101
|
Pacholak A, Gao ZL, Gong XY, Kaczorek E, Cui YW. The metabolic pathways of polyhydroxyalkanoates and exopolysaccharides synthesized by Haloferax mediterranei in response to elevated salinity. J Proteomics 2020; 232:104065. [PMID: 33276193 DOI: 10.1016/j.jprot.2020.104065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
How polymer synthesis is mobilized or activated as a biological response of Haloferax mediterranei against hypertonic conditions remains largely unexplored. This study investigated the protein expression of H. mediterranei in response to high salinity by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. The microbes were harvested at end of fermentation at the NaCl salinity of 75 and 250 g L-1. Among the identified 2123 proteins, 170 proteins were differentially expressed. Gene ontology annotation revealed that the highest number of proteins was annotated in biological process category, which was responsible for metabolic process, cellular component and catalytic activity. Differentially expressed proteins were belonged to the class of response to stimulus as well as catalytic activity and binding. Under high salinity conditions, three pathways were established as key responses of PHA and EPS production to hypertonic pressure. Two overexpressed proteins, beta-ketoacyl-ACP reductase and 3-hydroxyacyl-CoA dehydrogenase, enhanced the synthesis of PHAs. The serine-pyruvate transaminase and serine-glyoxylate transaminase were upregulated, thereby increasing the conversion of glucose to PHA. Downregulated levels of sulfate-adenylyl transferase and adenylyl-sulfate kinase could cause diminished EPS synthesis. This study could contribute to better understanding of the proteomic mechanisms of the synthesized polymers in defending against salt stress. SIGNIFICANCE: Haloferax mediterranei, a family member of halophilic archaea, is well known for its fermentative production of poly-β-hydroxyalkanoates (PHAs). PHAs are natural polymers that exhibit great potential in a wide range of applications such as a good alternative to petroleum-based plastics and the biocompatible material. For decades, the functional role of PHAs synthesized by H. mediterranei is deemed to be carbon and energy reservations. The finding proved that differential production of PHA and EPS in H. mediterranei exposed to elevated salinity was caused by differential protein expression. This is the first report on how PHA and EPS synthesized by H. mediterranei is mobilized as the response of increased salinity, contributing to the understanding of halophilic archaea's response to hypertonic stress and the precise control of fermentation production. Despite its advantages as a PHA cell factory, H. mediterranei synthesized EPS simultaneously, thereby lowering the maximum yield of PHA production. Overall, salinity can be used as a vital microbial fermentation parameter to obtain the highest harvest of PHA, as well as the lowest EPS synthesis in industrial fermentation.
Collapse
Affiliation(s)
- Amanda Pacholak
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China; Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ze-Liang Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xiao-Yu Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Energy and Environmental Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
102
|
Zhao X, Li J, Zhu Q, Liang G, Xia W, He X, Zhu C, Qi H, Deng B, Chen X, Zhang J. HLA-A and HLA-DRB1 may play a unique role in ovarian teratoma-associated anti-N-methyl-D-aspartate receptor encephalitis. Reprod Biol Endocrinol 2020; 18:107. [PMID: 33160385 PMCID: PMC7648266 DOI: 10.1186/s12958-020-00661-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian teratoma-associated anti-N-methyl-D-aspartate receptor encephalitis (NMDAR-E) is a severe autoimmune neurological disorder, and the influence of teratoma-induced autoantibodies on the pathogenesis remains unclear. METHODS Ovarian teratoma tissues were collected from teratoma patients with and without NMDAR-E. Proteins were extracted and then analyzed using iTRAQ-coupled LC-MS/MS, which was followed by bioinformatics analysis. Candidate proteins were verified by Western blotting and immunohistochemistry. RESULTS In total, 36 differentially expressed proteins (DEPs) were identified between the control group and NMDAR-E group, and the bioinformatics analysis revealed that the DEPs were mainly involved in immune-related pathways, especially HLA-A and HLA-DRB1. The western blotting results for HLA-A and HLA-DRB1 were consistent with the results of the iTRAQ analysis. Additionally, the immunohistochemical data revealed that the aggregation of HLA-A (+) and HLA-DRB1 (+) cells was more apparent in the teratoma tissues of NMDAR-E patients compared with that in the tissues of controls. CONCLUSION Our investigation indicated that HLA-A and HLA-DRB1 might be involved in mediating ovarian teratoma-associated NMDAR-E. These findings provide new insights into the pathophysiological mechanisms and provide information for the functional exploration of proteins in the future.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Juan Li
- Department of Pathology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Guiling Liang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Xiaoqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Hang Qi
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Bo Deng
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Rd, Shanghai, 200030, China.
| |
Collapse
|
103
|
Shen X, Bai X, Luo C, Jiang D, Li X, Zhang X, Tian Y, Huang Y. Quantitative proteomic analysis of chicken serum reveals key proteins affecting follicle development during reproductive phase transitions. Poult Sci 2020; 100:325-333. [PMID: 33357697 PMCID: PMC7772657 DOI: 10.1016/j.psj.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Avian reproductive behavior is regulated through the neuroendocrine system. The transition from laying to brooding is strictly controlled by the hypothalamus-pituitary-gonadal (HPG) axis. Cross talk on the HPG axis relies on the circulatory system, where the dynamics of serum proteins can be observed during different reproductive phases. Some canonical hormones, such as prolactin and luteinizing hormone, play important roles in the transition through reproductive phases. However, little is known at the whole-proteome level. To discover novel serum proteins, we employed isobaric tags for relative and absolute quantification to assay the serum proteome during different reproductive phases in chicken. We identified a total of 1,235 proteins from chicken serum; 239 of these proteins showed differential expression between the laying and brooding stages, including a low concentration of steroid metabolism-related proteins and a high concentration of calcium signaling-related proteins (fold change ≥1.5 or ≤0.66; P < 0.05). Pathway analysis and protein–protein interaction networks predicated the difference in follicle development between the brooding stage and laying stages and were related to the 14-3-3 protein family, which is associated with oocyte meiosis and maturation. Together, these results provided a proteomics foundation for investigating the dynamic changes taking place in the circulatory system during reproductive phase transition, and also uncovered new insights regarding follicle development that underlie the avian reproductive cycle.
Collapse
Affiliation(s)
- Xu Shen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xue Bai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenlong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Danli Jiang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiujin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xumeng Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
104
|
Jiang R, Li Y, Wang H, Kong D, Wu X, Xu J. A study on the degradation efficiency of fluoranthene and the transmembrane protein mechanism of Rhodococcus sp. BAP-1 based on iTRAQ. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140208. [PMID: 32783839 DOI: 10.1016/j.scitotenv.2020.140208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Based on previous studies that examined the whole proteome of Rhodococcus sp. BAP-1 during the degradation of polycyclic aromatic hydrocarbons (PAHs), transmembrane proteins have a large role in the degradation of fluoranthene. To further study the specific functions and mechanisms of transmembrane proteins from Rhodococcus sp. BAP-1 involved in the degradation process of fluoranthene, the degradation of PAHs and the membrane permeability were determined. In addition, the isobaric tags for relative and absolute quantization (iTRAQ) method were used to conduct a proteomics analysis of Rhodococcus sp. BAP-1 after exposure to fluoranthene for 1 d, 3 d, and 6 d. The results showed that the degradation rate was the highest on the first and sixth days, and the membrane permeability was also the highest on the sixth day. The iTRAQ analysis results showed 18, 29, and 48 upregulated proteins and 111, 97, and 21 downregulated proteins in the 1 d group vs control group, 3 d group vs control group, and 6 d group vs control group samples respectively. According to a Clusters of Orthologous Groups of proteins (COG) analysis, amino acid transport and metabolism are the most important functions. According to functional analysis from the gene ontology (GO) database, the oxidation-reduction process is the most important biological process; transporter activity is the main molecular function; and transmembrane proteins are the most important in the cell composition. This study combined the degradation rate, membrane permeability and transmembrane protein functions to analyze the functions and mechanisms of transmembrane proteins from Rhodococcus sp. BAP-1, which are involved in the degradation of fluoranthene at the protein level, and this study provides a solid foundation for further research on the metabolic processes of bacteria.
Collapse
Affiliation(s)
- Ruhan Jiang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, Guangxi Normal University, 541004 Guilin, Guangxi, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, Guangxi, China.
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China.
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Xiaoxiong Wu
- College of Water Sciences, Beijing Normal University, 100875 Beijing, China
| | - Jie Xu
- Shunyi District Ecological Protection Bureau, 101300 Beijing, China
| |
Collapse
|
105
|
Huang T, Choi M, Tzouros M, Golling S, Pandya NJ, Banfai B, Dunkley T, Vitek O. MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures. Mol Cell Proteomics 2020; 19:1706-1723. [PMID: 32680918 PMCID: PMC8015007 DOI: 10.1074/mcp.ra120.002105] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Tandem mass tag (TMT) is a multiplexing technology widely-used in proteomic research. It enables relative quantification of proteins from multiple biological samples in a single MS run with high efficiency and high throughput. However, experiments often require more biological replicates or conditions than can be accommodated by a single run, and involve multiple TMT mixtures and multiple runs. Such larger-scale experiments combine sources of biological and technical variation in patterns that are complex, unique to TMT-based workflows, and challenging for the downstream statistical analysis. These patterns cannot be adequately characterized by statistical methods designed for other technologies, such as label-free proteomics or transcriptomics. This manuscript proposes a general statistical approach for relative protein quantification in MS- based experiments with TMT labeling. It is applicable to experiments with multiple conditions, multiple biological replicate runs and multiple technical replicate runs, and unbalanced designs. It is based on a flexible family of linear mixed-effects models that handle complex patterns of technical artifacts and missing values. The approach is implemented in MSstatsTMT, a freely available open-source R/Bioconductor package compatible with data processing tools such as Proteome Discoverer, MaxQuant, OpenMS, and SpectroMine. Evaluation on a controlled mixture, simulated datasets, and three biological investigations with diverse designs demonstrated that MSstatsTMT balanced the sensitivity and the specificity of detecting differentially abundant proteins, in large-scale experiments with multiple biological mixtures.
Collapse
Affiliation(s)
- Ting Huang
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Meena Choi
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Manuel Tzouros
- Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sabrina Golling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nikhil Janak Pandya
- Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Balazs Banfai
- Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tom Dunkley
- Roche Pharma Research and Early Development, Pharmaceutical Sciences-BiOmics and Pathology, Roche Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Olga Vitek
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
106
|
Abstract
Chinese black truffle (Tuber indicum) is rich in nutrition. However, commercial interests lead to the aroma components and nutrients of T. indicum being greatly affected by overexploitation without consideration of their maturity. This study investigated the proteomic and metabolomic profiles of truffle fruiting bodies at different maturities using a meta-proteomic approach. Among the 3007 identified proteins, the most up-expressed protein in the mature ascocarps was involved in the peptidyl-diphthamide biosynthetic process, while thiamine metabolism was the most differentially expressed pathway. Furthermore, a total of 54 metabolites identified upon LC-MS differed significantly, with 30 being up-expressed in the mature ascocarps, including organic acids, carnitine substances and polysaccharides. Additionally, the ash, protein, fat, crude fiber and total sugar contents were all higher in the mature ascocarps. Overall, our findings reveal that mature truffles have a higher nutritional value, providing a basis for further exploring protein functionality of T. indicum at different maturities.
