK, CK-MB, AST, LDH, and CRP levels were significantly increased in patients suffering from myocardial infarction with diabetes mellitus (DM) compared to patients of myocardial infarction without DM. The activity levels of antioxidant SOD and GSH were lower in D-AMI patients than in N-AMI. However, levels of MDA and CAT were higher in D-AMI than in N-AMI controls. CONCLUSION Study suggests elevated cardiac markers and reduced antioxidants in D-AMI patients compared to N-AMI patients.
Collapse
Affiliation(s)
- Fatima Ali
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan.
| | - Syed Ali Shabaz Naqvi
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| | - Mehwish Bismillah
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| | - Nadia Wajid
- Institute of Molecular Biology and Biotechnology (IMBB) & Centre for Research In Molecular Medicine (CRIMM), The University of Lahore, Raiwind Road, Lahore, Pakistan
| |
Collapse
|
133
|
Ni R, Cao T, Xiong S, Ma J, Fan GC, Lacefield JC, Lu Y, Le Tissier S, Peng T. Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 2016; 90:12-23. [PMID: 26577173 PMCID: PMC5066872 DOI: 10.1016/j.freeradbiomed.2015.11.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023]
Abstract
AIMS The mitochondria are important sources of reactive oxygen species (ROS) in the heart. Mitochondrial ROS production has been implicated in the pathogenesis of diabetic cardiomyopathy, suggesting that therapeutic strategies specifically targeting mitochondrial ROS may have benefit in this disease. We investigated the therapeutic effects of mitochondria-targeted antioxidant mito-TEMPO on diabetic cardiomyopathy. METHODS The mitochondria-targeted antioxidant mito-TEMPO was administrated after diabetes onset in a mouse model of streptozotocin-induced type-1 diabetes and type-2 diabetic db/db mice. Cardiac adverse changes were analyzed and myocardial function assessed. Cultured adult cardiomyocytes were stimulated with high glucose, and mitochondrial superoxide generation and cell death were measured. RESULTS Incubation with high glucose increased mitochondria superoxide generation in cultured cardiomyocytes, which was prevented by mito-TEMPO. Co-incubation with mito-TEMPO abrogated high glucose-induced cell death. Mitochondrial ROS generation, and intracellular oxidative stress levels were induced in both type-1 and type-2 diabetic mouse hearts. Daily injection of mito-TEMPO for 30 days inhibited mitochondrial ROS generation, prevented intracellular oxidative stress levels, decreased apoptosis and reduced myocardial hypertrophy in diabetic hearts, leading to improvement of myocardial function in both type-1 and type-2 diabetic mice. Incubation with mito-TEMPO or inhibition of Nox2-containing NADPH oxidase prevented oxidative stress levels and cell death in high glucose-stimulated cardiomyocytes. Mechanistic study revealed that the protective effects of mito-TEMPO were associated with down-regulation of ERK1/2 phosphorylation. CONCLUSIONS Therapeutic inhibition of mitochondrial ROS by mito-TEMPO reduced adverse cardiac changes and mitigated myocardial dysfunction in diabetic mice. Thus, mitochondria-targeted antioxidants may be an effective therapy for diabetic cardiac complications.
Collapse
Affiliation(s)
- Rui Ni
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ont., Canada N6A 4G5; Departments of Medicine and Pathology, The University of Western Ontario, London, Ont., Canada N6A 4G5
| | - Ting Cao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jian Ma
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ont., Canada N6A 4G5; Departments of Medicine and Pathology, The University of Western Ontario, London, Ont., Canada N6A 4G5
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - James C Lacefield
- Electrical and Computer Engineering, Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, Ont., Canada N6A 4G5
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health; Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sydney Le Tissier
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ont., Canada N6A 4G5
| | - Tianqing Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, Ont., Canada N6A 4G5; Departments of Medicine and Pathology, The University of Western Ontario, London, Ont., Canada N6A 4G5.
