101
|
Ianiro G, Micolano R, Di Bartolo I, Scavia G, Monini M. Group A rotavirus surveillance before vaccine introduction in Italy, September 2014 to August 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30994104 PMCID: PMC6470368 DOI: 10.2807/1560-7917.es.2019.24.15.1800418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Group A rotaviruses (RVA) are the leading cause of acute gastroenteritis (AGE) in young children, causing ca 250,000 deaths worldwide, mainly in low-income countries. Two proteins, VP7 (glycoprotein, G genotype) and VP4 (protease-sensitive protein, P genotype), are the basis for the binary RVA nomenclature. Although 36 G types and 51 P types are presently known, most RVA infections in humans worldwide are related to five G/P combinations: G1P[8], G2P[4], G3P[8], G4P[8], G9P[8]. Aim This study aimed to characterise the RVA strains circulating in Italy in the pre-vaccination era, to define the trends of circulation of genotypes in the Italian paediatric population. Methods Between September 2014 and August 2017, after routine screening in hospital by commercial antigen detection kit, 2,202 rotavirus-positive samples were collected in Italy from children hospitalised with AGE; the viruses were genotyped following standard European protocols. Results This 3-year study revealed an overall predominance of the G12P[8] genotype (544 of 2,202 cases; 24.70%), followed by G9P[8] (535/2,202; 24.30%), G1P[8] (459/2,202; 20.84%) and G4P[8] (371/2,202; 16.85%). G2P[4] and G3P[8] genotypes were detected at low rates (3.32% and 3.09%, respectively). Mixed infections accounted for 6.49% of cases (143/2,202), uncommon RVA strains for 0.41% of cases (9/2,202). Conclusions The emergence of G12P[8] rotavirus in Italy, as in other countries, marks this genotype as the sixth most common human genotype. Continuous surveillance of RVA strains and monitoring of circulating genotypes are important for a better understanding of rotavirus evolution and genotype distribution, particularly regarding strains that may emerge from reassortment events.
Collapse
Affiliation(s)
- Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Micolano
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gaia Scavia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
102
|
Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes 2020; 56:537-545. [PMID: 32472472 DOI: 10.1007/s11262-020-01771-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Rotavirus A is a dynamically evolving pathogen causing acute gastroenteritis in children during the first years of life. In the present study, we conducted a phylodynamic analysis based on the complete sequences of 11 segments of rotaviruses with the G4P[8] and G2P[4] genotypes isolated in Russia in 2017. Since rotavirus has a segmented genome, our analysis was performed using the Bayesian approach based on separate samples of nucleotide sequences for each gene of the strains studied. For the strain with the genotype G4P[8], the most likely geographical locations of the nearest common ancestor were Russia (VP7, VP4, VP6), China (VP1), Thailand (VP3), Belgium (NSP1), Hungary (VP2, NSP2, NSP3), Italy (NSP4) and Japan (NSP5). For the strain with the G2P[4] genotype, India (VP7, VP4, VP6, NSP1, NSP4), Malawi (VP2, NSP2, NSP3), Australia (VP1), Italy (NSP5) and Bangladesh (VP3). The closest common ancestor of the strain with the genotype G4P[8] circulated in 2001-2012, depending on the gene being analyzed. For the strain with the G2P[4] genotype, the closest common ancestor dates from 2006 to 2013.
Collapse
|
103
|
Naqvi SS, Javed S, Naseem S, Sadiq A, Khan N, Sattar S, Shah NA, Bostan N. G3 and G9 Rotavirus genotypes in waste water circulation from two major metropolitan cities of Pakistan. Sci Rep 2020; 10:8665. [PMID: 32457481 PMCID: PMC7251132 DOI: 10.1038/s41598-020-65583-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/02/2020] [Indexed: 11/27/2022] Open
Abstract
Rotavirus A (RVA) is a diarrheal pathogen affecting children under age five, particularly in developing and underdeveloped regions of the world due to malnutrition, poor healthcare and hygienic conditions. Water and food contamination are found to be major sources of diarrheal outbreaks. Pakistan is one of the countries with high RVA related diarrhea burden but with insufficient surveillance system. The aim of this study was to gauge the RVA contamination of major open sewerage collecting streams and household water supplies in two major metropolitan cities of Pakistan. Three concentration methods were compared using RNA purity and concentration as parameters, and detection efficiency of the selected method was estimated. Water samples were collected from 21 sites in Islamabad and Rawalpindi in two phases during the year 2014-2015. Meteorological conditions were recorded for each sampling day and site from Pakistan Meteorological Department (PMD). Nested PCR was used to detect the presence of RVA in samples targeting the VP7 gene. Logistic regression was applied to assess the association of weather conditions with RVA persistence in water bodies. Statistical analysis hinted at a temporal and seasonal pattern of RVA detection in water. Phylogenetic analysis of selected isolates showed a close association of environmental strains with clinical RVA isolates from hospitalized children with acute diarrhea during the same period. This is the first scientific report cataloging the circulating RVA strains in environmental samples from the region. The study highlights the hazards of releasing untreated sewerage containing potentially infectious viral particles into collecting streams, which could become a reservoir of multiple pathogens and a risk to exposed communities. Moreover, routine testing of these water bodies can present an effective surveillance system of circulating viral strains in the population.
Collapse
Affiliation(s)
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Asma Sadiq
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Netasha Khan
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Sadia Sattar
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| |
Collapse
|
104
|
Sero-epidemiological study of the rotavirus VP8* protein from different P genotypes in Valencia, Spain. Sci Rep 2020; 10:7753. [PMID: 32385405 PMCID: PMC7210269 DOI: 10.1038/s41598-020-64767-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/22/2020] [Indexed: 11/12/2022] Open
Abstract
The aims of the present work were to determine the prevalence and titer of serum antibodies against several rotavirus VP8* proteins from different P genotypes in children and adults in Valencia, Spain; and to determine the role of the secretor status (FUT2G428A polymorphism) in the antibody response. The VP8* protein from the P[4], P[6], P[8], P[9], P[11], P[14] and P[25] genotypes were produced in E. coli. These proteins were tested with 88 serum samples from children (n = 41, 3.5 years old in average) and from adults (n = 47, 58 years old in average) by ELISA. A subset of 55 samples were genotyped for the FUT2G428A polymorphism and the antibody titers compared. The same subset of samples was also analysed by ELISA using whole rotavirus Wa particles (G1P[8]) as antigen. Ninety-three per cent of the samples were positive for at least one of the VP8* antigens. Differences in the IgG seroprevalence were found between children and adults for the P[4], P[8] and P[11] genotypes. Similarly, significant differences were found between adults and children in their antibody titers against the P[4], P[8], and P[11] VP8* genotypes, having the children higher antibody titers than adults. Interestingly, positive samples against rare genotypes such as P[11] (only in children), P[14] and P[25] were found. While no statistical differences in the antibody titers between secretors and non-secretors were found for any of the tested P genotypes studied, a higher statistic significant prevalence for the P[25] genotype was found in secretors compared to non-secretors. Significant differences in the antibody titers between secretors and non-secretors were found when the whole viral particles from the Wa rotavirus strain (G1P[8]) were used as the antigen.
Collapse
|
105
|
Komoto S, Fukuda S, Murata T, Taniguchi K. Reverse genetics system for human rotaviruses. Microbiol Immunol 2020; 64:401-406. [DOI: 10.1111/1348-0421.12795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Satoshi Komoto
- Department of Virology and ParasitologyFujita Health University School of Medicine Toyoake Aichi Japan
| | - Saori Fukuda
- Department of Virology and ParasitologyFujita Health University School of Medicine Toyoake Aichi Japan
| | - Takayuki Murata
- Department of Virology and ParasitologyFujita Health University School of Medicine Toyoake Aichi Japan
| | - Koki Taniguchi
- Department of Virology and ParasitologyFujita Health University School of Medicine Toyoake Aichi Japan
| |
Collapse
|
106
|
Song Y, Feng N, Sanchez-Tacuba L, Yasukawa LL, Ren L, Silverman RH, Ding S, Greenberg HB. Reverse Genetics Reveals a Role of Rotavirus VP3 Phosphodiesterase Activity in Inhibiting RNase L Signaling and Contributing to Intestinal Viral Replication In Vivo. J Virol 2020; 94:e01952-19. [PMID: 32051268 PMCID: PMC7163120 DOI: 10.1128/jvi.01952-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Our understanding of how rotavirus (RV) subverts host innate immune signaling has greatly increased over the past decade. However, the relative contribution of each virus-encoded innate immune antagonist has not been fully studied in the context of RV infection in vivo Here, we present both in vitro and in vivo evidence that the host interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS) and RNase L pathway effectively suppresses the replication of heterologous RV strains. VP3 from homologous RVs relies on its 2'-5'-phosphodiesterase (PDE) domain to counteract RNase L-mediated antiviral signaling. Using an RV reverse-genetics system, we show that compared to the parental strain, VP3 PDE mutant RVs replicated at low levels in the small intestine and were shed less in the feces of wild-type mice, and such defects were rescued in Rnasel-/- suckling mice. Collectively, these findings highlight an important role of VP3 in promoting viral replication and pathogenesis in vivo in addition to its well-characterized function as the viral RNA-capping enzyme.IMPORTANCE Rotaviruses are significant human pathogens that result in diarrhea, dehydration, and deaths in many children around the world. Rotavirus vaccines have suboptimal efficacy in low- to middle-income countries, where the burden of the diseases is the most severe. With the ultimate goal of improving current vaccines, we aim to better understand how rotavirus interacts with the host innate immune system in the small intestine. Here, we demonstrate that interferon-activated RNase L signaling blocks rotavirus replication in a strain-specific manner. In addition, virus-encoded VP3 antagonizes RNase L activity both in vitro and in vivo These studies highlight an ever-evolving arms race between antiviral factors and viral pathogens and provide a new means of targeted attenuation for next-generation rotavirus vaccine design.