Collapse
|
107
|
Zhang B, Zhang X, Yan L, Kang Z, Tan H, Jia D, Yang L, Ye L, Li X. WITHDRAWN: Different maturities drive proteomic and metabolomic changes in Chinese black truffle. Food Chem X 2020. [DOI: 10.1016/j.fochx.2020.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
108
|
Cao X, Han Y, Gu M, Du H, Song M, Zhu X, Ma G, Pan C, Wang W, Zhao E, Goulette T, Yuan B, Zhang G, Xiao H. Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Non-Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001858. [PMID: 32519440 DOI: 10.1002/smll.202001858] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Min Gu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaoai Zhu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, P. R. China
| | - Gaoxing Ma
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P. R. China
| | - Che Pan
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ermin Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Timothy Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Biao Yuan
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
109
|
Wu S, Guo Y, Joan HI, Tu Y, Adil MF, Sehar S, Zhao D, Shamsi IH. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing. Genomics 2020; 112:3075-3088. [PMID: 32454168 DOI: 10.1016/j.ygeno.2020.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Yushuang Guo
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Heren Issaka Joan
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Yonggao Tu
- Guizhou Academy of Tobacco Science, Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, CNTC, Guiyang 550081, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, PR China; Guizhou Academy of Agricultural Sciences, Guiyang 550006, PR China.
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
110
|
Quan M, Peng J, Zhu Z, Zhou P, Luo S, Xie J, Xia L, Sun Y, Ding X. Construction of a Conditionally Asporogenous Bacillus thuringiensis Recombinant Strain Overproducing Cry Protein by Deletion of the leuB Gene. Front Microbiol 2020; 11:1769. [PMID: 32849393 PMCID: PMC7396631 DOI: 10.3389/fmicb.2020.01769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
One of the common shortcomings with Bacillus thuringiensis (Bt) biopesticides in field application is their instability under UV irradiation. In Bt, the leuB gene encodes the 3-isopropylmalate dehydrogenase. In addition to its role in leucine biosynthesis, LeuB would be likely recruited to catalyze the dehydrogenation of malate in the final step of tricarboxylic acid cycle during sporulation. In this study, we constructed a Bt recombinant strain in which the gene leuB was deleted by using the markerless gene deletion system. The ΔleuB mutant strain showed a conditionally asporogenous phenotype while overproducing insecticidal crystal proteins and retaining its insecticidal activity well in both fermentation and LB media. Furthermore, the metabolic regulation mechanisms of LeuB was elucidated by iTRAQ-based quantitative proteomics approach. Evidences from proteomics data suggested that the inhibited supply of pyruvate (carbon source) was an important factor related to the conditionally asporogenous feature of the mutant. Consistently, the mutant regained its ability to sporulate in LB medium by adding 1% glucose or 1% sodium pyruvate. Taken together, our study demonstrated that deletion of the leuB gene resulted in delayed or completely blocked mother cell lysis, allowing the crystals encapsulated within cells, which makes this recombinant strain a good candidate for developing Bt preparations with better UV-stability.
Collapse
Affiliation(s)
- Meifang Quan
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.,Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jinli Peng
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Pengji Zhou
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Sisi Luo
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Junyan Xie
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
111
|
Cai S, Chen Y, Lin S, Ye C, Zheng F, Dong L. Multiple Processes May Involve in the IgG4-RD Pathogenesis: An Integrative Study via Proteomic and Transcriptomic Analysis. Front Immunol 2020; 11:1795. [PMID: 32973752 PMCID: PMC7468437 DOI: 10.3389/fimmu.2020.01795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
Immunoglobulin G4-related disease (IgG4-RD) is a newly defined disease entity, while the exact pathogenesis is still not clear. Identifying the characters of IgG4-RD in proteomic and transcriptomic aspects will be critical to investigate the potential pathogenic mechanisms of IgG4-RD. We performed proteomic analysis realized with iTRAQ technique for serum samples from eight treatment-naive IgG4-RD patients and eight healthy volunteers, and tissue samples from two IgG4-RD patients and two non-IgG4-RD patients. Transcriptomic data (GSE40568 and GSE66465) was obtained from the GEO Dataset for validation. The weighted correlation network analysis (WGCNA) was applied to detect the gene modules correlated with IgG4-RD. KEGG pathway analysis was used to investigate pathways enriched in IgG4-RD samples. As a result, a total of 980 differentially expressed proteins (DEPs) in tissue and 94 DEPs in serum were identified between IgG4-RD and control groups. Three hundred fifty-four and two hundred forty-seven genes that most correlated with IgG4-RD were detected by WGCNA analysis in tissue and PBMC, respectively. We also found that DEPs in IgG4-RD samples were enriched in several immune-related activities including bacterial/viral infections and platelet activation as well as some immune related signaling pathways. In conclusion, we identified multiple processes/factors and several signaling pathways that may involve in the IgG4-RD pathogenesis, and found out some potential therapeutic targets for IgG4-RD.
Collapse
Affiliation(s)
- Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShengYan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
112
|
Rai KR, Chen B, Zhao Z, Chen Y, Hu J, Liu S, Maarouf M, Li Y, Xiao M, Liao Y, Chen JL. Robust expression of p27Kip1 induced by viral infection is critical for antiviral innate immunity. Cell Microbiol 2020; 22:e13242. [PMID: 32596986 DOI: 10.1111/cmi.13242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin-dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild-type (WT) mice: exhibiting higher viral load in lung tissue, faster body-weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN-β and several critical antiviral interferon-stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV-infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN-β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
113
|
Wang G, Li M, Zhang C, Cheng H, Gao Y, Deng W, Li T. Transcriptome and proteome analyses reveal the regulatory networks and metabolite biosynthesis pathways during the development of Tolypocladium guangdongense. Comput Struct Biotechnol J 2020; 18:2081-2094. [PMID: 32802280 PMCID: PMC7419252 DOI: 10.1016/j.csbj.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Tolypocladium guangdongense has a similar metabolite profile to Ophiocordyceps sinensis, a highly regarded fungus used for traditional Chinese medicine with high nutritional and medicinal value. Although the genome sequence of T. guangdongense has been reported, relatively little is known about the regulatory networks for fruiting body development and about the metabolite biosynthesis pathways. In order to address this, an analysis of transcriptome and proteome at differential developmental stages of T. guangdongense was performed. In total, 9076 genes were found to be expressed and 2040 proteins were identified. There were a large number of genes that were significantly differentially expressed between the mycelial stage and the stages. Interestingly, the correlation between the transcriptomic and proteomic data was low, suggesting the importance of the post-transcriptional processes in the growth and development of T. guangdongense. Among the genes/proteins that were both differentially expressed during the developmental process, there were numerous heat shock proteins and transcription factors. In addition, there were numerous proteins involved in terpenoid, ergosterol, adenosine and polysaccharide biosynthesis that also showed significant downregulation in their expression levels during the developmental process. Furthermore, both tryptophan and tryptamine were present at higher levels in the primordium stage. However, indole-3-acetic acid (IAA) levels continuously decreased as development proceeded, and the enzymes involved in IAA biosynthesis were also clearly differentially downregulated. These data could be meaningful in studying the molecular mechanisms of fungal development, and for the industrial and medicinal application of macro-fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Agriculture and Animal Husbandry, Tibet University, Nyingchi, 860000 Tibet, China
| | - Chenghua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huijiao Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Taihui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
114
|
Zhang Y, Ou M, Lin H, Lai L, Chen H, Chen J, Sui W, Xue W, Zhang R, Gan Q, Tang D, Sun X, Dong J, Yan Q, Dai Y. Proteomic analysis of differentially expressed proteins in the serum of patients with acute renal allograft rejection using iTRAQ labelling technology. Mol Med Rep 2020; 22:2329-2341. [PMID: 32705285 PMCID: PMC7411402 DOI: 10.3892/mmr.2020.11299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/07/2020] [Indexed: 12/24/2022] Open
Abstract
Transplantation is currently the best treatment for patients with end‑stage renal disease. However, acute rejection (AR) is the major source of failure in renal transplantation. The current best practice for the diagnosis of AR involves renal biopsy, but it is invasive, time‑consuming, costly and inconvenient. Sensitive and less invasive detection of AR episodes in renal transplant patients is essential to preserve allograft function. The present study applied isobaric tags for relative and absolute quantitation (iTRAQ) mass spectrometry to analyze serum protein expression in patients with AR and healthy controls. Overall, 1,399 proteins were identified. Using a cut‑off of Q<0.05 and a fold change of >1.2 for the variation in expression, 109 proteins were identified to be differentially expressed between the AR and control groups, 72 of which were upregulated and 37 were downregulated. Several proteins, including properdin, keratin 1, lipoprotein(a) and vitamin D‑binding protein, may have roles in the pathogenesis of AR. The present study focused on iTRAQ‑based proteomic profiling of serum samples in AR. Insight from the present study may help advance the understanding of the molecular mechanisms of AR and identify potential novel biomarkers of AR for further characterization.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Minglin Ou
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Hua Lin
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Liusheng Lai
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Huaizhou Chen
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Weiguo Sui
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Ruohan Zhang
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Qing Gan
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Xuyong Sun
- Department of Organ Transplantation, Institute of Transplant Medicine, No. 923 Hospital of People's Liberation Army, Guangxi Key Laboratory for Transplantation Medicine, Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi 530021, P.R. China
| | - Jianhui Dong
- Department of Organ Transplantation, Institute of Transplant Medicine, No. 923 Hospital of People's Liberation Army, Guangxi Key Laboratory for Transplantation Medicine, Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, Guangxi 530021, P.R. China
| | - Qiang Yan
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- Department of Nephrology, Guilin No. 924 Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin Key Laboratory of Kidney Disease Research, Guilin, Guangxi 541002, P.R. China
| |
Collapse
|
115
|
Cao W, Lee H, Wu W, Zaman A, McCorkle S, Yan M, Chen J, Xing Q, Sinnott-Armstrong N, Xu H, Sailani MR, Tang W, Cui Y, Liu J, Guan H, Lv P, Sun X, Sun L, Han P, Lou Y, Chang J, Wang J, Gao Y, Guo J, Schenk G, Shain AH, Biddle FG, Collisson E, Snyder M, Bivona TG. Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nat Commun 2020; 11:3675. [PMID: 32699215 PMCID: PMC7376194 DOI: 10.1038/s41467-020-17227-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Epigenetic landscapes can shape physiologic and disease phenotypes. We used integrative, high resolution multi-omics methods to delineate the methylome landscape and characterize the oncogenic drivers of esophageal squamous cell carcinoma (ESCC). We found 98% of CpGs are hypomethylated across the ESCC genome. Hypo-methylated regions are enriched in areas with heterochromatin binding markers (H3K9me3, H3K27me3), while hyper-methylated regions are enriched in polycomb repressive complex (EZH2/SUZ12) recognizing regions. Altered methylation in promoters, enhancers, and gene bodies, as well as in polycomb repressive complex occupancy and CTCF binding sites are associated with cancer-specific gene dysregulation. Epigenetic-mediated activation of non-canonical WNT/β-catenin/MMP signaling and a YY1/lncRNA ESCCAL-1/ribosomal protein network are uncovered and validated as potential novel ESCC driver alterations. This study advances our understanding of how epigenetic landscapes shape cancer pathogenesis and provides a resource for biomarker and target discovery.
