101
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
102
|
Brown SAW, Iancu-Rubin C, Aboelela A, Abrahams A, Burke E, Drummond T, Grossman F, Itescu S, Lagdameo J, Lin JY, Mark A, Levine JE, Osman K. Mesenchymal Stromal Cell Therapy for Acute Respiratory Distress Syndrome due to COVID-19. Cytotherapy 2022; 24:835-840. [PMID: 35649958 PMCID: PMC8995321 DOI: 10.1016/j.jcyt.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Background aims The acute respiratory distress syndrome (ARDS) resulting from coronavirus disease 2019 (COVID-19) is associated with a massive release of inflammatory cytokines and high mortality. Mesenchymal stromal cells (MSCs) have anti-inflammatory properties and have shown activity in treating acute lung injury. Here the authors report a case series of 11 patients with COVID-19-associated ARDS (CARDS) requiring mechanical ventilation who were treated with remestemcel-L, an allogeneic MSC product, under individual patient emergency investigational new drug applications. Methods Patients were eligible if they were mechanically ventilated for less than 72 h prior to the first infusion. Patients with pre-existing lung disease requiring supplemental oxygen or severe liver or kidney injury were excluded. Each patient received two infusions of remestemcel-L at a dose of 2 million cells/kg per infusion given 48–120 h apart. Results Remestemcel-L infusions were well tolerated in all 11 patients. At the end of the 28-day follow-up period, 10 (91%, 95% confidence interval [CI], 59–100%) patients were extubated, nine (82%, 95% CI, 48–97%) patients remained liberated from mechanical ventilation and were discharged from the intensive care unit and two (18%, 95 CI%, 2–52%) patients died. The median time to extubation was 10 days. Eight (73%, 95% CI, 34–100%) patients were discharged from the hospital. C-reactive protein levels significantly declined within 5 days of MSC infusion. Conclusions The authors demonstrate in this case series that remestemcel-L infusions to treat moderate to severe CARDS were safe and well tolerated and resulted in improved clinical outcomes.
Collapse
|
103
|
Randelli PS, Cucchi D, Fossati C, Boerci L, Nocerino E, Ambrogi F, Menon A. Arthroscopic Rotator Cuff Repair Augmentation With Autologous Microfragmented Lipoaspirate Tissue Is Safe and Effectively Improves Short-term Clinical and Functional Results: A Prospective Randomized Controlled Trial With 24-Month Follow-up. Am J Sports Med 2022; 50:1344-1357. [PMID: 35302901 DOI: 10.1177/03635465221083324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous microfragmented lipoaspirate tissue has been recently introduced in orthopaedics as an easily available source of nonexpanded adipose-derived mesenchymal stem cells. Autologous microfragmented lipoaspirate tissue is expected to create a suitable microenvironment for tendon repair and regeneration. Rotator cuff tears show a high incidence of rerupture and represent an ideal target for nonexpanded mesenchymal stem cells. PURPOSE To evaluate the safety and efficacy of autologous lipoaspirate tissue in arthroscopic rotator cuff repair. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS Consecutive patients referring to the investigation center for surgical treatment of magnetic resonance imaging-confirmed degenerative posterosuperior rotator cuff tears were assessed for eligibility. Those who were included were randomized to receive a single-row arthroscopic rotator cuff repair, followed by intraoperative injection of autologous microfragmented adipose tissue processed with an enzyme-free technology (treatment group) or not (control group). Clinical follow-up was conducted at 3, 6, 12, 18, and 24 months; at 18 months after surgery, magnetic resonance imaging of the operated shoulder was obtained to assess tendon integrity and rerupture rate. RESULTS An overall 177 patients were screened, and 44 (22 per group) completed the 24-month follow-up. A statistically significant difference in favor of the treatment group in terms of Constant-Murley score emerged at the primary endpoint at 6-month follow-up (mean ± SD; control group, 76.66 ± 10.77 points; treatment group, 82.78 ± 7.00 points; P = .0050). No significant differences in clinical outcome measures were encountered at any of the other follow-up points. No significant differences emerged between the groups in terms of rerupture rate, complication rate, and number of adverse events. CONCLUSION This prospective randomized controlled trial demonstrated that the intraoperative injection of autologous microfragmented adipose tissue is safe and effective in improving short-term clinical and functional results after single-row arthroscopic rotator cuff repair. REGISTRATION NCT02783352 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Pietro S Randelli
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Gaetano Pini-CTO, Milan, Italy.,REsearch Center for Adult and Pediatric Rheumatic Diseases, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Davide Cucchi
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,Department of Orthopaedics and Trauma Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Chiara Fossati
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Gaetano Pini-CTO, Milan, Italy
| | - Linda Boerci
- Orthopedic Department, San Gerardo Hospital, University of Milano-Bicocca, Milan, Italy
| | - Elisabetta Nocerino
- Department of Diagnostic and Interventional Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology "G.A. Maccaro," Università degli Studi di Milano, Milan, Italy
| | - Alessandra Menon
- Laboratory of Applied Biomechanics, Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.,U.O.C. 1° Clinica Ortopedica, ASST Gaetano Pini-CTO, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
104
|
Kazemi A, Ataellahi Eshkoor P, Saeedi P, Halabian R. Evaluation of antioxidant and antibacterial effects of lactobacilli metabolites- preconditioned bone marrow mesenchymal stem cells in skin lesions amelioration. Bioorg Chem 2022; 124:105797. [DOI: 10.1016/j.bioorg.2022.105797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
|
105
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
106
|
Mezey É. Human Mesenchymal Stem/Stromal Cells in Immune Regulation and Therapy. Stem Cells Transl Med 2022; 11:114-134. [PMID: 35298659 PMCID: PMC8929448 DOI: 10.1093/stcltm/szab020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/07/2021] [Indexed: 07/29/2023] Open
Abstract
Studies of mesenchymal stem (or stromal) cells (MSCs) have moved from bedside to bench and back again. The stromal cells or fibroblasts are found in all tissues and participate in building the extracellular matrix (ECM). Bone marrow (BM)-derived MSCs have been studied for more than 50 years and have multiple roles. They function as stem cells and give rise to bone, cartilage, and fat in the BM (these are stem cells); support hematopoiesis (pericytes); and participate in sensing environmental changes and balancing pro- and anti-inflammatory conditions. In disease states, they migrate to sites of injury and release cytokines, hormones, nucleic acids depending on the microenvironment they find. Clinicians have begun to exploit these properties of BM, adipose tissue, and umbilical cord MSCs because they are easy to harvest and expand in culture. In this review, I describe the uses to which MSCs have been put, list ongoing clinical trials by organ system, and outline how MSCs are thought to regulate the innate and adaptive immune systems. I will discuss some of the reasons why clinical applications are still lacking. Much more work will have to be done to find the sources, doses, and culture conditions needed to exploit MSCs optimally and learn their healing potential. They are worth the effort.
