101
|
Winkels K, Koudelka T, Kaulich PT, Leippe M, Tholey A. Validation of Top-Down Proteomics Data by Bottom-Up-Based N-Terminomics Reveals Pitfalls in Top-Down-Based Terminomics Workflows. J Proteome Res 2022; 21:2185-2196. [PMID: 35972260 DOI: 10.1021/acs.jproteome.2c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.
Collapse
Affiliation(s)
- Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
102
|
Wang P, Karakose E, Argmann C, Wang H, Balev M, Brody RI, Rivas HG, Liu X, Wood O, Liu H, Choleva L, Hasson D, Bernstein E, Paulo JA, Scott DK, Lambertini L, DeCaprio JA, Stewart AF. Disrupting the DREAM complex enables proliferation of adult human pancreatic β cells. J Clin Invest 2022; 132:e157086. [PMID: 35700053 PMCID: PMC9337832 DOI: 10.1172/jci157086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Resistance to regeneration of insulin-producing pancreatic β cells is a fundamental challenge for type 1 and type 2 diabetes. Recently, small molecule inhibitors of the kinase DYRK1A have proven effective in inducing adult human β cells to proliferate, but their detailed mechanism of action is incompletely understood. We interrogated our human insulinoma and β cell transcriptomic databases seeking to understand why β cells in insulinomas proliferate, while normal β cells do not. This search reveals the DREAM complex as a central regulator of quiescence in human β cells. The DREAM complex consists of a module of transcriptionally repressive proteins that assemble in response to DYRK1A kinase activity, thereby inducing and maintaining cellular quiescence. In the absence of DYRK1A, DREAM subunits reassemble into the pro-proliferative MMB complex. Here, we demonstrate that small molecule DYRK1A inhibitors induce human β cells to replicate by converting the repressive DREAM complex to its pro-proliferative MMB conformation.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Esra Karakose
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Rachel I. Brody
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hembly G. Rivas
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyue Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Olivia Wood
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Hongtao Liu
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Lauryn Choleva
- Diabetes Obesity Metabolism Institute
- Department of Pediatrics
| | - Dan Hasson
- The Tisch Cancer Institute
- Department of Oncological Sciences
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, and
| | - Emily Bernstein
- The Tisch Cancer Institute
- Department of Oncological Sciences
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joao A. Paulo
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Donald K. Scott
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute
- Department of Medicine, and
| | - James A. DeCaprio
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
103
|
Nam KH, Ordureau A. Quantitative proteome remodeling characterization of two human reference pluripotent stem cell lines during neurogenesis and cardiomyogenesis. Proteomics 2022; 22:e2100246. [PMID: 35871287 PMCID: PMC10389174 DOI: 10.1002/pmic.202100246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Human pluripotent stem cells (PSCs) have become popular tools within the research community to study developmental and model diseases. While many induced-PSCs (iPSCs) from various genetic background sources are currently available, scientific advancement has been hampered by the considerable phenotypic variations observed between different iPSC lines. A recent collaborative effort selected a novel iPSC line to address this and encourage the adoption of a standardized iPSC line termed KOLF2.1J. Here, leveraging the multiplexing power of isobaric labeling, we systematically investigate, at the 10k proteome level, the relative protein abundance profiles of the KOLF2.1J reference iPSC line upon two distinct cell state differentiation trajectories. In addition, we side-by-side systematically compare this line with the H9 line, an established embryonically derived PSC line that we previously characterized. We noticed differences in the basal proteome of the two cell lines and highlighted the differentially expressed proteins. While the difference between the cell line's proteome subsisted upon differentiation, the global proteome remodeling trajectory was highly similar during the tested differentiation routes. We thus conclude that the KOLF2.1J line performs well at the proteome level upon the neuro and cardiomyogenesis differentiation protocol used. We believe this dataset will serve as a resource of value for the research community.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| | - Alban Ordureau
- Cell Biology Program Sloan Kettering Institute Memorial Sloan Kettering Cancer Center New York New York 10065 USA
| |
Collapse
|
104
|
Ding X, Zhu Z, Lapek J, McMillan EA, Zhang A, Chung CY, Dubbury S, Lapira J, Firdaus S, Kang X, Gao J, Oyer J, Chionis J, Rollins RA, Li L, Niessen S, Bagrodia S, Zhang L, VanArsdale T. PARP1-SNAI2 transcription axis drives resistance to PARP inhibitor, Talazoparib. Sci Rep 2022; 12:12501. [PMID: 35864202 PMCID: PMC9304387 DOI: 10.1038/s41598-022-16623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.
Collapse
Affiliation(s)
- Xia Ding
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Zhou Zhu
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,AstraZeneca, Inc., Gaithersburg, MD, 20878, USA
| | - John Lapek
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Elizabeth A McMillan
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Odyssey Therapeutics., San Diego, CA, 92121, USA
| | - Alexander Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Chi-Yeh Chung
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sara Dubbury
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Bristol Myers Squibb., San Diego, CA, 92121, USA
| | - Jennifer Lapira
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Sarah Firdaus
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Xiaolin Kang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Jingjin Gao
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Turning Point Therapeutics., San Diego, CA, 92121, USA
| | - Jon Oyer
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - John Chionis
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Genesis Therapeutics., San Diego, CA, 92121, USA
| | | | - Lianjie Li
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Sherry Niessen
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.,Belharra Therapeutics, Inc., San Diego, CA, 92121, USA
| | - Shubha Bagrodia
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA
| | - Lianglin Zhang
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| | - Todd VanArsdale
- Oncology Research Unit, Pfizer, Inc., San Diego, CA, 92121, USA.
| |
Collapse
|
105
|
Calcium sparks enhance the tissue fluidity within epithelial layers and promote apical extrusion of transformed cells. Cell Rep 2022; 40:111078. [PMID: 35830802 DOI: 10.1016/j.celrep.2022.111078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C. In addition, transient upsurges of intracellular calcium, which we call calcium sparks, frequently occur in normal cells neighboring RasV12 cells, which are mediated by mechanosensitive calcium channel TRPC1 upon membrane stretching. Calcium sparks then enhance cell movements of both normal and RasV12 cells through phosphorylation of AHNAK2 and promote apical extrusion. Moreover, comparable calcium sparks positively regulate apical extrusion of RasV12-transformed cells in zebrafish larvae as well. Hence, calcium sparks play a crucial role in the elimination of transformed cells at the early phase of cell competition.
Collapse
|
106
|
Li J, Zhang J, Xu M, Yang Z, Yue S, Zhou W, Gui C, Zhang H, Li S, Wang PG, Yang S. Advances in glycopeptide enrichment methods for the analysis of protein glycosylation over the past decade. J Sep Sci 2022; 45:3169-3186. [PMID: 35816156 DOI: 10.1002/jssc.202200292] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Advances in bioanalytical technology have accelerated the analysis of complex protein glycosylation, which is beneficial to understanding glycosylation in drug discovery and disease diagnosis. Due to its biological uniqueness in the course of disease occurrence and development, disease-specific glycosylation requires quantitative characterization of protein glycosylation. We provide a comprehensive review of recent advances in glycosylation analysis, including workflows for glycoprotein digestion, glycopeptide separation and enrichment, and mass-spectrometry sequencing. We specifically focus on different strategies for glycopeptide enrichment through physical interaction, chemical oxidation, or metabolic labeling of intact glycopeptides. The recent advances and challenges of O-glycosylation analysis are presented, and the development of improved enrichment methods combining different proteases to analyze O-glycosylation is also proposed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jie Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Zeren Yang
- AstraZeneca, Medimmune Ct, Frederick, MD, 21703, USA
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Wanlong Zhou
- U.S. Food and Drug Administration, Forensic Chemistry Center, Cincinnati, OH, 45237, USA
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Haiyang Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu, 210033, China
| | - Perry G Wang
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.,Department of Pharmaceutical Analysis, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
107
|
Pérez-Schindler J, Vargas-Fernández E, Karrer-Cardel B, Ritz D, Schmidt A, Handschin C. Characterization of regulatory transcriptional mechanisms in hepatocyte lipotoxicity. Sci Rep 2022; 12:11477. [PMID: 35798791 PMCID: PMC9262951 DOI: 10.1038/s41598-022-15731-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease is a continuum of disorders among which non-alcoholic steatohepatitis (NASH) is particularly associated with a negative prognosis. Hepatocyte lipotoxicity is one of the main pathogenic factors of liver fibrosis and NASH. However, the molecular mechanisms regulating this process are poorly understood. The main aim of this study was to dissect transcriptional mechanisms regulated by lipotoxicity in hepatocytes. We achieved this aim by combining transcriptomic, proteomic and chromatin accessibility analyses from human liver and mouse hepatocytes. This integrative approach revealed several transcription factor networks deregulated by NASH and lipotoxicity. To validate these predictions, genetic deletion of the transcription factors MAFK and TCF4 was performed, resulting in hepatocytes that were better protected against saturated fatty acid oversupply. MAFK- and TCF4-regulated gene expression profiles suggest a mitigating effect against cell stress, while promoting cell survival and growth. Moreover, in the context of lipotoxicity, some MAFK and TCF4 target genes were to the corresponding differentially regulated transcripts in human liver fibrosis. Collectively, our findings comprehensively profile the transcriptional response to lipotoxicity in hepatocytes, revealing new molecular insights and providing a valuable resource for future endeavours to tackle the molecular mechanisms of NASH.