Collapse
Grants
- U01 CA217882 NCI NIH HHS
- R01 CA239604 NCI NIH HHS
- K22 CA217997 NCI NIH HHS
- R01 CA227807 NCI NIH HHS
- U54 CA224081 NCI NIH HHS
- R01 CA211052 NCI NIH HHS
- S10 OD020141 NIH HHS
- U24 CA210974 NCI NIH HHS
- R01 CA222862 NCI NIH HHS
- R01 CA230263 NCI NIH HHS
- R01 CA169338 NCI NIH HHS
- R01 CA204302 NCI NIH HHS
- R01 CA178015 NCI NIH HHS
- the National Natural Science Foundation of China (Grants 81171992, 31570899), the Natural Science Foundation of Henan (Grants 182102310328, 162300410279, 182300410374, 192102310096); the Education Department of Henan Province(18B310022,19A320037).
- National Natural Science Foundation of China (National Science Foundation of China)
- the Natural Science Foundation of Henan (Grants 182102310328, 162300410279, 182300410374, 192102310096); the Education Department of Henan Province(18B310022,19A320037). This work used the Genome Sequencing Service Center by Stanford Center for Genomics and Personalized Medicine Sequencing Center, supported by the grant award NIH S10OD020141. E.A.C acknowledge funding support from NCI Grants R01 [CA178015, CA222862, CA227807, CA239604, CA230263] and U24 [CA210974]. T.G.B acknowledges funding support from NIH / NCI U01CA217882, NIH / NCI U54CA224081, NIH / NCI R01CA204302, NIH / NCI R01CA211052, NIH / NCI R01CA169338, and the Pew-Stewart Foundations.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China.
| | - Hayan Lee
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| | - Aubhishek Zaman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sean McCorkle
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Justin Chen
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai, China
| | | | - Hongen Xu
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - M Reza Sailani
- Department of Genetics, School of Medicine, Stanford University, CA, USA
| | - Wenxue Tang
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Hongyan Guan
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Pengju Lv
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Sun
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Lei Sun
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Pengli Han
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Yanan Lou
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou, China
| | - Jing Chang
- Jiangsu Mai Jian Biotechnology Development Company, Wuxi, China
| | - Jinwu Wang
- Department of Pathology, Linzhou Cancer Hospital, Linzhou, China
| | - Yuchi Gao
- Annoroad Gene Company, Beijing, China
| | - Jiancheng Guo
- Precision Medicine Center, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Gundolf Schenk
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Alan Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Fred G Biddle
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Eric Collisson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
116
|
Tian JJ, Zhang JM, Yu EM, Sun JH, Xia Y, Zhang K, Li ZF, Gong WB, Wang GJ, Xie J. Identification and analysis of lipid droplet-related proteome in the adipose tissue of grass carp (Ctenopharyngodon idella) under fed and starved conditions. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100710. [PMID: 32659607 DOI: 10.1016/j.cbd.2020.100710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
Fat accumulation in the mesenteric adipose tissue is a serious problem in grass carp (Ctenopharyngodon idella) culture. Lipid droplet-related proteins (LDRPs) are involved in the formation, degradation, and biological functions of lipid droplets. In this study, we aimed to provide reference proteomics data to study lipid droplet regulation in fish. We isolated LDRPs from the mesenteric adipose tissue of grass carp (1-year-old) after normal feeding and 7 days of starvation, and identified and analysed them using isobaric tags for relative and absolute quantitation (iTRAQ) technology. Short-term starvation had no significant effect on the body weight, condition factor, visceral index, hepatopancreas index, intraperitoneal fat index, adipose tissue triglyceride content, and adipocyte size of grass carp. Nine hundred and fifty proteins were identified and annotated using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases; they are involved in a variety of metabolic and signalling pathways, including amino acid, lipid, and carbohydrate metabolism, and the PI3K-Akt signalling pathway. There were 296 differentially expressed proteins (DEPs), with 143 up-regulated and 153 down-regulated proteins. Three proteins involved in triglyceride and fatty acid syntheses and two proteins involved in autophagy were up-regulated, and six proteins involved in lipid catabolism were down-regulated. These results indicate that under short-term starvation, lipid droplets in the adipose tissue of grass carp may maintain their shape by promoting fat production and inhibiting lipolysis, and autophagy may be one of the main strategies for coping with short-term energy deprivation.
Collapse
Affiliation(s)
- Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun-Ming Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin 300384, China
| | - Er-Meng Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Jin-Hui Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin 300384, China
| | - Yun Xia
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhi-Fei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wang-Bao Gong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guang-Jun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
117
|
Liao M, Shi S, Wu H, Yang Q, Zhu Z, Xiao J, Huang Y, Cao H. Effects of terpinen-4-ol fumigation on protein levels of detoxification enzymes in Tribolium confusum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21653. [PMID: 31859418 DOI: 10.1002/arch.21653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/24/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Terpinen-4-ol has high fumigating activity to stored-grain pests including Tribolium confusum. To understand the detoxification of terpinen-4-ol in insects, proteomic analysis was performed to identify related proteins and pathways in response to terpinen-4-ol fumigation in T. confusum. By using isobaric tags for relative and absolute quantitation (iTRAQ)-based strategy, 4,618 proteins were obtained from T. confusum adults in the present study. Comparative proteomic analysis showed that 148 proteins were upregulated and 137 proteins were downregulated in beetles under the LC50 of terpinen-4-ol treatment for 24 hr. According to functional classifications, differentially expressed proteins (DEPs) were enriched in xenobiotic metabolism pathways. In the detoxification pathway, the levels of 25 cytochrome P450s, 5 glutathione S-transferases, and 2 uridine diphosphate (UDP)-glucuronosyltransferases were changed, most of which were upregulated in T. confusum exposed to terpinen-4-ol. The results indicated that terpinen-4-ol was potentially metabolized and detoxified by enzymes like P450s in T. confusum.
Collapse
Affiliation(s)
- Min Liao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Shi
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hailong Wu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qianqian Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zeng Zhu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yong Huang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
118
|
Wu S, Guo Y, Adil MF, Sehar S, Cai B, Xiang Z, Tu Y, Zhao D, Shamsi IH. Comparative Proteomic Analysis by iTRAQ Reveals that Plastid Pigment Metabolism Contributes to Leaf Color Changes in Tobacco ( Nicotiana tabacum) during Curing. Int J Mol Sci 2020; 21:E2394. [PMID: 32244294 PMCID: PMC7178154 DOI: 10.3390/ijms21072394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/21/2023] Open
Abstract
Tobacco (Nicotiana tabacum), is a world's major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi'na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.
Collapse
Affiliation(s)
- Shengjiang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China;
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| | - Bin Cai
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Zhangmin Xiang
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Yonggao Tu
- Key Laboratory of Molecular Genetics/Upland Flue-cured Tobacco Quality and Ecology Key Laboratory, Guizhou Academy of Tobacco Science, CNTC, Guiyang 550081, China; (Y.G.); (B.C.); (Z.X.); (Y.T.)
| | - Degang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China;
- Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (M.F.A.); (S.S.)
| |
Collapse
|
119
|
Li JN, Zhao YT, Cao SL, Wang H, Zhang JJ. Integrated transcriptomic and proteomic analyses of grass carp intestines after vaccination with a double-targeted DNA vaccine of Vibrio mimicus. FISH & SHELLFISH IMMUNOLOGY 2020; 98:641-652. [PMID: 31678536 DOI: 10.1016/j.fsi.2019.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Intestinal mucosal immunity plays a vital role against Vibrio mimicus infection because it is an enteric pathogen causing serious vibriosis in fish. In the previous studies, we developed an oral double-targeted DNA vaccine of V. mimicus and demonstrated that the vaccine could elicit significantly higher intestinal mucosal immune response than did naked DNA vaccine. But, little is known underlying regulatory molecular mechanisms of the enhanced intestinal mucosal immunity. Here the transcriptome and proteome in the intestines of the grass carps immunized or not with the double-targeted DNA vaccine were investigated by using RNA-seq and iTRAQ-coupled LC-MS/MS. Compared with the control group, a total of 5339 differentially expressed genes (DEGs) and 1173 differentially expressed proteins (DEPs) were identified in the immunized fish intestines. Subsequently, the integrated analysis between transcriptome and proteome data revealed that 250 DEPs were matched with the corresponding DEGs (named associated DEPs/DEGs) at both transcriptome and proteome levels. Fifty of all the associated DEPs/DEGs were immune-related and mainly enriched in phagosome, antigen-processing and presentation, complement and coagulation cascades, NLRs and MAPK signaling pathways via Gene Ontology and KEGG pathway analyses, which suggested the coordination of the five activated pathways was essential to the enhanced intestinal mucosal immune response in the immunized fish. The protein-protein interaction analysis showed that 60 of the 63 immune-related DEPs to form an integrated network. Additionally, randomly selected DEGs and DEPs were respectively validated by quantitative real-time RT-PCR and multiple reaction monitoring (MRM) assay, indicating that the both RNA-Seq and iTRAQ results in the study were reliable. Overall, our comprehensive transcriptome and proteome data provide some key genes and their protein products for further research on the regulatory molecular mechanisms underlying the enhanced intestinal mucosal immunity.
