101
|
Choi SH, Gearhart MD, Cui Z, Bosnakovski D, Kim M, Schennum N, Kyba M. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes. Nucleic Acids Res 2016; 44:5161-73. [PMID: 26951377 PMCID: PMC4914088 DOI: 10.1093/nar/gkw141] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Ectopic expression of the double homeodomain transcription factor DUX4 causes facioscapulohumeral muscular dystrophy (FSHD). Mechanisms of action of DUX4 are currently unknown. Using immortalized human myoblasts with a titratable DUX4 transgene, we identify by mass spectrometry an interaction between the DUX4 C-terminus and the histone acetyltransferases p300/CBP. Chromatin immunoprecipitation shows that DUX4 recruits p300 to its target gene, ZSCAN4, displaces histone H3 from the center of its binding site, and induces H3K27Ac in its vicinity, but C-terminal deleted DUX4 does not. We show that a DUX4 minigene, bearing only the homeodomains and C-terminus, is transcriptionally functional and cytotoxic, and that overexpression of a nuclear targeted C-terminus impairs the ability of WT DUX4 to interact with p300 and to regulate target genes. Genomic profiling of DUX4, histone H3, and H3 modifications reveals that DUX4 binds two classes of loci: DNase accessible H3K27Ac-rich chromatin and inaccessible H3K27Ac-depleted MaLR-enriched chromatin. At this latter class, it acts as a pioneer factor, recruiting H3K27 acetyltransferase activity and opening the locus for transcription. In concert with local increased H3K27Ac, the strong H3K27Ac peaks at distant sites are significantly depleted of H3K27Ac, thus DUX4 uses its C-terminus to induce a global reorganization of H3K27 acetylation.
Collapse
Affiliation(s)
- Si Ho Choi
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Ziyou Cui
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Minjee Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Natalie Schennum
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
102
|
Activation of the TGFβ pathway impairs endothelial to haematopoietic transition. Sci Rep 2016; 6:21518. [PMID: 26891705 PMCID: PMC4759586 DOI: 10.1038/srep21518] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it.
Collapse
|
103
|
A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence. Stem Cells Int 2016; 2015:218518. [PMID: 26783396 PMCID: PMC4691490 DOI: 10.1155/2015/218518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Trophoblast stem cells (TSCs) represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.
Collapse
|
104
|
Abstract
Muscle homeostasis is maintained by resident stem cells which, in both pathologic and non-pathologic conditions, are able to repair or generate new muscle fibers. Although muscle stem cells have tremendous regenerative potential, their application in cell therapy protocols is prevented by several restrictions, including the limited ability to grow ex vivo. Since pluripotent stem cells have the unique potential to both self-renew and expand almost indefinitely, they have become an attractive source of progenitors for regenerative medicine studies. Our lab has demonstrated that embryonic stem cell (ES)-derived myogenic progenitors retain the ability to repair existing muscle fibers and contribute to the pool of resident stem cells. Because of their relevance in both cell therapy and disease modeling, in this chapter we describe the protocol to derive myogenic progenitors from murine ES cells followed by their intramuscular delivery in a murine muscular dystrophy model.
Collapse
|
105
|
Identification of Small Molecules Which Induce Skeletal Muscle Differentiation in Embryonic Stem Cells via Activation of the Wnt and Inhibition of Smad2/3 and Sonic Hedgehog Pathways. Stem Cells 2015; 34:299-310. [DOI: 10.1002/stem.2228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
|
106
|
Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, Tiwari VK. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 2015; 35:24-45. [PMID: 26516211 DOI: 10.15252/embj.201591206] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Johannes Jung
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Pawel Smialowski
- Adolf Butenandt Institute and Center for Integrated Protein Science, Ludwig Maximilian University, Munich, Germany
| | - Florian Noack
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Tobias Straub
- Adolf Butenandt Institute and Center for Integrated Protein Science, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
107
|
Koyano-Nakagawa N, Shi X, Rasmussen TL, Das S, Walter CA, Garry DJ. Feedback Mechanisms Regulate Ets Variant 2 (Etv2) Gene Expression and Hematoendothelial Lineages. J Biol Chem 2015; 290:28107-28119. [PMID: 26396195 DOI: 10.1074/jbc.m115.662197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