Collapse
Affiliation(s)
- Joaquín Pérez-Schindler
- Biozentrum, University of Basel, 4056, Basel, Switzerland. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | | | | | - Danilo Ritz
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | | |
Collapse
|
108
|
Ion-pair Reversed-phase×Low-pH Reversed-phase Two-dimensional Liquid Chromatography for In-depth Proteomic Profiling. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
109
|
Hardesty J, Day L, Warner J, Warner D, Gritsenko M, Asghar A, Stolz A, Morgan T, McClain C, Jacobs J, Kirpich I. Hepatic Protein and Phosphoprotein Signatures of Alcohol-Associated Cirrhosis and Hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1066-1082. [PMID: 35490715 PMCID: PMC9253914 DOI: 10.1016/j.ajpath.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Alcohol-associated liver disease is a global health care burden, with alcohol-associated cirrhosis (AC) and alcohol-associated hepatitis (AH) being two clinical manifestations with poor prognosis. The limited efficacy of standard of care for AC and AH highlights a need for therapeutic targets and strategies. The current study aimed to address this need through the identification of hepatic proteome and phosphoproteome signatures of AC and AH. Proteomic and phosphoproteomic analyses were conducted on explant liver tissue (test cohort) and liver biopsies (validation cohort) from patients with AH. Changes in protein expression across AH severity and similarities and differences in AH and AC hepatic proteome were analyzed. Significant alterations in multiple proteins involved in various biological processes were observed in both AC and AH, including elevated expression of transcription factors involved in fibrogenesis (eg, Yes1-associated transcriptional regulator). Another finding was elevated levels of hepatic albumin (ALBU) concomitant with diminished ALBU phosphorylation, which may prevent ALBU release, leading to hypoalbuminemia. Furthermore, altered expression of proteins related to neutrophil function and chemotaxis, including elevated myeloperoxidase, cathelicidin antimicrobial peptide, complement C3, and complement C5 were observed in early AH, which declined at later stages. Finally, a loss in expression of mitochondria proteins, including enzymes responsible for the synthesis of cardiolipin was observed. The current study identified hepatic protein signatures of AC and AH as well as AH severity, which may facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Josiah Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky
| | - Le Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Jeffrey Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky
| | - Dennis Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Marina Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Aliya Asghar
- Gastroenterology, VA Long Beach Healthcare, VA Long Beach Healthcare System, Long Beach, California
| | - Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy Morgan
- Gastroenterology, VA Long Beach Healthcare, VA Long Beach Healthcare System, Long Beach, California
| | - Craig McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky; Robley Rex Veterans Medical Center, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jon Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
110
|
Amante RJ, Auf der Maur P, Richina V, Sethi A, Iesmantavicius V, Bonenfant D, Aceto N, Bentires-Alj M. Protein Tyrosine Phosphatase SHP2 Controls Interleukin-8 Expression in Breast Cancer Cells. J Mammary Gland Biol Neoplasia 2022; 27:145-153. [PMID: 35739379 PMCID: PMC9433352 DOI: 10.1007/s10911-022-09521-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of metastasis remains a clinical challenge and the majority of breast cancer-related deaths are the result of drug-resistant metastases. The protein tyrosine phosphatase SHP2 encoded by the proto-oncogene PTPN11 promotes breast cancer progression. Inhibition of SHP2 has been shown to decrease metastases formation in various breast cancer models, but specific downstream effectors of SHP2 remain poorly characterized. Certain cytokines in the metastatic cascade facilitate local invasion and promote metastatic colonization. In this study, we investigated cytokines affected by SHP2 that could be relevant for its pro-tumorigenic properties. We used a cytokine array to investigate differentially released cytokines in the supernatant of SHP2 inhibitor-treated breast cancer cells. Expression of CXCL8 transcripts and protein abundance were assessed in human breast cancer cell lines in which we blocked SHP2 using shRNA constructs or an allosteric inhibitor. The impact of SHP2 inhibition on the phospho-tyrosine-proteome and signaling was determined using mass spectrometry. From previously published RNAseq data (Aceto et al. in Nat. Med. 18:529-37, 2012), we computed transcription factor activities using an integrated system for motif activity response analysis (ISMARA) (Balwierz et al. in Genome Res. 24:869-84, 2014). Finally, using siRNA against ETS1, we investigated whether ETS1 directly influences CXCL8 expression levels. We found that IL-8 is one of the most downregulated cytokines in cell supernatants upon SHP2 blockade, with a twofold decrease in CXCL8 transcripts and a fourfold decrease in IL-8 protein. These effects were also observed in preclinical tumor models. Analysis of the phospho-tyrosine-proteome revealed that several effectors of the mitogen-activated protein kinase (MAPK) pathway are downregulated upon SHP2 inhibition in vitro. MEK1/2 inhibition consistently reduced IL-8 levels in breast cancer cell supernatants. Computational analysis of RNAseq data from SHP2-depleted tumors revealed reduced activity of the transcription factor ETS1, a direct target of ERK and a transcription factor reported to regulate IL-8 expression. Our work reveals that SHP2 mediates breast cancer progression by enhancing the production and secretion of the pro-metastatic cytokine IL-8. We also provide mechanistic insights into the effects of SHP2 inhibition and its downstream repercussions. Overall, these results support a rationale for targeting SHP2 in breast cancer.
Collapse
Affiliation(s)
- Romain J Amante
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Priska Auf der Maur
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Atul Sethi
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
111
|
Pasquini M, Grosjean N, Hixson KK, Nicora CD, Yee EF, Lipton M, Blaby IK, Haley JD, Blaby-Haas CE. Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep 2022; 39:110834. [PMID: 35584675 DOI: 10.1016/j.celrep.2022.110834] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.
Collapse
Affiliation(s)
- Miriam Pasquini
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kim K Hixson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Estella F Yee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mary Lipton
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ian K Blaby
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John D Haley
- Department of Pathology and Biological Mass Spectrometry Facility, Stony Brook University, Stony Brook, NY 11794, USA
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
112
|
Kawashima Y, Nagai H, Konno R, Ishikawa M, Nakajima D, Sato H, Nakamura R, Furuyashiki T, Ohara O. Single-Shot 10K Proteome Approach: Over 10,000 Protein Identifications by Data-Independent Acquisition-Based Single-Shot Proteomics with Ion Mobility Spectrometry. J Proteome Res 2022; 21:1418-1427. [PMID: 35522919 PMCID: PMC9171847 DOI: 10.1021/acs.jproteome.2c00023] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The evolution of
mass spectrometry (MS) and analytical techniques
has led to the demand for proteome analysis with high proteome coverage
in single-shot measurements. Focus has been placed on data-independent
acquisition (DIA)-MS and ion mobility spectrometry as techniques for
deep proteome analysis. We aimed to expand the proteome coverage by
single-shot measurements using optimizing high-field asymmetric waveform
ion mobility spectrometry parameters in DIA-MS. With our established
proteome analysis system, more than 10,000 protein groups were identified
from HEK293 cell digests within 120 min of MS measurement time. Additionally,
we applied our approach to the analysis of host proteins in mouse
feces and detected as many as 892 host protein groups (771 upregulated/121
downregulated proteins) in a mouse model of repeated social defeat
stress (R-SDS) used in studying depression. Interestingly, 285 proteins
elevated by R-SDS were related to mental disorders. The fecal host
protein profiling by deep proteome analysis may help us understand
mental illness pathologies noninvasively. Thus, our approach will
be helpful for an in-depth comparison of protein expression levels
for biological and medical research because it enables the analysis
of highly proteome coverage in a single-shot measurement.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe 650-0017, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Ren Nakamura
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe 650-0017, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
113
|
Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun 2022; 13:2436. [PMID: 35508466 PMCID: PMC9068765 DOI: 10.1038/s41467-022-29960-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-β-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome. Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated tumours and lacked information about the phosphoproteome. Here, the authors present a comprehensive HCC proteogenomics and phosphoproteomics study in patient samples from multiple etiologies and stages.