Collapse
Affiliation(s)
- Jin-Nian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yu-Ting Zhao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Shou-Lin Cao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Hong Wang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Jia-Jun Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
120
|
Dayon L, Affolter M. Progress and pitfalls of using isobaric mass tags for proteome profiling. Expert Rev Proteomics 2020; 17:149-161. [PMID: 32067523 DOI: 10.1080/14789450.2020.1731309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Quantitative proteomics using mass spectrometry is performed via label-free or label-based approaches. Labeling strategies rely on the incorporation of stable heavy isotopes by metabolic, enzymatic, or chemical routes. Isobaric labeling uses chemical labels of identical masses but of different fragmentation behaviors to allow the relative quantitative comparison of peptide/protein abundances between biological samples.Areas covered: We have carried out a systematic review on the use of isobaric mass tags in proteomic research since their inception in 2003. We focused on their quantitative performances, their multiplexing evolution, as well as their broad use for relative quantification of proteins in pre-clinical models and clinical studies. Current limitations, primarily linked to the quantitative ratio distortion, as well as state-of-the-art and emerging solutions to improve their quantitative readouts are discussed.Expert opinion: The isobaric mass tag technology offers a unique opportunity to compare multiple protein samples simultaneously, allowing higher sample throughput and internal relative quantification for improved trueness and precision. Large studies can be performed when shared reference samples are introduced in multiple experiments. The technology is well suited for proteome profiling in the context of proteomic discovery studies.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
121
|
Identification of Important Proteins and Pathways Affecting Feed Efficiency in DLY Pigs by iTRAQ-Based Proteomic Analysis. Animals (Basel) 2020; 10:ani10020189. [PMID: 31978958 PMCID: PMC7070517 DOI: 10.3390/ani10020189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Feed efficiency is one of the most valuable economic traits in the pig industry. The small intestine is the site where most of the nutrients are absorbed from ingested food. Here, we studied the relationship between small intestinal proteomics and feed efficiency in Duroc × (Landrace × Yorkshire) pigs, which is the most popular commercial pig in the Chinese pork market. Exploring the molecular mechanisms of feed efficiency will create great value for the pig industry. Our research provided a reference for further understanding of the key proteins that affect small intestinal microvilli formation and the important pathways related to feed efficiency in pigs. Abstract Feed efficiency is an economically important trait controlled by multiple genes in pigs. The small intestine is the main organ of digestion and nutrient absorption. To explore the biological processes by which small intestine proteomics affects feed efficiency (FE), we investigated the small intestinal tissue proteomes of high-FE and low-FE pigs by the isobaric tag for relative and absolute quantification (iTRAQ) method. In this study, a total of 225 Duroc × (Landrace × Yorkshire) (DLY) commercial pigs were ranked according to feed efficiency, which ranged from 30 kg to 100 kg, and six pigs with extreme phenotypes were selected, three in each of the high and low groups. A total of 1219 differentially expressed proteins (DEPs) were identified between the high-FE and low-FE groups (fold change ≥1.2 or ≤0.84; p ≤ 0.05), of which 785 were upregulated, and 484 were downregulated. Enrichment analysis indicated that the DEPs were mainly enriched in actin filament formation, microvilli formation, and small intestinal movement pathways. Protein functional analysis and protein interaction networks indicated that RHOA, HCLS1, EZR, CDC42, and RAC1 were important proteins that regulate FE in pigs. This study provided new insights into the important pathways and proteins involved in feed efficiency in pigs.
Collapse
|
122
|
Ye F, Wang Y, He Q, Cui C, Yu H, Lu Y, Zhu S, Xu H, Zhao X, Yin H, Li D, Li H, Zhu Q. Exosomes Transmit Viral Genetic Information and Immune Signals may cause Immunosuppression and Immune Tolerance in ALV-J Infected HD11 cells. Int J Biol Sci 2020; 16:904-920. [PMID: 32140061 PMCID: PMC7053331 DOI: 10.7150/ijbs.35839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Avian leukosis virus (ALV) is oncogenic retrovirus that not only causes immunosuppression but also enhances the host's susceptibility to secondary infection. Exosomes play vital role in the signal transduction cascades that occur in response to viral infection. We want to explore the function of exosomes in the spread of ALV and the body's subsequent immunological response. RNA-sequencing and the isobaric tags for relative and absolute quantitation (iTRAQ) method were used to detect differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in exosomes secreted by macrophage cells in response to injection with ALV subgroup J (ALV-J). RNA-sequencing identified 513 DEGs in infected cells, with specific differential regulation in mRNA involved in tight junction signaling, TNF signaling, salmonella infection response, and immune response, among other important cellular processes. Differential regulation was observed in 843 lncRNAs, with particular enrichment in those lncRNA targets involved in Rap1 signaling, HTLV-I infection, tight junction signaling, and other signaling pathways. A total of 50 DEPs were identified in the infected cells by iTRAQ. The proteins enriched are involved in immune response, antigen processing, the formation of both MHC protein and myosin complexes, and transport. Combined analysis of the transcriptome and proteome revealed that there were 337 correlations between RNA and protein enrichment, five of which were significant. Pathways that were enriched on both the RNA and protein levels were involved in pathways in cancer, PI3K-Akt signaling pathway, Endocytosis, Epstein-Barr virus infection. These data show that exosomes are transmitters of intercellular signaling in response to viral infection. Exosomes can carry both viral nucleic acids and proteins, making it possible for exosomes to be involved in the viral infection of other cells and the transmission of immune signals between cells. Our sequencing results confirme previous studies on exosomes and further find exosomes may cause immunosuppression and immune tolerance.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Qijian He
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Can Cui
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Heling Yu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Yuxiang Lu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Shiliang Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| | - Hua Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
| |
Collapse
|
123
|
Chen J, Jiang TT, Yi WJ, Jiao JL, Liu CM, Tu HH, Hu YT, Shi LY, Huang H, Li ZB, Gan L, Li ZJ, Li JC. A group of serum proteins as potential diagnostic biomarkers for Yin-deficiency-heat syndrome. Anat Rec (Hoboken) 2020; 303:2086-2094. [PMID: 31922655 DOI: 10.1002/ar.24351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Yin-deficiency-heat (YDH) syndrome is a very common subhealth status in Traditional Chinese Medicine. However, currently, there is no unified standard for diagnosing YDH syndrome. We applied the iTRAQ-2D LC-MS/MS method to explore the potential of serum protein profiles as biomarker for YDH syndrome. A total of 120 differentially expressed proteins (79 downregulated and 41 upregulated) were identified by the proteomic profiling. The results of KEGG pathway analysis showed that the functions of the differentially expressed proteins were mainly involved in complement and coagulation cascades. The clinical data showed that YDH syndrome was closely related to inflammation and coagulation, compared with the healthy controls. The ELISA validation results indicated that the expression levels of ALB, CFI, and KLKB1 were downregulated in the YDH syndrome group (p < .05). Moreover, we established a decision tree model based on the combination of these three proteins and achieved a sensitivity of 87.5%, a specificity of 84.4%, and AUC of 0.891. The results indicated that the combination of ALB, CFI, and KLKB1 may serve as potential biomarkers for diagnosing YDH syndrome. Our study can provide a new method for YDH syndrome diagnosis, and may also provide an experimental basis to understand the molecular mechanism of YDH syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting-Ting Jiang
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Jing Yi
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Jin-Ling Jiao
- Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chang-Ming Liu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Hui Tu
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Huai Huang
- Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| | - Zhi-Bin Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Gan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhong-Jie Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ji-Cheng Li
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China.,Medical Research Center, Yuebei People's Hospital, Shaoguan, China
| |
Collapse
|
124
|
Wang H, Yan W, Feng Z, Gao Y, Zhang L, Feng X, Tian D. Plasma proteomic analysis of autoimmune hepatitis in an improved AIH mouse model. J Transl Med 2020; 18:3. [PMID: 31906950 PMCID: PMC6943959 DOI: 10.1186/s12967-019-02180-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Background The prevalence of autoimmune hepatitis (AIH) is increasing, and its early clinical diagnosis is difficult. The pathogenesis of AIH remains unclear, and AIH-related studies are largely limited because of lack of suitable mouse models. Methods To obtain a good tool for research on AIH, we first established an improved immune-mediated mouse model that can mimic the pathological process of AIH as in the human body, through repeated injections of human cytochrome P450 2D6 (CYP2D6) plasmid. Next, a proteomic analysis based on isobaric tag (IBT) technology was performed to detect the differentially expressed proteins (DEPs), and related biological functions and pathways in the plasma of AIH and normal mice. Finally, we performed enzyme-linked immunosorbent assay (ELISA) to further confirm the most abundant DEP in the plasma of patients with AIH. Results Autoantibodies and the characteristic pathology of AIH were observed in our mouse model. Inflammatory infiltration also increased in the livers of AIH mice over time and plateaued by day 42 post the first injection. Chronic hepatitis was most severe on day 35 with the development of fibrosis as well, and the plasma of AIH mice were collected for proteomic analysis. A total of 176 DEPs were found in this experiment, of which 148 DEPs were up-regulated and 28 DEPs were down-regulated. Thirty significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (P < 0.05) were detected. Arginine biosynthesis was found to be the most significant pathway involved in the AIH process. During the Gene Ontology (GO) analysis, most DEPs were found to be involved in the binding, cellular, and metabolic processes. Using ELISA, the most overexpressed DEP, serum amyloid A 1 (SAA1), was confirmed to be increased specifically in the plasma of patients with AIH compared to other chronic hepatitis. Different plasma levels of SAA1 were also found related to different grades of inflammation and stages of fibrosis in the liver of patients with AIH. Conclusions Our study is the first to describe the proteomics analysis of a true sense of AIH mouse model, which is beneficial for a better understanding of AIH pathogenesis and identifying potential biomarkers for its clinical diagnosis.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Zuohua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Liu Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
125
|
Meng X, Zhang M, Gao B, Lv J, Li J, Liu P. Integrative Proteomic and MicroRNA Analysis: Insights Into Mechanisms of Eyestalk Ablation-Induced Ovarian Maturation in the Swimming Crab Portunus trituberculatus. Front Endocrinol (Lausanne) 2020; 11:533. [PMID: 32922361 PMCID: PMC7456853 DOI: 10.3389/fendo.2020.00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eyestalk ablation is the most common method to induce ovarian maturation in decapod crustacean aquaculture, but it jeopardizes broodstock survival and larvae production. It is important to understand the molecular basis underlying the maturation triggered by ablation and thereby develop an alternative measure for maturation manipulation. In this study, we investigate alterations of ovarian proteome and miRNA profile after ablation in a commercially important marine crab Portunus trituberculatus. Quantitative proteomic analysis using iTRAQ reveals that 163 proteins are differentially expressed following ablation, and modulation of methyl farnesoate metabolism and activation of calcium signaling may play important roles in the ovarian maturation induced by ablation. miRNA expression profiling identifies 31 miRNAs that show statistically significant changes. Integration of miRNA and proteome expression data with miRNA target prediction algorithms generates a potential regulatory network consisting of 26 miRNAs and 30 proteins linked by 71 possible functional associations. The miRNA-protein network analysis suggests that miRNAs are involved in promoting ovarian maturation by controlling expression of proteins related to methyl farnesoate synthesis, calcium signals, and energy metabolism. Experimental validation and temporal expression analysis indicate multiple miRNAs can act synergistically to regulate expression of Farnesoic acid O-methyltransferase and Calmodulin. Our findings provide new insights for elucidating the mechanisms underlying eyestalk ablation-induced ovarian maturation and could be useful for devising an alternative technique for manipulating reproduction in P. trituberculatus and other decapods.
