101
|
Lee KY, Kong HJ, Mooney DJ. Quantifying interactions between cell receptors and adhesion ligand-modified polymers in solution. Macromol Biosci 2008; 8:140-5. [PMID: 17941112 DOI: 10.1002/mabi.200700169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Specific interactions between cells and cell-interactive polymers in solution were investigated by the fluorescence resonance energy transfer (FRET) technique and rheological measurements. The green fluorescence emission was dramatically reduced when rhodamine-stained cells were mixed with a fluorescein-labeled RGD-alginate solution, compared with those mixed with no RGD-containing alginate solution, which indicated an occurrence of FRET and existence of specific interactions between the cells and the polymers in solution. Rheological measurements also confirmed the formation of ordered structures of cell/polymer mixtures, caused by specific cell-polymer interactions. The FRET method was able to provide a useful means of investigating cell-polymer interactions, both in a qualitative and quantitative manner, and this approach to monitoring and controlling specific interactions between cells and polymers could be useful in the design and tailoring of polymeric carriers for cells, as well as for biological drugs, especially for tissue engineering applications.
Collapse
Affiliation(s)
- Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 133-791, South Korea.
| | | | | |
Collapse
|
102
|
Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 2008; 74:2559-64. [PMID: 18344352 DOI: 10.1128/aem.02839-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
103
|
Boontheekul T, Kong HJ, Hsiong SX, Huang YC, Mahadevan L, Vandenburgh H, Mooney DJ. Quantifying the relation between bond number and myoblast proliferation. Faraday Discuss 2008; 139:53-70; discussion 105-28, 419-20. [PMID: 19048990 DOI: 10.1039/b719928g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Many functions of the extracellular matrix can be mimicked by small peptide fragments (e.g., arginine-glycine-aspartic acid (RGD) sequence) of the entire molecule, but the presentation of the peptides is critical to their effects on cells. It is likely that some effects of peptide presentation from biomaterials simply relate to the number of bonds formed between cell receptors and the adhesion ligands, but a lack of tools to quantify bond number limits direct investigation of this assumption. The impact of different ligand presentations (density, affinity, and nanoscale distribution) on the proliferation of C2C12 and human primary myoblasts was first examined in this study. Increasing the ligand density or binding affinity led to a similar enhancement in proliferation of C2C12 cells and human primary myoblasts. The nanoscale distribution of clustered RGD ligands also influenced C2C12 cells and human primary myoblast proliferation, but in an opposing manner. A theological technique and a FRET technique were then utilized to quantify the number of receptor-ligand interactions as a function of peptide presentation. Higher numbers of bonds were formed when the RGD density and affinity were increased, as measured with both techniques, and bond number correlated with cell growth rates. However, the influence of the nanoscale peptide distribution did not appear to be solely a function of bond number. Altogether, these findings provide significant insight to the role of peptide presentation in the regulation of cell proliferation, and the approaches developed in this work may have significant utility in probing how adhesion regulates a variety of other cellular functions and aid in developing design criterion for cell-interactive materials.
Collapse
Affiliation(s)
- Tanyarut Boontheekul
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
AFM as a tool to probe and manipulate cellular processes. Pflugers Arch 2007; 456:61-70. [DOI: 10.1007/s00424-007-0414-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
105
|
An historical perspective on cell mechanics. Pflugers Arch 2007; 456:3-12. [DOI: 10.1007/s00424-007-0405-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
106
|
Yersin A, Steiner P. Receptor trafficking and AFM. Pflugers Arch 2007; 456:189-98. [DOI: 10.1007/s00424-007-0380-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/26/2007] [Indexed: 12/27/2022]
|
107
|
Yu J, Wang Q, Shi X, Ma X, Yang H, Chen YG, Fang X. Single-molecule force spectroscopy study of interaction between transforming growth factor beta1 and its receptor in living cells. J Phys Chem B 2007; 111:13619-25. [PMID: 17997544 DOI: 10.1021/jp0758667] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor beta1 (TGF-beta1) regulates many important cellular processes such as cell proliferation, differentiation, and apoptosis, etc. Its signaling is initiated by binding to and bringing together TGF-beta type II receptor (TbetaRII) and type I receptor (TbetaRI). However, it is not fully understood how the TGF-beta1 ligand-receptor interaction occurs in living cells and what is the molecular mechanism of the signaling complex TGF-beta1/TbetaRII/TbetaRI formation. In this study, we have investigated the interaction between TGF-beta1 and its receptors in living cells with single-molecule force spectroscopy for the first time. By positioning TGF-beta1-modified atomic force microscope (AFM) tips on the cells expressing fluorescent protein tagged TGF-beta receptors, the living-cell force measurement was realized with a combined fluorescence microscope and AFM. We found that coexpression of TbetaRI with TbetaRII enhanced the binding force of TGF-beta1 with its receptors, whereas the expressed TbetaRI itself exhibited no binding affinity to TGF-beta1. Moreover, the unbinding dynamics of TGF-beta1/TbetaRII and TGF-beta1/TbetaRI/TbetaRII were investigated with dynamic force spectroscopy under different AFM loading rates. The dissociation rate constants of TGF-beta1 with its receptors as well as other parameters characterizing their dissociation pathways were obtained. The results suggested a more stable binding of TGF-beta1 with the receptor after TbetaRI is recruited and the important contribution of TbetaRI to the signaling complex formation during TGF-beta1 signaling.