Etv2 is an essential transcriptional regulator of hematoendothelial lineages during embryogenesis. Although Etv2 downstream targets have been identified, little is known regarding the upstream transcriptional regulation of Etv2 gene expression. In this study, we established a novel methodology that utilizes the differentiating ES cell and embryoid body system to define the modules and enhancers embedded within the Etv2 promoter. Using this system, we defined an autoactivating role for Etv2 that is mediated by two adjacent Ets motifs in the proximal promoter. In addition, we defined the role of VEGF/Flk1-Calcineurin-NFAT signaling cascade in the transcriptional regulation of Etv2. Furthermore, we defined an Etv2-Flt1-Flk1 cascade that serves as a negative feedback mechanism to regulate Etv2 gene expression. To complement and extend these studies, we demonstrated that the Flt1 null embryonic phenotype was partially rescued in the Etv2 conditional knockout background. In summary, these studies define upstream and downstream networks that serve as a transcriptional rheostat to regulate Etv2 gene expression.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Tara L Rasmussen
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Satyabrata Das
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Camille A Walter
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
108
|
Nishi Y, Zhang X, Jeong J, Peterson KA, Vedenko A, Bulyk ML, Hide WA, McMahon AP. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors. Development 2015; 142:3286-93. [PMID: 26293298 DOI: 10.1242/dev.124636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
Sonic hedgehog (Shh) signaling patterns the vertebrate spinal cord by activating a group of transcriptional repressors in distinct neural progenitors of somatic motor neuron and interneuron subtypes. To identify the action of this network, we performed a genome-wide analysis of the regulatory actions of three key ventral determinants in mammalian neural tube patterning: Nkx2.2, Nkx6.1 and Olig2. Previous studies have demonstrated that each factor acts predominantly as a transcriptional repressor, at least in part, to inhibit alternative progenitor fate choices. Here, we reveal broad and direct repression of multiple alternative fates as a general mechanism of repressor action. Additionally, the repressor network targets multiple Shh signaling components providing negative feedback to ongoing Shh signaling. Analysis of chromatin organization around Nkx2.2-, Nkx6.1- and Olig2-bound regions, together with co-analysis of engagement of the transcriptional activator Sox2, indicate that repressors bind to, and probably modulate the action of, neural enhancers. Together, the data suggest a model for neural progenitor specification downstream of Shh signaling, in which Nkx2.2 and Olig2 direct repression of alternative neural progenitor fate determinants, an action augmented by the overlapping activity of Nkx6.1 in each cell type. Integration of repressor and activator inputs, notably activator inputs mediated by Sox2, is probably a key mechanism in achieving cell type-specific transcriptional outcomes in mammalian neural progenitor fate specification.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Xiaoxiao Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jieun Jeong
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Kevin A Peterson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Anastasia Vedenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Winston A Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
109
|
Müller M, Schröer J, Azoitei N, Eiseler T, Bergmann W, Köhntop R, Lin Q, Costa IG, Zenke M, Genze F, Weidgang C, Seufferlein T, Liebau S, Kleger A. A time frame permissive for Protein Kinase D2 activity to direct angiogenesis in mouse embryonic stem cells. Sci Rep 2015; 5:11742. [PMID: 26148697 PMCID: PMC4493579 DOI: 10.1038/srep11742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 05/15/2015] [Indexed: 01/18/2023] Open
Abstract
The protein kinase D isoenzymes PKD1/2/3 are prominent downstream targets of PKCs (Protein Kinase Cs) and phospholipase D in various biological systems. Recently, we identified PKD isoforms as novel mediators of tumour cell-endothelial cell communication, tumour cell motility and metastasis. Although PKD isoforms have been implicated in physiological/tumour angiogenesis, a role of PKDs during embryonic development, vasculogenesis and angiogenesis still remains elusive. We investigated the role of PKDs in germ layer segregation and subsequent vasculogenesis and angiogenesis using mouse embryonic stem cells (ESCs). We show that mouse ESCs predominantly express PKD2 followed by PKD3 while PKD1 displays negligible levels. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated at the time of germ layer segregation. Time-restricted PKD2-activation limits mesendoderm formation and subsequent cardiovasculogenesis during early differentiation while leading to branching angiogenesis during late differentiation. In line, PKD2 loss-of-function analyses showed induction of mesendodermal differentiation in expense of the neuroectodermal germ layer. Our in vivo findings demonstrate that embryoid bodies transplanted on chicken chorioallantoic membrane induced an angiogenic response indicating that timed overexpression of PKD2 from day 4 onwards leads to augmented angiogenesis in differentiating ESCs. Taken together, our results describe novel and time-dependent facets of PKD2 during early cell fate determination.