Collapse
Affiliation(s)
- Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqian Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- *Correspondence: Ping Liu
| |
Collapse
|
126
|
Dong YC, Chen ZZ, Clarke AR, Niu CY. Changes in Energy Metabolism Trigger Pupal Diapause Transition of Bactrocera minax After 20-Hydroxyecdysone Application. Front Physiol 2019; 10:1288. [PMID: 31736767 PMCID: PMC6831740 DOI: 10.3389/fphys.2019.01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 11/21/2022] Open
Abstract
Correct timing of diapause entry and exit is critical for a species' survival. While many aspects of insect diapause are well-studied, the mechanisms underlying diapause termination remain largely unknown. The Chinese citrus fly, Bactrocera minax, is a univoltine insect with an obligatory pupal diapause. The application of 20-hydroxyecdysone (20E) is known to terminate diapause in B. minax, and we used this approach, along with isobaric tags for relative and absolute quantitation technology, to determine the proteins associated with diapause termination in this fly. Among 2,258 identified proteins, 1,169 proteins significantly differed at 1, 2, and 5 days post-injection of 20E, compared with the solvent-injected control group. Functional annotation revealed that the majority of differentially expressed proteins were enriched in the core energy metabolism of amino acids, proteins, lipids, and carbohydrates as well as in signal transduction pathways including PPAR signaling, Calcium signaling, Glucagon signaling, VEGF signaling, Ras signaling, cGMP-PKG signaling, and cAMP signaling. A combined transcriptomic and proteomic analysis suggested the involvement of energy metabolism in the response of diapause transition. RNA interference experiments disclosed that a 20E injection triggers diapause termination probably through non-genomic actions, rather than nuclear receptor mediated genomic actions. Our results provide extensive proteomic resources for insect diapause transition and offer a potential for pest control by incapacitating the regulation of diapause termination either by breaking diapause prematurely or by delaying diapause termination to render diapausing individuals at a high risk of mortality.
Collapse
Affiliation(s)
- Yong-Cheng Dong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, College of Plant Protection, Anhui Agricultural University, Hefei, China.,Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen-Zhong Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anthony R Clarke
- Faculty of Science and Technology, School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chang-Ying Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
127
|
Wang X, Li D, Song S, Zhang Y, Li Y, Wang X, Liu D, Zhang C, Cao Y, Fu Y, Han R, Li W, Liu X, Sun G, Li G, Tian Y, Li Z, Kang X. Combined transcriptomics and proteomics forecast analysis for potential genes regulating the Columbian plumage color in chickens. PLoS One 2019; 14:e0210850. [PMID: 31693656 PMCID: PMC6834273 DOI: 10.1371/journal.pone.0210850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Coloration is one of the most recognizable characteristics in chickens, and clarifying the coloration mechanisms will help us understand feather color formation. "Yufen I" is a commercial egg-laying chicken breed in China that was developed by a three-line cross using lines H, N and D. Columbian plumage is a typical feather character of the "Yufen I" H line. To elucidate the molecular mechanism underlying the pigmentation of Columbian plumage, this study utilizes high-throughput sequencing technology to compare the transcriptome and proteome differences in the follicular tissue of different feathers, including the dorsal neck with black and white striped feather follicles (Group A) and the ventral neck with white feather follicles (Group B) in the "Yufen I" H line. RESULTS In this study, we identified a total of 21,306 genes and 5,203 proteins in chicken feather follicles. Among these, 209 genes and 382 proteins were differentially expressed in two locations, Group A and Group B, respectively. A total of 8 differentially expressed genes (DEGs) and 9 differentially expressed proteins (DEPs) were found to be involved in the melanogenesis pathway. Additionally, a specifically expressed MED23 gene and a differentially expressed GNAQ protein were involved in melanin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis mapped 190 DEGs and 322 DEPs to 175 and 242 pathways, respectively, and there were 166 pathways correlated with both DEGs and DEPs. 49 DEPs/DEGs overlapped and were enriched for 12 pathways. Transcriptomic and proteomic analyses revealed that the following pathways were activated: melanogenesis, cardiomyocyte adrenergic, calcium and cGMP-PKG. The expression of DEGs was validated by real-time quantitative polymerase chain reaction (qRT-PCR) that produced results similar to those from RNA-seq. In addition, we found that the expression of the MED23, FZD10, WNT7B and WNT11 genes peaked at approximately 8 weeks in the "Yufen I" H line, which is consistent with the molting cycle. As both groups showed significant differences in terms of the expression of the studied genes, this work opens up avenues for research in the future to assess their exact function in determining plumage color. CONCLUSION Common DEGs and DEPs were enriched in the melanogenesis pathway. MED23 and GNAQ were also reported to play a crucial role in melanin synthesis. In addition, this study is the first to reveal gene and protein variations in in the "Yufen I" H line during Columbian feather color development and to discover principal genes and proteins that will aid in functional genomics studies in the future. The results of the present study provide a significant conceptual basis for the future breeding schemes with the "Yufen I" H line and provide a basis for research on the mechanisms of feather pigmentation.
Collapse
Affiliation(s)
- Xinlei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Donghua Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sufang Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yanhua Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yuanfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangnan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Danli Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenxi Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanfang Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yawei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
128
|
Xu ZY, Li JH, Li MJ, Zheng WL, Pan HW. Dataset supporting the proteomic characterization of human corneal epithelial cells with HSV-1 infection. Data Brief 2019; 27:104579. [PMID: 31673582 PMCID: PMC6817629 DOI: 10.1016/j.dib.2019.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
HSV-1 infection in cornea can cause corneal ulcer, scar formation and neovascularization, and finally lead to severe visual impairment. The corneal epithelium is the first barrier against HSV-1 infection, but the host-virus interaction in human corneal epithelial cells (HCECs) in the process is still not well understood. We applied iTRAQ based proteomic approach to investigate the dynamic change of the protein expression profile in HCECs with a view to gain insight into the host response to HSV-1 infection. Bioinformatic analysis of these dysregulated proteins help us to find the potential gene function and signaling pathway with which these dysregulated proteins are associated. In this work, we present the supporting information for the proteomic characterization for better share and reuse. The main methodological approaches and major findings of the proteomic experiments are described in [1].
Collapse
Affiliation(s)
- Zhi-Yi Xu
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Jia-Hui Li
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.,Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
129
|
Cen J, Lv L, Wei Y, Deng L, Huang L, Deng X, Qin Q, Sun Y, Pang L. Comparative proteome analysis of amniotic fluids and placentas from patients with idiopathic polyhydramnios. Placenta 2019; 89:67-77. [PMID: 31704631 DOI: 10.1016/j.placenta.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Idiopathic polyhydramnios (IPH) is an abnormal increase in amniotic fluid volume (AFV). This condition has unknown etiologies and is associated with various adverse pregnancy outcomes including maternal and fetal complication. This study aims to establish a comparative proteome profile for the human amniotic fluid (AF) of IPH and normal pregnancies and identify the responsible mediators and pathways that regulate AFV. METHODS We first employed coupled isobaric tags for relative and absolute quantitation (iTRAQ) proteomics and bioinformatics analysis to examine the differentially expression proteins (DEPs) in the AF of IPH and normal pregnancies. Second, CUL5, HIP1, FSTL3, and LAMP2 proteins were selected for verification in amnion, chorion, and placental tissues by Western blot analysis. RESULTS We identified 357 DEPs with 282 upregulated and 75 downregulated. Bioinformatics analysis revealed that cell, cellular process, and binding were the most enriched Gene Ontology terms. Amoebiasis, hematopoietic cell lineage, and NF-kappa B signaling pathway were the top significant pathways. In the verification procedure, FSTL3 protein had a highly significant expression in the amnion, chorion, and placentas of IPH and normal AFV groups (p < 0.05). DISCUSSION Our results provide new insights into idiopathic polyhydramnios and offer fundamental points for future studies on AFV.
Collapse
Affiliation(s)
- Jiao Cen
- Guangxi Medical University, Nanning, Guangxi, China
| | - Liqin Lv
- Guangxi Medical University, Nanning, Guangxi, China
| | - Yiyun Wei
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Linjie Deng
- Guangxi Medical University, Nanning, Guangxi, China
| | - Le Huang
- Guangxi Medical University, Nanning, Guangxi, China
| | | | - Qinhong Qin
- Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Sun
- The Guangxi Zhuang Autonomous Region Family Planning Research Center, Nanning, Guangxi, China
| | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
130
|
Hua R, Zhou L, Zhang H, Yang H, Peng W, Wu K. Studying the variations in differently expressed serum proteins of Hainan black goat during the breeding cycle using isobaric tags for relative and absolute quantitation (iTRAQ) technology. J Reprod Dev 2019; 65:413-421. [PMID: 31308307 PMCID: PMC6815738 DOI: 10.1262/jrd.2018-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Hainan black goat is a high-quality local goat breed in Hainan Province of China. It is resistant to high temperatures, humidity, and disease. Although the meat of this breed is tender
and delicious, its reproductive performance and milk yield are low. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) technology was used to analyze the
differentially expressed proteins in the serum of female Hainan black goats during the reproductive cycle (empty pregnant, estrus, gestation, and lactation). The pathway enrichment analysis
results showed that most of the differentially expressed proteins between each period belonged to the complement and coagulation cascades. Analysis of the differential protein expression and
function revealed seven proteins that were directly associated with reproduction, namely pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2 and Ran. This study revealed the changing patterns
of differentially expressed proteins in the reproductive cycle of the Hainan black goat. pre-SAA21, ANTXR2, vWF, SFRP3, β4GalT1, pre-IGFBP2, and Ran were identified as candidate proteins for
mediating the physiological state of Hainan black goats and regulating their fertility. This study elucidated the changes in expression levels of differentially expressed proteins during the
reproductive cycle of Hainan black goats and also provides details about its breeding pattern.
Collapse
Affiliation(s)
- Rui Hua
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Lu Zhou
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Haiwen Zhang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| | - Hui Yang
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Wenchuan Peng
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China
| | - Kebang Wu
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, Hainan University, Hainan 570228, People's Republic of China.,Laboratory of Tropical Animal Breeding, Reproduction and Nutrition, Hainan University, Hainan 570228, People's Republic of China
| |
Collapse
|
131
|
Lin Y, Li W, Zhang Y, Xia C, Liu Y, Wang C, Xu R, Zhang L. Identification of Genes/Proteins Related to Submergence Tolerance by Transcriptome and Proteome Analyses in Soybean. Sci Rep 2019; 9:14688. [PMID: 31604973 PMCID: PMC6789146 DOI: 10.1038/s41598-019-50757-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Flooding can lead to yield reduction of soybean. Therefore, identification of flooding tolerance genes has great significance in production practice. In this study, Qihuang 34, a highly-resistant variety to flooding stress, was selected for submergence treatments. Transcriptome and proteome analyses were conducted, by which twenty-two up-regulated differentially expressed genes (DEGs)/differentially expressed proteins (DEPs) associated with five KEGG pathways were isolated. The number of the DEGs/DEPs enriched in glycolysis/gluconeogenesis was the highest. Four of these genes were confirmed by RT-qPCR, suggesting that glycolysis/gluconeogenesis may be activated to generate energy for plant survival under anaerobic conditions. Thirty-eight down-regulated DEGs/DEPs associated with six KEGG pathways were identified under submergence stress. Eight DEGs/DEPs enriched in phenylpropanoid biosynthesis were assigned to peroxidase, which catalyzes the conversion of coumaryl alcohol to hydroxy-phenyl lignin in the final step of lignin biosynthesis. Three of these genes were confirmed by RT-qPCR. The decreased expression of these genes led to the inhibition of lignin biosynthesis, which may be the cause of plant softening under submergence stress for a long period of time. This study revealed a number of up-/down-regulated pathways and the corresponding DEGs/DEPs, by which, a better understanding of the mechanisms of submergence tolerance in soybean may be achieved.