| |
Collapse
|
134
|
Baumgardt SL, Paterson M, Leucker TM, Fang J, Zhang DX, Bosnjak ZJ, Warltier DC, Kersten JR, Ge ZD. Chronic Co-Administration of Sepiapterin and L-Citrulline Ameliorates Diabetic Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury in Obese Type 2 Diabetic Mice. Circ Heart Fail 2016; 9:e002424. [PMID: 26763290 PMCID: PMC4714787 DOI: 10.1161/circheartfailure.115.002424] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Diabetic heart disease is associated with tetrahydrobiopterin oxidation and high arginase activity, leading to endothelial nitric oxide synthase dysfunction. Sepiapterin (SEP) is a tetrahydrobiopterin precursor, and L-citrulline (L-Cit) is converted to endothelial nitric oxide synthase substrate, L-arginine. Whether SEP and L-Cit are effective at reducing diabetic heart disease is not known. The present study examined the effects of SEP and L-Cit on diabetic cardiomyopathy and ischemia/reperfusion injury in obese type 2 diabetic mice. METHODS AND RESULTS Db/db and C57BLKS/J mice at 6 to 8 weeks of age received vehicle, SEP, or L-Cit orally alone or in combination for 8 weeks. Cardiac function was evaluated with echocardiography. Db/db mice displayed hyperglycemia, obesity, and normal blood pressure and cardiac function compared with C57BLKS/J mice at 6 to 8 weeks of age. After vehicle treatment for 8 weeks, db/db mice had reduced ejection fraction, mitral E/A ratio, endothelium-dependent relaxation of coronary arteries, tetrahydrobiopterin concentrations, ratio of endothelial nitric oxide synthase dimers/monomers, and nitric oxide levels compared with vehicle-treated C57BLKS/J mice. These detrimental effects of diabetes mellitus were abrogated by co-administration of SEP and L-Cit. Myocardial infarct size was increased, and coronary flow rate and ± dP/dt were decreased during reperfusion in vehicle-treated db/db mice subjected to ischemia/reperfusion injury compared with control mice. Co-administration of SEP and L-Cit decreased infarct size and improved coronary flow rate and cardiac function in both C57BLKS/J and db/db mice. CONCLUSIONS Co-administration of SEP and L-Cit limits diabetic cardiomyopathy and ischemia/reperfusion injury in db/db mice through a tetrahydrobiopterin/endothelial nitric oxide synthase/nitric oxide pathway.
Collapse
Affiliation(s)
- Shelley L Baumgardt
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Mark Paterson
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Thorsten M Leucker
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Juan Fang
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - David X Zhang
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Zeljko J Bosnjak
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - David C Warltier
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Judy R Kersten
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.)
| | - Zhi-Dong Ge
- From the Department of Anesthesiology (S.L.B., M.P., Z.J.B., D.C.W., J.R.K., Z.-D.G.), Department of Pediatrics (J.F.), Department of Medicine (D.X.Z.), Department of Physiology (Z.J.B.), and Department of Pharmacology and Toxicology (D.C.W., J.R.K.), Medical College of Wisconsin, Milwaukee; and Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD (T.M.L.).
| |
Collapse
|
135
|
Propofol cardioprotection for on-pump aortocoronary bypass surgery in patients with type 2 diabetes mellitus (PRO-TECT II): a phase 2 randomized-controlled trial. Can J Anaesth 2015; 63:442-53. [DOI: 10.1007/s12630-015-0580-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/30/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
|
136
|
Kiraz HA, Poyraz F, Kip G, Erdem Ö, Alkan M, Arslan M, Özer A, Şivgin V, Çomu FM. The effect of levosimendan on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats. Libyan J Med 2015; 10:29269. [PMID: 26649830 PMCID: PMC4673913 DOI: 10.3402/ljm.v10.29269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Ischemia/reperfusion (I/R) injury is an important cause of myocardial damage by means of oxidative, inflammatory, and apoptotic mechanisms. The aim of the present study was to examine the potential cardio protective effects of levosimendan in a diabetic rat model of myocardial I/R injury. Methods A total of 18 streptozotocin-induced diabetic Wistar Albino rats (55 mg/kg) were randomly divided into three equal groups