Collapse
Affiliation(s)
- Martin Müller
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Jana Schröer
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Wendy Bergmann
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Ralf Köhntop
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- IZKF Computational Biology Research Group, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Clair Weidgang
- Department of Internal Medicine I, Ulm University, Ulm, Germany
| | | | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
110
|
Noh JY, Gandre-Babbe S, Wang Y, Hayes V, Yao Y, Gadue P, Sullivan SK, Chou ST, Machlus KR, Italiano JE, Kyba M, Finkelstein D, Ulirsch JC, Sankaran VG, French DL, Poncz M, Weiss MJ. Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells. J Clin Invest 2015; 125:2369-74. [PMID: 25961454 DOI: 10.1172/jci77670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/10/2015] [Indexed: 12/30/2022] Open
Abstract
Transfusion of donor-derived platelets is commonly used for thrombocytopenia, which results from a variety of clinical conditions and relies on a constant donor supply due to the limited shelf life of these cells. Embryonic stem (ES) and induced pluripotent stem (iPS) cells represent a potential source of megakaryocytes and platelets for transfusion therapies; however, the majority of current ES/iPS cell differentiation protocols are limited by low yields of hematopoietic progeny. In both mice and humans, mutations in the gene-encoding transcription factor GATA1 cause an accumulation of proliferating, developmentally arrested megakaryocytes, suggesting that GATA1 suppression in ES and iPS cell-derived hematopoietic progenitors may enhance megakaryocyte production. Here, we engineered ES cells from WT mice to express a doxycycline-regulated (dox-regulated) shRNA that targets Gata1 transcripts for degradation. Differentiation of these cells in the presence of dox and thrombopoietin (TPO) resulted in an exponential (at least 10¹³-fold) expansion of immature hematopoietic progenitors. Dox withdrawal in combination with multilineage cytokines restored GATA1 expression, resulting in differentiation into erythroblasts and megakaryocytes. Following transfusion into recipient animals, these dox-deprived mature megakaryocytes generated functional platelets. Our findings provide a readily reproducible strategy to exponentially expand ES cell-derived megakaryocyte-erythroid progenitors that have the capacity to differentiate into functional platelet-producing megakaryocytes.
Collapse
|
111
|
Wolf G, Yang P, Füchtbauer AC, Füchtbauer EM, Silva AM, Park C, Wu W, Nielsen AL, Pedersen FS, Macfarlan TS. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev 2015; 29:538-54. [PMID: 25737282 PMCID: PMC4358406 DOI: 10.1101/gad.252767.114] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endogenous retroviruses (ERVs) are epigenetically silenced during development, yet the cellular factors recognizing ERVs in a sequence-specific manner remain elusive. Wolf et al. find that ZFP809 initiates the silencing of ERVs in a sequence-specific manner via recruitment of heterochromatin-inducing complexes. ERV reactivation is accompanied by an epigenetic shift from repressive to active histone modifications. ZFP809 is required to initiate ERV silencing during embryonic development but becomes largely dispensable in somatic tissues. Retroviruses have been invading mammalian germlines for millions of years, accumulating in the form of endogenous retroviruses (ERVs) that account for nearly one-tenth of the mouse and human genomes. ERVs are epigenetically silenced during development, yet the cellular factors recognizing ERVs in a sequence-specific manner remain elusive. Here we demonstrate that ZFP809, a member of the Krüppel-associated box zinc finger protein (KRAB-ZFP) family, initiates the silencing of ERVs in a sequence-specific manner via recruitment of heterochromatin-inducing complexes. ZFP809 knockout mice display highly elevated levels of ZFP809-targeted ERVs in somatic tissues. ERV reactivation is accompanied by an epigenetic shift from repressive to active histone modifications but only slight destabilization of DNA methylation. Importantly, using conditional alleles and rescue experiments, we demonstrate that ZFP809 is required to initiate ERV silencing during embryonic development but becomes largely dispensable in somatic tissues. Finally, we show that the DNA-binding specificity of ZFP809 is evolutionarily conserved in the Muroidea superfamily of rodents and predates the endogenization of retroviruses presently targeted by ZFP809 in Mus musculus. In sum, these data provide compelling evidence that ZFP809 evolved to recognize foreign DNA and establish histone modification-based epigenetic silencing of ERVs.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Peng Yang
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Annette C Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Andreia M Silva
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Chungoo Park
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Warren Wu
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Finn S Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
112
|
Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 2015; 290:9614-25. [PMID: 25694434 DOI: 10.1074/jbc.m114.614628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.
Collapse
Affiliation(s)
- Xiaozhong Shi
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Katie M Zirbes
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Tara L Rasmussen
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Anwarul Ferdous
- the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mary G Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Daniel J Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
113
|
Chalamalasetty RB, Garriock RJ, Dunty WC, Kennedy MW, Jailwala P, Si H, Yamaguchi TP. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development 2015; 141:4285-97. [PMID: 25371364 DOI: 10.1242/dev.110908] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuromesodermal (NM) stem cells generate neural and paraxial presomitic mesoderm (PSM) cells, which are the respective progenitors of the spinal cord and musculoskeleton of the trunk and tail. The Wnt-regulated basic helix-loop-helix (bHLH) transcription factor mesogenin 1 (Msgn1) has been implicated as a cooperative regulator working in concert with T-box genes to control PSM formation in zebrafish, although the mechanism is unknown. We show here that, in mice, Msgn1 alone controls PSM differentiation by directly activating the transcriptional programs that define PSM identity, epithelial-mesenchymal transition, motility and segmentation. Forced expression of Msgn1 in NM stem cells in vivo reduced the contribution of their progeny to the neural tube, and dramatically expanded the unsegmented mesenchymal PSM while blocking somitogenesis and notochord differentiation. Expression of Msgn1 was sufficient to partially rescue PSM differentiation in Wnt3a(-/-) embryos, demonstrating that Msgn1 functions downstream of Wnt3a as the master regulator of PSM differentiation. Our data provide new insights into how cell fate decisions are imposed by the expression of a single transcriptional regulator.