Collapse
Affiliation(s)
- Éva Mezey
- Corresponding author: Éva Mezey, MD, PhD, Head, Adult Stem Cell Section, NIH, NIDCR, Bldg 30, Rm 523, Bethesda, MD 20892, USA . Tel: 1 301 435 5635;
| |
Collapse
|
107
|
Yang H, Xu F, Zheng X, Yang S, Ren Z, Yang J. Human Umbilical Cord Mesenchymal Stem Cells Prevent Bacterial Biofilm Formation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1530525. [PMID: 35281594 PMCID: PMC8913149 DOI: 10.1155/2022/1530525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Biofilm formation is easily found in patients suffered from ventilator-associated pneumonia (VAP) in neonatal intensive care unit (NICU) and makes the VAP infections not only harder to be treated but easier to relapse. In order to find some novel ways to inhibit biofilm formation, this study describe a previously unrecognized role for the human umbilical cord mesenchymal stem cells (hUCMSCs). In addition to multiple differentiation, hUCMSCs have the ability to prevent the biofilms formation in vitro by secreting antibacterial peptides (LL-37 and hBD-2). This occurred while P. aeruginosa PA27853 and hUCMSCs were cocultured, and the filtrated medium, which was the supernatant containing antibacterial peptides (5.9 ng/ml of LL-37, 1.77 ng/ml of hBD-2), and inhibited the growth of the bacterial biofilm on the surface of tracheal tube (2.5#, for preterm infant). Using microarrays, we were able to demonstrate that the antibacterial peptides from hUCMSC affected biofilm formation by downregulating the gene-encoded polysaccharide biosynthesis protein. In addition, in order to find out the most suitable concentration of hUCMSCs, P. aeruginosa was cocultured with eight-level concentrations of hUCMSCs, and we found that the concentration of LL-37 was positively correlated with the concentration of hUCMSCs. Meanwhile, the concentration of LL-37 became stable while the hUCMSC concentration reaches higher than 5 × 106 cells/ml. But the concentration of hBD-2 had no significant correlation with hUCMSCs. The collection of these stem cells is not only limited by ethics but also reduces host rejection. This makes it possible to use autologous hUCMSCs to treat neonatal VAP.
Collapse
Affiliation(s)
- Haoming Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Fang Xu
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Xuaner Zheng
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Shumei Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhuxiao Ren
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Yang
- Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
108
|
Alagesan S, Brady J, Byrnes D, Fandiño J, Masterson C, McCarthy S, Laffey J, O’Toole D. Enhancement strategies for mesenchymal stem cells and related therapies. Stem Cell Res Ther 2022; 13:75. [PMID: 35189962 PMCID: PMC8860135 DOI: 10.1186/s13287-022-02747-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cell therapy, particularly mesenchymal stem/stromal (MSC) therapy, has been investigated for a wide variety of disease indications, particularly those with inflammatory pathologies. However, recently it has become evident that the MSC is far from a panacea. In this review we will look at current and future strategies that might overcome limitations in efficacy. Many of these take their inspiration from stem cell niche and the mechanism of MSC action in response to the injury microenvironment, or from previous gene therapy work which can now benefit from the added longevity and targeting ability of a live cell vector. We will also explore the nascent field of extracellular vesicle therapy and how we are already seeing enhancement protocols for this exciting new drug. These enhanced MSCs will lead the way in more difficult to treat diseases and restore potency where donors or manufacturing practicalities lead to diminished MSC effect.
Collapse
|
109
|
Lipoaspirate Shows In Vitro Potential for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14020447. [PMID: 35214179 PMCID: PMC8878490 DOI: 10.3390/pharmaceutics14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies.
Collapse
|
110
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge. MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
111
|
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13:71. [PMID: 35168663 PMCID: PMC8845364 DOI: 10.1186/s13287-022-02746-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease that eventually leads to death and respiratory failure. Despite the wide range of drugs, including corticosteroids, endothelin antagonist, and pirfenidone, there is no effective treatment, and the only main goal of treatment is to alleviate the symptoms as much as possible to slow down the progression of the disease and improve the quality of life. Lung transplantation may be a treatment option for a few people if pulmonary fibrosis develops and there is no established treatment. Pulmonary fibrosis caused by the COVID19 virus is another problem that we face in most patients despite the efforts of the international medical communities. Therefore, achieving alternative treatment for patients is a great success. Today, basic research using stem cells on pulmonary fibrosis has published promising results. New stem cell-based therapies can be helpful in patients with pulmonary fibrosis. Wharton jelly-derived mesenchymal stem cells are easily isolated in large quantities and made available for clinical trials without causing ethical problems. These cells have higher flexibility and proliferation potential than other cells isolated from different sources and differentiated into various cells in laboratory environments. More clinical trials are needed to determine the safety and efficacy of these cells. This study will investigate the cellular and molecular mechanisms and possible effects of Wharton jelly-derived mesenchymal stem cells in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
112
|
Ge L, Zhao J, Deng H, Chen C, Hu Z, Zeng L. Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Front Immunol 2022; 12:792098. [PMID: 35046951 PMCID: PMC8761857 DOI: 10.3389/fimmu.2021.792098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/09/2022] Open
Abstract
Background Multiple preclinical studies have demonstrated that bone‐marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding. Objective To review the effect of naïve MSC(M) in rodent models of sepsis. Methods The PubMed, EMBASE, and Web of Science databases were searched up to August 31, 2021. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified MSC(M); (3) comparison: not specified; (4) primary outcome: the effects of MSC(M) cell therapy on the mortality of rodent models of sepsis and endotoxemia; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis.The inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results twenty-four animal studies met the inclusion criteria. Our results revealed an overall OR difference between animals treated with naïve MSC(M) and controls for mortality rate was 0.34(95% confidence interval: 0.27-0.44; P < 0.0001). Significant heterogeneity among studies was observed. Conclusions The findings of this meta-analysis suggest that naïve MSC(M) therapy decreased mortality in rodent models of sepsis. Additionally, we identified several key knowledge gaps, including the lack of large animal studies and uncertainty regarding the optimal dose of MSC(M) transplantation in sepsis. Before MSC(M) treatment can advance to clinical trials, these knowledge gaps must be addressed.
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
113
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
114
|
Henriques-Pons A, Beghini DG, Silva VDS, Iwao Horita S, da Silva FAB. Pulmonary Mesenchymal Stem Cells in Mild Cases of COVID-19 Are Dedicated to Proliferation; In Severe Cases, They Control Inflammation, Make Cell Dispersion, and Tissue Regeneration. Front Immunol 2022; 12:780900. [PMID: 35095855 PMCID: PMC8793136 DOI: 10.3389/fimmu.2021.780900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | | - Samuel Iwao Horita
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | |
Collapse
|
115
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
116
|
Zohrabi M, Dehghan Marvast L, Izadi M, Mousavi SA, Aflatoonian B. Potential of Mesenchymal Stem Cell-Derived Exosomes as a Novel Treatment for Female Infertility Caused by Bacterial Infections. Front Microbiol 2022; 12:785649. [PMID: 35154028 PMCID: PMC8834364 DOI: 10.3389/fmicb.2021.785649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of bacterial sexually transmitted diseases (STDs) with complications in women, including pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern with these infections is that 70% of infected women are asymptomatic and these infections ascend to the upper female reproductive tract (FRT). Primary infection in epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory cytokines that stimulate innate immunity. Production of various cytokines is damaging to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction that is associated with tubal scarring and ultimately provides the conditions for infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells with limited self-renewal capacity and the ability to repair damaged tissues in a variety of pathological conditions due to their multipotential differentiation capacity. Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins, lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have therapeutic properties to enhance recovery activity and modulate immune responses. Experimental studies have shown that local and systemic treatment of MSC-derived exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery of immunomodulatory proteins. Interestingly, some recent data have indicated that MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic activity of host immune cells. Considering MSC-Exos can secrete different bioactive factors that can modulate the immune system and prevent infection, exosome therapy is considered as a new therapeutic method in the treatment of inflammatory and microbial diseases. Here we intend to review the possible application of MSC-Exos in female reproductive system bacterial diseases.