Collapse
Affiliation(s)
- Yanhua Song
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liliana Sanchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Linda L Yasukawa
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Robert H Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Harry B Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
107
|
Groome MJ, Fairlie L, Morrison J, Fix A, Koen A, Masenya M, Jose L, Madhi SA, Page N, McNeal M, Dally L, Cho I, Power M, Flores J, Cryz S. Safety and immunogenicity of a parenteral trivalent P2-VP8 subunit rotavirus vaccine: a multisite, randomised, double-blind, placebo-controlled trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:851-863. [PMID: 32251641 PMCID: PMC7322558 DOI: 10.1016/s1473-3099(20)30001-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/25/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
Background A monovalent, parenteral, subunit rotavirus vaccine was well tolerated and immunogenic in adults in the USA and in toddlers and infants in South Africa, but elicited poor responses against heterotypic rotavirus strains. We aimed to evaluate safety and immunogenicity of a trivalent vaccine formulation (P2-VP8-P[4],[6],[8]). Methods A double-blind, randomised, placebo-controlled, dose-escalation, phase 1/2 study was done at three South African research sites. Healthy adults (aged 18–45 years), toddlers (aged 2–3 years), and infants (aged 6–8 weeks, ≥37 weeks' gestation, and without previous receipt of rotavirus vaccination), all without HIV infection, were eligible for enrolment. In the dose-escalation phase, adults and toddlers were randomly assigned in blocks (block size of five) to receive 30 μg or 90 μg of vaccine, or placebo, and infants were randomly assigned in blocks (block size of four) to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo. In the expanded phase, infants were randomly assigned in a 1:1:1:1 ratio to receive 15 μg, 30 μg, or 90 μg of vaccine, or placebo, in block sizes of four. Participants, parents of participants, and clinical, data, and laboratory staff were masked to treatment assignment. Adults received an intramuscular injection of vaccine or placebo in the deltoid muscle on the day of randomisation (day 0), day 28, and day 56; toddlers received a single injection of vaccine or placebo in the anterolateral thigh on day 0. Infants in both phases received an injection of vaccine or placebo in the anterolateral thigh on days 0, 28, and 56, at approximately 6, 10, and 14 weeks of age. Primary safety endpoints were local and systemic reactions (grade 2 or worse) within 7 days and adverse events and serious adverse events within 28 days after each injection in all participants who received at least one injection. Primary immunogenicity endpoints were analysed in infants in either phase who received all planned injections, had blood samples analysed at the relevant timepoints, and presented no major protocol violations considered to have an effect on the immunogenicity results of the study, and included serum anti-P2-VP8 IgA, IgG, and neutralising antibody geometric mean titres and responses measured 4 weeks after the final injection in vaccine compared with placebo groups. This trial is registered with ClinicalTrials.gov, NCT02646891. Findings Between Feb 15, 2016, and Dec 22, 2017, 30 adults (12 each in the 30 μg and 90 μg groups and six in the placebo group), 30 toddlers (12 each in the 30 μg and 90 μg groups and six in the placebo group), and 557 infants (139 in the 15 μg group, 140 in the 30 μg group, 139 in the 90 μg group, and 139 in the placebo group) were randomly assigned, received at least one dose, and were assessed for safety. There were no significant differences in local or systemic adverse events, or unsolicited adverse events, between vaccine and placebo groups. There were no serious adverse events within 28 days of injection in adults, whereas one serious adverse event occurred in a toddler (febrile convulsion in the 30 μg group) and 23 serious adverse events (four in placebo, ten in 15 μg, four in 30 μg, and five in 90 μg groups) occurred among 20 infants, most commonly respiratory tract infections. One death occurred in an infant within 28 days of injection due to pneumococcal meningitis. In 528 infants (130 in placebo, 132 in 15 μg, 132 in 30 μg, and 134 in 90 μg groups), adjusted anti-P2-VP8 IgG seroresponses (≥4-fold increase from baseline) to P[4], P[6], and P[8] antigens were significantly higher in the 15 μg, 30 μg, and 90 μg groups (99–100%) than in the placebo group (10–29%; p<0·0001). Although significantly higher than in placebo recipients (9–10%), anti-P2-VP8 IgA seroresponses (≥4-fold increase from baseline) to each individual antigen were modest (20–34%) across the 15 μg, 30 μg, and 90 μg groups. Adjusted neutralising antibody seroresponses in infants (≥2·7-fold increase from baseline) to DS-1 (P[4]), 1076 (P[6]), and Wa (P[8]) were higher in vaccine recipients than in placebo recipients: p<0·0001 for all comparisons. Interpretation The trivalent P2-VP8 vaccine was well tolerated, with promising anti-P2-VP8 IgG and neutralising antibody responses across the three vaccine P types. Our findings support advancing the vaccine to efficacy testing. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michelle J Groome
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Morrison
- Family Clinical Research Unit, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anthonet Koen
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maysseb Masenya
- Wits Reproductive Health and HIV Institute, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Jose
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council (SAMRC): Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation (DST/NRF): Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicola Page
- National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa; Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Len Dally
- The Emmes Corporation, Rockville, MD, USA
| | - Iksung Cho
- PATH, Washington, DC, USA; Novavax, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
108
|
Domman D, Ruis C, Dorman MJ, Shakya M, Chain PSG. Novel Insights Into the Spread of Enteric Pathogens Using Genomics. J Infect Dis 2020; 221:S319-S330. [PMID: 31538189 DOI: 10.1093/infdis/jiz220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daryl Domman
- Bioscience Division, Los Alamos National Laboratory, New Mexico
| | - Christopher Ruis
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J Dorman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, New Mexico
| | | |
Collapse
|
109
|
Xu S, Ahmed LU, Stuckert MR, McGinnis KR, Liu Y, Tan M, Huang P, Zhong W, Zhao D, Jiang X, Kennedy MA. Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens. PLoS Pathog 2020; 16:e1008386. [PMID: 32208455 PMCID: PMC7122821 DOI: 10.1371/journal.ppat.1008386] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/03/2020] [Accepted: 02/05/2020] [Indexed: 11/19/2022] Open
Abstract
Initial cell attachment of rotavirus (RV) to specific cell surface glycan receptors, which is the essential first step in RV infection, is mediated by the VP8* domain of the spike protein VP4. Recently, human histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors for human RV strains. RV strains in the P[4] and P[8] genotypes of the P[II] genogroup share common recognition of the Lewis b (Leb) and H type 1 antigens, however, the molecular basis of receptor recognition by the major human P[8] RVs remains unknown due to lack of experimental structural information. Here, we used nuclear magnetic resonance (NMR) spectroscopy-based titration experiments and NMR-derived high ambiguity driven docking (HADDOCK) methods to elucidate the molecular basis for P[8] VP8* recognition of the Leb (LNDFH I) and type 1 HBGAs. We also used X-ray crystallography to determine the molecular details underlying P[6] recognition of H type 1 HBGAs. Unlike P[6]/P[19] VP8*s that recognize H type 1 HBGAs in a binding surface composed of an α-helix and a β-sheet, referred as the “βα binding site”, the P[8] and P[4] VP8*s bind Leb HBGAs in a previously undescribed pocket formed by the edges of two β-sheets, referred to as the “ββ binding site”. Importantly, the P[8] and P[4] VP8*s retain binding capability to non-Leb type 1 HBGAs using the βα binding site. The presence of two distinct binding sites for Leb and non-Leb HBGA glycans in the P[8] and P[4] VP8* domains suggests host-pathogen co-evolution under structural and functional adaptation of RV pathogens to host glycan polymorphisms. Assessment and understanding of the precise impact of this co-evolutionary process in determining RV host ranges and cross-species RV transmission should facilitate improved RV vaccine development and prediction of future RV strain emergence and epidemics. Rotaviruses (RV)s are the main cause of severe diarrhea in humans and animals. Significant advances in understanding RV diversity, evolution and epidemiology have been made after discovering that RVs recognize histo-blood group antigens (HBGAs) as host cell receptors or attachment factors. While different RV strains are known to have distinct binding preferences for HBGA receptor ligands, their molecular basis in controlling strain-specific host ranges remains unclear. In this study, we used solution nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the molecular-level details for interactions of the human P[8] and P[6] RV VP8* domains with their HBGA receptors ligands. The distinct binding patterns observed between these major human RVs and their respective glycan ligands provide insight into the evolutionary relationships between different P[II] genotypes that ultimately determine host ranges, disease burden, zoonosis and epidemiology, which may impact future strategies for development of vaccines to protect against RV infections.
Collapse
Affiliation(s)
- Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Luay U. Ahmed
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Michael Robert Stuckert
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Kristen Rose McGinnis
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Yang Liu
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pengwei Huang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Weiming Zhong
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Dandan Zhao
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (XJ); (MAK)
| | - Michael A. Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
- * E-mail: (XJ); (MAK)
| |
Collapse
|
110
|
Lu Y, Li H, Li W, Wang X, Tao X, Dou L, Dong Y, Wu N, Li YG. Characterization of a G9 group A rotavirus reassortant strain detected in Jinzhou, China, in 2018-2019. Arch Virol 2020; 165:977-983. [PMID: 32095877 DOI: 10.1007/s00705-020-04563-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
A novel rotavirus A (RVA) strain (JZ) was detected in RVA-positive stool specimens from three pediatric patients in Jinzhou, Liaoning Province, in 2018-2019. The electrophoresis pattern of the JZ strain showed a long electropherotype. The genomic constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 was detected, suggesting that a new inter-genogroup reassortment had occurred. Whole-genome sequencing showed that the JZ isolates were identical to each other. Phylogenetic analysis revealed that VP7 and VP4 clustered in lineages G9-VI and P[8]-3, respectively. JZ strain-specific amino acid substitutions were detected in VP7, VP4 and NSP4. This study provides information on the epidemiology and characteristics of G9 strains circulating in China.
Collapse
Affiliation(s)
- Ying Lu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Hui Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Weiwei Li
- Women and Children's Hospital of Jinzhou, Jinzhou, China
| | - Xiaofang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Xiaoli Tao
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Lili Dou
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Ying Dong
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Nan Wu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yong Gang Li
- Department of Pathogen Biology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
111
|
Novikova NA, Sashina TA, Epifanova NV, Kashnikov AU, Morozova OV. Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984-2019. Arch Virol 2020; 165:865-875. [DOI: 10.1007/s00705-020-04553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/18/2020] [Indexed: 01/01/2023]
|
112
|
Ivashechkin AA, Yuzhakov AG, Grebennikova TV, Yuzhakova KA, Kulikova NY, Kisteneva LB, Smetanina SV, Bazarova MV, Almazova MG. Genetic diversity of group A rotaviruses in Moscow in 2018-2019. Arch Virol 2020; 165:691-702. [PMID: 32016546 DOI: 10.1007/s00705-020-04534-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Here, we present the results of a study in which 639 samples obtained between October 2018 and April 2019 from patients with symptoms of acute gastroenteritis were tested for the presence of a rotavirus infection. The antigen of group A rotavirus was detected in 160 samples (25% of those tested). To study the genetic diversity of group A rotavirus, RNA was isolated from the samples, and polymerase chain reaction combined with reverse transcription (RT-PCR) with primers specific for the VP4, VP6, and VP7 genes of group A rotaviruses was performed. At least one fragment of the group A rotavirus genome was found in 101 samples (15.8%). These fragments were sequenced, and their G and P genotypes-as well as their combinations-were determined. The predominant G genotypes were G9 (35.8% of all genotyped samples) and G4 (28.4%), but the rare G12 genotype was also found (3.0%). The dominant P genotype was P[8]. The spectrum of certain G/P combinations of genotypes included seven variants. The most common variants were G9P[8] (37.2%) and G4P[8] (30.2%).
Collapse
Affiliation(s)
| | - A G Yuzhakov
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia.
| | - T V Grebennikova
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - K A Yuzhakova
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - N Y Kulikova
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - L B Kisteneva
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - S V Smetanina
- Moscow Clinical Hospital № 1 of Infectious Diseases, Moscow, Russia
| | - M V Bazarova
- Moscow Clinical Hospital № 1 of Infectious Diseases, Moscow, Russia
| | - M G Almazova
- N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
113
|
Sakpaisal P, Silapong S, Yowang A, Boonyasakyothin G, Yuttayong B, Suksawad U, Sornsakrin S, Lertsethtakarn P, Bodhidatta L, Crawford JM, Mason CJ. Prevalence and Genotypic Distribution of Rotavirus in Thailand: A Multicenter Study. Am J Trop Med Hyg 2020; 100:1258-1265. [PMID: 30915947 DOI: 10.4269/ajtmh.18-0763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rotavirus has been one of the major etiological agents causing severe diarrhea in infants and young children worldwide. In Thailand, rotavirus contributes to one-third of reported pediatric diarrheal cases. We studied stool samples from 1,709 children with acute gastroenteritis and 1,761 children with no reported gastroenteritis whose age ranged from 3 months to 5 years from four different regions in Thailand between March 2008 and August 2010. The samples were tested for the presence of rotavirus by real-time reverse transcription-polymerase chain reaction (RT-PCR) amplification of vp6 gene and enzyme-linked immunosorbent assay. The positive samples were further characterized for their G and P genotypes (vp7 and vp4 genes) by conventional RT-PCR. From all four regions, 26.8% of cases and 1.6% of controls were positive for rotavirus, and G1P[8] was the most predominant genotype, followed by G2P[4], G3P[8], and G9P[8]. In addition, the uncommon genotypes including G1P[4], G1P[6], G2P[6], G2P[8], G4P[6], G9P[4], G9P[6], G12P[6], and G12P[8] were also detected at approximately 14% of all samples tested. Interestingly, G5P[19], a recombinant genotype between human and animal strains, and G1P7[5], a reassortant vaccine strain which is closely related to four human-bovine reassortant strains of RotaTeq™ vaccine, were detected in control samples. Data reported in this study will provide additional information on molecular epidemiology of rotavirus infection in Thailand before the impending national implementation of rotavirus vaccination program.