Collapse
|
114
|
Tsitsipatis D, Martindale JL, Ubaida‐Mohien C, Lyashkov A, Yanai H, Kashyap A, Shin CH, Herman AB, Ji E, Yang J, Munk R, Dunn C, Lukyanenko Y, Yang X, Chia CW, Karikkineth AC, Zukley L, D’Agostino J, Kaileh M, Cui C, Beerman I, Ferrucci L, Gorospe M. Proteomes of primary skin fibroblasts from healthy individuals reveal altered cell responses across the life span. Aging Cell 2022; 21:e13609. [PMID: 35429111 PMCID: PMC9124301 DOI: 10.1111/acel.13609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the proteome of different human tissues with advancing age are poorly characterized. Here, we studied the proteins present in primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Proteins were extracted from lysed fibroblasts and subjected to liquid chromatography-mass spectrometry analysis, and the expression levels of 9341 proteins were analyzed using linear regression models. We identified key pathways associated with skin fibroblast aging, including autophagy, scavenging of reactive oxygen species (ROS), ribosome biogenesis, DNA replication, and DNA repair. Changes in these prominent pathways were corroborated using molecular and cell culture approaches. Our study establishes a framework of the global proteome governing skin fibroblast aging and points to possible biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ceereena Ubaida‐Mohien
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Alexey Lyashkov
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Amogh Kashyap
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Allison B. Herman
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Eunbyul Ji
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jen‐Hao Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Christopher Dunn
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Yevgeniya Lukyanenko
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Xiaoling Yang
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chee W. Chia
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Ajoy C. Karikkineth
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Linda Zukley
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Jarod D’Agostino
- Clinical Research CoreNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Mary Kaileh
- Laboratory of Molecular Biology and ImmunologyNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Chang‐Yi Cui
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Translational Gerontology BranchNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institute on AgingNational Institutes of Health Intramural Research ProgramBaltimoreMarylandUSA
| |
Collapse
|
115
|
Salji MJ, Blomme A, Däbritz JHM, Repiscak P, Lilla S, Patel R, Sumpton D, van den Broek NJ, Daly R, Zanivan S, Leung HY. Multi-omics & pathway analysis identify potential roles for tumor N-acetyl aspartate accumulation in murine models of castration-resistant prostate cancer. iScience 2022; 25:104056. [PMID: 35345457 PMCID: PMC8957019 DOI: 10.1016/j.isci.2022.104056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 11/10/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is incurable and remains a significant worldwide challenge (Oakes and Papa, 2015). Matched untargeted multi-level omic datasets may reveal biological changes driving CRPC, identifying novel biomarkers and/or therapeutic targets. Untargeted RNA sequencing, proteomics, and metabolomics were performed on xenografts derived from three independent sets of hormone naive and matched CRPC human cell line models of local, lymph node, and bone metastasis grown as murine orthografts. Collectively, we tested the feasibility of muti-omics analysis on models of CRPC in revealing pathways of interest for future validation investigation. Untargeted metabolomics revealed NAA and NAAG commonly accumulating in CRPC across three independent models and proteomics showed upregulation of related enzymes, namely N-acetylated alpha-linked acidic dipeptidases (FOLH1/NAALADL2). Based on pathway analysis integrating multiple omic levels, we hypothesize that increased NAA in CRPC may be due to upregulation of NAAG hydrolysis via NAALADLases providing a pool of acetyl Co-A for upregulated sphingolipid metabolism and a pool of glutamate and aspartate for nucleotide synthesis during tumor growth.
Collapse
Affiliation(s)
- Mark J. Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Arnaud Blomme
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - J. Henry M. Däbritz
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Peter Repiscak
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Rachana Patel
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - David Sumpton
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Niels J.F. van den Broek
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Ronan Daly
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Hing Y. Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
116
|
Ubaida-Mohien C, Spendiff S, Lyashkov A, Moaddel R, MacMillan NJ, Filion ME, Morais JA, Taivassalo T, Ferrucci L, Hepple RT. Unbiased proteomics, histochemistry, and mitochondrial DNA copy number reveal better mitochondrial health in muscle of high-functioning octogenarians. eLife 2022; 11:e74335. [PMID: 35404238 PMCID: PMC9090325 DOI: 10.7554/elife.74335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Master athletes (MAs) prove that preserving a high level of physical function up to very late in life is possible, but the mechanisms responsible for their high function remain unclear. Methods We performed muscle biopsies in 15 octogenarian world-class track and field MAs and 14 non-athlete age/sex-matched controls (NA) to provide insights into mechanisms for preserving function in advanced age. Muscle samples were assessed for respiratory compromised fibers, mitochondrial DNA (mtDNA) copy number, and proteomics by liquid-chromatography mass spectrometry. Results MA exhibited markedly better performance on clinical function tests and greater cross-sectional area of the vastus lateralis muscle. Proteomics analysis revealed marked differences, where most of the ~800 differentially represented proteins in MA versus NA pertained to mitochondria structure/function such as electron transport capacity (ETC), cristae formation, mitochondrial biogenesis, and mtDNA-encoded proteins. In contrast, proteins from the spliceosome complex and nuclear pore were downregulated in MA. Consistent with proteomics data, MA had fewer respiratory compromised fibers, higher mtDNA copy number, and an increased protein ratio of the cristae-bound ETC subunits relative to the outer mitochondrial membrane protein voltage-dependent anion channel. There was a substantial overlap of proteins overrepresented in MA versus NA with proteins that decline with aging and that are higher in physically active than sedentary individuals. However, we also found 176 proteins related to mitochondria that are uniquely differentially expressed in MA. Conclusions We conclude that high function in advanced age is associated with preserving mitochondrial structure/function proteins, with underrepresentation of proteins involved in the spliceosome and nuclear pore complex. Whereas many of these differences in MA appear related to their physical activity habits, others may reflect unique biological (e.g., gene, environment) mechanisms that preserve muscle integrity and function with aging. Funding Funding for this study was provided by operating grants from the Canadian Institutes of Health Research (MOP 84408 to TT and MOP 125986 to RTH). This work was supported in part by the Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA.
Collapse
Affiliation(s)
- Ceereena Ubaida-Mohien
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Sally Spendiff
- Research Institute, Children's Hospital of Eastern OntarioOttawaCanada
| | - Alexey Lyashkov
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Ruin Moaddel
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Norah J MacMillan
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Marie-Eve Filion
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Jose A Morais
- Research Institute of the McGill University Health Centre, McGill UniversityMontrealCanada
| | - Tanja Taivassalo
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
| | - Luigi Ferrucci
- Intramural Research Program, National Institute on Aging, National Institutes of HealthBaltimoreUnited States
| | - Russell T Hepple
- Department of Physical Therapy, University of FloridaGainesvilleUnited States
- Department of Physiology and Functional Genomics, University of FloridaGainesvilleUnited States
| |
Collapse
|
117
|
Xu G, Grimes TD, Grayson TB, Chen J, Thielen LA, Tse HM, Li P, Kanke M, Lin TT, Schepmoes AA, Swensen AC, Petyuk VA, Ovalle F, Sethupathy P, Qian WJ, Shalev A. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat Commun 2022; 13:1159. [PMID: 35241690 PMCID: PMC8894430 DOI: 10.1038/s41467-022-28826-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, no oral medications are available for type 1 diabetes (T1D). While our recent randomized placebo-controlled T1D trial revealed that oral verapamil had short-term beneficial effects, their duration and underlying mechanisms remained elusive. Now, our global T1D serum proteomics analysis identified chromogranin A (CHGA), a T1D-autoantigen, as the top protein altered by verapamil and as a potential therapeutic marker and revealed that verapamil normalizes serum CHGA levels and reverses T1D-induced elevations in circulating proinflammatory T-follicular-helper cell markers. RNA-sequencing further confirmed that verapamil regulates the thioredoxin system and promotes an anti-oxidative, anti-apoptotic and immunomodulatory gene expression profile in human islets. Moreover, continuous use of oral verapamil delayed T1D progression, promoted endogenous beta-cell function and lowered insulin requirements and serum CHGA levels for at least 2 years and these benefits were lost upon discontinuation. Thus, the current studies provide crucial mechanistic and clinical insight into the beneficial effects of verapamil in T1D.
Collapse
Affiliation(s)
- Guanlan Xu
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tiffany D Grimes
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Truman B Grayson
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Junqin Chen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lance A Thielen
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peng Li
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,School of Nursing, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Fernando Ovalle
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anath Shalev
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
118
|
Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M. CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 2022; 50:3096-3114. [PMID: 35234914 PMCID: PMC8989530 DOI: 10.1093/nar/gkac114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3′ UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Meric Ataman
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Maciej Bak
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Christina J Herrmann
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
119
|
Vesuna F, Akhrymuk I, Smith A, Winnard PT, Lin SC, Scharpf R, Kehn-Hall K, Raman V. RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482334. [PMID: 35262079 PMCID: PMC8902879 DOI: 10.1101/2022.02.28.482334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2, the virus behind the deadly COVID-19 pandemic, continues to spread globally even as vaccine strategies are proving effective in preventing hospitalizations and deaths. However, evolving variants of the virus appear to be more transmissive and vaccine efficacy towards them is waning. As a result, SARS-CoV-2 will continue to have a deadly impact on public health into the foreseeable future. One strategy to bypass the continuing problem of newer variants is to target host proteins required for viral replication. We have used this host-targeted antiviral (HTA) strategy that targets DDX3, a host DEAD-box RNA helicase that is usurped by SARS-CoV-2 for virus production. We demonstrated that targeting DDX3 with RK-33, a small molecule inhibitor, reduced the viral load in four isolates of SARS-CoV-2 (Lineage A, and Lineage B Alpha, Beta, and Delta variants) by one to three log orders in Calu-3 cells. Furthermore, proteomics and RNA-seq analyses indicated that most SARS-CoV-2 genes were downregulated by RK-33 treatment. Also, we show that the use of RK-33 decreases TMPRSS2 expression, which may be due to DDX3s ability to unwind G-quadraplex structures present in the TMPRSS2 promoter. The data presented supports the use of RK-33 as an HTA strategy to control SARS-CoV-2 infection, irrespective of its mutational status, in humans.