Collapse
Affiliation(s)
- Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Behrouz Aflatoonian,
| |
Collapse
|
117
|
Protease Activated Receptors: A Pathway to Boosting Mesenchymal Stromal Cell Therapeutic Efficacy in Acute Respiratory Distress Syndrome? Int J Mol Sci 2022; 23:ijms23031277. [PMID: 35163205 PMCID: PMC8836081 DOI: 10.3390/ijms23031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Acute Respiratory Distress Syndrome is the most common cause of respiratory failure among critically ill patients, and its importance has been heightened during the COVID-19 pandemic. Even with the best supportive care, the mortality rate in the most severe cases is 40–50%, and the only pharmacological agent shown to be of possible benefit has been steroids. Mesenchymal stromal cells (MSCs) have been tested in several pre-clinical models of lung injury and been found to have significant therapeutic benefit related to: (a) potent immunomodulation; (b) secretion of epithelial and endothelial growth factors; and (c) augmentation of host defense to infection. Initial translational efforts have shown signs of promise, but the results have not yielded the anticipated outcomes. One potential reason is the relatively low survival of MSCs in inflammatory conditions as shown in several studies. Therefore, strategies to boost the survival of MSCs are needed to enhance their therapeutic effect. Protease-activated receptors (PARs) may represent one such possibility as they are G-protein coupled receptors expressed by MSCs and control several facets of cell behavior. This review summarizes some of the existing literature about PARs and MSCs and presents possible future areas of investigation in order to develop potential, PAR-modified MSCs with enhanced therapeutic efficiency.
Collapse
|
118
|
Overview of signal transduction between LL37 and bone marrow-derived MSCs. J Mol Histol 2022; 53:149-157. [DOI: 10.1007/s10735-021-10048-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022]
|
119
|
Izadi M, Dehghan Marvast L, Rezvani ME, Zohrabi M, Aliabadi A, Mousavi SA, Aflatoonian B. Mesenchymal Stem-Cell Derived Exosome Therapy as a Potential Future Approach for Treatment of Male Infertility Caused by Chlamydia Infection. Front Microbiol 2022; 12:785622. [PMID: 35095800 PMCID: PMC8792933 DOI: 10.3389/fmicb.2021.785622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023] Open
Abstract
Some microbial sexually transmitted infections (STIs) have adverse effects on the reproductive tract, sperm function, and male fertility. Given that STIs are often asymptomatic and cause major complications such as urogenital inflammation, fibrosis, and scarring, optimal treatments should be performed to prevent the noxious effect of STIs on male fertility. Among STIs, Chlamydia trachomatis is the most common asymptomatic preventable bacterial STI. C. trachomatis can affect both sperm and the male reproductive tract. Recently, mesenchymal stem cells (MSCs) derived exosomes have been considered as a new therapeutic medicine due to their immunomodulatory, anti-inflammatory, anti-oxidant, and regenerative effects without consequences through the stem cell transplantation based therapies. Inflammation of the genital tract and sperm dysfunction are the consequences of the microbial infections, especially Chlamydia trachomatis. Exosome therapy as a noninvasive approach has shown promising results on the ability to regenerate the damaged sperm and treating asthenozoospermia. Recent experimental methods may be helpful in the novel treatments of male infertility. Thus, it is demonstrated that exosomes play an important role in preventing the consequences of infection, and thereby preventing inflammation, reducing cell damage, inhibiting fibrogenesis, and reducing scar formation. This review aimed to overview the studies about the potential therapeutic roles of MSCs-derived exosomes on sperm abnormalities and male infertility caused by STIs.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Disease Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
120
|
Widowati W, Wargasetia T, Rahardja F, Gunanegara R, Priyandoko D, Gondokesumo M, Afifah E, Wijayanti C, Rizal R. Human Wharton’s jelly mesenchymal stem cells inhibit cytokine storm in acute respiratory distress syndrome in a rat model. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
121
|
Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022; 50:1734-1749. [PMID: 36261668 PMCID: PMC9581451 DOI: 10.1007/s10439-022-03094-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/01/2023]
Abstract
Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.
Collapse
|
122
|
Taechangam N, Kol A, Arzi B, Borjesson DL. Multipotent Stromal Cells and Viral Interaction: Current Implications for Therapy. Stem Cell Rev Rep 2022; 18:214-227. [PMID: 34347271 PMCID: PMC8335712 DOI: 10.1007/s12015-021-10224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Multipotent stromal cells (MSCs) are widely utilized in therapy for their immunomodulatory properties, but their usage in infectious viral diseases is less explored. This review aimed to collate the current novel use of MSCs in virus-associated conditions, including MSC's susceptibility to virus infection, antiviral properties of MSCs and their effects on cell-based immune response and implementation of MSC therapy in animal models and human clinical trials of viral diseases. Recent discoveries shed lights on MSC's capability in suppressing viral replication and augmenting clearance through enhancement of antiviral immunity. MSC therapy may maintain a crucial balance between aiding pathogen clearance and suppressing hyperactive immune response.
Collapse
Affiliation(s)
- Nopmanee Taechangam
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
123
|
Caplan AI. Mesenchymal stem cells and COVID-19: the process of discovery and of translation. BIOMATERIALS TRANSLATIONAL 2021; 2:307-311. [PMID: 35837414 PMCID: PMC9255802 DOI: 10.12336/biomatertransl.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells were developed as a cell-based therapeutic in the 1990's. The translation of culture expanded mesenchymal stem cells from a basic science focus into a modern therapeutic has taken 30 years. The current state of the basic science information argues that mesenchymal stem cells may be curative for coronavirus disease 2019 (COVID-19). Indeed, early small-scale clinical trials have shown positive results. The issue raised is how to assemble the resources to get this cell-based therapy approved for clinical use. The technology is complex, the COVID-19 viral infections are life threatening, the cost is high, but human life is precious. What will it take to perfect this potentially curative technology?
Collapse
|
124
|
Dihydroartemisinin Promoted Bone Marrow Mesenchymal Stem Cell Homing and Suppressed Inflammation and Oxidative Stress against Prostate Injury in Chronic Bacterial Prostatitis Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1829736. [PMID: 34956376 PMCID: PMC8694990 DOI: 10.1155/2021/1829736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022]
Abstract
Although bone marrow mesenchymal stem cells (BMMSCs) are effective in treating chronic bacterial prostatitis (CBP), the homing of BMMSCs seems to require ultrasound induction. Dihydroartemisinin (DHA) is an important derivative of artemisinin (ART) and has been previously reported to alleviate inflammation and autoimmune diseases. But the effect of DHA on chronic prostatitis (CP) is still unclear. This study aims to clarify the efficacy and mechanism of DHA in the treatment of CBP and its effect on the accumulation of BMMSCs. The experimental CBP was produced in C57BL/6 male mice via intraurethrally administered E. coli solution. Results showed that DHA treatment concentration-dependently promoted the accumulation of BMMSCs in prostate tissue of CBP mice. In addition, DHA and BMMSCs cotreatment significantly alleviated inflammation and improved prostate damage by decreasing the expression of proinflammatory factors such as TNF-α, IL-1β, and chemokines CXCL2, CXCL9, CXCL10, and CXCL11 in prostate tissue of CBP mice. Moreover, DHA and BMMSCs cotreatment displayed antioxidation property by increasing the production of glutathione peroxidase (GSH-Px), SOD, and decreasing malondialdehyde (MDA) expression. Mechanically, DHA and BMMSCs cotreatment significantly inhibited the expression of TGFβ-RI, TGFβ-RII, phosphor (p)-Smad2/3, and Smad4 in a dose-dependent manner while stimulated Smad7 expression in the same manner. In conclusion, our findings provided evidence that DHA effectively eliminated inflammatory and oxidative stress against prostate injury, and this effect involved the TGF-β/Smad signaling pathway in CBP.