Collapse
Affiliation(s)
- Pimmada Sakpaisal
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sasikorn Silapong
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amara Yowang
- Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand
| | | | - Boonyaorn Yuttayong
- Department of Medical Sciences, Ministry of Public Health, Bangkok, Thailand
| | - Umaporn Suksawad
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriporn Sornsakrin
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Paphavee Lertsethtakarn
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - John M Crawford
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
114
|
Reverse Genetics System for a Human Group A Rotavirus. J Virol 2020; 94:JVI.00963-19. [PMID: 31645445 DOI: 10.1128/jvi.00963-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/14/2019] [Indexed: 12/23/2022] Open
Abstract
Group A rotavirus (RV) is a major cause of acute gastroenteritis in infants and young children worldwide. Recently, we established an entirely plasmid-based reverse genetics system for simian RV strain SA11. Although that system was robust enough to generate reassortant RVs, including human RV gene segments, and enabled better understanding of the biological differences between animal and human RV strains, a complete reverse genetics system for human RV strains is desirable. Here, we established a plasmid-based reverse genetics system for G4P[8] human RV strain Odelia. This technology was used to generate a panel of monoreassortant viruses between human and simian RV strains for all of the 11 gene segments demonstrating full compatibility between human and simian RV strains. Furthermore, we generated recombinant viruses lacking the C-terminal region of the viral nonstructural protein NSP1 and used it to define the biological function of the interaction between NSP1 and its target protein β-transducin repeat-containing protein (β-TrCP) during viral replication. While the NSP1 truncation mutant lacking the C-terminal 13 amino acids displayed lower β-TrCP degradation activity, it replicated as efficiently as the wild-type virus. In contrast, the truncation mutant lacking the C-terminal 166 amino acids of NSP1 replicated poorly, suggesting that the C-terminal region of NSP1 plays critical roles in viral replication. The system reported here will allow generation of engineered recombinant virus harboring desired mutations, increase our understanding of the molecular biology of human RV, and facilitate development of novel therapeutics and vaccines.IMPORTANCE Reverse genetics, an approach used to generate viruses from cloned cDNA, has increased our understanding of virus biology. Worldwide research led to the development of an entirely plasmid-based reverse genetics system for the simian RV laboratory strain. Although the technique allows generation of gene-modified recombinant RVs, biological differences between animal and human RVs mean that reverse genetics systems for human RV strains are still needed. Here, we describe a reverse genetics system for the high-yield human RV strain Odelia, which replicates efficiently and is suitable for in vitro molecular studies. Monoreassortant viruses between simian and human RV strains and NSP1 mutant viruses generated by the rescue system enabled study of the biological functions of viral gene segments. This human RV reverse genetics system will facilitate study of RV biology and development of vaccines and vectors.
Collapse
|
115
|
Damtie D, Melku M, Tessema B, Vlasova AN. Prevalence and Genetic Diversity of Rotaviruses among under-Five Children in Ethiopia: A Systematic Review and Meta-Analysis. Viruses 2020; 12:E62. [PMID: 31947826 PMCID: PMC7019712 DOI: 10.3390/v12010062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Rotavirus infection is the major cause of acute gastroenteritis among children globally. Sub-Saharan Africa including Ethiopia is disproportionally affected by the disease. The aims of this review were to determine the pooled prevalence of rotavirus infection among children under-five and to identify the dominant rotavirus genotypes in Ethiopia. Twelve studies were included to estimate the pooled prevalence of rotavirus acute gastroenteritis and five studies were used to determine predominantly circulating genotypes of rotavirus. The pooled prevalence of rotavirus infection was 23% (95% CI = 22%-24%). G3 (27.1%) and P[8] (49%) were the dominant G and P types, respectively. The G8 G-type uncommon in humans but highly prevalent in cattle was also reported accounting for 1% of all cases. The major G/P combinations were G12P[8] (15.4%), G3P[6] (14.2%), G1P[8] (13.6%) and G3P[8] (12.9%) collectively accounting for 56.1% of rotavirus strains. Similar to other parts of the world, the dominance of G1, G3, P[6] and P[8] genotypes was noted in Ethiopia. The increased prevalence of G12P[8] strains observed in Ethiopia was similar to observations in other geographic regions in the post-vaccine introduction period. Thus, further studies are required on the vaccine effectiveness, genotype distribution and inter-species transmission potential of rotaviruses in Ethiopia.
Collapse
Affiliation(s)
- Debasu Damtie
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia;
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia;
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
116
|
Continuing rotavirus circulation in children and adults despite high coverage rotavirus vaccination in Finland. J Infect 2020; 80:76-83. [DOI: 10.1016/j.jinf.2019.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/26/2019] [Indexed: 12/31/2022]
|
117
|
Islam A, Hossain ME, Haider N, Rostal MK, Mukharjee SK, Ferdous J, Miah M, Rahman M, Daszak P, Rahman MZ, Epstein JH. Molecular characterization of group A rotavirus from rhesus macaques (Macaca mulatta) at human-wildlife interfaces in Bangladesh. Transbound Emerg Dis 2019; 67:956-966. [PMID: 31765042 DOI: 10.1111/tbed.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
Group A rotavirus (RVA) is an important cause of diarrhoea in people, especially children, and animals globally. Due to the segmented nature of the RVA genome, animal RVA strains have the potential to adapt to the human host through reassortment with other co-infecting human viruses. Macaques share food and habitat with people, resulting in close interaction between these two species. This study aimed to detect and characterize RVA in rhesus macaques (Macaca mulatta) in Bangladesh. Faecal samples (N = 454) were collected from apparently healthy rhesus macaques from nine different sites in Bangladesh between February and March 2013. The samples were tested by one-step, real-time, reverse transcriptase-polymerase chain reaction (PCR). Four percent of samples (n = 20; 95% CI 2.7%-6.7%) were positive for RVA. RVA positive samples were further characterized by nucleotide sequence analysis of two structural protein gene fragments, VP4 (P genotype) and VP7 (G genotype). G3, G10, P[3] and P[15] genotypes were identified and were associated as G3P[3], G3P[15] and G10P[15]. The phylogenetic relationship between macaque RVA strains from this study and previously reported human strains indicates possible transmission between humans and macaques in Bangladesh. To our knowledge, this is the first report of detection and characterization of rotaviruses in rhesus macaques in Bangladesh. These data will not only aid in identifying viral sharing between macaques, human and other animals, but will also improve the development of mitigation measures for the prevention of future rotavirus outbreaks.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, USA.,Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, Vic., Australia
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Najmul Haider
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | | | - Sanjoy Kumar Mukharjee
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY, USA.,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafizur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Mohammed Ziaur Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
118
|
Motamedi-Rad M, Farahmand M, Arashkia A, Jalilvand S, Shoja Z. VP7 and VP4 genotypes of rotaviruses cocirculating in Iran, 2015 to 2017: Comparison with cogent sequences of Rotarix and RotaTeq vaccine strains before their use for universal mass vaccination. J Med Virol 2019; 92:1110-1123. [PMID: 31774174 DOI: 10.1002/jmv.25642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022]
Abstract
The present study was conducted to analyze the genotypic diversity of circulating species A rotavirus (RVA) strains in Iran and also to investigate comparative analysis between the genotypes of VP4 and VP7 of cocirculating RVA and vaccine strains before the vaccine is introduced in the national immunization program. The G3-lineage I was found in this study as the most common G genotype which was followed by G9-lineage III, G1-lineages I, II, G12-lineage III, G2-lineage IV, and G4-lineage I. Also, P[8]-lineages III, IV was found as the predominant P genotype which was followed by P[4]-lineage V, and P[6]-lineage I. Overally, G3P[8] was determined as the most common combination. Moreover, the analysis of the VP7 antigenic epitopes showed that several amino acid differences existed between circulating Iranian and the vaccine strains. The comparison of genotype G1 of Iranian and vaccine strains (RotaTeq and Rotarix), and genotypes G2, G3, and G4 of Iranian and RotaTeq vaccine strains revealed three to five amino acids differences on the VP7 antigenic epitopes. Furthermore, analyzing of the VP8* epitopes of Iranian P[8] strains indicated that they contained up to 11 and 14 amino acid differences with Rotarix and RotaTeq, respectively. Based on different patterns of amino acid substitutions in circulating and vaccine strains, the emergence of antibody escaping mutants and potentially the decrease of immune protection might ensue in vaccinated children. However, considering the broad cross-protective activity of RVA vaccines, their efficacy should be monitored after the introduction in Iran.
Collapse
Affiliation(s)
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
119
|
Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. INFECTION GENETICS AND EVOLUTION 2019; 78:104133. [PMID: 31812761 DOI: 10.1016/j.meegid.2019.104133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022]
Abstract
Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.
Collapse
|
120
|
Shrivastava AK, Reddy NS, Giri S, Sahu PS, Das M, Mohakud NK, Das RR. Burden and Molecular Epidemiology of Rotavirus Causing Diarrhea among Under-Five Children: A Hospital-based Study from Eastern India. J Glob Infect Dis 2019; 11:147-152. [PMID: 31849435 PMCID: PMC6906892 DOI: 10.4103/jgid.jgid_16_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
Background Rotavirus (RVA) causes severe gastroenteritis in under-five children, and there are many diverse strains of the virus that are localized to different parts of the world. Objectives To study the burden and molecular epidemiology of RVA causing gastroenteritis among children from Eastern India. Materials and Methods This hospital-based cross-sectional study included children under-five with gastroenteritis. Demographic and clinical parameters were recorded in a predesigned pro forma. Stool samples collected from these children were initially screened for RVA VP6 antigen by enzyme immunoassay (EIA). Each EIA-positive sample was then subjected to RNA extraction, followed by reverse transcription, and heminested multiplex polymerase chain reaction for genotyping of RVA strains. Results Of 320 included children, RVA was detected in 30.62% (98/320) cases by EIA. The highest incidence for RVA-positive cases (34.61%) was observed among children in the age group of 24-36 months, followed by 0-12 months (33.04%). Of the 97 completely typed samples, single genotype was detected in 85 (87.62%) samples with either G (VP7) or P (VP4) types. However, mixed genotypes were detected in 12 (11.21%) samples. G3P[8] (44.09%) was the most common genotype, followed by G1P[8] (32.65%), G2[P4] (5.10%), G1[P6] (3.06%), and G9[P4] (1.02%). Conclusions The present study found RVA positivity in 30.62% of children with gastroenteritis, with the highest burden among 24-36 months old. The predominant genotypes were G1, G3, and P[8]. Further large-scale/multicentric studies should be conducted to document the diversity of circulating RVA genotypes in this region for giving inputs for vaccination strategy.