Collapse
|
120
|
Dinç M, Yalçın T, Çavuş İ, Özbilgin A. Comparative proteomic analysis of Leishmania parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology 2022; 149:298-305. [PMID: 34758895 PMCID: PMC11010476 DOI: 10.1017/s0031182021001967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is an infectious disease in which different clinical manifestations are classified into three primary forms: visceral, cutaneous and mucocutaneous. These disease forms are associated with parasite species of the protozoan genus Leishmania. For instance, Leishmania infantum and Leishmania tropica are typically linked with visceral (VL) and cutaneous (CL) leishmaniasis, respectively; however, these two species can also cause other form to a lesser extent. What is more alarming is this characteristic, which threatens current medical diagnosis and treatment, is started to be acquired by other species. Our purpose was to address this issue; therefore, gel-based and gel-free proteomic analyses were carried out on the species L. infantum to determine the proteins differentiating between the parasites caused VL and CL. In addition, L. tropica parasites representing the typical cases for CL were included. According to our results, electrophoresis gels of parasites caused to VL were distinguishable regarding the repetitive down-regulation on some specific locations. In addition, a distinct spot of an antioxidant enzyme, superoxide dismutase, was shown up only on the gels of CL samples regardless of the species. In the gel-free approach, 37 proteins that were verified with a second database search using a different search engine, were recognized from the comparison between VL and CL samples. Among them, 31 proteins for the CL group and six proteins for the VL group were determined differentially abundant. Two proteins from the gel-based analysis, pyruvate kinase and succinyl-coA:3-ketoacid-coenzyme A transferase analysis were encountered in the protein list of the CL group.
Collapse
Affiliation(s)
- Melike Dinç
- Izmir Institute of Technology, Integrated Research Centers, National Mass Spectrometry Application and Research Center, Izmir, Turkey
| | - Talat Yalçın
- Faculty of Science, Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Çavuş
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Özbilgin
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
121
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [PMID: 35227377 DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
122
|
Demirhan D, Kumar A, Zhu J, Poulsen PC, Majewska NI, Sebastian Y, Chaerkady R, Yu W, Zhu W, Zhuang L, Shah P, Lekstrom K, Cole RN, Zhang H, Betenbaugh MJ, Bowen MA. Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Sci Rep 2022; 12:3280. [PMID: 35228567 PMCID: PMC8885639 DOI: 10.1038/s41598-022-06886-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.
Collapse
Affiliation(s)
- Deniz Demirhan
- Department of Natural Sciences, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey.
| | - Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jie Zhu
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Pi Camilla Poulsen
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Natalia I Majewska
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Raghothama Chaerkady
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Wen Yu
- Informatics, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Wei Zhu
- Translational Science, AstraZeneca, Gaithersburg, MD, USA
| | - Li Zhuang
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Kristen Lekstrom
- Protein Science, Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
123
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
124
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
125
|
Liu YC, Huang YT, Chen CJ. Development of a high-pH reversed-phase well plate for peptide fractionation and deep proteome analysis of cells and exosomes. Anal Bioanal Chem 2022; 414:2513-2522. [PMID: 35099582 DOI: 10.1007/s00216-022-03892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/01/2022]
Abstract
The complexity of the proteome often limits the number of identified proteins in the nanoflow LC-MS (nanoLC-MS) analysis of samples. Therefore, peptide fractionation is essential for reducing the sample complexity and improving the proteome coverage. In this study, to achieve high-pH reversed-phase (RP)-well plate fractionation for high-throughput proteomics analysis, C18 particles were coated on a 96-well plate, and the sample-loading processes were optimized for high-pH fractionation. The sample capacity of the high-pH RP-well plate was estimated to be ~6 μg of protein. There were 1.85- and 1.71-fold increases in the number of protein groups and peptides identified, respectively, with high-pH RP-well plate fractionation, compared to those without fractionation. In addition, with alkaline C18 well plate fractionation, exosome markers could be detected using ~1 μg of a protein digest of exosomes by microflow LC-MS (microLC-MS). These results illustrate that high-pH RP-well plate fractionation has superior sensitivity and effectiveness in preparing trace amounts of proteins for deep proteome analysis.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
126
|
Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, Batachari LE, Malfavon M, Zhu Q, Weldon K, Humphrey G, Carrillo-Terrazas M, Goldasich LD, Bryant M, Raffatellu M, Quinn RA, Gewirtz AT, Chassaing B, Chu H, Sandborn WJ, Dorrestein PC, Knight R, Gonzalez DJ. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol 2022; 7:262-276. [PMID: 35087228 PMCID: PMC8852248 DOI: 10.1038/s41564-021-01050-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is driven by disruptions in host-microbiota homoeostasis, but current treatments exclusively target host inflammatory pathways. To understand how host-microbiota interactions become disrupted in UC, we collected and analysed six faecal- or serum-based omic datasets (metaproteomic, metabolomic, metagenomic, metapeptidomic and amplicon sequencing profiles of faecal samples and proteomic profiles of serum samples) from 40 UC patients at a single inflammatory bowel disease centre, as well as various clinical, endoscopic and histologic measures of disease activity. A validation cohort of 210 samples (73 UC, 117 Crohn's disease, 20 healthy controls) was collected and analysed separately and independently. Data integration across both cohorts showed that a subset of the clinically active UC patients had an overabundance of proteases that originated from the bacterium Bacteroides vulgatus. To test whether B. vulgatus proteases contribute to UC disease activity, we first profiled B. vulgatus proteases found in patients and bacterial cultures. Use of a broad-spectrum protease inhibitor improved B. vulgatus-induced barrier dysfunction in vitro, and prevented colitis in B. vulgatus monocolonized, IL10-deficient mice. Furthermore, transplantation of faeces from UC patients with a high abundance of B. vulgatus proteases into germfree mice induced colitis dependent on protease activity. These results, stemming from a multi-omics approach, improve understanding of functional microbiota alterations that drive UC and provide a resource for identifying other pathways that could be inhibited as a strategy to treat this disease.
Collapse
Affiliation(s)
- Robert H Mills
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA
| | - Parambir S Dulai
- Division of Gastroenterology, University of California, San Diego, CA, USA
| | - Yoshiki Vázquez-Baeza
- Department of Pediatrics, University of California, San Diego, CA, USA.,Department of Computer Science and Engineering, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Consuelo Sauceda
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Noëmie Daniel
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Romana R Gerner
- Department of Pediatrics, University of California, San Diego, CA, USA.,Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, CA, USA
| | | | - Mario Malfavon
- Department of Pharmacology, University of California, San Diego, CA, USA
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, CA, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Marvic Carrillo-Terrazas
- Department of Pharmacology, University of California, San Diego, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pathology, University of California, San Diego, CA, USA
| | | | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Manuela Raffatellu
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.,Division of Host-Microbe Systems and Therapeutics, University of California, San Diego, CA, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, CA, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA.,Department of Pediatrics, University of California, San Diego, CA, USA.,Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA. .,Department of Computer Science and Engineering, University of California, San Diego, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
127
|
Sanford J, Wang Y, Hansen JR, Gritsenko MA, Weitz KK, Sagendorf TJ, Tognon CE, Petyuk VA, Qian WJ, Liu T, Druker BJ, Rodland KD, Piehowski PD. Evaluation of Differential Peptide Loading on Tandem Mass Tag-Based Proteomic and Phosphoproteomic Data Quality. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:17-30. [PMID: 34813325 PMCID: PMC8739833 DOI: 10.1021/jasms.1c00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Global and phosphoproteome profiling has demonstrated great utility for the analysis of clinical specimens. One barrier to the broad clinical application of proteomic profiling is the large amount of biological material required, particularly for phosphoproteomics─currently on the order of 25 mg wet tissue weight. For hematopoietic cancers such as acute myeloid leukemia (AML), the sample requirement is ≥10 million peripheral blood mononuclear cells (PBMCs). Across large study cohorts, this requirement will exceed what is obtainable for many individual patients/time points. For this reason, we were interested in the impact of differential peptide loading across multiplex channels on proteomic data quality. To achieve this, we tested a range of channel loading amounts (approximately the material obtainable from 5E5, 1E6, 2.5E6, 5E6, and 1E7 AML patient cells) to assess proteome coverage, quantification precision, and peptide/phosphopeptide detection in experiments utilizing isobaric tandem mass tag (TMT) labeling. As expected, fewer missing values were observed in TMT channels with higher peptide loading amounts compared to lower loadings. Moreover, channels with a lower loading have greater quantitative variability than channels with higher loadings. A statistical analysis showed that decreased loading amounts result in an increase in the type I error rate. We then examined the impact of differential loading on the detection of known differences between distinct AML cell lines. Similar patterns of increased data missingness and higher quantitative variability were observed as loading was decreased resulting in fewer statistical differences; however, we found good agreement in features identified as differential, demonstrating the value of this approach.