Collapse
|
125
|
Ardalan M, Chodari L, Zununi Vahed S, Hosseiniyan Khatibi SM, Eftekhari A, Davaran S, Cucchiarini M, Roshangar L, Ahmadian E. Stem cell-derived biofactors fight against coronavirus infection. World J Stem Cells 2021; 13:1813-1825. [PMID: 35069984 PMCID: PMC8727231 DOI: 10.4252/wjsc.v13.i12.1813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Despite various treatment protocols and newly recognized therapeutics, there are no effective treatment approaches against coronavirus disease. New therapeutic strategies including the use of stem cells-derived secretome as a cell-free therapy have been recommended for patients with critical illness. The pro-regenerative, pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), and bioactive factors have made them suitable candidates for respiratory tract regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including microvesicles and exosomes can be applied for communication at the intercellular level due to their abilities in the long-distance transfer of biological messages such as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and therefore, simulate the specifications of the parent cell, influencing target cells upon internalization and/or binding. EVs exhibit both anti-inflammatory and tolerogenic immune responses by regulation of proliferation, polarization, activation, and migration of different immune cells. Due to effective immunomodulatory and high safety including a minimum risk of immunogenicity and tumorigenicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-EVs could be used against COVID-19 induced morbidity and mortality after further mechanistic and preclinical/clinical investigations. This review is focused on the therapeutic perspective of the secretome of stem cells in alleviating the cytokine storm and organ injury in COVID-19 patients.
Collapse
Affiliation(s)
- Mohammadreza Ardalan
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | | | - Aziz Eftekhari
- Department of Toxicology, Maragheh University of Medical Sciences, Maragheh 3453554, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg D-66421, Germany
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
126
|
Namdari H, Hosseini M, Yazdanifar M, Farajifard H, Parvizpour F, Karamigolbaghi M, Hamidieh AA, Rezaei F. Protective and pathological roles of regulatory immune cells in human cytomegalovirus infection following hematopoietic stem cell transplantation. Rev Med Virol 2021; 32:e2319. [PMID: 34914147 DOI: 10.1002/rmv.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. Immune system in healthy individuals is capable of controlling HCMV infection; however, HCMV can be life-threatening for immunocompromised individuals, such as transplant recipients. Both innate and adaptive immune systems are critically involved in the HCMV infection. Recent studies have indicated that regulatory immune cells which play essential roles in maintaining a healthy immune environment are closely related to immune response in HCMV infection. However, the exact role of regulatory immune cells in immune regulation and homoeostasis during the battle between HCMV and host still requires further research. In this review, we highlight the protective and pathological roles of regulatory immune cells in HCMV infection following hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hosseini
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Hamid Farajifard
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
127
|
Marx C, Gardner S, Harman RM, Wagner B, Van de Walle GR. Mesenchymal stromal cell-secreted CCL2 promotes antibacterial defense mechanisms through increased antimicrobial peptide expression in keratinocytes. Stem Cells Transl Med 2021; 10:1666-1679. [PMID: 34528765 PMCID: PMC8641085 DOI: 10.1002/sctm.21-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) from both humans and horses, which represent a clinically relevant translation animal model for human cutaneous wound healing, were recently found to possess antimicrobial properties against planktonic bacteria, and in the case of equine MSCs, also against biofilms. This, together with previous findings that human and equine MSCs promote angiogenesis and wound healing, makes these cells an attractive approach to treat infected cutaneous wounds in both species. The anti-biofilm activities of equine MSC, via secretion of cysteine proteases, have only been demonstrated in vitro, thus lacking information about in vivo relevance. Moreover, the effects of the equine MSC secretome on resident skin cells have not yet been explored. The goals of this study were to (a) test the efficacy of the MSC secretome in a physiologically relevant ex vivo equine skin biofilm explant model and (b) explore the impact of the MSC secretome on the antimicrobial defense mechanisms of resident skin cells. Our salient findings were that secreted factors from equine MSCs significantly decreased viability of methicillin-resistant Staphylococcus aureus bacteria in mature biofilms in this novel skin biofilm explant model. Moreover, we demonstrated that equine MSCs secrete CCL2 that increases the antimicrobial activity of equine keratinocytes by stimulating expression of antimicrobial peptides. Collectively, these data contribute to our understanding of the MSC secretome's antimicrobial properties, both directly by killing bacteria and indirectly by stimulating immune responses of surrounding resident skin cells, thus further supporting the value of MSC secretome-based treatments for infected wounds.
Collapse
Affiliation(s)
- Charlotte Marx
- Baker Institute for Animal HealthCollege of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| | - Sophia Gardner
- Baker Institute for Animal HealthCollege of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| | - Rebecca M. Harman
- Baker Institute for Animal HealthCollege of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic SciencesCollege of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal HealthCollege of Veterinary Medicine, Cornell UniversityIthacaNew YorkUSA
| |
Collapse
|
128
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
129
|
Wick KD, McAuley DF, Levitt JE, Beitler JR, Annane D, Riviello ED, Calfee CS, Matthay MA. Promises and challenges of personalized medicine to guide ARDS therapy. Crit Care 2021; 25:404. [PMID: 34814925 PMCID: PMC8609268 DOI: 10.1186/s13054-021-03822-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.
Collapse
Affiliation(s)
- Katherine D Wick
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA.
| | - Daniel F McAuley
- Belfast Health and Social Care Trust, Royal Victoria Hospital and Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Joseph E Levitt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Jeremy R Beitler
- Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Djillali Annane
- Department of Intensive Care, FHU SEPSIS, and RHU RECORDS, Hôpital Raymond Poincaré (APHP), Garches, France
- Laboratory of Infection & Inflammation, School of Medicine Simone Veil, INSERM, University Versailles Saint Quentin, University Paris Saclay, Garches, France
| | - Elisabeth D Riviello
- Harvard Medical School and Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carolyn S Calfee
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA
- Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California San Francisco, 513 Parnassus Avenue, HSE 760, San Francisco, CA, 94143, USA
- Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
130
|
You J, Fu Z, Zou L. Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases. Front Microbiol 2021; 12:761338. [PMID: 34764947 PMCID: PMC8576143 DOI: 10.3389/fmicb.2021.761338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane vesicles secreted by cells. EVs serve as a mediator for cell-to-cell communication by regulating the exchange of genetic materials and proteins between the donor and surrounding cells. Current studies have explored the therapeutic value of mesenchymal stem cells-derived EVs (MSC-EVs) for the treatment of infectious diseases extensively. MSC-EVs can eliminate the pathogen, regulate immunity, and repair tissue injury in contagious diseases through the secretion of antimicrobial factors, inhibiting the replication of pathogens and activating the phagocytic function of macrophages. MSC-EVs can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and participating in the regulation of cellular biological behaviors. The purpose of this mini-review is to discuss in detail the various mechanisms of MSC-EV treatment for infectious diseases including respiratory infections, sepsis, and intestinal infections, as well as challenges for implementing MSC-EVs from bench to bedside.
Collapse
Affiliation(s)
- Jingyi You
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Zhou Fu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Lin Zou
- Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Clinical Research Unit, Children's Hospital of Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
131
|
Kraskiewicz H, Hinc P, Krawczenko A, Bielawska-Pohl A, Paprocka M, Witkowska D, Mohd Isa IL, Pandit A, Klimczak A. HATMSC Secreted Factors in the Hydrogel as a Potential Treatment for Chronic Wounds-In Vitro Study. Int J Mol Sci 2021; 22:ijms222212241. [PMID: 34830121 PMCID: PMC8618182 DOI: 10.3390/ijms222212241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can improve chronic wound healing; however, recent studies suggest that the therapeutic effect of MSCs is mediated mainly through the growth factors and cytokines secreted by these cells, referred to as the MSC secretome. To overcome difficulties related to the translation of cell therapy into clinical use such as efficacy, safety and cost, we propose a hydrogel loaded with a secretome from the recently established human adipose tissue mesenchymal stem cell line (HATMSC2) as a potential treatment for chronic wounds. Biocompatibility and biological activity of hydrogel-released HATMSC2 supernatant were investigated in vitro by assessing the proliferation and metabolic activity of human fibroblast, endothelial cells and keratinocytes. Hydrogel degradation was measured using hydroxyproline assay while protein released from the hydrogel was assessed by interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) ELISAs. Pro-angiogenic activity of the developed treatment was assessed by tube formation assay while the presence of pro-angiogenic miRNAs in the HATMSC2 supernatant was investigated using real-time RT-PCR. The results demonstrated that the therapeutic effect of the HATMSC2-produced factors is maintained following incorporation into collagen hydrogel as confirmed by increased proliferation of skin-origin cells and improved angiogenic properties of endothelial cells. In addition, HATMSC2 supernatant revealed antimicrobial activity, and which therefore, in combination with the hydrogel has a potential to be used as advanced wound-healing dressing.