Collapse
Affiliation(s)
- Yanhui Lin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Changjian Xia
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
132
|
Huang HJ, Cui JR, Chen J, Bing XL, Hong XY. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103211. [PMID: 31425852 DOI: 10.1016/j.ibmb.2019.103211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are intracellular bacteria that manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). However, the underlying mechanisms of Wolbachia-induced CI are not entirely clear. Here, we monitored the Wolbachia distribution in the male gonads of the small brown planthopper (Laodelphax striatellus, SBPH) at different development stages, and investigated the influence of Wolbachia on male gonads by a quantitative proteomic analysis. A total of 276 differentially expressed proteins were identified, with the majority of them participating in metabolism, modification, and reproduction. Knocking down the expression of outer dense fiber protein (ODFP) and venom allergen 5-like (VA5L) showed decreased egg reproduction, and these two genes might be responsible for Wolbachia improved fecundity in infected L. striatellus; whereas knocking down the expression of cytosol amino-peptidase-like (CAL) significantly decreased the egg hatch rate in Wolbachia-uninfected L. striatellus, but not in the Wolbachia-infected one. Considering that the mRNA/protein level of CAL was downregulated by Wolbachia infection and dsCAL treatment closely mimicked Wolbachia-induced CI, we presumed that CAL might be one of the factors determining the CI phenotype.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
133
|
Comparative Analysis of Proteomics and Transcriptomics during Fertility Transition in a Two-Line Hybrid Rice Line Wuxiang S. Int J Mol Sci 2019; 20:ijms20184542. [PMID: 31540278 PMCID: PMC6770272 DOI: 10.3390/ijms20184542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
The two-line hybrid rice is an important factor of a global crop, but its fertility transition mechanism is unclear. Here, a comparative proteomics and transcriptomics analysis was completed on the two-line hybrid rice line Wuxiang S (WXS) to explore its molecular mechanism and protein regulation during fertility transition. A total of 340 differentially abundant proteins (DAPs) were identified using iTRAQ between the pollen mother cell formation stage (P2) and the meiosis stage (P3). There were 3541 and 4247 differentially expressed genes (DEGs) in P2 and P3 between WXS (Sterile, S)-WXS(S) and WXS (Fertile, F)-WXS(F), respectively, of which 92 and 71 DEGs had corresponding DAPs. Among the DAPs and DEGs, 65 (SP2 vs. FP2) and 55 (SP3 vs. FP3) corresponding DEGs and DAPs (cor-DEGs-DAPs) showed the same expression trend, indicating the cor-DEGs-DAPs genes might play vital roles in WXS fertility transition. Further analysis indicated that cor-DEGs-DAPs proteins were related to energy metabolism-related proteins in anther development and were accompanied by the activation of the stress response pathway and modifications to the cell wall, which ultimately affected the fertility transition of the PTGMS rice line WXS.
Collapse
|
134
|
An Integrated Transcriptome and Proteome Analysis Reveals New Insights into Russeting of Bagging and Non-Bagging "Golden Delicious" Apple. Int J Mol Sci 2019; 20:ijms20184462. [PMID: 31510041 PMCID: PMC6769969 DOI: 10.3390/ijms20184462] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Apple skin russeting naturally occurs in many varieties, particularly in “Golden Delicious” and its pedigree, and is regarded as a non-invasive physiological disorder partly caused by excessive deposition of lignin. However, the understanding of its molecular mechanism is still limited. In this study, we used iTRAQ (isobaric tags for relative and absolute quantitation) and RNA-seq to detect the changes in the expression levels of genes and proteins in three developmental stages of russeting formation, in russeted (non-bagging) and non-russeted (bagging) skin of “Golden Delicious” apple. 2856 differentially expressed genes and 942 differentially expressed proteins in the comparison groups were detected at the transcript level and protein level, respectively. A correlation analysis of the transcriptomics and proteomics data revealed that four genes (MD03G1059200, MD08G1009200, MD17G1092400, and MD17G1225100) involved in lignin biosynthesis are significant changed during apple russeting formation. Additionally, 92 transcription factors, including 4 LIM transcription factors, may be involved in apple russeting formation. Among them, one LIM transcription factor (MD15G1068200) was capable of binding to the PAL-box like (CCACTTGAGTAC) element, which indicated it was potentially involved in lignin biosynthesis. This study will provide further views on the molecular mechanisms controlling apple russeting formation.
Collapse
|
135
|
Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, Chen B, Yang F, Zhao Y, Shi Z, Zhou B, Wu J, Zou H, Zi J, Chen J, Bao X, Hu Y, Gao Y, Zhang J, Xu X, Hou Y, Yang H, Wang J, Liu S, Jia H, Madsen L, Brix S, Kristiansen K, Liu F, Li J. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine 2019; 47:373-383. [PMID: 31492563 PMCID: PMC6796533 DOI: 10.1016/j.ebiom.2019.08.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiota plays important roles in modulating host metabolism. Previous studies have demonstrated differences in the gut microbiome of T2D and prediabetic individuals compared to healthy individuals, with distinct disease-related microbial profiles being reported in groups of different age and ethnicity. However, confounding factors such as anti-diabetic medication hamper identification of the gut microbial changes in disease development. Method We used a combination of in-depth metagenomics and metaproteomics analyses of faecal samples from treatment-naïve type 2 diabetic (TN-T2D, n = 77), pre-diabetic (Pre-DM, n = 80), and normal glucose tolerant (NGT, n = 97) individuals to investigate compositional and functional changes of the gut microbiota and the faecal content of microbial and host proteins in Pre-DM and treatment-naïve T2D individuals to elucidate possible host-microbial interplays characterizing different disease stages. Findings We observed distinct differences characterizing the gut microbiota of these three groups and validated several key features in an independent TN-T2D cohort. We also demonstrated that the content of several human antimicrobial peptides and pancreatic enzymes differed in faecal samples between three groups. Interpretation Our findings suggest a complex, disease stage-dependent interplay between the gut microbiota and the host and point to the value of metaproteomics to gain further insight into interplays between the gut microbiota and the host. Fund The study was supported by the National Natural Science Foundation of China (No. 31601073), the National Key Research and Development Program of China (No. 2017YFC0909703) and the Shenzhen Municipal Government of China (No. JCYJ20170817145809215). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yan Lu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Guixue Hou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Ziyi Yang
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Bing Chen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China; BGI Education Centre, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yue Zhao
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Zhun Shi
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Baojin Zhou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Jiegen Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Hua Zou
- BGI-Shenzhen, Shenzhen 518083, China; BGI Education Centre, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Jiayu Chen
- China National GeneBank, Shenzhen 518120, China
| | - Xiao Bao
- China National GeneBank, Shenzhen 518120, China
| | - Yihe Hu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Yan Gao
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Jun Zhang
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Fang Liu
- Suzhou Centre for Disease Control and Prevention, Suzhou 215007, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, Shenzhen 518120, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
136
|
Fan L, Wang L, Wang Z. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. FISH & SHELLFISH IMMUNOLOGY 2019; 92:438-449. [PMID: 31229644 DOI: 10.1016/j.fsi.2019.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
To understand the homeostasis mechanism of crustacean hepatopancreas to cold stress, iTRAQ proteomics based on the genome database of Litopenaeus vannamei (L. vannamei) was applied to investigate proteins changes and variety of the hepatopancreas during cold stress stage in this study. A total of 4062 distinct proteins were identified, 137 differentially expressed proteins (DEPs) including 62 differentially up-regulated proteins (DUPs) and 75 differentially down-regulated proteins (DDPs) were identified in G1 (18 °C) compared with CK (28 °C), 359 DEPs including 131 DUPs and 228 DDPs were identified in G2 (13 °C for 24 h) compared with CK. Based on bioinformatics analysis, the cold tolerance of L. vannamei might be related to energy metabolism such as amino acid, carbohydrate, lipid, and oxidative phosphorylation. Moreover, shrimp immunity was declined during cold stress stage. However, L. vannamei could cope with cold stress by enhancing the production of ATP and UFA. Notably, arginine kinase, heat shock proteins, and histones may act as positive regulators in L. vannamei under cold stress. Ten randomly selected proteins were used for validation using qRT-PCR and the expressions on the transcription level for most of the genes were similar to the results of iTRAQ. These results indicated that L. vannamei can maintain the organism homeostasis by a series of orderly regulatory process during cold stress. Furthermore, the results can provide guidance for shrimp farming.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| | - Lei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Department of Pharmaceutical Engineering, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlu Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
137
|
Li YY, Chen XH, Xue C, Zhang H, Sun G, Xie ZX, Lin L, Wang DZ. Proteomic Response to Rising Temperature in the Marine Cyanobacterium Synechococcus Grown in Different Nitrogen Sources. Front Microbiol 2019; 10:1976. [PMID: 31507578 PMCID: PMC6716455 DOI: 10.3389/fmicb.2019.01976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is one of the most important contributors to global primary productivity, and ocean warming is predicted to increase abundance and distribution of Synechococcus in the ocean. Here, we investigated molecular response of an oceanic Synechococcus strain WH8102 grown in two nitrogen sources (nitrate and urea) under present (25°C) and predicted future (28°C) temperature conditions using an isobaric tag (IBT)-based quantitative proteomic approach. Rising temperature decreased growth rate, contents of chlorophyll a, protein and sugar in the nitrate-grown cells, but only decreased protein content and significantly increased zeaxanthin content of the urea-grown cells. Expressions of CsoS2 protein involved in carboxysome formation and ribosomal subunits in both nitrate- and urea-grown cells were significantly decreased in rising temperature, whereas carbohydrate selective porin and sucrose-phosphate synthase (SPS) were remarkably up-regulated, and carbohydrate degradation associated proteins, i.e., glycogen phosphorylase kinase, fructokinase and glucose-6-phosphate dehydrogenase, were down-regulated in the urea-grown cells. Rising temperature also increased expressions of three redox-sensitive enzymes (peroxiredoxin, thioredoxin, and CP12) in both nitrate- and urea-grown cells. Our results indicated that rising temperature did not enhance cell growth of Synechococcus; on the contrary, it impaired cell functions, and this might influence cell abundance and distribution of Synechococcus in a future ocean.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Cheng Xue
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Geng Sun
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Key Laboratory of Marine Ecology and Environmental Sciences, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
138
|
Bai P, Zhang B, Zhao X, Li D, Yu Y, Zhang X, Huang B, Liu C. Decreased metabolism and increased tolerance to extreme environments in Staphylococcus warneri during long-term spaceflight. Microbiologyopen 2019; 8:e917. [PMID: 31414557 PMCID: PMC6925155 DOI: 10.1002/mbo3.917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022] Open
Abstract
Many studies have shown that the space environment can affect bacteria by causing a range of mutations. However, to date, few studies have explored the effects of long‐term spaceflight (>1 month) on bacteria. In this study, a Staphylococcus warneri strain that was isolated from the Shenzhou‐10 spacecraft and had experienced a spaceflight (15 days) was carried into space again. After a 64‐day flight, combined phenotypic, genomic, transcriptomic, and proteomic analyses were performed to compare the influence of the two spaceflights on this bacterium. Compared with short‐term spaceflight, long‐term spaceflight increased the biofilm formation ability of S. warneri and the cell wall resistance to external environmental stress but reduced the sensitivity to chemical stimulation. Further analysis showed that these changes might be associated with the significantly upregulated gene expression of the phosphotransferase system, which regulates the metabolism of sugars, including glucose, mannose, fructose, and cellobiose. The mutation of S. warneri caused by the 15‐day spaceflight was limited at the phenotype and gene level after cultivation on the ground. After 79 days of spaceflight, significant changes in S. warneri were observed. The phosphotransferase system of S. warneri was upregulated by long‐term space stimulation, which resulted in a series of changes in the cell wall, biofilm, and chemical sensitivity, thus enhancing the resistance and adaptability of the bacterium to the external environment.