Collapse
Affiliation(s)
- James
A. Sanford
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Yang Wang
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Joshua R. Hansen
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Marina A. Gritsenko
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Karl K. Weitz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Tyler J. Sagendorf
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Cristina E. Tognon
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
- Division
of Hematology and Medical Oncology, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Vladislav A. Petyuk
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Tao Liu
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Brian J. Druker
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
- Division
of Hematology and Medical Oncology, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Karin D. Rodland
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
- Knight
Cancer Institute, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Paul D. Piehowski
- Environmental
Molecular Sciences Division, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
128
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
129
|
Zheng W, Yang P, Sun C, Zhang Y. Comprehensive comparison of sample preparation workflows for proteomics. Mol Omics 2022; 18:555-567. [DOI: 10.1039/d2mo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry-based proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining deep and accurate protein identification. Here, to obtain an optimal sample preparation workflow...
Collapse
|
130
|
Sharma KB, Aggarwal S, Yadav AK, Vrati S, Kalia M. Studying Autophagy Using a TMT-Based Quantitative Proteomics Approach. Methods Mol Biol 2022; 2445:183-203. [PMID: 34972993 DOI: 10.1007/978-1-0716-2071-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Maintenance of cellular homeostasis through regulated degradation of proteins and organelles is a defining feature of autophagy. This process itself is tightly regulated in a series of well-defined biochemical reactions governed largely by the highly conserved ATG protein family. Given its crucial role in regulating protein levels under both basal and stress conditions such as starvation and infection, genetic or pharmacological perturbation of autophagy results in massive changes in the cellular proteome and impacts nearly every biological process. Therefore, studying autophagy perturbations at a global scale assumes prime importance. In recent years, quantitative mass spectrometry (MS)-based proteomics has emerged as a powerful approach to explore biological processes through global proteome quantification analysis. Tandem mass tag (TMT)-based MS proteomics is one such robust quantitative technique that can examine relative protein abundances in multiple samples (parallel multiplexing). Investigating autophagy through TMT-based MS approach can give great insights into autophagy-regulated biological processes, protein-protein interaction networks, spatiotemporal protein dynamics, and identification of new autophagy substrates. This chapter provides a detailed protocol for studying the impact of a dysfunctional autophagy pathway on the cellular proteome and pathways in a healthy vs. disease (virus infection) condition using a 16-plex TMT-based quantitative proteomics approach. We also provide a pipeline on data processing and analysis using available web-based tools.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
131
|
Iannetta AA, Hicks LM. Maximizing Depth of PTM Coverage: Generating Robust MS Datasets for Computational Prediction Modeling. Methods Mol Biol 2022; 2499:1-41. [PMID: 35696073 DOI: 10.1007/978-1-0716-2317-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Post-translational modifications (PTMs) regulate complex biological processes through the modulation of protein activity, stability, and localization. Insights into the specific modification type and localization within a protein sequence can help ascertain functional significance. Computational models are increasingly demonstrated to offer a low-cost, high-throughput method for comprehensive PTM predictions. Algorithms are optimized using existing experimental PTM data, thus accurate prediction performance relies on the creation of robust datasets. Herein, advancements in mass spectrometry-based proteomics technologies to maximize PTM coverage are reviewed. Further, requisite experimental validation approaches for PTM predictions are explored to ensure that follow-up mechanistic studies are focused on accurate modification sites.
Collapse
Affiliation(s)
- Anthony A Iannetta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
132
|
Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol Psychiatry 2022; 27:1217-1225. [PMID: 34741130 PMCID: PMC9054664 DOI: 10.1038/s41380-021-01339-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Schizophrenia is a devastating psychiatric illness that detrimentally affects a significant portion of the worldwide population. Aging of schizophrenia patients is associated with reduced longevity, but the potential biological factors associated with aging in this population have not yet been investigated in a global manner. To address this gap in knowledge, the present study assesses proteomics and metabolomics profiles in the plasma of subjects afflicted with schizophrenia compared to non-psychiatric control patients over six decades of life. Global, unbiased analyses of circulating blood plasma can provide knowledge of prominently dysregulated molecular pathways and their association with schizophrenia, as well as features of aging and gender in this disease. The resulting data compiled in this study represent a compendium of molecular changes associated with schizophrenia over the human lifetime. Supporting the clinical finding of schizophrenia's association with more rapid aging, both schizophrenia diagnosis and age significantly influenced the plasma proteome in subjects assayed. Schizophrenia was broadly associated with prominent dysregulation of inflammatory and metabolic system components. Proteome changes demonstrated increased abundance of biomarkers for risk of physiologic comorbidities of schizophrenia, especially in younger individuals. These findings advance our understanding of the molecular etiology of schizophrenia and its associated comorbidities throughout the aging process.
Collapse
|
133
|
Ordureau A, Kraus F, Zhang J, An H, Park S, Ahfeldt T, Paulo JA, Harper JW. Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Mol Cell 2021; 81:5082-5098.e11. [PMID: 34699746 PMCID: PMC8688335 DOI: 10.1016/j.molcel.2021.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/23/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022]
Abstract
Cell state changes are associated with proteome remodeling to serve newly emergent cell functions. Here, we show that NGN2-driven conversion of human embryonic stem cells to induced neurons (iNeurons) is associated with increased PINK1-independent mitophagic flux that is temporally correlated with metabolic reprogramming to support oxidative phosphorylation. Global multiplex proteomics during neurogenesis revealed large-scale remodeling of functional modules linked with pluripotency, mitochondrial metabolism, and proteostasis. Differentiation-dependent mitophagic flux required BNIP3L and its LC3-interacting region (LIR) motif, and BNIP3L also promoted mitophagy in dopaminergic neurons. Proteomic analysis of ATG12-/- iNeurons revealed accumulation of endoplasmic reticulum, Golgi, and mitochondria during differentiation, indicative of widespread organelle remodeling during neurogenesis. This work reveals broad organelle remodeling of membrane-bound organelles during NGN2-driven neurogenesis via autophagy, identifies BNIP3L's central role in programmed mitophagic flux, and provides a proteomic resource for elucidating how organelle remodeling and autophagy alter the proteome during changes in cell state.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | - Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Heeseon An
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sookhee Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY 10029, USA; Department of Neurology at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology at Mount Sinai, New York, NY 10029, USA; Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute at Mount Sinai, New York, NY 10029, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
134
|
Yan Y, Zhou B, Lee YJ, You S, Freeman MR, Yang W. BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics 2021; 22:e2100172. [PMID: 34897998 DOI: 10.1002/pmic.202100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Prostate cancer (PC) is a major health and economic problem in industrialized countries, yet our understanding of the molecular mechanisms of PC progression and drug response remains limited. Accumulating evidence showed that certain E3 ubiquitin ligases such as SIAH2, RNF7, and SPOP play important roles in PC development and progression. However, the roles and mechanisms of other E3s in PC progression remain largely unexplored. Through an integration analysis of clinical genomic and transcriptomic profiles of PC tumors, this study identified UBR5 as a top PC-relevant E3 ubiquitin ligase whose expression levels are strongly associated with PC progression and aggressiveness. BoxCar and shotgun proteomic analyses of control and UBR5-knockdown PC3 cells complementarily identified 75 UBR5-regulated proteins. Bioinformatic analysis suggested that the 75 proteins form four molecular networks centered around FANCD2, PAF1, YY1, and LAMB3 via direct protein-protein interactions. Experimental analyses demonstrated that UBR5 associates with and downregulates two key DNA damage repair proteins (XRCC3 and FANCD2) and confers PC cell sensitivity to olaparib, a PARP inhibitor in clinical use for cancer therapy. This study represents the first application of BoxCar in PC research, provides new insights into the molecular functions of UBR5 in PC, and suggests that PC patients with UBR5-high tumors may potentially benefit from PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yeon-Joo Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
135
|
Sheng H, Guo Y, Zhang L, Zhang J, Miao M, Tan H, Hu D, Li X, Ding X, Li G, Guo H. Proteomic Studies on the Mechanism of Myostatin Regulating Cattle Skeletal Muscle Development. Front Genet 2021; 12:752129. [PMID: 34868225 PMCID: PMC8635237 DOI: 10.3389/fgene.2021.752129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN+/− Mongolian cattle (MG.MSTN+/−) and wild type Mongolian cattle (MG.WT) using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to investigate the regulation mechanism of MSTN on the growth and development of bovine skeletal muscle. A total of 1,950 proteins were identified in MG.MSTN+/− and MG.WT. Compared with MG.WT cattle, a total of 320 differentially expressed proteins were identified in MG.MSTN cattle, including 245 up-regulated differentially expressed proteins and 75 down-regulated differentially expressed proteins. Bioinformatics analysis showed that knockdown of the MSTN gene increased the expression of extracellular matrix and ribosome-related proteins, induced activation of focal adhesion, PI3K-AKT, and Ribosomal pathways. The results of proteomic analysis were verified by muscle tissue Western blot test and in vitro MSTN gene knockdown test, and it was found that knockdown MSTN gene expression could promote the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells (BSMSCs). At the same time, Co-Immunoprecipitation (CO-IP) assay showed that MSTN gene interacted with extracellular matrix related protein type I collagen α 1 (COL1A1), and knocking down the expression of COL1A1 could inhibit the activity of adhesion, PI3K-AKT and ribosome pathway, thus inhibit BSMSCs proliferation. These results suggest that the MSTN gene regulates focal adhesion, PI3K-AKT, and Ribosomal pathway through the COL1A1 gene. In general, this study provides new insights into the regulatory mechanism of MSTN involved in muscle growth and development.