Collapse
Affiliation(s)
- Honorata Kraskiewicz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
- Correspondence: (H.K.); (A.K.)
| | - Piotr Hinc
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Danuta Witkowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Isma Liza Mohd Isa
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland; (I.L.M.I.); (A.P.)
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland; (I.L.M.I.); (A.P.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
- Correspondence: (H.K.); (A.K.)
| |
Collapse
|
132
|
Riedl J, Popp C, Eide C, Ebens C, Tolar J. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment. Cytotherapy 2021; 23:961-973. [PMID: 34376336 PMCID: PMC8569889 DOI: 10.1016/j.jcyt.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent stromal-derived cells capable of self-renewal that possess several advantageous properties for wound healing, making them of interest to the field of dermatology. Research has focused on characterizing the unique properties of MSCs, which broadly revolve around their regenerative and more recently discovered immunomodulatory capacities. Because of ease of harvesting and expansion, differentiation potential and low immunogenicity, MSCs have been leading candidates for tissue engineering and regenerative medicine applications for wound healing, yet results from clinical studies have been variable, and promising pre-clinical work has been difficult to reproduce. Therefore, the specific mechanisms of how MSCs influence the local microenvironment in distinct wound etiologies warrant further research. Of specific interest in MSC-mediated healing is harnessing the secretome, which is composed of components known to positively influence wound healing. Molecules released by the MSC secretome can promote re-epithelialization and angiogenesis while inhibiting fibrosis and microbial invasion. This review focuses on the therapeutic interest in MSCs with regard to wound healing applications, including burns and diabetic ulcers, with specific attention to the genetic skin disease recessive dystrophic epidermolysis bullosa. This review also compares various delivery methods to support skin regeneration in the hopes of combating the poor engraftment of MSCs after delivery, which is one of the major pitfalls in clinical studies utilizing MSCs.
Collapse
Affiliation(s)
- Julia Riedl
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Courtney Popp
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christen Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
133
|
Gorman E, Shankar-Hari M, Hopkins P, Tunnicliffe WS, Perkins GD, Silversides J, McGuigan P, Krasnodembskaya A, Jackson C, Boyle R, McFerran J, McDowell C, Campbell C, McFarland M, Smythe J, Thompson J, Williams B, Curley G, Laffey JG, Clarke M, McAuley DF, O'Kane CM. Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine 2021; 41:101167. [PMID: 34746723 PMCID: PMC8551601 DOI: 10.1016/j.eclinm.2021.101167] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) may be of benefit in acute respiratory distress syndrome (ARDS) due to immunomodulatory, reparative, and antimicrobial actions. ORBCEL-C is a population of CD362 enriched umbilical cord-derived MSCs. The REALIST phase 1 trial investigated the safety and feasibility of ORBCEL-C in patients with moderate to severe ARDS. METHODS REALIST phase 1 was an open label, dose escalation trial in which cohorts of mechanically ventilated patients with moderate to severe ARDS received increasing doses (100, 200 or 400 × 106 cells) of a single intravenous infusion of ORBCEL-C in a 3 + 3 design. The primary safety outcome was the incidence of serious adverse events. Dose limiting toxicity was defined as a serious adverse reaction within seven days. Trial registration clinicaltrials.gov NCT03042143. FINDINGS Nine patients were recruited between the 7th January 2019 and 14th January 2020. Study drug administration was well tolerated and no dose limiting toxicity was reported in any of the three cohorts. Eight adverse events were reported for four patients. Pyrexia within 24 h of study drug administration was reported in two patients as pre-specified adverse events. A further two adverse events (non-sustained ventricular tachycardia and deranged liver enzymes), were reported as adverse reactions. Four serious adverse events were reported (colonic perforation, gastric perforation, bradycardia and myocarditis) but none were deemed related to administration of ORBCEL-C. At day 28 no patients had died in cohort one (100 × 106), three patients had died in cohort two (200 × 106) and one patient had died in cohort three (400 × 106). Overall day 28 mortality was 44% (n = 4/9). INTERPRETATION A single intravenous infusion of ORBCEL-C was well tolerated in patients with moderate to severe ARDS. No dose limiting toxicity was reported up to 400 × 106 cells.
Collapse
Affiliation(s)
- Ellen Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Manu Shankar-Hari
- Guy's and St Thomas’ NHS Foundation Trust, Westminister Bridge Road, London SE1 7EH, United Kingdom
- School of Immunology and Microbial Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Phil Hopkins
- Kings Trauma Centre, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - William S. Tunnicliffe
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Gavin D. Perkins
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
- University Hospitals Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Peter McGuigan
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Roisin Boyle
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Christina Campbell
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
| | - Margaret McFarland
- Belfast Health and Social Care Trust, Royal Victoria Hospital, 274 Grosvenor Road, Belfast BT12 6BA, United Kingdom
| | - Jon Smythe
- NHS Blood and Transplant, Headley Way, Oxford OX3 9BU, United Kingdom
| | - Jacqui Thompson
- NHS Blood and Transplant Service, Vincent Drive, Edgbaston, Birmingham B15 2SG, United Kingdom
| | - Barry Williams
- Independent Patient and Public Representative, United Kingdom
| | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - John G. Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, 7 Lennoxvale, Belfast BT9 5BY, United Kingdom
- Northern Ireland Methodology Hub, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Cecilia M. O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- Corresponding author.
| |
Collapse
|
134
|
Erythropoietin improves effects of mesenchymal stem cells in an experimental model of sepsis. КЛИНИЧЕСКАЯ ПРАКТИКА 2021. [DOI: 10.17816/clinpract83687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the last years several studies have shown that mesenchymal stem cells (MSCs) are able to reduce the systemic inflammatory response and mortality in experimental models of sepsis. As recently found, the surface of MSCs have receptors for erythropoietin (EPO). So we hypothesized that the introduction of EPO together with MSCs may enhance their effect and improve the results of sepsis treatment.
Aim: То evaluate morphologic and immunologic effects of combined treatment with EPO and MSC in an experimental LPS sepsis model in rats.
Methods: 50 Wistar rats were randomized into 5 groups: Group 1 - the healthy controls, Groups 2-5 were intraperitoneally introduced bacterial LPS 20 mg/kg. Two hours after LPS injection animals received the following intravenous treatments: Group 3 - 4xl05 allogeneic MSCs, Group 4 - 8.5 pg of recombinant EPO-beta, Group 5 - MSCs and EPO in the same doses. Surviving animals were euthanased on the 4th day. The morphological study of the liver, spleen, thymus, lungs, kidney tissues was performed. We analyzed the tissue changes, white blood cells count and serum level of IL-l, IL-2, IL-6, TNF-.