Collapse
Affiliation(s)
- Po Bai
- Medical School of Chinese PLA, Beijing, China.,Department of Respiratory Diseases, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bin Zhang
- Medical College, Nankai University, Tianjin, China
| | - Xian Zhao
- Medical School of Chinese PLA, Beijing, China
| | - Diangeng Li
- Medical School of Chinese PLA, Beijing, China
| | - Yi Yu
- Medical School of Chinese PLA, Beijing, China
| | | | - Bing Huang
- Medical School of Chinese PLA, Beijing, China
| | - Changting Liu
- Medical School of Chinese PLA, Beijing, China.,Medical College, Nankai University, Tianjin, China
| |
Collapse
|
139
|
Zhang H, Liu J, He Y, Xie Z, Zhang S, Zhang Y, Lin L, Liu S, Wang D. Quantitative proteomics reveals the key molecular events occurring at different cell cycle phases of the in situ blooming dinoflagellate cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:62-71. [PMID: 31029901 DOI: 10.1016/j.scitotenv.2019.04.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/01/2019] [Accepted: 04/13/2019] [Indexed: 05/26/2023]
Abstract
Dinoflagellate blooms are the results of rapid cell proliferation governed by cell cycle, a highly-ordered series of events that culminates in cell division. However, little is known about cell cycle progression of the in situ bloom cells. Here, we compared proteomes of the in situ blooming cells of a dinoflagellate Prorocentrum donghaiense collected at different cell cycle phases. The blooming P. donghaiense cells completed a cell cycle within 24 h with a high synchronization rate of 82.7%. Proteins associated with photosynthesis, porphyrin and chlorophyll synthesis, carbon, nitrogen and amino acid metabolisms exhibited high expressions at the G1 phase; DNA replication and mismatch repair related proteins were more abundant at the S phase; while protein synthesis and oxidative phosphorylation were highly enriched at the G2/M phase. Cell cycle proteins presented similar periodic diel patterns to other eukaryotic cells, and higher expressions of proliferating cell nuclear antigen and cyclin dependent kinase 2 at the S phase ensured the smooth S-G2/M transition. Strikingly, four histones were first identified in P. donghaiense and highly expressed at the G2/M phase, indicating their potential roles in regulating cell cycle. This study presents the first quantitative survey, to our knowledge, of proteome changes at different cell cycle phases of the in situ blooming cells in natural environment and provides insights into cell cycle regulation of the blooming dinoflagellate cells.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Jiuling Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yanbin He
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Shufei Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361005, China.
| |
Collapse
|
140
|
Quantitative Proteome Reveals Variation in the Condition Factor of Sea Urchin Strongylocentrotus nudus during the Fishing Season Using an iTRAQ-based Approach. Mar Drugs 2019; 17:md17070397. [PMID: 31284417 PMCID: PMC6669438 DOI: 10.3390/md17070397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022] Open
Abstract
To investigate the variation in the condition factor of the sea urchin Strongylocentrotus nudus (S. nudus), gonads were collected in May (MAY), June (JUN), and July (JUL), at the beginning (AUG-b) and end of August (AUG-e). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) detection of the gonads revealed an obvious enhancement of the band at about 37 kDa from July, which was identified as transforming growth factor-beta-induced protein ig-h3 (TGFBI) by nanoLC-ESI-MS/MS. Gonadal proteins were identified by isobaric tagging for relative and absolute quantitation (iTRAQ), and regulation of the identified proteins in pairs of the collected groups was observed. A total of 174 differentially expressed proteins (DEPs) were identified. Seven of the DEPs showed significant correlations with both the gonad index (GI) and protein content. These correlations included 6-phosphogluconate dehydrogenase, decarboxylating isoform X2 (6PGD), CAD protein, myoferlin isoform X8, ribosomal protein L36 (RL36), isocitrate dehydrogenase [NADP], mitochondrial isoform X2 (IDH), multifunctional protein ADE2 isoform X3, sperm-activating peptides (SAPs) and aldehyde dehydrogenase, and mitochondrial (ALDH). However, TGFBI had no correlation with gonad index (GI) or protein content. 6PGD, IDH, multifunctional protein ADE2 isoform X3, and ALDH were shown to interact with each other and might play key roles in changing the condition factor of S. nudus gonads.
Collapse
|
141
|
Zhang G, Li J, Zhang J, Liang X, Zhang X, Wang T, Yin S. Integrated Analysis of Transcriptomic, miRNA and Proteomic Changes of a Novel Hybrid Yellow Catfish Uncovers Key Roles for miRNAs in Heterosis. Mol Cell Proteomics 2019; 18:1437-1453. [PMID: 31092672 PMCID: PMC6601203 DOI: 10.1074/mcp.ra118.001297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/09/2019] [Indexed: 01/14/2023] Open
Abstract
Heterosis is a complex biological phenomenon in which hybridization produces offspring that exhibit superior phenotypic characteristics compared with the parents. Heterosis is widely utilized in agriculture, for example in fish farming; however, its underlying molecular basis remains elusive. To gain a comprehensive and unbiased molecular understanding of fish heterosis, we analyzed the mRNA, miRNA, and proteomes of the livers of three catfish species, Pelteobagrus fulvidraco, P. vachelli, and their hybrid, the hybrid yellow catfish "Huangyou-1" (P. fulvidraco ♀ × P. vachelli ♂). Using next-generation sequencing and mass spectrometry, we show that the nonadditive, homoeolog expression bias and expression level dominance pattern were readily identified at the transcriptional, post-transcriptional, or protein levels, providing the evidence for the widespread presence of dominant models during hybridization. A number of predicted miRNA-mRNA-protein pairs were found and validated by qRT-PCR and PRM assays. Furthermore, several diverse key pathways were identified, including immune defense, metabolism, digestion and absorption, and cell proliferation and development, suggesting the vital mechanisms involved in the generation of the heterosis phenotype in progenies. We propose that the high parental expression of genes/proteins (growth, nutrition, feeding, and disease resistance) coupled with low parental miRNAs of the offspring, are inherited from the mother or father, thus indicating that the offspring were enriched with the advantages of the father or mother. We provide new and important information about the molecular mechanisms of heterosis, which represents a significant step toward a more complete elucidation of this phenomenon.
Collapse
Affiliation(s)
- Guosong Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Jie Li
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Jiajia Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Xia Liang
- §Key Laboratory for Physiology Biochemistry and Application, School of Agriculture and Bioengineering, Heze University, Heze, Shandong 274015, China
| | - Xinyu Zhang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Tao Wang
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China
| | - Shaowu Yin
- From the ‡College of Marine Science and Engineering, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;; ¶Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, 222005, China.
| |
Collapse
|
142
|
Effects of magnetic nanoparticles plus microwave on the thawing of largemouth bass (Micropterus salmoides) fillets based on iTRAQ quantitative proteomics. Food Chem 2019; 286:506-514. [DOI: 10.1016/j.foodchem.2019.02.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 11/21/2022]
|
143
|
Nie Y, Hu J, Hou Q, Zheng W, Zhang X, Yang T, Ma L, Yan X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells. FASEB J 2019; 33:10705-10716. [PMID: 31262191 DOI: 10.1096/fj.201900253rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative damages have adverse effects on mammals. Growing studies have focused on exploring new antioxidants. Here, we report that Lactobacillus frumenti increases the total antioxidation capacity activities and decreases the total reactive oxygen species levels in porcine intestinal epithelial cells. Comparative proteomics revealed that expressions of peroxiredoxin 2, isocitrate dehydrogenase 1, NAD(P)H dehydrogenase quinone 1, antioxidant protein 1, and metallothionein-2A, which are associated with antioxidant defense system, were significantly increased with L. frumenti treatment. In germ-free mice, L. frumenti treatment also remarkably improves the intestinal antioxidant capacity. We further illustrated that nitric oxide production-mediated by nitric oxide synthase 1 activation is essential for L. frumenti-induced improvements in intestinal epithelial antioxidant capacity and barrier function. This study suggested that L. frumenti may be a potential probiotic used to prevent oxidative stress-induced aging and diseases in mammals.-Nie, Y., Hu, J., Hou, Q., Zheng, W., Zhang, X., Yang, T., Ma, L., Yan, X. Lactobacillus frumenti improves antioxidant capacity via nitric oxide synthase 1 in intestinal epithelial cells.
Collapse
Affiliation(s)
- Yangfan Nie
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Jun Hu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Wenyong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Tao Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Wuhan, China
| |
Collapse
|
144
|
Wu X, Pan X, Cao S, Xu F, Lan L, Zhang Y, Lian S, Yan M, Li A. iTRAQ-based quantitative proteomic analysis provides insights into strong broodiness in Muscovy duck (Cairina moschata) combined with metabolomics analysis. J Proteomics 2019; 204:103401. [PMID: 31152940 DOI: 10.1016/j.jprot.2019.103401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to the broodiness of the Muscovy duck, but the molecular mechanism of broodiness remains largely unknown. In this study, the ovary tissues of Muscovy ducks during the broody and laying periods were used to investigate differentially expressed proteins (DEPs) by the iTRAQ-based proteomics approach. A total of 335 DEPs were identified, including 139 up-regulated and 196 down-regulated proteins. Six proteins (APOV1, GAL, SAA, GNB5, VLDLR and CDK1) with higher changes in expression were selected, and these proteins are mainly involved in the pathways related to reproductive performance, such as Oocyte meiosis, and PI3K-Akt signaling pathway. Steroid biosynthesis was the most significantly enriched pathway by KEGG pathway enriched analysis. The qRT-PCR analysis was applied to verify the proteomic analysis. Meanwhile, metabolomics analysis found that several important differentially expressed metabolites (DEMs) (7-dehydrodesmosterol, 25-Hydroxyvitamin D3, 7-Dehydrocholesterol, Pregnanolone, Allopregnanolone and estrogen) that were also mainly involved in Steroid biosynthesis, Steroid hormone biosynthesis and Metabolic pathways. Crucially, the changes in the abundance of these metabolites are closely related to the changes in the protein abundance of proteins identified in the same pathway, and it is always the upstream key enzymes that influence the production of downstream metabolites.