Collapse
Affiliation(s)
- Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Manning Miao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Haoyun Tan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Debao Hu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
136
|
Yurgel SN, Qu Y, Rice JT, Ajeethan N, Zink EM, Brown JM, Purvine S, Lipton MS, Kahn ML. Specialization in a Nitrogen-Fixing Symbiosis: Proteome Differences Between Sinorhizobium medicae Bacteria and Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1409-1422. [PMID: 34402628 DOI: 10.1094/mpmi-07-21-0180-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Using tandem mass spectrometry (MS/MS), we analyzed the proteome of Sinorhizobium medicae WSM419 growing as free-living cells and in symbiosis with Medicago truncatula. In all, 3,215 proteins were identified, over half of the open reading frames predicted from the genomic sequence. The abundance of 1,361 proteins displayed strong lifestyle bias. In total, 1,131 proteins had similar levels in bacteroids and free-living cells, and the low levels of 723 proteins prevented statistically significant assignments. Nitrogenase subunits comprised approximately 12% of quantified bacteroid proteins. Other major bacteroid proteins included symbiosis-specific cytochromes and FixABCX, which transfer electrons to nitrogenase. Bacteroids had normal levels of proteins involved in amino acid biosynthesis, glycolysis or gluconeogenesis, and the pentose phosphate pathway; however, several amino acid degradation pathways were repressed. This suggests that bacteroids maintain a relatively independent anabolic metabolism. Tricarboxylic acid cycle proteins were highly expressed in bacteroids and no other catabolic pathway emerged as an obvious candidate to supply energy and reductant to nitrogen fixation. Bacterial stress response proteins were induced in bacteroids. Many WSM419 proteins that are not encoded in S. meliloti Rm1021 were detected, and understanding the functions of these proteins might clarify why S. medicae WSM419 forms a more effective symbiosis with M. truncatula than S. meliloti Rm1021.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Yi Qu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Jennifer T Rice
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
| | - Nivethika Ajeethan
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 550, Truro, Nova Scotia, B2N 5E3, Canada
- Faculty of Technology, University of Jaffna, Sri Lanka
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Joseph M Brown
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Sam Purvine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Mary S Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A
| | - Michael L Kahn
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, U.S.A
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-6340, U.S.A
| |
Collapse
|
137
|
Wu ZY, Campeau A, Liu CH, Gonzalez DJ, Yamaguchi M, Kawabata S, Lu CH, Lai CY, Chiu HC, Chang YC. Unique virulence role of post-translocational chaperone PrsA in shaping Streptococcus pyogenes secretome. Virulence 2021; 12:2633-2647. [PMID: 34592883 PMCID: PMC8489961 DOI: 10.1080/21505594.2021.1982501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a strict human pathogen causing a broad spectrum of diseases and a variety of autoimmune sequelae. The pathogenesis of GAS infection mostly relies on the production of an extensive network of cell wall-associated and secreted virulence proteins, such as adhesins, toxins, and exoenzymes. PrsA, the only extracellular parvulin-type peptidyl-prolyl isomerase expressed ubiquitously in Gram-positive bacteria, has been suggested to assist the folding and maturation of newly exported proteins to acquire their native conformation and activity. Two PrsA proteins, PrsA1 and PrsA2, have been identified in GAS, but the respective contribution of each PrsA in GAS pathogenesis remains largely unknown. By combining comparative proteomic and phenotypic analysis approaches, we demonstrate that both PrsA isoforms are required to maintain GAS proteome homeostasis and virulence-associated traits in a unique and overlapping manner. The inactivation of both PrsA in GAS caused remarkable impairment in biofilm formation, host adherence, infection-induced cytotoxicity, and in vivo virulence in a murine soft tissue infection model. The concordance of proteomic and phenotypic data clearly features the essential role of PrsA in GAS full virulence.
Collapse
Affiliation(s)
- Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Anaamika Campeau
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Chao-Hsien Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David J. Gonzalez
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chian-Yu Lai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
138
|
Krösser D, Dreyer B, Siebels B, Voß H, Krisp C, Schlüter H. Investigation of the Proteomes of the Truffles Tuber albidum pico, T. aestivum, T. indicum, T. magnatum, and T. melanosporum. Int J Mol Sci 2021; 22:ijms222312999. [PMID: 34884803 PMCID: PMC8658033 DOI: 10.3390/ijms222312999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Truffles of the Tuber species are known as expensive foods, mainly for their distinct aroma and taste. This high price makes them a profitable target of food fraud, e.g., the misdeclaration of cheaper truffle species as expensive ones. While many studies investigated truffles on the metabolomic level or the volatile organic compounds extruded by them, research at the proteome level as a phenotype determining basis is limited. In this study, a bottom-up proteomic approach based on LC-MS/MS measurements in data-independent acquisition mode was performed to analyze the truffle species Tuber aestivum, Tuber albidum pico, Tuber indicum, Tuber magnatum, and Tuber melanosporum, and a protein atlas of the investigated species was obtained. The yielded proteomic fingerprints are unique for each of the of the five truffle species and can now be used in case of suspected food fraud. First, a comprehensive spectral library containing 9000 proteins and 50,000 peptides was generated by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS). Then, samples of the truffle species were analyzed in data-independent acquisition (DIA) proteomics mode yielding 2715 quantified proteins present in all truffle samples. Individual species were clearly distinguishable by principal component analysis (PCA). Quantitative proteome fingerprints were generated from 2066 ANOVA significant proteins, and side-by-side comparisons of truffles were done by T-tests. A further aim of this study was the annotation of functions for the identified proteins. For Tuber magnatum and Tuber melanosporum conclusive links to their superior aroma were found by enrichment of proteins responsible for sulfur-metabolic processes in comparison with other truffles. The obtained data in this study may serve as a reference library for food analysis laboratories in the future to tackle food fraud by misdeclaration of truffles. Further identified proteins with their corresponding abundance values in the different truffle species may serve as potential protein markers in the establishment of targeted analysis methods. Lastly, the obtained data may serve in the future as a basis for deciphering the biochemistry of truffles more deeply as well, when protein databases of the different truffle species will be more complete.
Collapse
|
139
|
Güran A, Ji Y, Fang P, Pan KT, Urlaub H, Avkiran M, Lenz C. Quantitative Analysis of the Cardiac Phosphoproteome in Response to Acute β-Adrenergic Receptor Stimulation In Vivo. Int J Mol Sci 2021; 22:12584. [PMID: 34830474 PMCID: PMC8618155 DOI: 10.3390/ijms222212584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
β-adrenergic receptor (β-AR) stimulation represents a major mechanism of modulating cardiac output. In spite of its fundamental importance, its molecular basis on the level of cell signalling has not been characterised in detail yet. We employed mass spectrometry-based proteome and phosphoproteome analysis using SuperSILAC (spike-in stable isotope labelling by amino acids in cell culture) standardization to generate a comprehensive map of acute phosphoproteome changes in mice upon administration of isoprenaline (ISO), a synthetic β-AR agonist that targets both β1-AR and β2-AR subtypes. Our data describe 8597 quantitated phosphopeptides corresponding to 10,164 known and novel phospho-events from 2975 proteins. In total, 197 of these phospho-events showed significantly altered phosphorylation, indicating an intricate signalling network activated in response to β-AR stimulation. In addition, we unexpectedly detected significant cardiac expression and ISO-induced fragmentation of junctophilin-1, a junctophilin isoform hitherto only thought to be expressed in skeletal muscle. Data are available via ProteomeXchange with identifier PXD025569.
Collapse
Affiliation(s)
- Alican Güran
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK; (A.G.); (M.A.)
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Pan Fang
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou 215123, China
| | - Kuan-Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Metin Avkiran
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK; (A.G.); (M.A.)
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany; (Y.J.); (P.F.); (K.-T.P.); (H.U.)