Results: Mortality in LPS groups did not differ. The highest white blood cells count was found in the group of combined treatment EPO+MSCs (8.15x106 cells/ml) compared with controls (2,15x10s cells/ml) and LPS controls (6,52x10s cells/ml). There were no differences in levels of TNF-, IL-2 and IL-6 between the groups, but serum IL-1 level in groups 2 and 4 was significantly higher than in treated with MSCs and MSCc + EPO animals. Histologically in the group 5 we observed significantly less leukocyte lung interalveolar septal infiltration and kidney tubular dystrophy. The most significant differences in group LPS + EPO were found in the lymphoid tissue - considerable hyperplasia of spleen white pulp and thymus cortex, whereas in the other groups different degrees of atrophy of the corresponding zones were noted.
Conclusions: Combined treatment with EPO and MSCs can reduce acute lung injury and kidney damage, cause hyperplasia of lymphoid tissue and enhance the immune response more than separate treatment in an experimental model of sepsis in rats.
Collapse
|
135
|
Xu Z, Huang Y, Zhou J, Deng X, He W, Liu X, Li Y, Zhong N, Sang L. Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Front Immunol 2021; 12:738697. [PMID: 34659231 PMCID: PMC8517471 DOI: 10.3389/fimmu.2021.738697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted the urgent need for novel therapies. Cell-based therapies, primarily using mesenchymal stromal cells (MSCs), have demonstrated safety and potential efficacy in the treatment of critical illness, particularly sepsis and acute respiratory distress syndrome (ARDS). However, there are limited preclinical data for MSCs in COVID-19. Recent studies have shown that MSCs could decrease inflammation, improve lung permeability, enhance microbe and alveolar fluid clearance, and promote lung epithelial and endothelial repair. In addition, MSC-based therapy has shown promising effects in preclinical studies and phase 1 clinical trials in sepsis and ARDS. Here, we review recent advances related to MSC-based therapy in the context of sepsis and ARDS and evaluate the potential value of MSCs as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Zhiheng Xu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Jianmeng Zhou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiumei Deng
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Weiqun He
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Liu
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Ling Sang
- State Key Laboratory of Respiratory Diseases, Department of Critical Care Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China.,Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
136
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
137
|
Xu Y, Liu X, Li Y, Dou H, Liang H, Hou Y. SPION-MSCs enhance therapeutic efficacy in sepsis by regulating MSC-expressed TRAF1-dependent macrophage polarization. Stem Cell Res Ther 2021; 12:531. [PMID: 34627385 PMCID: PMC8501658 DOI: 10.1186/s13287-021-02593-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a crucial role in sepsis and is also a target for sepsis-related injury. Macrophage polarization between the M1 and M2 types is involved in the progression and resolution of both inflammation and liver injury. Iron oxide-based synthetic nanoparticles (SPIONs) can be used as antibacterial agents to regulate the inflammatory response. Mesenchymal stromal/stem cells (MSCs) have been widely used in the treatment of autoimmune diseases, sepsis, and other diseases. However, to date, both the effects of SPIONs on MSCs and the fate of SPION-labelled MSCs in sepsis and other diseases are still unclear. Methods Mice were subjected to caecal ligation and puncture (CLP) or lipopolysaccharide (LPS) induction to develop sepsis models. The CLP or LPS models were treated with MSCs or SPION-labelled/pretreated MSCs (SPION-MSCs). Bone marrow (BM)-derived macrophages and RAW 264.7 cells were cocultured with MSCs or SPION-MSCs under different conditions. Flow cytometry, transmission electron microscopy, western blotting, quantitative real-time PCR, and immunohistochemical analysis were performed. Results We found that SPIONs did not affect the basic characteristics of MSCs. SPIONs promoted the survival of MSCs by upregulating HO-1 expression under inflammatory conditions. SPION-MSCs enhanced the therapeutic efficacy of liver injury in both the CLP- and LPS-induced mouse models of sepsis. Moreover, the protective effect of SPION-MSCs against sepsis-induced liver injury was related to macrophages. Systemic depletion of macrophages reduced the efficacy of SPION-MSC therapy. Furthermore, SPION-MSCs promoted macrophages to polarize towards the M2 phenotype under sepsis-induced liver injury in mice. The enhanced polarization towards M2 macrophages was attributed to their phagocytosis of SPION-MSCs. SPION-MSC-expressed TRAF1 was critical for promotion of macrophage polarization and alleviation of sepsis in mice. Conclusion MSCs labelled/pretreated with SPIONs may be a novel therapeutic strategy to prevent or treat sepsis and sepsis-induced liver injury. Highlights SPIONs enhance the viability of MSCs by promoting HO-1 expression. SPION-labelled/pretreated MSCs effectively improve sepsis by regulating macrophage polarization to M2 macrophages. SPION-labelled/pretreated MSCs regulate macrophage polarization in a manner dependent on MSC-expressed TRAF1 protein.
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02593-2.
Collapse
Affiliation(s)
- Yujun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
138
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
139
|
Oyarzo R, Valderrama X, Valenzuela F, Bahamonde J. Bovine Fetal Mesenchymal Stem Cells Obtained From Omental Adipose Tissue and Placenta Are More Resistant to Cryoprotectant Exposure Than Those From Bone Marrow. Front Vet Sci 2021; 8:708972. [PMID: 34671660 PMCID: PMC8520992 DOI: 10.3389/fvets.2021.708972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Recent studies have shown promise for the development of cellular therapies with mesenchymal stem cells (MSCs) in livestock species, specifically bovines, and cryopreservation is highly relevant for the advancement of these applications. The use of permeable and/or non-permeable cryoprotectant solutions is necessary to reduce cell damage during freezing and thawing, but these same compounds can also cause negative effects on MSCs and their therapeutic properties. Another important factor to consider is the tissue source of MSCs, since it is now known that MSCs from different tissues of the same individual do not behave the same way, so optimizing the type and concentration of cryoprotectants for each cell type is essential to achieve a large and healthy population of MSCs after cryopreservation. Furthermore, sources of MSCs that could provide great quantities, non-invasively and without ethical concerns, such as placental tissue, have great potential for the development of regenerative medicine in livestock species, and have not been thoroughly evaluated. The objective of this study was to compare the viability of bovine fetal MSCs extracted from bone marrow (BM), adipose tissue (AT), and placenta (PT), following their exposure (15 and 30 min) to several solutions of permeable (dimethyl sulfoxide and ethylene glycol) and non-permeable (trehalose) cryoprotectants. Viability assays were performed with Trypan Blue to assess post-exposure plasma membrane integrity. The apoptotic potential was estimated analyzing the mRNA abundance of BAX and BCL-2 genes using quantitative rt-PCR. Based on the results of the study, BM-MSC exhibited significantly lower viability compared to AT-MSC and PT-MSC, at both 15 and 30 min of exposure to cryoprotectant solutions. Nevertheless, viability did not differ among treatments for any of the cell types or timepoints studied. BCL-2 expression was higher in BM-MSC compared to AT-MSC, however, BAX/BCL-2 ratio did not differ. In conclusion, AT-MSC and PT-MSC were more resistant that BM-MSC, which showed higher sensitivity to experimental conditions, regardless of the exposure times, and cryoprotectant solutions used in the study.