as follows: the diabetic I/R group (DIR) in which myocardial I/R was induced following left thoracotomy, by ligating the left anterior descending coronary artery for 60 min, followed by 2 h of reperfusion; the diabetic I/R levosimendan group (DIRL), which underwent I/R by the same method while taking levosimendan intraperitoneal 12 µg kg−1; and the diabetic control group (DC) which underwent sham operations without tightening of the coronary sutures. As a control group (C), six healthy age-matched Wistar Albino rats underwent sham operations similar to the DC group. Two hours after the operation, the rats were sacrificed and the myocardial tissue samples were examined by light microscopy for evidence of myonecrosis and inflammatory cell infiltration. Results Myonecrosis findings were significantly different among groups (p=0.008). Myonecrosis was more pronounced in the DIR group compared with the C, DC, and DIRL groups (p=0.001, p=0.007 and p=0.037, respectively). Similarly, the degree of inflammatory cell infiltration showed significant difference among groups (p<0.0001). Compared with C, DC, and DIRL groups, the inflammatory cell infiltration was significantly higher among the DIR group (p<0.0001, p<0.0001, and p=0.020, respectively). Also, myocardial tissue edema was significantly different among groups (p=0.006). The light microscopic myocardial tissue edema levels were significantly higher in the DIR group than the C, DC, and DIRL groups (p=0.001, p=0.037, and p=0.014, respectively). Conclusion Taken together, our data indicate that levosimendan may be helpful in reducing myocardial necrosis, myocardial inflammation, and myocardial tissue edema resulting from ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Hasan Ali Kiraz
- a Department of Anaesthesiology and Reanimation Onsekiz Mart University Medical Faculty , Canakkale , Turkey
| | - Fatih Poyraz
- b Department of Cardiology Kirikkale University Medical Faculty , Afyonkarahisar , Turkey
| | - Gülay Kip
- c Department of Paediatric Dentistry (Anaesthesiology and Reanimation specialist) Gazi University Dentistry Faculty , Ankara , Turkey
| | - Özlem Erdem
- d Department of Pathology Gazi University Medical Faculty , Ankara , Turkey
| | - Metin Alkan
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Mustafa Arslan
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Abdullah Özer
- f Department of Cardiovascular Surgery Gazi University Medical Faculty , Ankara , Turkey
| | - Volkan Şivgin
- e Department of Anaesthesiology and Reanimation Gazi University Medical Faculty , Ankara , Turkey
| | - Faruk Metin Çomu
- g Department of Physiology Kirikkale University Medical Faculty , Afyonkarahisar , Turkey
| |
Collapse
|
137
|
An Evolutionary Perspective of Nutrition and Inflammation as Mechanisms of Cardiovascular Disease. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2015; 2015:179791. [PMID: 26693381 PMCID: PMC4677015 DOI: 10.1155/2015/179791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023]
Abstract
When cardiovascular diseases are viewed from an evolutionary biology perspective, a heightened thrifty and an inflammatory design could be their mechanisms. Human ancestors confronted a greater infectious load and were subjected to the selection for proinflammatory genes and a strong inflammatory function. Ancestors also faced starvation periods that pressed for a thrifty genotype which caused fat accumulation. The pressure of sustaining gluconeogenesis during periods of poor nourishment selected individuals with insulin resistance. Obesity induces a proinflammatory state due to the secretion of adipokines which underlie cardiometabolic diseases. Our actual lifestyle needs no more of such proinflammatory and thrifty genotypes and these ancestral genes might increase predisposition to diseases. Risk factors for atherosclerosis and diabetes are based on inflammatory and genetic foundations that can be accounted for by excess fat. Longevity has also increased in recent times and is related to a proinflammatory response with cardiovascular consequences. If human ancestral lifestyle could be recovered by increasing exercise and adapting a calorie restriction diet, obesity would decrease and the effects on chronic low-grade inflammation would be limited. Thereby, the rates of both atherosclerosis and diabetes could be reduced.