Collapse
Affiliation(s)
- Ravindra B Chalamalasetty
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Robert J Garriock
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - William C Dunty
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Mark W Kennedy
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| | - Parthav Jailwala
- CCRIFX Bioinformatics Core, Leidos Biomedical Research, FNLCR, Frederick, MD 21702, USA
| | - Han Si
- CCRIFX Bioinformatics Core, Leidos Biomedical Research, FNLCR, Frederick, MD 21702, USA
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
114
|
Dandapat A, Bosnakovski D, Hartweck LM, Arpke RW, Baltgalvis KA, Vang D, Baik J, Darabi R, Perlingeiro RCR, Hamra FK, Gupta K, Lowe DA, Kyba M. Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep 2014; 8:1484-96. [PMID: 25176645 PMCID: PMC4188423 DOI: 10.1016/j.celrep.2014.07.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Lynn M Hartweck
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Kristen A Baltgalvis
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - June Baik
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Radbod Darabi
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - F Kent Hamra
- Department of Pharmacology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
115
|
Lodato S, Molyneaux BJ, Zuccaro E, Goff LA, Chen HH, Yuan W, Meleski A, Takahashi E, Mahony S, Rinn JL, Gifford DK, Arlotta P. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci 2014; 17:1046-54. [PMID: 24997765 PMCID: PMC4188416 DOI: 10.1038/nn.3757] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct traits that are developmentally acquired under the control of subtype-specific and pan-neuronal genes. The regulatory logic that orchestrates the expression of these unique combinations of genes is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to regulate the expression of gene sets that collectively define mouse corticospinal motor neurons (CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of Vglut1 (Slc17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition, we identify the axon guidance receptor EphB1 as a target of Fezf2 necessary to execute the ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of neuron subtype-specific and pan-neuronal gene batteries by a single transcription factor is one component of the regulatory logic responsible for the establishment of CSMN identity.
Collapse
Affiliation(s)
- Simona Lodato
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bradley J Molyneaux
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emanuela Zuccaro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Loyal A Goff
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hsu-Hsin Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Wen Yuan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Alyssa Meleski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shaun Mahony
- 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John L Rinn
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [3] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David K Gifford
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
116
|
Abstract
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs--the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C--that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles.
Collapse
Affiliation(s)
- Sonia Albini
- Muscle Development and Regeneration Program, Sanford-Burnham Institute for Medical Research;
| | - Pier Lorenzo Puri
- Muscle Development and Regeneration Program, Sanford-Burnham Institute for Medical Research; IRCCS Fondazione Santa Lucia;
| |
Collapse
|
117
|
Machado CB, Kanning KC, Kreis P, Stevenson D, Crossley M, Nowak M, Iacovino M, Kyba M, Chambers D, Blanc E, Lieberam I. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons. Development 2014; 141:784-94. [PMID: 24496616 PMCID: PMC3912827 DOI: 10.1242/dev.097188] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.
Collapse
|
118
|
Rinaldi F, Perlingeiro RCR. Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks. Transl Res 2014; 163:409-17. [PMID: 24299739 PMCID: PMC3976768 DOI: 10.1016/j.trsl.2013.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023]
Abstract
Conditions involving muscle wasting, such as muscular dystrophies, cachexia, and sarcopenia, would benefit from approaches that promote skeletal muscle regeneration. Stem cells are particularly attractive because they are able to differentiate into specialized cell types while retaining the ability to self-renew and, thus, provide a long-term response. This review will discuss recent advancements on different types of stem cells that have been attributed to be endowed with muscle regenerative potential. We will discuss the nature of these cells and their advantages and disadvantages in regards to therapy for muscular dystrophies.