Collapse
Affiliation(s)
- Arpit Kumar Shrivastava
- Department of Biotechnology, Infection Biology Laboratory, KIIT Deemed to be University, Vellore, Tamil Nadu, India
| | - N Samarasimha Reddy
- Division of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, The Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Mirabai Das
- Department of Health, Kalinga Institute of Social Sciences, KISS University, Bhubaneswar, Odisha, India
| | - Nirmal Kumar Mohakud
- Department of Paediatrics, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rashmi Ranjan Das
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
121
|
Degiuseppe JI, Stupka JA. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine 2019; 38:733-740. [PMID: 31771863 DOI: 10.1016/j.vaccine.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND During the last decade, most of Latin American and the Caribbean (LAC) countries have implemented oral live rotavirus vaccines in their national vaccination programs with remarkable results. However, it has been suggested that massive vaccination could lead to the replacement of circulating genotypes or the emergence of new variants or neutralizing antibodies escape mutants, which may reduce the effectiveness of the vaccine. The objective was to analyze the genetic diversity of Group A rotavirus before and after the introduction of universal vaccination in LAC. METHODS We conducted a systematic review of studies published in PubMed, Scielo and LILACS. There were considered only LAC countries with rotavirus massive vaccination strategy which had described circulating genotypes data in children under 5 years of age, either for surveillance or vaccine effectiveness purposes, from 2001 to 2017. Systematic review stages were carried out following the recommendations of PRISMA. RESULTS Of the 18 countries that included any of the two licensed rotavirus vaccines in their national schedules since 2006, only 7 (~39%) presented studies of RVA genetic diversity before and after implementation, and met the inclusion criteria. Four of them (Argentina, Brazil, Colombia and Nicaragua) experienced a rapid switch from Wa-like to DS-1-like strains. Also, G1P[8] association, considered the most predominant worldwide in the pre-vaccination era, decreased significantly and was only frequently detected in Venezuela and Nicaragua. No defined pattern of emergence at high frequencies of unusual associations was observed in the post vaccination period, except for some evidence of G9P[4] in Colombia, G3P[6] and G1P[4] in Nicaragua. CONCLUSIONS Even though the evidence shows a DS-1-like change trend, data from studies conducted in Latin America and the Caribbean are diverse and still not sufficient to assess the impact of vaccines on viral ecology or if genetic diversity is influenced by natural mechanisms of fluctuation.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina.
| | - Juan Andrés Stupka
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| |
Collapse
|
122
|
Malakalinga JJ, Misinzo G, Msalya GM, Kazwala RR. Rotavirus Burden, Genetic Diversity and Impact of Vaccine in Children under Five in Tanzania. Pathogens 2019; 8:pathogens8040210. [PMID: 31671824 PMCID: PMC6963457 DOI: 10.3390/pathogens8040210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 01/17/2023] Open
Abstract
In Tanzania, rotavirus infections are responsible for 72% of diarrhea deaths in children under five. The Rotarix vaccine was introduced in early 2013 to mitigate rotavirus infections. Understanding the disease burden and virus genotype trends over time is important for assessing the impact of rotavirus vaccine in Tanzania. When assessing the data for this review, we found that deaths of children under five declined after vaccine introduction, from 8171/11,391 (72% of diarrhea deaths) in 2008 to 2552/7087 (36% of diarrhea deaths) in 2013. Prior to vaccination, the prevalence of rotavirus infections in children under five was 18.1–43.4%, 9.8–51%, and 29–41% in Dar es Salaam, Mwanza and Tanga, respectively, and after the introduction of vaccines, these percentages declined to 17.4–23.5%, 16–19%, and 10–29%, respectively. Rotaviruses in Tanzania are highly diverse, and include genotypes of animal origin in children under five. Of the genotypes, 10%, 28%, and 7% of the strains are untypable in Dar es Salaam, Tanga, and Zanzibar, respectively. Mixed rotavirus genotype infection accounts for 31%, 29%, and 12% of genotypes in Mwanza, Tanga and Zanzibar, respectively. The vaccine effectiveness ranges between 53% and 75% in Mwanza, Manyara and Zanzibar. Rotavirus vaccination has successfully reduced the rotavirus burden in Tanzania; however, further studies are needed to better understand the relationship between the wildtype strain and the vaccine strain as well as the zoonotic potential of rotavirus in the post-vaccine era.
Collapse
Affiliation(s)
- Joseph J Malakalinga
- Food and Microbiology Laboratory, Tanzania Bureau of Standards, Ubungo Area, Morogoro Road/Sam Nujoma Road, P.O. Box 9524, Dar es Salaam, Tanzania.
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa (ACE), Sokoine University of Agriculture (SUA), P.O. Box 3297, Chuo Kikuu, SUA, Morogoro, Tanzania.
| | - Gerald Misinzo
- Southern African Centre for Infectious Disease Surveillance (SACIDS), Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa (ACE), Sokoine University of Agriculture (SUA), P.O. Box 3297, Chuo Kikuu, SUA, Morogoro, Tanzania.
| | - George M Msalya
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania.
| | - Rudovick R Kazwala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania.
| |
Collapse
|
123
|
Tatte VS, Maran D, Walimbe AM, Gopalkrishna V. Rotavirus G9P[4], G9P[6] and G1P[6] strains isolated from children with acute gastroenteritis in Pune, western India, 2013-2015: evidence for recombination in genes encoding VP3, VP4 and NSP1. J Gen Virol 2019; 100:1605-1630. [PMID: 31553304 DOI: 10.1099/jgv.0.001323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species A rotaviruses (RVAs) are genetically diverse pathogens. These are the most evolutionarily adaptable organisms, with a multitude of mechanisms for evolutionary change. To date, full-genome classification has been proved to be an excellent tool for studying the evolution of unusual rotavirus strains. As limited data are available from Pune (Maharashtra), western India, the current study was undertaken with the aim of understanding the genetic diversity in three (G1P[6], G9P[4] and G9P[4]) unusual RVA strains circulating in Pune, India during 2013-2015. Full-genome analysis of these strains classified them as G1-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, G9-P[4]-I2-R2-C2-[M1-M2_R]-[A1-A2_R]-N2-T2-E6-H2 and G9-[P4-P6_R]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequencing and phylogenetic analysis of the structural and non-structural genes of these unusual RVA strains showed nucleotide/amino acid identities of 82.3-98.5 %/77.3-99.8 % and 86.6-97.6 %/89.6-97.8 % between the strains of the study. Evidence of recombination events was found within the genes encoding VP3, VP4 and NSP1, which showed a combination of genetic information for genogroup 1 [M1/P[6]/A1] and genogroup 2 [M2/P[4]/A2] strains. This study will facilitate future investigations into the molecular pathogenesis of such RVAs as the exchange of whole or partial genetic material between rotaviruses through recombination contributes directly to their diversification, adaptation and evolution.
Collapse
Affiliation(s)
- Vaishali S Tatte
- Enteric Viruses Group, National Institute of Virology, Pune, India
| | - Deepthy Maran
- Enteric Viruses Group, National Institute of Virology, Pune, India
| | - Atul M Walimbe
- Bioinformatics Group, National Institute of Virology, Pune, India
| | | |
Collapse
|
124
|
Vrdoljak M, Gužvinec M, Trkulja V, Butić I, Ivić I, Krželj V, Tonkić M, Hegeduš Jungvirth M, Payerl Pal M, Tešović G. Distribution of rotavirus genotypes in three Croatian regions among children ≤5 years of age (2012-2014). Int J Infect Dis 2019; 89:3-9. [PMID: 31521853 DOI: 10.1016/j.ijid.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/17/2019] [Accepted: 09/09/2019] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Rotavirus is the major cause of severe diarrhea in young children worldwide. In countries like Croatia, where rotavirus vaccine has not been introduced in the national immunization program, prospective surveillance is necessary to establish the diversity of rotavirus strains. The aim of this study was to describe the prevalence and geographical distribution of rotavirus strains in Croatia and to detect the possible emergence of novel strains. METHODS The study was conducted among children ≤5 years of age with acute gastroenteritis at three hospitals located in different geographical regions of Croatia, during the years 2012 to 2014. Rotavirus was detected in stools using an immunochromatographic assay and then sent for further molecular analysis. RESULTS Genotyping of 822 rotaviruses showed that the predominant circulating strain was G1P[8] (61.9%), followed by G2P[4] (19.5%), G1P[4] (3.9%), and G3P[8] (2.9%). A high prevalence of reassortants among common human rotavirus genotypes was detected (7.7%). Possible zoonotic reassortants were found, including G8 and G6 strains. The latter is described for the first time in Croatia. CONCLUSIONS This study represents pre-vaccination data that are important for decisions regarding immunization strategies in Croatia. The high prevalence of 'common' rotavirus strains circulating in Croatia may advocate for rotavirus vaccine introduction, but further surveillance is necessary to monitor the possible emergence of novel genotypes.
Collapse
Affiliation(s)
- Maja Vrdoljak
- Department of Pediatric Infectious Diseases, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10000 Zagreb, Croatia.
| | - Marija Gužvinec
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10000 Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Iva Butić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10000 Zagreb, Croatia
| | - Ivo Ivić
- Department of Infectious Diseases, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia; School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia
| | - Vjekoslav Krželj
- School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia; Department of Pediatrics, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Marija Tonkić
- School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia; Department of Clinical Microbiology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia
| | - Marija Hegeduš Jungvirth
- Department of Pediatrics, County Hospital Čakovec, Ivana Gorana Kovačića 1E, 40000 Čakovec, Croatia
| | - Marina Payerl Pal
- Institute of Public Health, County Međimurje, Ivana Gorana Kovačića 1E, 40000 Čakovec, Croatia
| | - Goran Tešović
- Department of Pediatric Infectious Diseases, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10000 Zagreb, Croatia; School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
125
|
Roczo-Farkas S, Kirkwood CD, Cowley D, Barnes GL, Bishop RF, Bogdanovic-Sakran N, Boniface K, Donato CM, Bines JE. The Impact of Rotavirus Vaccines on Genotype Diversity: A Comprehensive Analysis of 2 Decades of Australian Surveillance Data. J Infect Dis 2019; 218:546-554. [PMID: 29790933 DOI: 10.1093/infdis/jiy197] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Introduction of rotavirus vaccines into national immunization programs (NIPs) could result in strain selection due to vaccine-induced selective pressure. This study describes the distribution and diversity of rotavirus genotypes before and after rotavirus vaccine introduction into the Australian NIP. State-based vaccine selection facilitated a unique comparison of diversity in RotaTeq and Rotarix vaccine states. Methods From 1995 to 2015, the Australian Rotavirus Surveillance Program conducted genotypic analysis on 13051 rotavirus-positive samples from children <5 years of age, hospitalized with acute gastroenteritis. Rotavirus G and P genotypes were determined using serological and heminested multiplex reverse-transcription polymerase chain reaction assays. Results G1P[8] was the dominant genotype nationally in the prevaccine era (1995-2006). Following vaccine introduction (2007-2015), greater genotype diversity was observed with fluctuating genotype dominance. Genotype distribution varied based on the vaccine implemented, with G12P[8] dominant in states using RotaTeq, and equine-like G3P[8] and G2P[4] dominant in states and territories using Rotarix. Conclusions The increased diversity and differences in genotype dominance observed in states using RotaTeq (G12P[8]), and in states and territories using Rotarix (equine-like G3P[8] and G2P[4]), suggest that these vaccines exert different immunological pressures that influence the diversity of rotavirus strains circulating in Australia.