Collapse
|
138
|
Xie C, Hu J, Motloch LJ, Karam BS, Akar FG. The Classically Cardioprotective Agent Diazoxide Elicits Arrhythmias in Type 2 Diabetes Mellitus. J Am Coll Cardiol 2015; 66:1144-1156. [PMID: 26337994 DOI: 10.1016/j.jacc.2015.06.1329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 06/06/2015] [Accepted: 06/23/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is associated with an enhanced propensity for ventricular tachyarrhythmias (VTs) under conditions of metabolic demand. Activation of mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels by low-dose diazoxide (DZX) improves hypoglycemia-related complications, metabolic function, and triglyceride and free fatty acid levels and reverses weight gain in T2DM. OBJECTIVES In this study, we hypothesized that DZX prevents ischemia-mediated arrhythmias in T2DM via its putative cardioprotective and antidiabetic property. METHODS Zucker obese diabetic fatty (ZO) rats (n = 43) with T2DM were studied. Controls consisted of Zucker lean (ZL; n = 13) and normal Sprague-Dawley (SprD; n = 30) rats. High-resolution optical action potential mapping was performed before and during challenge with no-flow ischemia for 12 min. RESULTS Electrophysiological properties were relatively stable in T2DM hearts at baseline. In contrast, ischemia uncovered major differences between groups, because action potential duration (APD) in T2DM failed to undergo progressive adaptation to ischemic challenge. DZX promoted the incidence of arrhythmias, because all DZX-treated T2DM hearts exhibited ischemia-induced VTs that persisted on reperfusion. In contrast, untreated T2DM and controls did not exhibit VT during ischemia. Unlike DZX, pinacidil promoted ischemia-mediated arrhythmias in both control and T2DM hearts. Rapid and spatially heterogeneous shortening of APD preceded the onset of arrhythmias in T2DM. DZX-mediated proarrhythmia in T2DM was not related to changes in the messenger ribonucleic acid expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, SUR2B, or ROMK (renal outer medullary potassium channel). CONCLUSIONS Ischemia uncovers a paradoxical resistance of T2DM hearts to APD adaptation. DZX reverses this property, resulting in rapid and heterogeneous APD shortening. This promotes reentrant VT during ischemia. DZX should be avoided in diabetic patients at risk of ischemic events.
Collapse
Affiliation(s)
- Chaoqin Xie
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Hu
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lukas J Motloch
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Basil S Karam
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi G Akar
- Cardiac Bioelectricity Research Laboratory, Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
139
|
Badalzadeh R, Mohammadi M, Yousefi B, Farajnia S, Najafi M, Mohammadi S. Involvement of Glycogen Synthase Kinase-3β and Oxidation Status in the Loss of Cardioprotection by Postconditioning in Chronic Diabetic Male Rats. Adv Pharm Bull 2015; 5:321-7. [PMID: 26504753 DOI: 10.15171/apb.2015.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Diabetes mellitus as a main risk-factor of ischemic heart disease may interfere with postconditioning'scardioprotective effects. This study aimed to investigate the involvement of glycogen synthase kinase-3β (GSK-3β) and oxidation status in chronic diabetes-induced loss of cardioprotective effect of ischemic-postconditioning (IPostC) in Wistar rats. METHODS After 8 weeks of induction of diabetes by streptozotocin (50mg/kg), hearts of control and diabetic rats were isolated and mounted on a constant-pressure Langendorff system. All hearts were subjected to 30min regional ischemia followed by 60min reperfusion (by occluding and re-opening of left anterior descending coronary artery, respectively). IPostC was applied immediately at the onset of reperfusion. At the end of reperfusion, the infarct size of myocardium was measured via computerized planimetry. Myocardial contents of malondealdehyde and glutathione as indices of oxidative status were assayed spectrophotometrically and the total and phosphorylated forms of myocardial GSK-3β were quantified through western blotting. RESULTS IPostC reduced the infarct size of control hearts from 41±2.9% to 28±1.9% (P<0.05), whereas it could not induce significant changes in infarct size of diabetic animals (35±1.8% vs. 39±3.1%). IPostC-induced reduction in malondealdehyde and elevation in glutathione contents were significant only in control not in diabetic hearts. The total forms of GSK-3β were similar in all groups; however, the phosphorylation of GSK-3β (at Ser9) by IPostC was greater in control hearts than diabetics (P<0.01). CONCLUSION The failure of cardioprotection by IPostC in diabetic hearts may be attributed to the loss of phosphorylation of GSK-3β and thereby increase in oxidative stress in diabetic states.