Collapse
Affiliation(s)
- Fabrizio Rinaldi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minn
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
119
|
Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev Biol 2014; 389:208-18. [PMID: 24583263 DOI: 10.1016/j.ydbio.2014.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
Abstract
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
Collapse
|
120
|
Chan SSK, Shi X, Toyama A, Arpke RW, Dandapat A, Iacovino M, Kang J, Le G, Hagen HR, Garry DJ, Kyba M. Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner. Cell Stem Cell 2014; 12:587-601. [PMID: 23642367 DOI: 10.1016/j.stem.2013.03.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/12/2012] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
Mesp1 is regarded as the master regulator of cardiovascular development, initiating the cardiac transcription factor cascade to direct the generation of cardiac mesoderm. To define the early embryonic cell population that responds to Mesp1, we performed pulse inductions of gene expression over tight temporal windows following embryonic stem cell differentiation. Remarkably, instead of promoting cardiac differentiation in the initial wave of mesoderm, Mesp1 binds to the Tal1 (Scl) +40 kb enhancer and generates Flk-1+ precursors expressing Etv2 (ER71) and Tal1 that undergo hematopoietic differentiation. The second wave of mesoderm responds to Mesp1 by differentiating into PDGFRα+ precursors that undergo cardiac differentiation. Furthermore, in the absence of serum-derived factors, Mesp1 promotes skeletal myogenic differentiation. Lineage tracing revealed that the majority of yolk sac and many adult hematopoietic cells derive from Mesp1+ precursors. Thus, Mesp1 is a context-dependent determination factor, integrating the stage of differentiation and the signaling environment to specify different lineage outcomes.
Collapse
Affiliation(s)
- Sunny Sun-Kin Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
122
|
Iacovino M, Roth ME, Kyba M. Rapid genetic modification of mouse embryonic stem cells by Inducible Cassette Exchange recombination. Methods Mol Biol 2014; 1101:339-51. [PMID: 24233789 DOI: 10.1007/978-1-62703-721-1_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic stem cell (ESC) differentiation is a useful means by which to produce large quantities of cells in vitro representing early stages of embryonic development. A conditional gene expression system allows interrogation of factors at specific time points in the differentiation of ES cells to defined cell types. We have developed a method for rapidly generating conditional inducible murine ES cells by targeting genes into an Inducible Cassette Exchange (ICE) locus. The ICE locus encodes a doxycycline-inducible floxed Cre, which replaces itself with an incoming floxed gene of interest. The derivative cell lines, selected in G418, thus bear doxycycline-inducible transgenes. We provide detailed methods for performing ICE recombination and generating derivative doxycycline-inducible cell lines.
Collapse
|
123
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|
124
|
Kitajima K, Kawaguchi M, Iacovino M, Kyba M, Hara T. Molecular Functions of the LIM-Homeobox Transcription FactorLhx2in Hematopoietic Progenitor Cells Derived from Mouse Embryonic Stem Cells. Stem Cells 2013; 31:2680-9. [DOI: 10.1002/stem.1500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/14/2013] [Accepted: 07/05/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Manami Kawaguchi
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Michelina Iacovino
- Lillehei Heart Institute, Department of Pediatrics; University of Minnesota; Minneapolis Minnesota USA
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics; University of Minnesota; Minneapolis Minnesota USA
| | - Takahiko Hara
- Stem Cell Project Group; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| |
Collapse
|
125
|
Mahadevan S, Wen S, Wan YW, Peng HH, Otta S, Liu Z, Iacovino M, Mahen EM, Kyba M, Sadikovic B, Van den Veyver IB. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet 2013; 23:706-16. [PMID: 24105472 DOI: 10.1093/hmg/ddt457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7-a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis-causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family.
Collapse
|
126
|
Huang C, Jackson M, Samuel K, Taylor AH, Lowell S, Forrester LM. Haematopoietic differentiation is inhibited when Notch activity is enhanced in FLK1(+) mesoderm progenitors. Stem Cell Res 2013; 11:1273-87. [PMID: 24064354 DOI: 10.1016/j.scr.2013.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/08/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
Notch signalling has been implicated during haematopoietic development in vivo and in the differentiation of haematopoietic cells from pluripotent cells in vitro. However interpretation of data from many of these studies has been complicated by the heterogeneous nature of cell populations under study and by the fact that the Notch pathway is active during embryogenesis prior to the development of the haematopoietic system. To define the role of Notch signalling in more precise cell populations during the early stages of haematopoietic development within the aorta-gonad-mesonephros (AGM) microenvironment we co-cultured differentiating ESCs on a stromal cell line derived from this region of the embryo. Our co-culture system had no effect on the production of FLK1(+) mesoderm progenitor cells but promoted their subsequent haematopoietic differentiation. We assessed the role of Notch signalling on haematopoietic differentiation of isolated FLK1(+) cells. Notch activity is dynamic and drops to basal levels as FLK1(+) cells commit to a haematopoietic fate. Further reduction of Notch activity by the inducible expression of dominant negative MAML had no functional consequences. In contrast, induction of Notch activity using an inducible NotchIC expression system had an inhibitory effect on haematopoietic differentiation. We used a Cre-mediated recombination strategy whereby NotchIC-expressing cells were marked with the hCD2 receptor and observed a reduction in the number of multi-lineage and myeloid colonies derived from NotchIC(+) compared to NotchIC(-) FLK1(+) cells isolated from the same culture. We believe that our culture system represents a good model for haematopoietic development within the AGM microenvironment and our data suggest that haematopoietic commitment of FLK1(+) cells in this setting occurs when Notch activity is below a specific threshold.