Collapse
Affiliation(s)
- Susie Roczo-Farkas
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington
| | - Daniel Cowley
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Graeme L Barnes
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville
| | - Ruth F Bishop
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Nada Bogdanovic-Sakran
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Karen Boniface
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Celeste M Donato
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Julie E Bines
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, Seattle, Washington
| |
Collapse
|
126
|
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. J Virol 2019; 93:JVI.00941-19. [PMID: 31243129 PMCID: PMC6714814 DOI: 10.1128/jvi.00941-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023] Open
Abstract
Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human. Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission. IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Collapse
|
127
|
Sadiq A, Bostan N, Bokhari H, Matthijnssens J, Yinda KC, Raza S, Nawaz T. Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015-2016. PLoS One 2019; 14:e0220387. [PMID: 31361761 PMCID: PMC6667158 DOI: 10.1371/journal.pone.0220387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVA) are one of the major causes of acute gastroenteritis (AGE) in young children worldwide. Owing to lack of proper surveillance programs and health facilities, developing countries of Asia and Africa carry a disproportionately heavy share of the RVA disease burden. The aim of this hospital-based study was to investigate the circulation of RVA genotypes in Rawalpindi and Islamabad, Pakistan in 2015 and 2016, prior to the implementation of RVA vaccine. 639 faecal samples collected from children under 10 years of age hospitalized with AGE were tested for RVA antigen by ELISA. Among 171 ELISA positive samples, 143 were successfully screened for RT-PCR and sequencing. The prevalence of RVA was found to be 26.8% with the highest frequency (34.9%) found among children of age group 6-11 months. The most predominant circulating genotypes were G3P[8] (22.4%) followed by G12P[6] (20.3%), G2P[4] (12.6%), G1P[8] (11.9%), G9P[6] (11.9%), G3P[4] (9.1%), G1P[6] (4.2%), G9P[8] (4.2%), and G3P[6] (0.7%). A single mixed genotype G1G3P[8] was also detected. The findings of this study provide baseline data, that will help to assess if future vaccination campaigns using currently available RVA vaccine will reduce RVA disease burden and instigate evolutionary changes in the overall RVA biology. The high prevalence of RVA infections in Pakistan require to improve and strengthen the surveillance and monitoring system for RVA. This will provide useful information for health authorities in planning public health care strategies to mitigate the disease burden caused by RVA.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Kwe Claude Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Saqlain Raza
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Tayyab Nawaz
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
128
|
Development of an oligonucleotide-based microarray for the detection of foodborne viruses. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
129
|
Lee B, Dickson DM, deCamp AC, Ross Colgate E, Diehl SA, Uddin MI, Sharmin S, Islam S, Bhuiyan TR, Alam M, Nayak U, Mychaleckyj JC, Taniuchi M, Petri WA, Haque R, Qadri F, Kirkpatrick BD. Histo-Blood Group Antigen Phenotype Determines Susceptibility to Genotype-Specific Rotavirus Infections and Impacts Measures of Rotavirus Vaccine Efficacy. J Infect Dis 2019; 217:1399-1407. [PMID: 29390150 PMCID: PMC5894073 DOI: 10.1093/infdis/jiy054] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 11/20/2022] Open
Abstract
Background Lewis and secretor histo–blood group antigens (HBGAs) have been associated with decreased susceptibility to P[8] genotype rotavirus (RV) infections. Efficacy of vaccines containing attenuated P[8] strains is decreased in low-income countries. Host phenotype might impact vaccine efficacy (VE) by altering susceptibility to vaccination or RV diarrhea (RVD). We performed a substudy in a monovalent RV vaccine (RV1) efficacy trial in Bangladesh to determine the impact of Lewis and secretor status on risk of RVD and VE. Methods In infants randomized to receive RV1 or no RV1 at 10 and 17 weeks with 1 year of complete active diarrheal surveillance, we performed Lewis and secretor phenotyping and genotyped the infecting strain of each episode of RVD. Results A vaccine containing P[8] RV protected secretors and nonsecretors similarly. However, unvaccinated nonsecretors had a reduced risk of RVD (relative risk, 0.53 [95% confidence interval, .36–.79]) mediated by complete protection from P[4] but not P[8] RVs. This effect reduced VE in nonsecretors to 31.7%, compared to 56.2% among secretors, and decreased VE for the overall cohort. Conclusions Host HBGA status may impact VE estimates by altering susceptibility to RV in unvaccinated children; future trials should therefore account for HBGA status. Clinical Trials Registration NCT01375647.
Collapse
Affiliation(s)
- Benjamin Lee
- Vaccine Testing Center, 1Department of Pediatrics
| | - Dorothy M Dickson
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - E Ross Colgate
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| | - Sean A Diehl
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| | | | - Salma Sharmin
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Shahidul Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | | | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Uma Nayak
- Center for Public Health Genomics and Department of Public Health Sciences
| | | | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka
| | - Beth D Kirkpatrick
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
130
|
Bennour H, Fodha I, Bouazizi A, Ben Hamida-Rebaï M, Jerbi A, Fredj MBH, Lakhal S, Dhiflaoui A, Abdelberi S, Abbassi F, Boujaafar N, Fathallah A, Abroug S, Khlifa M, Trabelsi A. Molecular characterization of group A rotavirus among children aged under 5 years in Tunisia, 2015-2017. J Med Microbiol 2019; 68:1240-1243. [PMID: 31237533 DOI: 10.1099/jmm.0.001031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to report the molecular characterization of human group A rotaviruses (RVAs) circulating in Tunisia. Stool specimens were collected from children under 5 years of age who had been hospitalized or were consulting for gastroenteritis in Tunisian hospitals between 2015 and 2017. All samples were screened by reverse-transcription polymerase chain reaction (RT-PCR) for the detection of the VP6 gene specific for RVA. RVA-positive samples were further analysed for G/P genotyping by semi-nested multiplex RT-PCR. Among 454 tested samples, 72 (15.8 %) were positive for RVA. G1P[8] was the most prevalent detected strain (41.7%), followed by G9P[8] (32.8%), G2P[4] (7.5%), G12P[8] (7.5%), G1P[6] (3.0%), G2P[8] (1.5%) and G3P[8] (1.5%), with mixed infections in 4.5 % of cases. In the absence of a national anti-rotavirus vaccination strategy, RVAs remain the primary aetiological agent for gastroenteritis in Tunisian children.
Collapse
Affiliation(s)
- Haifa Bennour
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Imene Fodha
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Asma Bouazizi
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Meriam Ben Hamida-Rebaï
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amira Jerbi
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mouna Ben Hadj Fredj
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Sciences and Techniques, University of Kairouan, Kairouan, Tunisia
| | - Samia Lakhal
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ameni Dhiflaoui
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Shada Abdelberi
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Fairouz Abbassi
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | | | - Akila Fathallah
- Parasitology Department, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Saoussen Abroug
- Pediatric Unit, Sahloul University Hospital, Sousse, Tunisia
| | - Monia Khlifa
- Pediatric Unit, Regional Hospital of Msaken, Sousse, Tunisia
| | - Abdelhalim Trabelsi
- Epidemiology and Immunogenetics of Viral Infections LR14SP02, Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
131
|
Damanka SA, Agbemabiese CA, Dennis FE, Lartey BL, Adiku TK, Enweronu-Laryea CC, Armah GE. Genetic analysis of Ghanaian G1P[8] and G9P[8] rotavirus A strains reveals the impact of P[8] VP4 gene polymorphism on P-genotyping. PLoS One 2019; 14:e0218790. [PMID: 31242245 PMCID: PMC6594640 DOI: 10.1371/journal.pone.0218790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
The World Health Organisation rotavirus surveillance networks have documented and shown eclectic geographic and temporal diversity in circulating G- and P- genotypes identified in children <5 years of age. To effectively monitor vaccine performance and effectiveness, robust molecular and phylogenetic techniques are essential to detect novel strain variants that might emerge due to vaccine pressure. This study inferred the phylogenetic history of the VP7 and VP4 genes of previously non-typeable strains and provided insight into the diversity of P[8] VP4 sequences which impacted the outcome of our routine VP4 genotyping method. Near-full-length VP7 gene and the VP8* fragment of the VP4 gene were obtained by Sanger sequencing and genotypes were determined using RotaC v2.0 web-based genotyping tool. The genotypes of the 57 rotavirus-positive samples with sufficient stool was determined. Forty-eight of the 57 (84.2%) had the P[8] specificity, of which 43 (89.6%) were characterized as P[8]a subtype and 5 (10.4%) as the rare OP354-like subtype. The VP7 gene of 27 samples were successfully sequenced and their G-genotypes confirmed as G1 (18/27) and G9 (9/27). Phylogenetic analysis of the P[8]a sequences placed them in subcluster IIIc within lineage III together with contemporary G1P[8], G3P[8], G8P[8], and G9P[8] strains detected globally from 2006-2016. The G1 VP7 sequences of the study strains formed a monophyletic cluster with African G1P[8] strains, previously detected in Ghana and Mali during the RotaTeq vaccine trial as well as Togo. The G9 VP7 sequences of the study strains formed a monophyletic cluster with contemporary African G9 sequences from neighbouring Burkina Faso within the major sub-cluster of lineage III. Mutations identified in the primer binding region of the VP8* sequence of the Ghanaian P[8]a strains may have resulted in the genotyping failure since the newly designed primer successfully genotyped the previously non-typeable P[8] strains. In summary, the G1, G9, and P[8]a sequences were highly similar to contemporary African strains at the lineage level. The study also resolved the methodological challenges of the standard genotyping techniques and highlighted the need for regular evaluation of the multiplex PCR-typing method especially in the post-vaccination era. The study further highlights the need for regions to start using sequencing data from local rotavirus strains to design and update genotyping primers.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
132
|
Lorestani N, Moradi A, Teimoori A, Masodi M, Khanizadeh S, Hassanpour M, Javid N, Ardebili A, Tabarraei A, Nikoo HR. Molecular and serologic characterization of rotavirus from children with acute gastroenteritis in northern Iran, Gorgan. BMC Gastroenterol 2019; 19:100. [PMID: 31221096 PMCID: PMC6585024 DOI: 10.1186/s12876-019-1025-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The pattern and distribution of human rotavirus genotypes in young children in developing countries play an important role in epidemiological studies, as well as providing a strategy for the development of future rotavirus vaccine. METHODS We evaluated stool samples from 349 children with acute gastroenteritis from Northern Iran (Gorgan city, Golestan province). Polyacrylamide Gel Electrophoresis (PAGE) and Latex Agglutination Test (LAT) were utilized to determine the prevalence of human rotavirus in fecal samples. Moreover semi-multiplex RT-PCR technique was carried out in order to determine the P and G genotypes of human rotavirus in rotavirus-positive samples. RESULTS A total of 46 rotavirus-positive samples were G and P genotyped. Whereas 28 (60.8%) fecal specimens contained only one rotavirus strain, 14 (30.4%) were mixed rotavirus infections and 4 (8.8%) was non-typeable. Overall, during the study, 57.82% of strains identified as genotype G1, G2 (18.70%), G3 (4.69%), G4 (3.13%), G8 (3.13%), G9 (6.26%) and non-typeable G (6.26%). From all these mentioned rotavirus strains, 46 were characterized as P [8] (97.80%) and P [4] (2.20%).Our analysis of the G and P genotyping of strains from all 46 rotavirus-infected children has revealed that 4/46(6.26%) of G type strains were non-typeable. The predominant single G/P combination was G1P [8] (57.82%), followed by, G2P [8] (16.98%), G2P [4] (1.72%), G3P [8] (4.69%), G4P [8] (3.13%) G8P [8] (3.13%), G9P [8] (6.26%) and four cases of non-typeable G (6.26%). Rotavirus was detected in 39 specimens (11.17%) by PAGE and in 38 specimens (10.88%) by LAT. Both tests were 100% specific; however, the LAT was 82.61% sensitive compared to the PAGE, which was 84.78% sensitive. CONCLUSIONS The results suggest that to characterize rotavirus strains as well as design new effective vaccines for children with acute gastroenteritis, a large-scale study is needed in future.