Collapse
Affiliation(s)
- Reza Badalzadeh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mustafa Mohammadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Najafi
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shima Mohammadi
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
140
|
Guo S, Yao Q, Ke Z, Chen H, Wu J, Liu C. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol 2015; 412:85-94. [PMID: 26054749 DOI: 10.1016/j.mce.2015.05.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) suggests a direct cellular insult to myocardium. Hyperglycemia-induced oxidative stress and apoptosis have been implicated in the pathogenesis of DCM. NADPH oxidase is a major source of reactive oxygen species (ROS) generation in cardiomyocytes. Resveratrol, a naturally occurring polyphenol, has shown beneficial effects on some cardiovascular complications associated with diabetes. OBJECTIVES We aimed to examine the role of resveratrol on high glucose-induced NADPH oxidase-derived ROS production and cardiac apoptosis, together with modulation of protein signaling pathways in cardiomyocytes. METHODS Primary cultures of neonatal rat cardiomyocytes were exposed to 30 mmol/L high glucose with or without resveratrol. Cell viability, apoptosis, superoxide formation, NADPH oxidase activity and its subunits expression, antioxidant enzymes activities, as well as the potential regulatory molecules AMPK, Akt and GSK-3β were assessed in cardiac cells. RESULTS Elevated ROS production induced by 30 mmol/L high glucose was inhibited with the addition of resveratrol in primary cultured neonatal rat cardiomyocytes. Consistently, resveratrol markedly suppressed the increased activity of NADPH oxidase and Rac1, as well as the enhanced expression of p67(phox), p47(phox), and gp91(phox) induced by high glucose. Lipid peroxidation, SOD, catalase, GSH-px activity and GSH content was reversed in the presence of resveratrol. Moreover, the expression of pro-apoptotic protein Bax was down regulated while anti-apoptotic protein Bcl-2 was up regulated. And cardiac cell injury and apoptosis were markedly rescued by resveratrol. In addition, resveratrol significantly increased phosphorylation of AMP-activated protein kinase (AMPK) at Thr172 in cardiomyocytes exposed to high glucose. Compound C, the pharmacologic inhibitor of AMPK, could mostly abrogate roles of resveratrol on cardiomyocytes in high glucose. In contrast, Akt and GSK-3β were little influenced by resveratrol. CONCLUSIONS Our data demonstrated that resveratrol protected cardiomyocytes against high glucose-induced apoptosis through suppression NADPH oxidase-derived ROS generation and maintenance endogenous antioxidant defenses. And the protective effects of resveratrol are mostly mediated by AMPK related pathway.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Qing Yao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Zhiqiang Ke
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Hongguang Chen
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Jiliang Wu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China.
| | - Chao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China.
| |
Collapse
|
141
|
Cardiopulmonary Bypass Decreases Activation of the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway in Diabetic Human Myocardium. Ann Thorac Surg 2015; 100:1636-45; discussion 1645. [PMID: 26228595 DOI: 10.1016/j.athoracsur.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) is associated with increased myocardial oxidative stress and apoptosis in diabetic patients. A mechanistic understanding of this relationship could have therapeutic value. To establish a possible mechanism, we compared the activation of the cardioprotective signal transducer and activator of transcription 3 (STAT3) pathway between patients with uncontrolled diabetes (UD) and nondiabetic (ND) patients. METHODS Right atrial tissue and serum were collected before and after CPB from 80 patients, 39 ND and 41 UD (HbA1c ≥ 6.5), undergoing cardiac operations. The samples were evaluated with Western blotting, immunohistochemistry, and microarray. RESULTS On Western blot, leptin levels were significantly increased in ND post-CPB (p < 0.05). Compared with ND, the expression of Janus kinase 2 and phosphorylation (p-) of STAT3 was significantly decreased in UD (p < 0.05). The apoptotic proteins p-Bc12/Bc12 and caspase 3 were significantly increased (p < 0.05), antiapoptotic proteins Mcl-1, Bcl-2, and p-Akt were significantly decreased (p < 0.05) in UD compared with ND. The microarray data suggested significantly increased expression of interleukin-6 R, proapoptotic p-STAT1, caspase 9, and decreased expression of Bc12 and protein inhibitor of activated STAT1 antiapoptotic genes (p = 0.05) in the UD patients. The oxidative stress marker nuclear factor-κB was significantly higher (p < 0.05) in UD patients post-CPB compared with the pre-CPB value, but was decreased, albeit insignificantly, in ND patients post-CPB. CONCLUSIONS Compared with ND, UD myocardium demonstrated attenuation of the cardioprotective STAT3 pathway. Identification of this mechanism offers a possible target for therapeutic modulation.