Collapse
Affiliation(s)
- Caoxin Huang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | |
Collapse
|
127
|
TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports 2013; 1:248-65. [PMID: 24319661 PMCID: PMC3849240 DOI: 10.1016/j.stemcr.2013.08.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022] Open
Abstract
Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that TBX3 is dynamically expressed during specification of the mesendoderm lineages in differentiating embryonic stem cells (ESCs) in vitro and in developing mouse and Xenopus embryos in vivo. Forced TBX3 expression in ESCs promotes mesendoderm specification by directly activating key lineage specification factors and indirectly by enhancing paracrine Nodal/Smad2 signaling. TBX3 loss-of-function analyses in the Xenopus underline its requirement for mesendoderm lineage commitment. Moreover, we uncovered a functional redundancy between TBX3 and Tbx2 during Xenopus gastrulation. Taken together, we define further facets of TBX3 actions and map TBX3 as an upstream regulator of the mesendoderm transcriptional program during gastrulation. T-box transcription factor TBX3 is involved in early embryonic events Key transcription factor promoters of mesendoderm formation are occupied by TBX3 TBX3 promotes mesendodermal fate of mESCs
Collapse
|
128
|
Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 2013; 32:2548-60. [PMID: 23942238 DOI: 10.1038/emboj.2013.175] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/16/2013] [Indexed: 11/08/2022] Open
Abstract
Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency.
Collapse
|
129
|
Bigda JJ, Koszałka P. Wacław Szybalski's contribution to immunotherapy: HGPRT mutation & HAT selection as first steps to gene therapy and hybrid techniques in mammalian cells. Gene 2013; 525:158-61. [DOI: 10.1016/j.gene.2013.03.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 01/04/2023]
|
130
|
Magli A, Schnettler E, Rinaldi F, Bremer P, Perlingeiro RCR. Functional dissection of Pax3 in paraxial mesoderm development and myogenesis. Stem Cells 2013; 31:59-70. [PMID: 23081715 DOI: 10.1002/stem.1254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/08/2012] [Indexed: 12/21/2022]
Abstract
The paired box transcription factor Pax3 is well-known as a major regulator of embryonic myogenesis. Before Pax3 expression becomes restricted to the dermomyotome, this transcription factor is also expressed in the developing somites. The role of Pax3 at this early stage is unclear, in particular because of the scarce frequency of Pax3-positive cells in the early mouse embryo. Inducible gene expression in embryonic stem cells (ESCs) represents an excellent tool to overcome this limitation, since it can provide large quantities of otherwise rare embryonic populations expressing a factor of interest. Here we used engineered mouse ESCs to perform a functional analysis of Pax3 with the aim to identify the molecular determinants involved in the early functions of this transcription factor. We find that Pax3 induction during embryoid body differentiation results in the upregulation of genes expressed in the presomitic and somitic mesoderm. Moreover, we show that paraxial mesoderm induced by transient expression of Pax3 is not irreversibly committed to myogenesis rather requires sustained Pax3 expression. Using a series of deletion mutants of Pax3, which differentially affect its transcriptional activity, we map protein domains necessary for induction of paraxial mesoderm and induction of the myogenic program. The paired, homeo-, and transcriptional activation domains were each required for both processes, however, the paired-c-terminal RED domain showed a paraxial mesoderm-specific activity that was dispensable for myogenesis. These findings demonstrate and provide mechanistic insight into an early role for Pax3 in the generation of paraxial mesoderm.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
131
|
Dandapat A, Hartweck LM, Bosnakovski D, Kyba M. Expression of the human FSHD-linked DUX4 gene induces neurogenesis during differentiation of murine embryonic stem cells. Stem Cells Dev 2013; 22:2440-8. [PMID: 23560660 DOI: 10.1089/scd.2012.0643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Misexpression of the double homeodomain protein DUX4 in muscle is believed to cause facioscapulohumeral muscular dystrophy (FSHD). Although strategies are being devised to inhibit DUX4 activity in FSHD, there is little known about the normal function of this protein. Expression of DUX4 has been reported in pluripotent cells and testis. To test the idea that DUX4 may be involved in initiating a germ lineage program in pluripotent cells, we interrogated the effect of expressing the human DUX4 gene at different stages during in vitro differentiation of murine embryonic stem (ES) cells. We find that expression of even low levels of DUX4 is incompatible with pluripotency: DUX4-expressing ES cells downregulate pluripotency markers and rapidly differentiate even in the presence of leukemia inhibitory factor (LIF) and bone morphogenetic protein 4 (BMP4). Transcriptional profiling revealed unexpectedly that DUX4 induced a neurectodermal program. Embryoid bodies exposed to a pulse of DUX4 expression displayed severely inhibited mesodermal differentiation, but acquired neurogenic potential. In a serum-containing medium in which neurogenic differentiation is minimal, DUX4 expression served as a neural-inducing factor, enabling the differentiation of Tuj1+ neurites. These data suggest that besides effects in muscle and germ cells, the involvement of DUX4 in neurogenesis should be considered as anti-DUX4 therapies are developed.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
132
|