Collapse
Affiliation(s)
- Nazanin Lorestani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahhab Moradi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Teimoori
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maha Masodi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mina Hassanpour
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naemeh Javid
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdollah Ardebili
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
133
|
Damanka SA, Kwofie S, Dennis FE, Lartey BL, Agbemabiese CA, Doan YH, Adiku TK, Katayama K, Enweronu-Laryea CC, Armah GE. Whole genome characterization and evolutionary analysis of OP354-like P[8] Rotavirus A strains isolated from Ghanaian children with diarrhoea. PLoS One 2019; 14:e0218348. [PMID: 31199823 PMCID: PMC6570025 DOI: 10.1371/journal.pone.0218348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022] Open
Abstract
In 2010, the rare OP354-like P[8]b rotavirus subtype was detected in children less than 2 years old in Ghana. In this follow-up study, to provide insight into the evolutionary history of the genome of Ghanaian P[8]b strains RVA/Human-wt/GHA/GHDC949/2010/G9P[8] and RVA/Human-wt/GHA/GHM0094/2010/G9P[8] detected in an infant and a 7-month old child hospitalised for acute gastroenteritis, we sequenced the complete genome using both Sanger sequencing and Illumina MiSeq technology followed by phylogenetic analysis of the near-full length sequences. Both strains possessed the Wa-like/genotype 1 constellation G9P[8]b-I1-R1-C1-M1-A1-N1-T1-E1-H1. Sequence comparison and phylogenetic inference showed that both strains were identical at the lineage level throughout the 11 genome segments. Their VP7 sequences belonged to the major sub-lineage of the G9-lineage III whereas their VP4 sequences belonged to P[8]b cluster I. The VP7 and VP4 genes of the study strains were closely related to a Senegalese G9P[8]b strain detected in 2009. In the remaining nine genome segments, both strains consistently clustered together with Wa-like RVA strains possessing either P[8]a or P[8]b mostly of African RVA origin. The introduction of a P[8]b subtype VP4 gene into the stable Wa-like strain backbone may result in strains that might propagate easily in the human population, with a potential to become an important public health concern, especially because it is not certain if the monovalent rotavirus vaccine (Rotarix) used in Ghana will be efficacious against such strains. Our analysis of the full genomes of GHM0094 and GHDC949 adds to knowledge of the genetic make-up and evolutionary dynamics of P[8]b rotavirus strains.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- * E-mail:
| | - Sabina Kwofie
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- Department of Microbiology, School of Biomedical and Allied Health Science, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo, Japan
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
134
|
Shrestha S, Thakali O, Raya S, Shrestha L, Parajuli K, Sherchand JB. Acute gastroenteritis associated with Rotavirus A among children less than 5 years of age in Nepal. BMC Infect Dis 2019; 19:456. [PMID: 31117969 PMCID: PMC6532269 DOI: 10.1186/s12879-019-4092-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rotavirus gastroenteritis is a major public health problem in Nepal. This study was conducted to obtain information associated with Rotavirus gastroenteritis and to perform genotyping of Rotavirus A. METHODS Hospital based cross sectional study was conducted from January to December 2017 among children less than 5 years of age attending Kanti Children's Hospital and Tribhuvan University Teaching Hospital. Rotavirus A antigen detection was performed by Enzyme Linked Immunosorbent Assay (ELISA) using ProSpecT Rotavirus Microplate Assay. Rotavirus A positive strains were further confirmed by genotyping using Reverse-Transcription Polymerase Chain Reaction (RT-PCR). RESULTS A total of 1074 stool samples were collected, of them 770 were hospitalized, and 304 were non-hospitalized cases. Rotavirus A infection was found in 28% of children with infection rate higher in hospitalized (34%) than in non-hospitalized (14%) children. Rotavirus A detection was higher in male (31%) than in female (24%), but this was statistically not significant (p > 0.05). Rotavirus A positivity was higher in children of age group 0-23 months, this result was statistically not significant (p > 0.05) with higher frequency found in the months of November, December, January, February and March (p < 0.05). On the basis of molecular analysis of Rotavirus A genotyping, G12P[6] (46.39%) was found to be the predominant followed by G1P[8] (35.05%), G3P[8] (7.21%) and G1P[6] (5.15%) while 4.12% was mixed infection and 1.03% was partially typed (p < 0.05). CONCLUSION Rotavirus A infection occurred throughout the year, but the infection was significantly higher during the month of March. The higher frequency of rotavirus infection was observed among children of age group 0-23 months; however this was not found to be statistically significant. In this study, G12P[6] is predominant genotype observed. The results of genotyping are essential for the introduction of Rotavirus vaccine in Nepal.
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Clinical Microbiology and Public Health Research Laboratory, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Ocean Thakali
- Department of Clinical Microbiology and Public Health Research Laboratory, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Sunayana Raya
- Department of Clinical Microbiology and Public Health Research Laboratory, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Laxman Shrestha
- Department of Child Health, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Keshab Parajuli
- Department of Clinical Microbiology and Public Health Research Laboratory, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | - Jeevan Bahadhur Sherchand
- Department of Clinical Microbiology and Public Health Research Laboratory, Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
135
|
Rojas M, Dias HG, Gonçalves JLS, Manchego A, Rosadio R, Pezo D, Santos N. Genetic diversity and zoonotic potential of rotavirus A strains in the southern Andean highlands, Peru. Transbound Emerg Dis 2019; 66:1718-1726. [PMID: 31002476 DOI: 10.1111/tbed.13207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Interspecies transmission is an important mechanism of evolution and contributes to rotavirus A (RVA) diversity. In order to evaluate the detection frequency, genetic diversity, epidemiological characteristics and zoonotic potential of RVA strains in faecal specimens from humans and animals cohabiting in the same environment in the department of Cusco, Peru, by molecular analysis, 265 faecal specimens were obtained from alpacas, llamas, sheep and shepherd children, and tested for RVA by RT-PCR. Genotyping was performed by multiplex PCR and sequence analysis. Rotavirus A was detected in 20.3% of alpaca, 47.5% of llama, 100% of sheep and 33.3% of human samples. The most common genetic constellations were G3-P[40]-I8-E3-H6 in alpacas, G1/G3-P[8]-I1-E1-H1 in llamas, G1/G3/G35-P[1]/P[8]-I1-E1-H1 in sheep and G3-P[40]-I1/I8-E3-H1 in humans. The newly described genotypes P[40] and P[50] were identified in all host species, including humans. Genotyping showed that the majority of samples presented coinfection with two or more RVA strains. These data demonstrate the great genetic diversity of RVA in animals and humans in Cusco, Peru. Phylogenetic analysis suggested that the strains represent zoonotic transmission among the species studied. Due to the characteristics of the human and animal populations in this study (cohabitation of different host species in conditions of poor sanitation and hygiene), the occurrence of zoonoses is a real possibility.
Collapse
Affiliation(s)
- Miguel Rojas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Helver G Dias
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Luiz S Gonçalves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Manchego
- Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raul Rosadio
- Laboratorio de Microbiologia y Parasitologia, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Danilo Pezo
- Instituto Veterinario de Investigaciones Tropicales y de Altura, Cusco, Peru
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
136
|
Athiyyah AF, Utsumi T, Wahyuni RM, Dinana Z, Yamani LN, Soetjipto, Sudarmo SM, Ranuh RG, Darma A, Juniastuti, Raharjo D, Matsui C, Deng L, Abe T, Doan YH, Fujii Y, Shimizu H, Katayama K, Lusida MI, Shoji I. Molecular Epidemiology and Clinical Features of Rotavirus Infection Among Pediatric Patients in East Java, Indonesia During 2015-2018: Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3. Front Microbiol 2019; 10:940. [PMID: 31130934 PMCID: PMC6510320 DOI: 10.3389/fmicb.2019.00940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Group A rotavirus (RVA) is the most important cause of severe gastroenteritis among children worldwide, and effective RVA vaccines have been introduced in many countries. Here we performed a molecular epidemiological analysis of RVA infection among pediatric patients in East Java, Indonesia, during 2015-2018. A total of 432 stool samples were collected from hospitalized pediatric patients with acute gastroenteritis. None of the patients in this cohort had been immunized with an RVA vaccine. The overall prevalence of RVA infection was 31.7% (137/432), and RVA infection was significantly more prevalent in the 6- to 11-month age group than in the other age groups (P < 0.05). Multiplex reverse transcription-PCR (RT-PCR) revealed that the most common G-P combination was equine-like G3P[8] (70.8%), followed by equine-like G3P[6] (12.4%), human G1P[8] (8.8%), G3P[6] (1.5%), and G1P[6] (0.7%). Interestingly, the equine-like strains were exclusively detected until May 2017, but in July 2017 they were completely replaced by a typical human genotype (G1 and G3), suggesting that the dynamic changes in RVA genotypes from equine-like G3 to typical human G1/G3 in Indonesia can occur even in the country with low RVA vaccine coverage rate. The mechanism of the dynamic changes in RVA genotypes needs to be explored. Infants and children with RVA-associated gastroenteritis presented more frequently with some dehydration, vomiting, and watery diarrhea, indicating a greater severity of RVA infection compared to those with non-RVA gastroenteritis. In conclusion, a dynamic change was found in the RVA genotype from equine-like G3 to a typical human genotype. Since severe cases of RVA infection were prevalent, especially in children aged 6 to 11 months or more generally in those less than 2 years old, RVA vaccination should be included in Indonesia's national immunization program.
Collapse
Affiliation(s)
- Alpha Fardah Athiyyah
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Takako Utsumi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rury Mega Wahyuni
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Zayyin Dinana
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Laura Navika Yamani
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Andy Darma
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Child Health, Soetomo Hospital, Airlangga University, Surabaya, Indonesia
| | - Juniastuti
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dadik Raharjo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Chieko Matsui
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lin Deng
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Abe
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yen Hai Doan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Kitasato Institute for Life Sciences and Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Maria Inge Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Ikuo Shoji
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
137
|
Pérez-Ortín R, Vila-Vicent S, Carmona-Vicente N, Santiso-Bellón C, Rodríguez-Díaz J, Buesa J. Histo-Blood Group Antigens in Children with Symptomatic Rotavirus Infection. Viruses 2019; 11:E339. [PMID: 30974776 PMCID: PMC6520971 DOI: 10.3390/v11040339] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Group A rotaviruses are a major cause of acute gastroenteritis in children. The diversity and unequal geographical prevalence of rotavirus genotypes have been linked to histo-blood group antigens (HBGAs) in different human populations. In order to evaluate the role of HBGAs in rotavirus infections in our population, secretor status (FUT2+), ABO blood group, and Lewis antigens were determined in children attended for rotavirus gastroenteritis in Valencia, Spain. During three consecutive years (2013-2015), stool and saliva samples were collected from 133 children with rotavirus infection. Infecting viral genotypes and HBGAs were determined in patients and compared to a control group and data from blood donors. Rotavirus G9P[8] was the most prevalent strain (49.6%), followed by G1P[8] (20.3%) and G12P[8] (14.3%). Rotavirus infected predominantly secretor (99%) and Lewis b positive (91.7%) children. Children with blood group A and AB were significantly more prone to rotavirus gastroenteritis than those with blood group O. Our results confirm that a HBGA genetic background is linked to rotavirus P[8] susceptibility. Rotavirus P[8] symptomatic infection is manifestly more frequent in secretor-positive (FUT2+) than in non-secretor individuals, although no differences between rotavirus G genotypes were found.
Collapse
Affiliation(s)
- Raúl Pérez-Ortín
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Susana Vila-Vicent
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Noelia Carmona-Vicente
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Cristina Santiso-Bellón
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Jesús Rodríguez-Díaz
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| | - Javier Buesa
- Department of Microbiology, School of Medicine, University of Valencia and Clinical Microbiology Service, Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
138
|
Santos F, Sousa Junior E, Guerra S, Lobo P, Penha Junior E, Lima A, Vinente C, Chagas E, Justino M, Linhares A, Matthijnssens J, Soares L, Mascarenhas J. G1P[8] Rotavirus in children with severe diarrhea in the post-vaccine introduction era in Brazil: Evidence of reassortments and structural modifications of the antigenic VP7 and VP4 regions. INFECTION GENETICS AND EVOLUTION 2019; 69:255-266. [DOI: 10.1016/j.meegid.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
|
139
|
Gunawan E, Utsumi T, Wahyuni RM, Dinana Z, Sudarmo SM, Shoji I, Soetjipto, Lusida MI. Post-vaccinated asymptomatic rotavirus infections: A community profile study of children in Surabaya, Indonesia. J Infect Public Health 2019; 12:625-629. [PMID: 30837151 DOI: 10.1016/j.jiph.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/22/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Rotavirus gastroenteritis accounts for significant childhood morbidity and mortality worldwide. Vaccination using RotarixTM (GSK) and RotaTeq® (Merck) was introduced due to the tremendous disease burden. The possibility of asymptomatic infections following vaccinations was poorly understood. This study examined rotavirus cases in post-vaccinated children, their clinical manifestations and the genotypes of isolated strains. METHODS Stool samples of healthy, vaccinated children under 5 years of age in Surabaya were collected monthly for 1 year between January 2016 and February 2017. Episodes of gastroenteritis were reported, and samples were collected. Rotavirus was identified using multiplex reverse transcription Polymerase Chain Reaction (QIAGEN, Inc., Valencia, CA). Clinical manifestations were measured using the Vesikari score. The genotype was analyzed by Applied Biosystems (Foster, CA). RESULTS A total of 109 stool samples were collected from 30 subjects, of which 22 received Rotarix; 8 RotaTeq. Nine out of 109 samples were collected during diarrhea episodes of 8 subjects. Two asymptomatic rotavirus infections were identified by RT-PCR. The genotypes isolated were G1P[8] and G3P[8]. CONCLUSIONS Asymptomatic rotavirus infections can occur in post-vaccinated children. Strains identified were homologous to serotypes eliciting gastroenteritis in unvaccinated children of the same community.