Collapse
|
142
|
Zhang YS, Liu B, Luo XJ, Zhang JJ, Li NS, Ma QL, Jiang JL, Li YJ, Li Q, Peng J. A novel function of nuclear nonmuscle myosin regulatory light chain in promotion of xanthine oxidase transcription after myocardial ischemia/reperfusion. Free Radic Biol Med 2015; 83:115-28. [PMID: 25701432 DOI: 10.1016/j.freeradbiomed.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Nuclear myosin regulates gene transcription and this novel function might be modulated through phosphorylation of the myosin regulatory light chain (p-MLC20). Nonmuscle MLC20 (nmMLC20) is also present in the nuclei of cardiomyocytes and a potential nmMLC20 binding sequence has been identified in the promoter of the xanthine oxidase (XO) gene. Thus, we investigated its function in the regulation of XO transcription after myocardial ischemia/reperfusion (IR). In a rat model of myocardial IR and a cardiomyocyte model of hypoxia/reoxygenation (HR) injury, the cardiac or cell injury, myosin light chain kinase (MLCK) content, XO expression and activity, XO-derived products, and level of nuclear p-nmMLC20 were detected. Coimmunoprecipitation (co-IP), chromatin immunoprecipitation, DNA pull-down, and luciferase reporter gene assays were used to decipher the molecular mechanisms through which nmMLC20 promotes XO expression. IR or HR treatment dramatically elevated nuclear p-nmMLC20 level, accompanied by increased XO expression, activity, and products (H2O2 and uric acid), as well as the IR or HR injury; these effects were ameliorated by inhibition of MLCK or knockdown of nmMLC20. Our findings from these experiments demonstrated that nuclear p-nmMLC20 binds to the consensus sequence GTCGCC in the XO gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and hence activates XO gene transcription. These results suggest that nuclear p-nmMLC20 plays an important role in IR/HR injury by transcriptionally upregulating XO gene expression to increase oxidative stress in myocardium. Our findings demonstrate nuclear nmMLC20 as a potential new therapeutic target to combat cardiac IR injury.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qi-Lin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun-Lin Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qingjie Li
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555-1083, USA.
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
143
|
Karabulut D, Ulusoy HB, Kaymak E, Sönmez MF. Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS. Anatol J Cardiol 2015; 16:310-5. [PMID: 26488377 PMCID: PMC5336777 DOI: 10.5152/akd.2015.6252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Diabetes mellitus causes a decrease in cardiac output, arterial blood pressure, and heart rate. In this study, we aimed to investigate, at the molecular level, the effect of nitric oxide synthase (NOS) on heart pathology in type 1 diabetes and look at the therapeutic effect of pentoxifylline on this pathology. Methods: In this experimental study, 50 Wistar albino male rats were used. The rats were divided into 5 groups: group C, control; group D, only diabetes; group D+PI and D+PII, diabetes + pentoxifylline; group P, only pentoxifylline. Group D+PI rats received 50 mg/kg/day pentoxifylline over two months. However, group D+PII rats received saline in the first month and 50 mg/kg/day of pentoxifylline over the following month. At the end of two months, NOS expressions in heart tissue were assessed through immunohistochemistry analysis. The data were compared by one-way ANOVA. Results: At the end of the experiments, there was increased cytoplasmic vacuolization, myofibrillar loss, cytoplasmic eosinophilia, and degeneration of cardiomyocytes; nNOS and iNOS expressions in group D decreased compared with that in group C. In group D+PI and group D+PII, nNOS and iNOS expressions improved compared with group D. Conclusion: As a result, we found that diabetes, a known chronic disease, causes serious damage in heart tissue. NOS plays a role in this damage, and pentoxifylline aided in improving nNOS and iNOS expression in this damage.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University; Kayseri-Turkey.