Collapse
Affiliation(s)
- Xu Wu
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Xiaoli Pan
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Sumei Cao
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Faqiong Xu
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Liming Lan
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Yingyan Zhang
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Senyang Lian
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Meijiao Yan
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Ang Li
- Institutional addresses: College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China..
| |
Collapse
|
145
|
Cui YH, Liu Q, Xu ZY, Li JH, Hu ZX, Li MJ, Zheng WL, Li ZJ, Pan HW. Quantitative proteomic analysis of human corneal epithelial cells infected with HSV-1. Exp Eye Res 2019; 185:107664. [PMID: 31085182 DOI: 10.1016/j.exer.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
HSV-1 infection in corneal epithelium initiates the process of herpes simplex keratitis. We investigated the dynamic change of the host proteins in corneal epithelial cells infected with HSV-1 to understand the virus-host interaction. iTRAQ coupled with LC-MS/MS was applied to quantitatively analyze the protein profiles in HSV-1 infected corneal epithelial cells at 6 and 24 h post-infection (hpi), and the results were validated by multiple reaction monitoring (MRM). We also performed bioinformatic analysis to investigate the potentially important signal pathways and protein interaction networks in the host response to HSV-1 infection. We identified 292 proteins were up-regulated and 168 proteins were down-regulated at 6 hpi, while 132 proteins were up-regulated and 89 proteins were down-regulated at 24 hpi, which were validated by MRM analysis. We found the most enriched GO terms were translational initiation, cytosol, poly(A) RNA binding, mRNA splicing via spliceosome and extracellular exosome for the dysregulated proteins. KEGG pathway analysis revealed significant changes in metabolism pathway characterized by decreased tricarboxylic acid cycle activity and increased glycolysis. Proteins interaction network analysis indicated several proteins including P4HB, ACLY, HSP90AA1 and EIF4A3, might be critical proteins in the host-virus response. Our study for the first time analyzed the protein profile of HSV-1 infected primary corneal epithelial cells by quantitative proteomics. These findings help to better understand the host-virus interaction and the pathogenesis of herpes simplex keratitis.
Collapse
Affiliation(s)
- Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Yi Xu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jia-Hui Li
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zi-Xuan Hu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Mei-Jun Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen-Lin Zheng
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zhi-Jie Li
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
146
|
Zhang X, Huang H, He Y, Ruan Z, You X, Li W, Wen B, Lu Z, Liu B, Deng X, Shi Q. High-throughput identification of heavy metal binding proteins from the byssus of chinese green mussel (Perna viridis) by combination of transcriptome and proteome sequencing. PLoS One 2019; 14:e0216605. [PMID: 31071150 PMCID: PMC6508894 DOI: 10.1371/journal.pone.0216605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
The Byssus, which is derived from the foot gland of mussels, has been proved to bind heavy metals effectively, but few studies have focused on the molecular mechanisms behind the accumulation of heavy metals by the byssus. In this study, we integrated high-throughput transcriptome and proteome sequencing to construct a comprehensive protein database for the byssus of Chinese green mussel (Perna viridis), aiming at providing novel insights into the molecular mechanisms by which the byssus binds to heavy metals. Illumina transcriptome sequencing generated a total of 55,670,668 reads. After filtration, we obtained 53,047,718 clean reads and subjected them to de novo assembly using Trinity software. Finally, we annotated 73,264 unigenes and predicted a total of 34,298 protein coding sequences. Moreover, byssal samples were analyzed by proteome sequencing, with the translated protein database from the foot transcriptome as the reference for further prediction of byssal proteins. We eventually determined 187 protein sequences in the byssus, of which 181 proteins are reported for the first time. Interestingly, we observed that many of these byssal proteins are rich in histidine or cysteine residues, which may contribute to the byssal accumulation of heavy metals. Finally, we picked one representative protein, Pvfp-5-1, for recombinant protein synthesis and experimental verification of its efficient binding to cadmium (Cd2+) ions.
Collapse
Affiliation(s)
- Xinhui Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Huiwei Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | | | - Bo Wen
- BGI-Shenzhen, BGI, Shenzhen, China
| | - Zizheng Lu
- Shenzhen Horus Marine Technology Co. Ltd., Shenzhen, China
| | - Bing Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Laboratory of Aquatic Bioinformatics, BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, BGI, Zhenjiang, China
| |
Collapse
|
147
|
Griss J, Vinterhalter G, Schwämmle V. IsoProt: A Complete and Reproducible Workflow To Analyze iTRAQ/TMT Experiments. J Proteome Res 2019; 18:1751-1759. [PMID: 30855969 PMCID: PMC6456869 DOI: 10.1021/acs.jproteome.8b00968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Reproducibility has become a major concern in biomedical research. In proteomics, bioinformatic workflows can quickly consist of multiple software tools each with its own set of parameters. Their usage involves the definition of often hundreds of parameters as well as data operations to ensure tool interoperability. Hence, a manuscript's methods section is often insufficient to completely describe and reproduce a data analysis workflow. Here we present IsoProt: A complete and reproducible bioinformatic workflow deployed on a portable container environment to analyze data from isobarically labeled, quantitative proteomics experiments. The workflow uses only open source tools and provides a user-friendly and interactive browser interface to configure and execute the different operations. Once the workflow is executed, the results including the R code to perform statistical analyses can be downloaded as an HTML document providing a complete record of the performed analyses. IsoProt therefore represents a reproducible bioinformatics workflow that will yield identical results on any computer platform.
Collapse
Affiliation(s)
- Johannes Griss
- EMBL-European
Bioinformatics Institute, Wellcome Trust Genome Campus, CB10
1SD Hinxton, Cambridge, United
Kingdom
- Department
of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Goran Vinterhalter
- Faculty
of Mathematics, University of Belgrade, Studentski trg 16, 11001 Belgrade, Serbia
| | - Veit Schwämmle
- Department
for Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
148
|
Zhang SF, Chen Y, Xie ZX, Zhang H, Lin L, Wang DZ. Unraveling the molecular mechanism of the response to changing ambient phosphorus in the dinoflagellate Alexandrium catenella with quantitative proteomics. J Proteomics 2019; 196:141-149. [PMID: 30414514 DOI: 10.1016/j.jprot.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Phosphorus (P) is a key macronutrient limiting cell growth and bloom formation of marine dinoflagellates. Physiological responses to changing ambient P have been investigated in dinoflagellates; however, the molecular mechanisms behind these responses remain limited. Here, we compared the protein expression profiles of a marine dinoflagellate Alexandrium catenella grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions using an iTRAQ-based quantitative proteomic approach. P deficiency inhibited cell growth and enhanced alkaline phosphatase activity (APA) but had no effect on photosynthetic efficiency. After P resupply, the P-deficient cells recovered growth rapidly and APA decreased. Proteins involved in sphingolipid metabolism, organic P utilization, starch and sucrose metabolism, and photosynthesis were up-regulated in the P-deficient cells, while proteins associated with protein synthesis, nutrient assimilation and energy metabolism were down-regulated. The responses of the P-deficient A. catenella to the resupply of organic and inorganic P presented significant differences: more biological processes were enhanced in the organic P-resupplied cells than those in the inorganic P-resupplied cells; A. catenella might directly utilize G-6-P for nucleic acid synthesis through the pentose phosphate pathway. Our results indicate that A. catenella has evolved diverse adaptive strategies to ambient P deficiency and specific mechanisms to utilize dissolved organic P, which might be an important reason resulting in A. catenella bloom in the low inorganic P environment. BIOLOGICAL SIGNIFICANCE: The ability of marine dinoflagellates to utilize different phosphorus (P) species and adapt to ambient P deficiency determines their success in the ocean. In this study, we investigated the response mechanisms of a dinoflagellate Alexandrium catenella to ambient P deficiency, and resupply of inorganic- and organic-P at the proteome level. Our results indicated that A. catenella initiated multiple adaptive strategies to ambient P deficiency, e.g. utilizing nonphospholipids and glycosphingolipids instead of phospholipids, enhancing expression of acid phosphatase to utilize organic P, and reallocating intracellular energy. Proteome responses of the P-deficient A. catenella to resupply of inorganic- and organic-P differed significantly, indicating different utilization pathways of inorganic and organic P, A. catenella might directly utilize low molecular weight organic P, such as G-6-P as both P and carbon sources.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
149
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
150
|
Kondethimmanahalli C, Liu H, Ganta RR. Proteome Analysis Revealed Changes in Protein Expression Patterns Caused by Mutations in Ehrlichia chaffeensis. Front Cell Infect Microbiol 2019; 9:58. [PMID: 30937288 PMCID: PMC6431617 DOI: 10.3389/fcimb.2019.00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/31/2023] Open
Abstract
The tick-borne rickettsial pathogen, Ehrlichia chaffeensis, causes monocytic ehrlichiosis in people and other vertebrate hosts. Mutational analysis in E. chaffeensis genome aids in better understanding of its infection and persistence in host cells and in the development of attenuated vaccines. Our recent RNA deep sequencing study revealed that three genomic mutations caused global changes in the gene expression patterns, which in turn affect the ability of pathogen's survival in a host and the host's ability to induce protection against the pathogen. In this follow-up study, we document the impact of mutations on the pathogen's global protein expression and the influence of protein abundance on a mutant's attenuation and protection of vertebrate host against infection. iTRAQ labeling and mass spectrometry analysis of E. chaffeensis wildtype and mutants identified 564 proteins covering about 63% of the genome. Mutation in ECH_0379 gene encoding for an antiporter protein, causing attenuated growth in vertebrate hosts, led to overexpression of p28 outer membrane proteins, molecular chaperons, and metabolic enzymes, while a mutation downstream to the ECH_0490 gene that caused minimal impact on the pathogen's in vivo growth resulted in major changes in the expression of outer membrane proteins, transcriptional regulators and T4SS proteins. ECH_0660 gene mutation, causing the pathogen's rapid clearance and offering protection against wild type infection challenge in a vertebrate host, had a minimal impact on proteome similar to our prior observations from transcriptome analysis. While the global proteome data revealed fewer translated proteins compared to the transcripts identified from RNA deep sequencing analysis, there is a great deal of correlation noted between the global proteome and transcriptome analysis. Further, global proteome analysis, including the assessment of 2D resolved total and immunoproteomes revealed greater variations in the highly immunogenic p28-Omp proteins.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|