Collapse
Affiliation(s)
- Rudy Oyarzo
- Laboratory of Applied Morphology, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ximena Valderrama
- Laboratory of Applied Morphology, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Chile
| | - Francisca Valenzuela
- Laboratory of Applied Morphology, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Javiera Bahamonde
- Laboratory of Applied Morphology, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
140
|
Rolandsson Enes S, Hampton TH, Barua J, McKenna DH, Dos Santos CC, Amiel E, Ashare A, Liu KD, Krasnodembskaya AD, English K, Stanton BA, Rocco PRM, Matthay MA, Weiss DJ. Healthy versus inflamed lung environments differentially affect mesenchymal stromal cells. Eur Respir J 2021; 58:2004149. [PMID: 33795318 PMCID: PMC8543758 DOI: 10.1183/13993003.04149-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/02/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Despite increased interest in mesenchymal stromal cell (MSC)-based cell therapies for acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and our understanding of the potential in vivo mechanisms of MSC actions in ARDS remains limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined. AIM The aim of this study was to comparatively assess how the inflammatory environment present in ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviour. METHODS Clinical-grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties, including viability, levels of expression of inflammatory cytokines, gene expression, cell surface human leukocyte antigen expression, and activation of coagulation and complement pathways. RESULTS Pro-inflammatory, pro-coagulant and major histocompatibility complex (self-recognition) related gene expression was markedly upregulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. These changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples. CONCLUSION These data provide new insights into how hMSCs behave in healthy versus inflamed lung environments, and strongly suggest that the inflamed environment in ARDS induces hMSC responses that are potentially beneficial for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Dept of Experimental Medical Science, Lung Biology Unit, Lund University, Lund, Sweden
| | - Thomas H Hampton
- Dept of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jayita Barua
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David H McKenna
- Dept of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care, Dept of Medicine and the Keenan Center for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Eyal Amiel
- Dept of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Alix Ashare
- Dept of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Section of Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Kathleen D Liu
- Depts of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queens University, Belfast, UK
| | - Karen English
- Cellular Immunology Laboratory, Biology Dept, Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Bruce A Stanton
- Dept of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Michael A Matthay
- Depts of Medicine and Anesthesiology and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Weiss
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
141
|
Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells 2021; 10:cells10102588. [PMID: 34685567 PMCID: PMC8533906 DOI: 10.3390/cells10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the induction of other stem cells’ differentiation. In vitro, the culture media supernatant is named secretome and contains soluble molecules and extracellular vesicles that retain potent biological function in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells are currently being tested in various preclinical and clinical trials for several diseases, including COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome (ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause systemic alterations, such as thromboembolism and compromised renal and cardiac function, the intravenous injection of MSCs may be a therapeutic alternative against multiple pathological manifestations. In this work, we reviewed the literature about MSCs biology, focusing on their function in pulmonary regeneration and their use in COVID-19 treatment.
Collapse
|
142
|
Hendrawan S, Kusnadi Y, Lagonda CA, Fauza D, Lheman J, Budi E, Manurung BS, Baer HU, Tansil Tan S. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World 2021; 14:2109-2117. [PMID: 34566328 PMCID: PMC8448625 DOI: 10.14202/vetworld.2021.2109-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Aim: Human umbilical cord mesenchymal stem cells (hUC-MSCs) and its conditioned medium (CM) promote wound healing. This study investigated the wound healing potential of hUC-MSC CM in vitro and in vivo using diabetic animal models. Materials and Methods: The CM from hUC-MSC CM prepared under hypoxic conditions (hypoxic hUC-MSC) was evaluated for stimulating rat fibroblast growth, collagen production (in vitro), and wound healing in animal models (in vivo). An excision wound on the dorsal side of the diabetes-induced rats was established, and the rats were randomly divided into non-treatment, antibiotic, and hypoxic hUC-MSC CM groups. The cell number of fibroblasts and collagen secretion was evaluated and compared among the groups in an in vitro study. By contrast, wound size reduction, width of re-epithelialization, and the collagen formation area were assessed and compared among the groups in an in vivo study. Results: CM under hypoxic conditions contained a higher concentration of wound healing-related growth factors. Hypoxic hUC-MSC CM could facilitate fibroblast cell growth and collagen synthesis, although not significant compared with the control group. Re-epithelialization and collagen production were higher in the hUC-MSC CM group than in the antibiotic and non-treatment groups. Conclusion: Hypoxic hUC-MSC CM possessed more positive effects on the wound healing process based on re-epithelialization and collagen formation than antibiotic treatment did.
Collapse
Affiliation(s)
- Siufui Hendrawan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia.,Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Yuyus Kusnadi
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Christine Ayu Lagonda
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Dilafitria Fauza
- Stem Cell Division, Stem Cell and Cancer Institute, PT. Kalbe Farma, Tbk., 10510, Jakarta, Indonesia
| | - Jennifer Lheman
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Erwin Budi
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Brian Saputra Manurung
- Tarumanagara Human Cell Technology Laboratory, Tarumanagara University, 11440, Jakarta, Indonesia
| | - Hans Ulrich Baer
- Baermed, Centre of Abdominal Surgery, Hirslanden Clinic, 2501, Zürich, Switzerland.,Department of Visceral and Transplantation Surgery, University of Bern, 3012, Bern, Switzerland
| | - Sukmawati Tansil Tan
- Department of Dermatovenereology, Faculty of Medicine, Tarumanagara University, 11440, Jakarta, Indonesia
| |
Collapse
|
143
|
Hezam K, Mo R, Wang C, Liu Y, Li Z. Anti-inflammatory Effects of Mesenchymal Stem Cells and Their Secretomes in Pneumonia. Curr Pharm Biotechnol 2021; 23:1153-1167. [PMID: 34493193 DOI: 10.2174/1389201022666210907115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that play crucial roles in the microenvironment of injured tissues. The potential therapeutics of MSCs have attracted extensive attention for several diseases such as acute respiratory distress syndrome (ARDS) and novel coronavirus disease 2019 (COVID-19) pneumonia. MSC-extracellular vesicles have been isolated from MSC-conditioned media (MSC-CM) with similar functional effects as parent MSCs. The therapeutic role of MSCs can be achieved through the balance between the inflammatory and regenerative microenvironments. Clinical settings of MSCs and their extracellular vesicles remain promising for many diseases, such as ARDS and pneumonia. However, their clinical applications remain limited due to the cost of growing and storage facilities of MSCs with a lack of standardized MSC-CM. This review highlights the proposed role of MSCs in pulmonary diseases and discusses the recent advances of MSC application for pneumonia and other lung disorders.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin. China
| | - Rigen Mo
- Nankai University School of Medicine, Tianjin. China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin. China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin. China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin. China
| |
Collapse
|
144
|
Wang M, Zhou T, Zhang Z, Liu H, Zheng Z, Xie H. Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm (Beijing) 2021; 2:351-380. [PMID: 34766151 PMCID: PMC8554668 DOI: 10.1002/mco2.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have a great potential to proliferate, undergo multi-directional differentiation, and exert immunoregulatory effects. There is already much enthusiasm for their therapeutic potentials for respiratory inflammatory diseases. Although the mechanism of MSCs-based therapy has been well explored, only a few articles have summarized the key advances in this field. We hereby provide a review over the latest progresses made on the MSCs-based therapies for four types of inflammatory respiratory diseases, including idiopathic pulmonary fibrosis, acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, and the uncovery of their underlying mechanisms from the perspective of biological characteristics and functions. Furthermore, we have also discussed the advantages and disadvantages of the MSCs-based therapies and prospects for their optimization.