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
140
|
Avilla-Royo E, Gegenschatz-Schmid K, Grossmann J, Kockmann T, Zimmermann R, Snedeker JG, Ochsenbein-Kölble N, Ehrbar M. Comprehensive quantitative characterization of the human term amnion proteome. Matrix Biol Plus 2021; 12:100084. [PMID: 34765964 PMCID: PMC8572956 DOI: 10.1016/j.mbplus.2021.100084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
We report an unprecedented quantitative high coverage of the human amnion proteome. We identified novel proteins that hold great promise for understanding fetal membrane biology. Together, this comprehensive proteome provides a basis for the evaluation of pre-term or diseased fetal membranes.
The loss of fetal membrane (FM) integrity and function at an early time point during pregnancy can have devastating consequences for the fetus and the newborn. However, biomaterials for preventive sealing and healing of FMs are currently non-existing, which can be partly attributed to the current fragmentary knowledge of FM biology. Despite recent advances in proteomics analysis, a robust and comprehensive description of the amnion proteome is currently lacking. Here, by an optimized protein sample preparation and offline fractionation before liquid chromatography coupled to mass spectrometry (LC-MS) analysis, we present a characterization of the healthy human term amnion proteome, which covers more than 40% of the previously reported transcripts in similar RNA sequencing datasets and, with more than 5000 identifications, greatly outnumbers previous reports. Together, beyond providing a basis for the study of compromised and preterm ruptured FMs, this comprehensive human amnion proteome is a stepping-stone for the development of novel healing-inducing biomaterials. The proteomic dataset has been deposited in the ProteomeXchange Consortium with the identifier PXD019410.
Collapse
Affiliation(s)
- Eva Avilla-Royo
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,Institute for Biomechanics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | | | - Jonas Grossmann
- Functional Genomics Center, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015 792 Lausanne, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Roland Zimmermann
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, 8032 Zurich, Switzerland
| | - Jess Gerrit Snedeker
- Institute for Biomechanics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.,Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Nicole Ochsenbein-Kölble
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,The Zurich Center for Fetal Diagnosis and Therapy, 8032 Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital of Zurich, 8091 Zurich, Switzerland.,University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
141
|
Antico O, Ordureau A, Stevens M, Singh F, Nirujogi RS, Gierlinski M, Barini E, Rickwood ML, Prescott A, Toth R, Ganley IG, Harper JW, Muqit MMK. Global ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1. SCIENCE ADVANCES 2021; 7:eabj0722. [PMID: 34767452 PMCID: PMC8589319 DOI: 10.1126/sciadv.abj0722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/21/2021] [Indexed: 05/16/2023]
Abstract
How activation of PINK1 and Parkin leads to elimination of damaged mitochondria by mitophagy is largely based on cell lines with few studies in neurons. Here, we have undertaken proteomic analysis of mitochondria from mouse neurons to identify ubiquitylated substrates of endogenous Parkin. Comparative analysis with human iNeuron datasets revealed a subset of 49 PINK1 activation–dependent diGLY sites in 22 proteins conserved across mouse and human systems. We use reconstitution assays to demonstrate direct ubiquitylation by Parkin in vitro. We also identified a subset of cytoplasmic proteins recruited to mitochondria that undergo PINK1 and Parkin independent ubiquitylation, indicating the presence of alternate ubiquitin E3 ligase pathways that are activated by mitochondrial depolarization in neurons. Last, we have developed an online resource to search for ubiquitin sites and enzymes in mitochondria of neurons, MitoNUb. These findings will aid future studies to understand Parkin activation in neuronal subtypes.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Stevens
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Raja S. Nirujogi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Erica Barini
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mollie L. Rickwood
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
142
|
Keele GR, Zhang T, Pham DT, Vincent M, Bell TA, Hock P, Shaw GD, Paulo JA, Munger SC, Pardo-Manuel de Villena F, Ferris MT, Gygi SP, Churchill GA. Regulation of protein abundance in genetically diverse mouse populations. CELL GENOMICS 2021; 1:100003. [PMID: 36212994 PMCID: PMC9536773 DOI: 10.1016/j.xgen.2021.100003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC) inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice and their founder strains. We show concordance across the proteomics datasets despite being generated from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO mice. We find that regulatory effects on individual proteins are conserved across the mouse populations, in particular for local genetic variation and sex differences. In comparison, proteins that form complexes are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and map fewer pQTLs. We have made this resource publicly available to enable quantitative analyses of the regulation of the proteome.
Collapse
Affiliation(s)
| | - Tian Zhang
- Harvard Medical School, Boston, MA 02115, USA
| | - Duy T. Pham
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Timothy A. Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D. Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
143
|
Chen X, Sun Y, Zhang T, Shu L, Roepstorff P, Yang F. Quantitative Proteomics Using Isobaric Labeling: A Practical Guide. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:689-706. [PMID: 35007772 PMCID: PMC9170757 DOI: 10.1016/j.gpb.2021.08.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/19/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023]
Abstract
In the past decade, relative proteomic quantification using isobaric labeling technology has developed into a key tool for comparing the expression of proteins in biological samples. Although its multiplexing capacity and flexibility make this a valuable technology for addressing various biological questions, its quantitative accuracy and precision still pose significant challenges to the reliability of its quantification results. Here, we give a detailed overview of the different kinds of isobaric mass tags and the advantages and disadvantages of the isobaric labeling method. We also discuss which precautions should be taken at each step of the isobaric labeling workflow, to obtain reliable quantification results in large-scale quantitative proteomics experiments. In the last section, we discuss the broad applications of the isobaric labeling technology in biological and clinical studies, with an emphasis on thermal proteome profiling and proteogenomics.
Collapse
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China.
| | - Yaping Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Lian Shu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100149, China.
| |
Collapse
|
144
|
Chunduri NK, Menges P, Zhang X, Wieland A, Gotsmann VL, Mardin BR, Buccitelli C, Korbel JO, Willmund F, Kschischo M, Raeschle M, Storchova Z. Systems approaches identify the consequences of monosomy in somatic human cells. Nat Commun 2021; 12:5576. [PMID: 34552071 PMCID: PMC8458293 DOI: 10.1038/s41467-021-25288-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Chromosome loss that results in monosomy is detrimental to viability, yet it is frequently observed in cancers. How cancers survive with monosomy is unknown. Using p53-deficient monosomic cell lines, we find that chromosome loss impairs proliferation and genomic stability. Transcriptome and proteome analysis demonstrates reduced expression of genes encoded on the monosomes, which is partially compensated in some cases. Monosomy also induces global changes in gene expression. Pathway enrichment analysis reveals that genes involved in ribosome biogenesis and translation are downregulated in all monosomic cells analyzed. Consistently, monosomies display defects in protein synthesis and ribosome assembly. We further show that monosomies are incompatible with p53 expression, likely due to defects in ribosome biogenesis. Accordingly, impaired ribosome biogenesis and p53 inactivation are associated with monosomy in cancer. Our systematic study of monosomy in human cells explains why monosomy is so detrimental and reveals the importance of p53 for monosomy occurrence in cancer. The mechanisms that allow cancer cells to survive with monosomies are poorly understood. Here the authors analyse p53-deficient monosomic cell lines using transcriptomics and proteomics, and find that impaired ribosome biogenesis and p53 downregulation are associated with sustained monosomies.
Collapse
Affiliation(s)
| | - Paul Menges
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Xiaoxiao Zhang
- University of Applied Sciences Koblenz, Remagen, Germany
| | - Angela Wieland
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | | | - Balca R Mardin
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jan O Korbel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Felix Willmund
- Group Genetics of Eukaryotes, TU Kaiserslautern, Kaiserslautern, Germany
| | - Maik Kschischo
- University of Applied Sciences Koblenz, Remagen, Germany
| | - Markus Raeschle
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
145
|
Pérez-Schindler J, Kohl B, Schneider-Heieck K, Leuchtmann AB, Henríquez-Olguín C, Adak V, Maier G, Delezie J, Sakoparnig T, Vargas-Fernández E, Karrer-Cardel B, Ritz D, Schmidt A, Hondele M, Jensen TE, Hiller S, Handschin C. RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc Natl Acad Sci U S A 2021; 118:e2105951118. [PMID: 34465622 PMCID: PMC8433555 DOI: 10.1073/pnas.2105951118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid-liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.