Darabi R, Perlingeiro RC. A Perspective on the Potential of Human iPS Cell-Based Therapies for Muscular Dystrophies: Advancements so far and Hurdles to Overcome. JOURNAL OF STEM CELL RESEARCH & THERAPY 2013; 3:e113. [PMID: 25383240 PMCID: PMC4220265 DOI: 10.4172/2157-7633.1000e113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Radbod Darabi
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Rita C.R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
133
|
Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc 2013; 8:1028-41. [PMID: 23640167 DOI: 10.1038/nprot.2013.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
At the time of implantation in the maternal uterus, the mouse blastocyst possesses an inner cell mass comprising two lineages: epiblast (Epi) and primitive endoderm (PrE). Representative stem cells derived from these two cell lineages can be expanded and maintained indefinitely in vitro as either embryonic stem (ES) or XEN cells, respectively. Here we describe protocols that can be used to establish XEN cell lines. These include the establishment of XEN cells from blastocyst-stage embryos in either standard embryonic or trophoblast stem (TS) cell culture conditions. We also describe protocols for establishing XEN cells directly from ES cells by either retinoic acid and activin-based conversion or by overexpression of the GATA transcription factor Gata6. XEN cells are a useful model of PrE cells, with which they share gene expression, differentiation potential and lineage restriction. The robust protocols for deriving XEN cells described here can be completed within 2-3 weeks.
Collapse
|
134
|
Albini S, Coutinho P, Malecova B, Giordani L, Savchenko A, Forcales SV, Puri PL. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep 2013; 3:661-70. [PMID: 23478022 DOI: 10.1016/j.celrep.2013.02.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/27/2012] [Accepted: 02/06/2013] [Indexed: 12/17/2022] Open
Abstract
Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.
Collapse
Affiliation(s)
- Sonia Albini
- Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Koyano-Nakagawa N, Kweon J, Iacovino M, Shi X, Rasmussen TL, Borges L, Zirbes KM, Li T, Perlingeiro RCR, Kyba M, Garry DJ. Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 2013; 30:1611-23. [PMID: 22628281 DOI: 10.1002/stem.1131] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages; however, the precise roles of Etv2 in yolk sac development remains unclear. In this study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2(+), c-kit(+), and CD41(+) hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP(+) population. In the Etv2 mutant yolk sac, Tie2(+) cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during embryoid body differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using electrophoretic mobility shift assay, chromatin immunoprecipitation, transcriptional assays, and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hematoendothelial development, and that Lmo2 is one of the downstream targets of Etv2.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart-Institute, Department of Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci 2012; 15:1627-35. [PMID: 23160044 DOI: 10.1038/nn.3264] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/18/2012] [Indexed: 02/07/2023]
Abstract
During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signaling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition. We identified Bcl6, an oncogene, as encoding a proneurogenic factor that is required for proper neurogenesis of the mouse cerebral cortex. BCL6 promoted the neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. BCL6 triggered exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD(+)-dependent deacetylase Sirt1, which was required for BCL6-dependent neurogenesis. The resulting epigenetic silencing of Hes5 led to neuronal differentiation despite active Notch signaling. Our findings suggest a role for BCL6 in neurogenesis and uncover Notch-BCL6-Sirt1 interactions that may affect other aspects of physiology and disease.
Collapse
|
137
|
The plasminogen activation system modulates differently adipogenesis and myogenesis of embryonic stem cells. PLoS One 2012; 7:e49065. [PMID: 23145071 PMCID: PMC3493518 DOI: 10.1371/journal.pone.0049065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1(-/-) induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.
Collapse
|
138
|
Generation of functional thyroid from embryonic stem cells. Nature 2012; 491:66-71. [PMID: 23051751 DOI: 10.1038/nature11525] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/17/2012] [Indexed: 12/17/2022]
Abstract
The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.
Collapse
|
139
|
Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep 2012; 13:355-62. [PMID: 22402664 DOI: 10.1038/embor.2012.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 01/18/2023] Open
Abstract
The transcription factor Eomesodermin (Eomes) is involved in early embryonic patterning, but the range of cell fates that it controls as well as its mechanisms of action remain unclear. Here we show that transient expression of Eomes promotes cardiovascular fate during embryonic stem cell differentiation. Eomes also rapidly induces the expression of Mesp1, a key regulator of cardiovascular differentiation, and directly binds to regulatory sequences of Mesp1. Eomes effects are strikingly modulated by Activin signalling: high levels of Activin inhibit the promotion of cardiac mesoderm by Eomes, while they enhance Eomes-dependent endodermal specification. These results place Eomes upstream of the Mesp1-dependent programme of cardiogenesis, and at the intersection of mesodermal and endodermal specification, depending on the levels of Activin/Nodal signalling.