Collapse
Affiliation(s)
- Emily Gunawan
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Takako Utsumi
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Rury M Wahyuni
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Zayyin Dinana
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Subijanto M Sudarmo
- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Department of Child Health, Dr. Soetomo General Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Ikuo Shoji
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Soetjipto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria I Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia; Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
140
|
Khametova KM, Alekseev KP, Yuzhakov AG, Kostina LV, Raev SA, Musienko MI, Mukhin AN, Aliper TI, Vorkunova GK, Grebennikova TV. EVALUATION OF THE MOLECULAR-BIOLOGICAL PROPERTIES OF HUMAN ROTAVIRUS A STRAIN WA. ACTA ACUST UNITED AC 2019; 64:16-22. [DOI: 10.18821/0507-4088-2019-64-1-16-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023]
Abstract
Introduction. Rоtaviruses are amоng the leading causes of severe diarrhea in children all over the Wоrld. Vaccination is considered to be the mоst effective way to cоntrоl the disease. Currently available vaccines for prevention of rоtavirus infection are based on live attenuated rotavirus strains human оr animal origin. Objectives and purposes. The aim of this investigation was to study the biological and genetic properties of an actual epidemic human rotavirus A (RVA) strain Wa G1P[8] genotype. Material and methods. RVA Wa reproduction in a monolayer continuous cell lines, purification and concentration of RVA antigen, PAAG electrophoresis and Western-Blot, electrophoresis of viral genomic RNA segments, sequencing. Results. Human RVA G1P[8] Wa strain biological and molecular genetic properties were assessed in the process of the adaptation to MARC145 continuous cell line. Cell cultured RVA antigen was purified, concentrated and then characterized by the method of PAAG electrophoresis and immunoblot. To verify RVA Wa genome identity, electrophoresis of viral genomic RNA segments was performed. The lack of accumulation of changes in the RVA Wa genome during adaptation to various cell cultures and during serial passages was demonstrated by sequencing fragments of the viral genome. Conclusion. RVA Wa strain is stable, it possesses high biological activity: it has been successfully adapted to the MARC145 cell line and RVA Wa virus titer after the adaptation reached 7,5-7,7 lg TCID50/ml. The identity of the cultivated RVA to the original strain Wa G1P[8] was confirmed.
Collapse
Affiliation(s)
- K. M. Khametova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - K. P. Alekseev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. G. Yuzhakov
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - L. V. Kostina
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - S. A. Raev
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - M. I. Musienko
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - A. N. Mukhin
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. I. Aliper
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - G. K. Vorkunova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»
| | - T. V. Grebennikova
- Ivanovsky Virology Institute, «National Research Center for Epidemiology and Microbiology named after the honorary academician NF. Gamaleya»; Peoples Frendship University of Russia (RUDN)
| |
Collapse
|
141
|
Giri S, Nair NP, Mathew A, Manohar B, Simon A, Singh T, Suresh Kumar S, Mathew MA, Babji S, Arora R, Girish Kumar CP, Venkatasubramanian S, Mehendale S, Gupte MD, Kang G. Rotavirus gastroenteritis in Indian children < 5 years hospitalized for diarrhoea, 2012 to 2016. BMC Public Health 2019; 19:69. [PMID: 30646867 PMCID: PMC6334384 DOI: 10.1186/s12889-019-6406-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background In 2016, the Government of India introduced the oral rotavirus vaccine (ROTAVAC, Bharat Biotech, India) in 4 states of India as part of the Universal Immunization Programme, and expanded to 5 more states in 2017. We report four years of data on rotavirus gastroenteritis in hospitalized children < 5 years of age prior to vaccine introduction. Methods Children from 7 sites in southern and northern India hospitalized for diarrhoea were recruited between July 2012 and June 2016. Stool samples were screened for rotavirus using enzyme immunoassay (EIA). The EIA positive samples were genotyped by reverse-transcription polymerase chain reaction. Results Of the 5834 samples from the 7 sites, 2069 (35.5%) were positive for rotavirus by EIA. Genotyping was performed for 2010 (97.1%) samples. G1P[8](56.3%), G2P[4](9.1%), G9P[4](7.6%), G9P[8](4.2%), and G12P[6](3.7%) were the common genotypes in southern India and G1P[8](36%), G9P[4](11.4%), G2P[4](11.2%), G12P[6](8.4%), and G3P[8](5.9%) in northern India. Conclusions The study highlights the high prevalence of rotavirus gastroenteritis in India and the diversity of rotavirus genotypes across different geographical regions. Pre- vaccine surveillance data is necessary to evaluate the potential change in admission rates for gastroenteritis and circulating rotavirus genotypes after vaccine introduction, thus assessing impact. Electronic supplementary material The online version of this article (10.1186/s12889-019-6406-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nayana P Nair
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ann Mathew
- Department of Paediatrics, St. Stephen's Hospital, Tis Hazari, New Delhi, India
| | - B Manohar
- Department of Paediatrics, SV Medical College, Tirupati, Andhra Pradesh, India
| | - Anna Simon
- Department of Paediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Tejinder Singh
- Department of Paediatrics, Christian Medical College, Ludhiana, Punjab, India
| | - S Suresh Kumar
- Punjagutta, Pragna Hospital, Hyderabad, Telangana, India
| | - M A Mathew
- Department of Paediatrics, Malankara Orthodox Syrian Church Medical College, Kolenchery, Kerala, India
| | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rashmi Arora
- Indian Council of Medical Research, New Delhi, India.,Present address: Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | | | | | | | - Mohan D Gupte
- Indian Council of Medical Research, New Delhi, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India. .,Present address: Translational Health Science and Technology Institute (THSTI), Faridabad, India.
| |
Collapse
|
142
|
Vojtek I, Buchy P, Doherty TM, Hoet B. Would immunization be the same without cross-reactivity? Vaccine 2018; 37:539-549. [PMID: 30591255 DOI: 10.1016/j.vaccine.2018.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Abstract
"Cross-reactivity" (the observed immune response against pathogen types not specifically targeted by the vaccine antigen composition) and "cross-protection" (clinical protection against related non-vaccine microorganism types) are vaccinology concepts that are attracting renewed interest in the context of disease prevention. National health authorities are collecting mounting evidence of the importance of cross-reactivity. For some vaccines, this has been substantiated by cross-protection data from clinical studies and/or post-licensure data, where their introduction into immunization programmes has shown beneficial impacts on disease caused by related non-vaccine microorganisms. This knowledge has influenced the way new vaccines are designed, developed, and evaluated in real-life settings. Some of the new vaccines are now designed with the specific aim of having a greater breadth of protection. Ideal vaccine antigens therefore include epitopes with conserved homology across related pathogen types, because it is not always possible to include the antigens of all the individual types of a given pathogen species. The use of novel adjuvants with greater immunostimulatory properties can also contribute to improved overall vaccine cross-reactivity, as could the use of antigen delivery platforms. The growing body of evidence allows us to better understand the full impact of vaccines - beyond vaccine-type disease - which should be taken into consideration when assessing the full value of vaccination programmes.
Collapse
Affiliation(s)
- Ivo Vojtek
- GSK, Avenue Fleming 20, 1300 Wavre, Belgium.
| | | | | | | |
Collapse
|
143
|
Asowata OE, Ashiru OT, Mahomed S, Sturm AW, Moodley P. Influence of vaccination status and clinical, seasonal and sociodemographic factors on rotavirus prevalence in KwaZulu-Natal, South Africa. S Afr J Infect Dis 2018. [DOI: 10.1080/23120053.2018.1551850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Osaretin E Asowata
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Olubisi T Ashiru
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Saajida Mahomed
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - A Willem Sturm
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Prashini Moodley
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
144
|
Wandera EA, Komoto S, Mohammad S, Ide T, Bundi M, Nyangao J, Kathiiko C, Odoyo E, Galata A, Miring'u G, Fukuda S, Hatazawa R, Murata T, Taniguchi K, Ichinose Y. Genomic characterization of uncommon human G3P[6] rotavirus strains that have emerged in Kenya after rotavirus vaccine introduction, and pre-vaccine human G8P[4] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2018; 68:231-248. [PMID: 30543939 DOI: 10.1016/j.meegid.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012-2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Shah Mohammad
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Martin Bundi
- National Biosafety Authority, Nairobi 00100, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Amina Galata
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Gabriel Miring'u
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| |
Collapse
|
145
|
Lartey BL, Damanka S, Dennis FE, Enweronu-Laryea CC, Addo-Yobo E, Ansong D, Kwarteng-Owusu S, Sagoe KW, Mwenda JM, Diamenu SK, Narh C, Binka F, Parashar U, Lopman B, Armah GE. Rotavirus strain distribution in Ghana pre- and post- rotavirus vaccine introduction. Vaccine 2018; 36:7238-7242. [PMID: 29371014 PMCID: PMC11345725 DOI: 10.1016/j.vaccine.2018.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Ghana introduced the monovalent rotavirus vaccine (Rotarix) into its national paediatric vaccination programme in May2012. Vaccine introduction was initiated nationwide and achieved >85% coverage within a few months. Rotavirus strain distribution pre- and post-RV vaccine introduction is reported. METHODS Stool samples were collected from diarrhoeic children <5 years of age hospitalized between 2009 and 2016 at sentinel sites across Ghana and analyzed for the presence of group A rotavirus by enzyme immunoassay. Rotavirus strains were characterized by RT-PCR and sequencing. RESULTS A total of 1363 rotavirus EIA-positive samples were subjected to molecular characterization. These were made up of 823 (60.4%) and 540 (39.6%) samples from the pre- and post-vaccine periods respectively. Rotavirus VP7 genotypes G1, G2 and G3, and VP4 genotypes P[6] and P[8] constituted more than 65% of circulating G and P types in the pre-vaccine period. The common strains detected were G1P[8] (20%), G3P[6] (9.2%) and G2P[6] (4.9%). During the post-vaccine period, G12, G1 and G10 genotypes, constituted more than 65% of the VP7 genotypes whilst P[6] and P[8] made up more than 75% of the VP4 genotypes. The predominant circulating strains were G12P[8] (26%), G10P[6] (10%) G3P[6] (8.1%) and G1P[8] (8.0%). We also observed the emergence of the unusual rotavirus strain G9P[4] during this period. CONCLUSION Rotavirus G1P[8], the major strain in circulation during the pre-vaccination era, was replaced by G12P[8] as the most predominant strain after vaccine introduction. This strain replacement could be temporary and unrelated to vaccine introduction since an increase in G12 was observed in countries yet to introduce the rotavirus vaccine in West Africa. A continuous surveillance programme in the post-vaccine era is necessary for the monitoring of circulating rotavirus strains and the detection of unusual/emerging genotypes.