Collapse
Affiliation(s)
| | - Bastian Kohl
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Volkan Adak
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Julien Delezie
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Maria Hondele
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
146
|
Birk MS, Ahmed-Begrich R, Tran S, Elsholz AKW, Frese CK, Charpentier E. Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation. mSystems 2021; 6:e0021521. [PMID: 34342529 PMCID: PMC8407217 DOI: 10.1128/msystems.00215-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemical isobaric peptide labeling to simultaneously determine the time-resolved protein decay and de novo synthesis in an intracellular human pathogen. We showcase this method by investigating the Listeria monocytogenes proteome in the presence and absence of the AAA+ chaperone protein ClpC. ClpC associates with the peptidase ClpP to form an ATP-dependent protease complex and has been shown to play a role in virulence development in L. monocytogenes. However, the mechanism by which ClpC is involved in the survival and proliferation of intracellular L. monocytogenes remains elusive. Employing this new method, we observed extensive proteome remodeling in L. monocytogenes upon interaction with the host, supporting the hypothesis that ClpC-dependent protein degradation is required to initiate bacterial adaptation mechanisms. We identified more than 100 putative ClpC target proteins through their stabilization in a clpC deletion strain. Beyond the identification of direct targets, we also observed indirect effects of the clpC deletion on the protein abundance in diverse cellular and metabolic pathways, such as iron acquisition and flagellar assembly. Overall, our data highlight the crucial role of ClpC for L. monocytogenes adaptation to the host environment through proteome remodeling. IMPORTANCE Survival and proliferation of pathogenic bacteria inside the host depend on their ability to adapt to the changing environment. Profiling the underlying changes on the bacterial proteome level during the infection process is important to gain a better understanding of the pathogenesis and the host-dependent adaptation processes. The cellular protein abundance is governed by the interplay between protein synthesis and decay. The direct readout of these events during infection can be accomplished using pulsed stable-isotope labeling by amino acids in cell culture (SILAC). Combining this approach with tandem-mass-tag (TMT) labeling enabled multiplexed and time-resolved bacterial proteome quantification during infection. Here, we applied this integrated approach to investigate protein turnover during the temporal progression of adaptation of the human pathogen L. monocytogenes to its host on a system-wide scale. Our experimental approach can easily be transferred to probe the proteome remodeling in other bacteria under a variety of perturbations.
Collapse
Affiliation(s)
- Marlène S. Birk
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | - Stefan Tran
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | | | | | | |
Collapse
|
147
|
Grand RS, Burger L, Gräwe C, Michael AK, Isbel L, Hess D, Hoerner L, Iesmantavicius V, Durdu S, Pregnolato M, Krebs AR, Smallwood SA, Thomä N, Vermeulen M, Schübeler D. BANP opens chromatin and activates CpG-island-regulated genes. Nature 2021; 596:133-137. [PMID: 34234345 DOI: 10.1038/s41586-021-03689-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
The majority of gene transcripts generated by RNA polymerase II in mammalian genomes initiate at CpG island (CGI) promoters1,2, yet our understanding of their regulation remains limited. This is in part due to the incomplete information that we have on transcription factors, their DNA-binding motifs and which genomic binding sites are functional in any given cell type3-5. In addition, there are orphan motifs without known binders, such as the CGCG element, which is associated with highly expressed genes across human tissues and enriched near the transcription start site of a subset of CGI promoters6-8. Here we combine single-molecule footprinting with interaction proteomics to identify BTG3-associated nuclear protein (BANP) as the transcription factor that binds this element in the mouse and human genome. We show that BANP is a strong CGI activator that controls essential metabolic genes in pluripotent stem and terminally differentiated neuronal cells. BANP binding is repelled by DNA methylation of its motif in vitro and in vivo, which epigenetically restricts most binding to CGIs and accounts for differential binding at aberrantly methylated CGI promoters in cancer cells. Upon binding to an unmethylated motif, BANP opens chromatin and phases nucleosomes. These findings establish BANP as a critical activator of a set of essential genes and suggest a model in which the activity of CGI promoters relies on methylation-sensitive transcription factors that are capable of chromatin opening.
Collapse
Affiliation(s)
- Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Arnaud R Krebs
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Nicolas Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
148
|
Kaulich M, Link VM, Lapek JD, Lee YJ, Glass CK, Gonzalez DJ, Dowdy SF. A Cdk4/6-dependent phosphorylation gradient regulates the early to late G1 phase transition. Sci Rep 2021; 11:14736. [PMID: 34282211 PMCID: PMC8290049 DOI: 10.1038/s41598-021-94200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
During early G1 phase, Rb is exclusively mono-phosphorylated by cyclin D:Cdk4/6, generating 14 different isoforms with specific binding patterns to E2Fs and other cellular protein targets. While mono-phosphorylated Rb is dispensable for early G1 phase progression, interfering with cyclin D:Cdk4/6 kinase activity prevents G1 phase progression, questioning the role of cyclin D:Cdk4/6 in Rb inactivation. To dissect the molecular functions of cyclin D:Cdk4/6 during cell cycle entry, we generated a single cell reporter for Cdk2 activation, RB inactivation and cell cycle entry by CRISPR/Cas9 tagging endogenous p27 with mCherry. Through single cell tracing of Cdk4i cells, we identified a time-sensitive early G1 phase specific Cdk4/6-dependent phosphorylation gradient that regulates cell cycle entry timing and resides between serum-sensing and cyclin E:Cdk2 activation. To reveal the substrate identity of the Cdk4/6 phosphorylation gradient, we performed whole proteomic and phospho-proteomic mass spectrometry, and identified 147 proteins and 82 phospho-peptides that significantly changed due to Cdk4 inhibition in early G1 phase. In summary, we identified novel (non-Rb) cyclin D:Cdk4/6 substrates that connects early G1 phase functions with cyclin E:Cdk2 activation and Rb inactivation by hyper-phosphorylation.
Collapse
Affiliation(s)
- Manuel Kaulich
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. .,Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany.
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John D Lapek
- Department of Pharmacology, University of California San Diego, La Jolla, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yeon J Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
149
|
Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, Kaempf A, Gosline SJC, Wang YT, Hansen JR, Gritsenko MA, Hutchinson C, Weitz KK, Moon J, Cendali F, Fillmore TL, Tsai CF, Schepmoes AA, Shi T, Arshad OA, McDermott JE, Babur O, Watanabe-Smith K, Demir E, D'Alessandro A, Liu T, Tognon CE, Tyner JW, McWeeney SK, Rodland KD, Druker BJ, Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021; 39:999-1014.e8. [PMID: 34171263 PMCID: PMC8686208 DOI: 10.1016/j.ccell.2021.06.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.
Collapse
MESH Headings
- Aniline Compounds/pharmacology
- Aurora Kinase B/genetics
- Aurora Kinase B/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Drug Resistance, Neoplasm
- Exome
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Metabolome
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Pyrazines/pharmacology
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, OR, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Paul D Piehowski
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Janét Pittsenbarger
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Joshua R Hansen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chelsea Hutchinson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas L Fillmore
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ozgun Babur
- Department of Computer Science, University of Massachusetts, Boston, MA, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA; Department of Cell, Development, & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
150
|
Eckrich J, Frenis K, Rodriguez-Blanco G, Ruan Y, Jiang S, Bayo Jimenez MT, Kuntic M, Oelze M, Hahad O, Li H, Gericke A, Steven S, Strieth S, von Kriegsheim A, Münzel T, Ernst BP, Daiber A. Aircraft noise exposure drives the activation of white blood cells and induces microvascular dysfunction in mice. Redox Biol 2021; 46:102063. [PMID: 34274810 PMCID: PMC8313840 DOI: 10.1016/j.redox.2021.102063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies showed that traffic noise has a dose-dependent association with increased cardiovascular morbidity and mortality. Whether microvascular dysfunction contributes significantly to the cardiovascular health effects by noise exposure remains to be established. The connection of inflammation and immune cell interaction with microvascular damage and functional impairment is also not well characterized. Male C57BL/6J mice or gp91phox−/y mice with genetic deletion of the phagocytic NADPH oxidase catalytic subunit (gp91phox or NOX-2) were used at the age of 8 weeks, randomly instrumented with dorsal skinfold chambers and exposed or not exposed to aircraft noise for 4 days. Proteomic analysis (using mass spectrometry) revealed a pro-inflammatory phenotype induced by noise exposure that was less pronounced in noise-exposed gp91phox−/y mice. Using in vivo fluorescence microscopy, we found a higher number of adhesive leukocytes in noise-exposed wild type mice. Dorsal microvascular diameter (by trend), red blood cell velocity, and segmental blood flow were also decreased by noise exposure indicating microvascular constriction. All adverse effects on functional parameters were normalized or improved at least by trend in noise-exposed gp91phox−/y mice. Noise exposure also induced endothelial dysfunction in cerebral microvessels, which was associated with higher oxidative stress burden and inflammation, as measured using video microscopy. We here establish a link between a pro-inflammatory phenotype of plasma, activation of circulating leukocytes and microvascular dysfunction in mice exposed to aircraft noise. The phagocytic NADPH oxidase was identified as a central player in the underlying pathophysiological mechanisms. Noise exposure induces a pro-thrombo-inflammatory phenotype in mouse plasma. Aircraft noise increases leukocyte-endothelium interactions in dorsal microvessels. Noise decreases segmental blood flow/red blood cell velocity in dorsal microvessels. Noise increases cerebral microvascular dysfunction and oxidative stress. Nox2 deficiency (gp91phox-/y) improves noise-induced adverse effects.
Collapse
Affiliation(s)
- Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Katie Frenis
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | | | - Yue Ruan
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Subao Jiang
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | | | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|