| | | | | | | |
Collapse
|
144
|
Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl 2015; 8:506-21. [PMID: 24961403 DOI: 10.1002/prca.201400052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/27/2014] [Accepted: 06/17/2014] [Indexed: 12/22/2022]
Abstract
Cardiovascular disease (CVD) in one of the leading causes of mortality and morbidity worldwide, accounting for both primary diseases of the heart and vasculature and arising as a co-morbidity with numerous pathologies, including type 2 diabetes mellitus (T2DM). There has been significant emphasis on the role of the genome in CVD, aiding in the definition of 'at-risk' patients. The extent of disease penetrance however, can be influenced by environmental factors that are not detectable by investigating the genome alone. By targeting the transcriptome in response to CVD, the interplay between genome and environment is more apparent, however this implies the level of protein expression without reference to proteolytic turnover, or potentially more importantly, without defining the role of PTMs in the development of disease. Here, we discuss the role of both brief and irreversible PTMs in the setting of myocardial ischemia/reperfusion injury. Key proteins involved in calcium regulation have been observed as differentially modified by phosphorylation/O-GlcNAcylation or phosphorylation/redox modifications, with the level of interplay dependent on the physiological or pathophysiological state. The ability to modify crucial sites to produce the desired functional output is modulated by the presence of other PTMs as exemplified in the T2DM heart, where hyperglycemia results in aberrant O-GlcNAcylation and advanced glycation end products. By using the signalling events predicted to be critical to post-conditioning, an intervention with great promise for the cardioprotection of the ischemia/reperfusion injured heart, as an example, we discuss the level of PTMs and their interplay. The inability of post-conditioning to protect the diabetic heart may be regulated by aberrant PTMs influencing those sites necessary for protection.
Collapse
Affiliation(s)
- Lauren E Smith
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
145
|
Evans CH, Lee J, Ruhlman MK. Optimal Glucose Management in the Perioperative Period. Surg Clin North Am 2015; 95:337-54. [DOI: 10.1016/j.suc.2014.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
146
|
Yang JT, Qian LB, Zhang FJ, Wang J, Ai H, Tang LH, Wang HP. Cardioprotective Effects of Luteolin on Ischemia/Reperfusion Injury in Diabetic Rats Are Modulated by eNOS and the Mitochondrial Permeability Transition Pathway. J Cardiovasc Pharmacol 2015; 65:349-56. [PMID: 25502309 DOI: 10.1097/fjc.0000000000000202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
147
|
Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, Li J, Xu L, Chen YH. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci 2015; 16:5420-33. [PMID: 25764156 PMCID: PMC4394484 DOI: 10.3390/ijms16035420] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/04/2015] [Accepted: 02/27/2015] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, whose expression levels vary in different cell types and tissues. Emerging evidence indicates that tissue-specific and -enriched miRNAs are closely associated with cellular development and stress responses in their tissues. MiR-25 has been documented to be abundant in cardiomyocytes, but its function in the heart remains unknown. Here, we report that miR-25 can protect cardiomyocytes against oxidative damage by down-regulating mitochondrial calcium uniporter (MCU). MiR-25 was markedly elevated in response to oxidative stimulation in cardiomyocytes. Further overexpression of miR-25 protected cardiomyocytes against oxidative damage by inactivating the mitochondrial apoptosis pathway. MCU was identified as a potential target of miR-25 by bioinformatical analysis. MCU mRNA level was reversely correlated with miR-25 under the exposure of H2O2, and MCU protein level was largely decreased by miR-25 overexpression. The luciferase reporter assay confirmed that miR-25 bound directly to the 3' untranslated region (UTR) of MCU mRNA. MiR-25 significantly decreased H2O2-induced elevation of mitochondrial Ca2+ concentration, which is likely to be the result of decreased activity of MCU. We conclude that miR-25 targets MCU to protect cardiomyocytes against oxidative damages. This finding provides novel insights into the involvement of miRNAs in oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Bi-Jun Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Xiu-E Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shi-Yi Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Jing Feng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yuan Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Chang-Ming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Dan-Dan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Liang Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