Collapse
|
140
|
Fusion protein Isl1-Lhx3 specifies motor neuron fate by inducing motor neuron genes and concomitantly suppressing the interneuron programs. Proc Natl Acad Sci U S A 2012; 109:3383-8. [PMID: 22343290 DOI: 10.1073/pnas.1114515109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combinatorial transcription codes generate the myriad of cell types during development and thus likely provide crucial insights into directed differentiation of stem cells to a specific cell type. The LIM complex composed of Isl1 and Lhx3 directs the specification of spinal motor neurons (MNs) in embryos. Here, we report that Isl1-Lhx3, a LIM-complex mimicking fusion, induces a signature of MN transcriptome and concomitantly suppresses interneuron differentiation programs, thereby serving as a potent and specific inducer of MNs in stem cells. We show that an equimolar ratio of Isl1 and Lhx3 and the LIM domain of Lhx3 are crucial for generating MNs without up-regulating interneuron genes. These led us to design Isl1-Lhx3, which maintains the desirable 1:1 ratio of Isl1 and Lhx3 and the LIM domain of Lhx3. Isl1-Lhx3 drives MN differentiation with high specificity and efficiency in the spinal cord and embryonic stem cells, bypassing the need for sonic hedgehog (Shh). RNA-seq analysis revealed that Isl1-Lhx3 induces the expression of a battery of MN genes that control various functional aspects of MNs, while suppressing key interneuron genes. Our studies uncover a highly efficient method for directed MN generation and MN gene networks. Our results also demonstrate a general strategy of using embryonic transcription complexes for producing specific cell types from stem cells.
Collapse
|
141
|
Filareto A, Darabi R, Perlingeiro RC. Engraftment of ES-Derived Myogenic Progenitors in a Severe Mouse Model of Muscular Dystrophy. JOURNAL OF STEM CELL RESEARCH & THERAPY 2012; 10:S10-001. [PMID: 23483458 PMCID: PMC3593119 DOI: 10.4172/2157-7633.s10-001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Controlled myogenic differentiation of mouse embryonic stem cells by Pax3 combined with purification of PDGFαR+Flk-1- paraxial mesoderm results in the efficient in vitro generation of early skeletal myogenic progenitors. Upon transplantation into dystrophin-deficient mdx mice, these progenitors promote significant regeneration that is accompanied by improvement in muscle contractility. In this study, we aimed to raise the bar and assess the therapeutic potential of these cells in a more clinically relevant model of muscular dystrophy: the dystrophin-utrophin double-knockout (dKO) mouse. Unlike mdx mice, which display a mild phenotype, dKO mice are severely ill, displaying progressive muscle wasting, impaired mobility, and premature death. Here we show that in this very severe model of DMD, transplantation of Pax3-induced ES-derived skeletal myogenic progenitors results in significant engraftment as evidenced by the presence of Dystrophin+ myofibers with restoration of β-dystroglycan and eNOS within the sarcolemma, and enhanced strengthen of treated muscles. These findings demonstrate that ES-derived myogenic cell preparations are capable of engrafting in severely dystrophic muscle, and promote significant regeneration, providing a rationale for further studies on the potential therapeutic application of these cells in muscular dystrophies.
Collapse
Affiliation(s)
| | | | - Rita C.R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
142
|
Mazzoni EO, Mahony S, Iacovino M, Morrison CA, Mountoufaris G, Closser M, Whyte WA, Young RA, Kyba M, Gifford DK, Wichterle H. Embryonic stem cell-based mapping of developmental transcriptional programs. Nat Methods 2011; 8:1056-8. [PMID: 22081127 PMCID: PMC3228994 DOI: 10.1038/nmeth.1775] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/19/2011] [Indexed: 11/19/2022]
Abstract
The study of developmentally regulated transcription factors by chromatin immunoprecipitation and deep sequencing (ChIP-seq) faces two major obstacles: availability of ChIP-grade antibodies and access to sufficient number of cells. We describe versatile genome-wide analysis of transcription-factor binding sites by combining directed differentiation of embryonic stem cells and inducible expression of tagged proteins. We demonstrate its utility by mapping DNA-binding sites of transcription factors involved in motor neuron specification.
Collapse
Affiliation(s)
- Esteban O Mazzoni
- Departments of Pathology, Neurology and Neuroscience, Center for Motor Neuron Biology and Disease and Columbia Stem Cell Initiative, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|