Collapse
Affiliation(s)
- Ming‐yao Wang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Ting‐yue Zhou
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐dong Zhang
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hao‐yang Liu
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zhi‐yao Zheng
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Hui‐qi Xie
- Laboratory of Stem Cell and Tissue EngineeringOrthopedic Research InstituteMed‐X Center for MaterialsState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
145
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
146
|
Huang J, Wu S, Wu M, Zeng Q, Wang X, Wang H. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis Photodyn Ther 2021; 36:102480. [PMID: 34375775 DOI: 10.1016/j.pdpdt.2021.102480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A distressing issue of diabetic ulcer (DU) is its poor healing feature with limited clinical solutions. We have previously shown that 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a promising alternative to the currently limited measures for DU. Mesenchymal stem cells (MSCs) transplantation has been believed to impose certain therapeutic effect on restoration of injury. Thus, this study aims to explore whether the combination of MSCs and ALA-PDT will exert a more advanced curative effect on DU. METHODS Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ, 60 mg/kg/d) for consecutive 5 days. A full-thickness skin injury (diameter 6 mm) was created in the center of the back of each mouse, and then 10 μl of methicillin-resistant Staphylococcus aureus (MRSA) suspension was added to establish an infected DU model. All DU models were randomly divided into four groups: Untreated group, MSCs group, ALA-PDT group, and ALA-PDT combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) (ALA-PDT + MSCs) group. The wound sizes were recorded by a digital camera, and the healing rates were calculated using Image J software. Bacterial loads on wounds were measured using CFU (Colony forming units) analysis. The epithelialization, inflammatory cells infiltration and granulation tissue formation were monitored by Haematoxylin and eosin (H&E) staining, and the corresponding semi-quantitative score was matched. Growth and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Either ALA-PDT or injection of hUC-MSCs resulted in a rapid wound closure compared with the untreated, while their combination brought about the most prominent healing. On day 12, healing rates of the untreated, MSCs, ALA-PDT and ALA-PDT + MSCs were 40.56% ± 7.06%, 74.23 ± 4.83%, 84.03 ± 3.53%, 99.67 ± 0.49%, respectively. The bacterial burden reductions were approximately 1.58 logs (97.36%, P < 0.05), 2.34 logs (99.54%, P < 0.01), 4.50 logs (nearly 100%, P < 0.001) for MSCs, ALA-PDT and ALA-PDT + MSCs, respectively. Histology revealed reduced inflammatory cells and improved collagen precipitation and angiogenesis after hUC-MSCs and ALA-PDT treatment compared to the untreated. The combined therapy leaded to a more intact epithelium, similar to the healthy. Finally, ELISA revealed that the property of ALA-PDT to stimulate transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) and inhibit IL (interleukin) -1β and IL-6 outweighed that of hUC-MSCs, and this function of the combination overwhelmed that of any single therapy. CONCLUSIONS Our findings indicated that the strategy of combining ALA-PDT with hUC-MSCs possessed a significantly enhanced therapeutic effect over either single therapy, providing a promising innovative therapeutic candidate for refractory wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Qingyu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
147
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
148
|
Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, Mateen QN, Singh P, Singh M, Singla A, Ahmad J. Mesenchymal Stromal Cell-Derived Tailored Exosomes Treat Bacteria-Associated Diabetes Foot Ulcers: A Customized Approach From Bench to Bed. Front Microbiol 2021; 12:712588. [PMID: 34385994 PMCID: PMC8354005 DOI: 10.3389/fmicb.2021.712588] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nano-vesicles of endosomal origin inherited with characteristics of drug delivery and cargo loading. Exosomes offer a diverse range of opportunities that can be exploited in the treatment of various diseases post-functionalization. This membrane engineering is recently being used in the management of bacteria-associated diabetic foot ulcers (DFUs). Diabetes mellitus (DM) is among the most crippling disease of society with a large share of its imposing economic burden. DM in a chronic state is associated with the development of micro- and macrovascular complications. DFU is among the diabetic microvascular complications with the consequent occurrence of diabetic peripheral neuropathy. Mesenchymal stromal cell (MSC)-derived exosomes post-tailoring hold promise to accelerate the diabetic wound repair in DFU associated with bacterial inhabitant. These exosomes promote the antibacterial properties with regenerative activity by loading bioactive molecules like growth factors, nucleic acids, and proteins, and non-bioactive substances like antibiotics. Functionalization of MSC-derived exosomes is mediated by various physical, chemical, and biological processes that effectively load the desired cargo into the exosomes for targeted delivery at specific bacterial DFUs and wound. The present study focused on the application of the cargo-loaded exosomes in the treatment of DFU and also emphasizes the different approaches for loading the desired cargo/drug inside exosomes. However, more studies and clinical trials are needed in the domain to explore this membrane engineering.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | | | | | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kirti Amresh Gautam
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Qazi Noorul Mateen
- Department of Biochemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Prem Singh
- Department of Medicine, GSVM Medical College, Kanpur, India
| | - Manish Singh
- Department of Neurosurgery, GSVM Medical College, Kanpur, India
| | - Akhil Singla
- Department of Medicine, Maharishi Markandeshwar College and Hospital, Maharishi Markandeshwar University, Solan, India
| | - Jamal Ahmad
- Faculty of Medicine, Rajiv Gandhi Centre for Diabetes and Endocrinology, JN Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
149
|
da Silva KN, Gobatto ALN, Costa-Ferro ZSM, Cavalcante BRR, Caria ACI, de Aragão França LS, Nonaka CKV, de Macêdo Lima F, Lopes-Pacheco M, Rocco PRM, de Freitas Souza BS. Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19? Stem Cell Res Ther 2021; 12:425. [PMID: 34315546 PMCID: PMC8314259 DOI: 10.1186/s13287-021-02502-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic, caused by the rapid global spread of the novel coronavirus (SARS-CoV-2), has caused healthcare systems to collapse and led to hundreds of thousands of deaths. The clinical spectrum of COVID-19 is not only limited to local pneumonia but also represents multiple organ involvement, with potential for systemic complications. One year after the pandemic, pathophysiological knowledge has evolved, and many therapeutic advances have occurred, but mortality rates are still elevated in severe/critical COVID-19 cases. Mesenchymal stromal cells (MSCs) can exert immunomodulatory, antiviral, and pro-regenerative paracrine/endocrine actions and are therefore promising candidates for MSC-based therapies. In this review, we discuss the rationale for MSC-based therapies based on currently available preclinical and clinical evidence of safety, potential efficacy, and mechanisms of action. Finally, we present a critical analysis of the risks, limitations, challenges, and opportunities that place MSC-based products as a therapeutic strategy that may complement the current arsenal against COVID-19 and reduce the pandemic's unmet medical needs.
Collapse
Affiliation(s)
- Kátia Nunes da Silva
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Zaquer Suzana Munhoz Costa-Ferro
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Alex Cleber Improta Caria
- Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Luciana Souza de Aragão França
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | | | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19 Virus Network, Ministry of Science and Technology, and Innovation, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Goncalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, 40296-710, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil.
| |
Collapse
|
150
|
Abstract
Sepsis is a syndrome which is defined as a dysregulated host response to infection leading to organ failure. Since it remains one of the leading causes of mortality worldwide, numerous drug candidates have already been tested, and continue to be developed, as potential adjunct therapies. Despite convincing mechanisms of action and robust pre-clinical data, almost all drug candidates in the field of sepsis have failed to demonstrate clinical efficacy in the past two decades. Accordingly, the development of new sepsis drugs has markedly decreased in the past few years. Nevertheless, thanks to a better understanding of sepsis pathophysiology and pathways, new promising drug candidates are currently being developed. Instead of a unique sepsis profile as initially suspected, various phenotypes have been characterised. This has resulted in the identification of multiple targets for new drugs together with relevant biomarkers, and a better understanding of the most appropriate time to intervention. Within the entire sepsis drugs portfolio, those targeting the immune response are probably the most promising. Monoclonal antibodies targeting either cytokines or infectious agents are undoubtedly part of the potential successful therapeutic classes to come.
Collapse
Affiliation(s)
- Philippe Vignon
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France. .,Réanimation Polyvalente, CHU Dupuytren, 2 Avenue Martin Luther king, 87042, Limoges, France.
| | - Pierre-François Laterre
- St Luc University Hospital, Université Catholique de Louvain, Avenue Hippocrate 12, 1200, Brussels, Belgium
| | - Thomas Daix
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France
| | - Bruno François
- Medical-Surgical Intensive Care Unit, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm CIC 1435, Dupuytren Teaching Hospital, 87000, Limoges, France.,Inserm UMR 1092, Dupuytren Teaching Hospital, 87000, Limoges, France
| |
Collapse
|