Collapse
Affiliation(s)
- Belinda L Lartey
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Francis Ekow Dennis
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Emmanuel Addo-Yobo
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Ansong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Kwarteng-Owusu
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwamena W Sagoe
- School of Biomedical and Allied Health Sciences, University of Ghana, Ghana
| | - Jason M Mwenda
- World Health Organization (WHO) Regional Office for Africa (WHO/AFRO), Brazzaville, Congo
| | | | - Clement Narh
- School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Fred Binka
- School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Umesh Parashar
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ben Lopman
- Dept. of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
146
|
Pang LL, Wang MX, Sun XM, Yuan Y, Qing Y, Xin Y, Zhang JY, Li DD, Duan ZJ. Glycan binding patterns of human rotavirus P[10] VP8* protein. Virol J 2018; 15:161. [PMID: 30340611 PMCID: PMC6195756 DOI: 10.1186/s12985-018-1065-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022] Open
Abstract
Background Rotaviruses (RVs) are a major cause of acute children gastroenteritis. The rotavirus P [10] belongs to P[I] genogroup of group A rotaviruses that mainly infect animals, while the rotavirus P [10] was mainly identified from human infection. The rotavirus P [10] is an unusual genotype and the recognition pattern of cellular receptors remains unclear. Methods We expressed and purified the RV P [10] VP8* protein and investigated the saliva and oligosaccharide binding profiles of the protein. A homology model of the P [10] VP8* core protein was built and the superimposition structural analysis of P [10] VP8* protein on P [19] VP8* in complex with mucin core 2 was performed to explore the possible docking structural basis of P [10] VP8* and mucin cores. Results Our data showed that rotavirus P [10] VP8* protein bound to all ABO secretor and non-secretor saliva. The rotavirus P [10] could bind strongly to mucin core 2 and weakly to mucin core 4. The homology modeling indicated that RV P [10] VP8* binds to mucin core 2 using a potential glycan binding site that is the same to P [19] VP8* belonging to P[II] genogroup. Conclusion Our results suggested an interaction of rotavirus P [10] VP8* protein with mucin core 2 and mucin core 4. These findings offer potential for elucidating the mechanism of RV A host specificity, evolution and epidemiology.
Collapse
Affiliation(s)
- Li-Li Pang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing, 102206, China
| | - Meng-Xuan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Department of Food and Chemical Engineering, Lushan College of Guangxi University of Science and Technology, Liuzhou, 545616, Guangxi, China
| | - Xiao-Man Sun
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing, 102206, China
| | - Yue Yuan
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yu Qing
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Department of Food and Chemical Engineering, Lushan College of Guangxi University of Science and Technology, Liuzhou, 545616, Guangxi, China
| | - Yan Xin
- Basic Medical College, Inner Mongolia Medical University, Hohhot, 010000, China
| | - Jia-Yan Zhang
- Department of Food and Chemical Engineering, Lushan College of Guangxi University of Science and Technology, Liuzhou, 545616, Guangxi, China
| | - Dan-di Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing, 102206, China.
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of the People's Republic of China, Beijing, 102206, China.
| |
Collapse
|
147
|
Wu JY, Zhou Y, Zhang GM, Mu GF, Yi S, Yin N, Xie YP, Lin XC, Li HJ, Sun MS. Isolation and characterization of a new candidate human inactivated rotavirus vaccine strain from hospitalized children in Yunnan, China: 2010-2013. World J Clin Cases 2018; 6:426-440. [PMID: 30294607 PMCID: PMC6163142 DOI: 10.12998/wjcc.v6.i11.426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To determine the distribution of rotavirus VP7 gene in hospitalized children in Yunnan, China.
METHODS A total of 366 stool specimens were collected from hospitalized children in hospitals in Yunnan Province from September 2010 to December 2013. The genomic RNA electropherotypes and the G genotypes of the rotaviruses were determined. A phylogenetic analysis of the VP7 gene was performed. Rotavirus isolation was performed, and characterized by plaque, minimum essential medium, and all genes sequence analysis. Quantification of antibodies for inactivated vaccine prepared with ZTR-68 was examined by enzyme-linked immunosorbent assay and microneutralization assay.
RESULTS Group A human rotavirus was detected in 177 of 366 (48.4%) stool samples using a colloidal gold device assay. The temporal distribution of rotavirus cases showed significant correlation with the mean air temperature. Rotaviruses were isolated from 13% of the rotavirus-positive samples. The predominant genotype was G1 (43.5%), followed by G3 (21.7%), G9 (17.4%), G2 (4.3%), G4 (8.7%), and mixed (4.3%) among a total of 23 rotavirus isolates. A rotavirus strain was isolated from a rotavirus-positive stool sample of a 4-month-old child in The First People’s Hospital of Zhaotong (2010) for use as a candidate human inactivated rotavirus vaccine strain and for further research, and was designated ZTR-68. The genotype of 11 gene segments of strain ZTR-68 (RVA/Human-wt/CHN/ZTR-68/2010/G1P[8]) was characterized. The genotype constellation of strain ZTR-68 was identified as G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. The VP7 and VP4 genotypes of strain ZTR-68 were similar to Wa-like strains.
CONCLUSIONS
A high prevalence of the G1, G2, and G3 genotypes was detected from 2010 to 2012. However, a dominant prevalence of the G9 genotype was identified as the cause of gastroenteritis in children in Yunnan, China, in 2013. A candidate human inactivated rotavirus vaccine strain, designated ZTR-68 was isolated, characterized, and showed immunogenicity. Our data will be useful for the future formulation and development of a vaccine in China.
Collapse
Affiliation(s)
- Jin-Yuan Wu
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Guang-Ming Zhang
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Guo-Fa Mu
- Pediatrics Department, the First People’s Hospital of Zhaotong City, Zhaotong 657000, Yunnan Province, China
| | - Shan Yi
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Na Yin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Yu-Ping Xie
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Xiao-Chen Lin
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Hong-Jun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| | - Mao-Sheng Sun
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, Yunnan Province, China
| |
Collapse
|
148
|
Tian Y, Chughtai AA, Gao Z, Yan H, Chen Y, Liu B, Huo D, Jia L, Wang Q, MacIntyre CR. Prevalence and genotypes of group A rotavirus among outpatient children under five years old with diarrhea in Beijing, China, 2011-2016. BMC Infect Dis 2018; 18:497. [PMID: 30285635 PMCID: PMC6168998 DOI: 10.1186/s12879-018-3411-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rotavirus is a leading cause of severe diarrheal disease, and one of the common causes of death in children aged under five years old. The dominant epidemic strains may change in different years in the same area. In order to provide evidence for rotavirus epidemic control and inform vaccine development, we analyzed epidemiological patterns and genetic characteristics of rotavirus in Beijing during 2011-2016. METHODS Stool specimens of outpatient children under five years old were collected from three children's hospitals on a weekly basis. Group A rotavirus antigens were detected using enzyme-linked immunosorbent assay (ELISA) kit. The partial VP4 genes and VP7 genes of rotavirus were both amplified and sequenced. Genotyping and phylogenetic analyses were performed. Logistic regression and Chi-square tests were performed to determine differences across age groups, districts and years in rotavirus prevalence and genotype distribution. RESULTS A total of 3668 stool specimens from children with acute diarrhea identified through hospital-based surveillance were collected from 2011 to 2016 in Beijing. A total of 762 (20.8%) specimens tested positive for rotavirus. The rotavirus-positive rate was highest among the 1-2 years old age group (29.0%, 310/1070). November, December and January were the highest rotavirus-positive rate months each year. G9 was the most common G genotype (64.4%, 461/716), and P [8] was the most common P genotype (87.0%, 623/716) among the 716 rotavirus-positive specimens. G9P [8], G3P [8] and G2P [4] were the most common strains. The rotavirus-positive rates of samples in 2012 and 2013 were higher than that in 2011, and the dominant genotype changed from G3P [8] to G9P [8] in 2012 and 2013. VP7 gene sequences of G9 strains in this study clustered into two main lineages. Most of the G9 strains exhibited the highest nucleotide similarity (99.1%~ 100.0%) to the strain found in Japan (MI1128). VP4 gene sequences of P [8] strains were almost P[8]b. CONCLUSIONS Rotavirus accounted for more than one fifth of childhood diarrhea in Beijing during the study period. Targeted measures such as immunization with effective rotavirus vaccines should be carried out to reduce the morbidity and mortality due to rotavirus.
Collapse
Affiliation(s)
- Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Abrar Ahmad Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yanwei Chen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Da Huo
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China
- Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Chandini Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
- College of Public Service and Community Solutions, and College of Health Solutions, Arizona State University, Phoenix, USA
| |
Collapse
|
149
|
Holding T, Valletta JJ, Recker M. Multiscale Immune Selection and the Transmission-Diversity Feedback in Antigenically Diverse Pathogen Systems. Am Nat 2018; 192:E189-E201. [PMID: 30444661 PMCID: PMC6561780 DOI: 10.1086/699535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigenic diversity is commonly used by pathogens to enhance their
transmission success. Within-host clonal antigenic variation helps to maintain
long infectious periods, whereas high levels of allelic diversity at the
population level significantly expand the pool of susceptible individuals.
Diversity, however, is not necessarily a static property of a pathogen
population but in many cases is generated by the very act of infection and
transmission, and it is therefore expected to respond dynamically to changes in
transmission and immune selection. We hypothesized that this coupling creates a
positive feedback whereby infection and disease transmission promote the
generation of diversity, which itself facilitates immune evasion and further
infections. To investigate this link in more detail, we considered the human
malaria parasite Plasmodium falciparum, one of the most
important antigenically diverse pathogens. We developed an individual-based
model in which antigenic diversity emerges as a dynamic property from the
underlying transmission processes. Our results show that the balance between
stochastic extinction and the generation of new antigenic variants is
intrinsically linked to within-host and between-host immune selection. This in
turn determines the level of diversity that can be maintained in a given
population. Furthermore, the transmission-diversity feedback can lead to
temporal lags in the response to natural or intervention-induced perturbations
in transmission rates. Our results therefore have important implications for
monitoring and assessing the effectiveness of disease control efforts.
Collapse
|
150
|
Barbé L, Le Moullac-Vaidye B, Echasserieau K, Bernardeau K, Carton T, Bovin N, Nordgren J, Svensson L, Ruvoën-Clouet N, Le Pendu J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci Rep 2018; 8:12961. [PMID: 30154494 PMCID: PMC6113245 DOI: 10.1038/s41598-018-31005-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Human strains of rotavirus A (RVAs) recognize fucosylated glycans belonging to histo-blood group antigens (HBGAs) through their spike protein VP8*. Lack of these ligands due to genetic polymorphisms is associated with resistance to gastroenteritis caused by P[8] genotype RVAs. With the aim to delineate the contribution of HBGAs in the process, we analyzed the glycan specificity of VP8* proteins from various P genotypes. Binding to saliva of VP8* from P[8] and P[4] genotypes required expression of both FUT2 and FUT3 enzymes, whilst binding of VP8* from the P[14] genotype required FUT2 and A enzymes. We further defined a glycan motif, GlcNAcβ3Galβ4GlcNAc, recognized by P[6] clinical strains. Conversion into Lewis antigens by the FUT3 enzyme impaired recognition, explaining their lower binding to saliva of Lewis positive phenotype. In addition, the presence of neutralizing antibodies was associated with the presence of the FUT2 wild type allele in sera from young healthy adults. Nonetheless, in vitro infection of transformed cell lines was independent of HBGAs expression, indicating that HBGAs are not human RV receptors. The match between results from saliva-based binding assays and the epidemiological data indicates that the polymorphism of human HBGAs controls susceptibility to RVAs, although the exact mechanism remains unclear.
Collapse
Affiliation(s)
- Laure Barbé
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Klara Echasserieau
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Plateforme P2R « Production de protéines recombinantes », SFR Sante F. Bonamy-IRS-UN, Université de Nantes, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Karine Bernardeau
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Plateforme P2R « Production de protéines recombinantes », SFR Sante F. Bonamy-IRS-UN, Université de Nantes, INSERM, CNRS, CHU Nantes, Nantes, France
| | | | - Nicolai Bovin
- Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Johan Nordgren
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Nathalie Ruvoën-Clouet
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes, France
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|