148
|
Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol 2015; 172:1415-33. [PMID: 25297560 PMCID: PMC4369254 DOI: 10.1111/bph.12960] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 02/06/2023] Open
Abstract
It is well documented that metabolic syndrome (i.e. a group of risk factors, such as abdominal obesity, elevated blood pressure, elevated fasting plasma glucose, high serum triglycerides and low cholesterol level in high-density lipoprotein), which raises the risk for heart disease and diabetes, is associated with increased reactive oxygen and nitrogen species (ROS/RNS) generation. ROS/RNS can modulate cardiac NO signalling and trigger various adaptive changes in NOS and antioxidant enzyme expressions/activities. While initially these changes may represent protective mechanisms in metabolic syndrome, later with more prolonged oxidative, nitrosative and nitrative stress, these are often exhausted, eventually favouring myocardial RNS generation and decreased NO bioavailability. The increased oxidative and nitrative stress also impairs the NO-soluble guanylate cyclase (sGC) signalling pathway, limiting the ability of NO to exert its fundamental signalling roles in the heart. Enhanced ROS/RNS generation in the presence of risk factors also facilitates activation of redox-dependent transcriptional factors such as NF-κB, promoting myocardial expression of various pro-inflammatory mediators, and eventually the development of cardiac dysfunction and remodelling. While the dysregulation of NO signalling may interfere with the therapeutic efficacy of conventional drugs used in the management of metabolic syndrome, the modulation of NO signalling may also be responsible for the therapeutic benefits of already proven or recently developed treatment approaches, such as ACE inhibitors, certain β-blockers, and sGC activators. Better understanding of the above-mentioned pathological processes may ultimately lead to more successful therapeutic approaches to overcome metabolic syndrome and its pathological consequences in cardiac NO signalling.
Collapse
Affiliation(s)
- O Pechánová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
- Faculty of Natural Sciences, Comenius UniversityBratislava, Slovak Republic
| | - Z V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - M Cebová
- Institute of Normal and Pathological Physiology and Centre of Excellence for Regulatory Role of Nitric Oxide in Civilization Diseases, Slovak Academy of SciencesBratislava, Slovak Republic
| | - Z Giricz
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
| | - P Pacher
- Laboratory of Physiological Studies, National Institutes of Health/NIAAABethesda, MD, USA
| | - P Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis UniversityBudapest, Hungary
- Pharmahungary GroupSzeged, Hungary
| |
Collapse
|
149
|
Han J, Tan C, Wang Y, Yang S, Tan D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem Biol Interact 2015; 227:37-44. [DOI: 10.1016/j.cbi.2014.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
150
|
Cardiac and oxidative stress biomarkers in Trypanosoma evansi infected camels: diagnostic and prognostic prominence. Parasitology 2015; 142:767-72. [PMID: 25578857 DOI: 10.1017/s0031182014001899] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was conducted to investigate the level of cardiac and oxidative stress markers in camels infected with Trypanosoma evansi and to explore the diagnostic and prognostic value of cardiac troponin I (cTnI) and creatine kinase-myocardial band (CK-MB) in response to infection. Seventy four dromedary camels with clinical and laboratory evidence of trypanosomosis and 20 healthy controls were included in this study. Serum cTnI, CK-MB, CK, malondialdehyde (MDA) and super oxide dismutase (SOD) were measured. The values of cTnI, CK-MB, CK and MDA were significantly higher, whereas SOD level was lower in T. evansi infected camel. Successfully treated camels (n = 43) had lower levels of cTnI, CK-MB, CK and MDA, but higher level of SOD compared to camels with treatment failure. Both cTnI and CK-MB showed high degree of accuracy in predicting treatment outcome (success vs failure). The area under the curve for cTnI and CK-MB was 0.98 and 0.93, respectively. However, cTnI showed better sensitivity and specificity than CK-MB (Se = 96.8% vs 83.9% and Sp = 100% vs 88.5%, respectively). These results suggest that cTnI and CK-MB could be used as diagnostic and prognostic biomarkers in camels infected with T. evansi.
Collapse
|