Collapse
Affiliation(s)
- Junping Yu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
108
|
Stüwe L, Müller M, Fabian A, Waning J, Mally S, Noël J, Schwab A, Stock C. pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 2007; 585:351-60. [PMID: 17916606 DOI: 10.1113/jphysiol.2007.145185] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Migration and morphology of human melanoma cells (MV3) depend on extracellular pH (pHe) and the activity of the Na+/H+ exchanger NHE1. To distinguish effects of NHE1 activity per se from effects of pHe we compared an NHE1-deficient mutant with rescued and wild-type cells. Time lapse video microscopy was used to investigate migratory and morphological effects caused by pHe and NHE1 activity, and a membrane-bound fluorescein conjugate was employed for ratiometric pH measurements at the outer leaflet of the cell membrane. As long as NHE1 remained inactive due to deficiency or inhibition by cariporide (HOE642) neither migration nor morphology was affected by changes in pHe. Under these conditions pH at the outer leaflet of the plasma membrane was uniform all over the cell surface. The typical pH dependence of MV3 cell migration and morphology could be reconstituted by restoring NHE1 activity. At the same time the proton gradient at the outer leaflet of the plasma membrane with the higher proton concentration at the leading edge and the lower one at the cell rear was re-established as well. Hence, NHE1 activity generates a proton gradient at the cell surface accompanied by the cells' ability to respond to changes in pHe (bulk pH). We conclude that NHE1 activity contributes to the generation of a well-defined cell surface pH by creating a proton gradient at the outer leaflet of the plasma membrane that is needed for (i) the development of a variety of morphologies including a distinct polarity and (ii) migration. A missing proton gradient at the cell surface cannot be compensated for by varying pHe.
Collapse
Affiliation(s)
- Laura Stüwe
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Wang Y, McNamara LM, Schaffler MB, Weinbaum S. A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci U S A 2007; 104:15941-6. [PMID: 17895377 PMCID: PMC2000405 DOI: 10.1073/pnas.0707246104] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental paradox in bone mechanobiology is that tissue-level strains caused by human locomotion are too small to initiate intracellular signaling in osteocytes. A cellular-level strain-amplification model previously has been proposed to explain this paradox. However, the molecular mechanism for initiating signaling has eluded detection because none of the molecules in this previously proposed model are known mediators of intracellular signaling. In this paper, we explore a paradigm and quantitative model for the initiation of intracellular signaling, namely that the processes are attached directly at discrete locations along the canalicular wall by beta(3) integrins at the apex of infrequent, previously unrecognized canalicular projections. Unique rapid fixation techniques have identified these projections and have shown them to be consistent with other studies suggesting that the adhesion molecules are alpha(v)beta(3) integrins. Our theoretical model predicts that the tensile forces acting on the integrins are <15 pN and thus provide stable attachment for the range of physiological loadings. The model also predicts that axial strains caused by the sliding of actin microfilaments about the fixed integrin attachments are an order of magnitude larger than the radial strains in the previously proposed strain-amplification theory and two orders of magnitude greater than whole-tissue strains. In vitro experiments indicated that membrane strains of this order are large enough to open stretch-activated cation channels.
Collapse
Affiliation(s)
- Yilin Wang
- *Department of Biomedical Engineering, The City College of New York and the Graduate Center, City University of New York, New York, NY 10031; and
| | - Laoise M. McNamara
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029
| | - Mitchell B. Schaffler
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029
| | - Sheldon Weinbaum
- *Department of Biomedical Engineering, The City College of New York and the Graduate Center, City University of New York, New York, NY 10031; and
- To whom correspondence should be addressed at:
Department of Biomedical Engineering, City College of New York, 138th Street at Convent Avenue, New York, NY 10031. E-mail:
| |
Collapse
|
110
|
Lee CK, Wang YM, Huang LS, Lin S. Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 2007; 38:446-61. [PMID: 17015017 DOI: 10.1016/j.micron.2006.06.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 06/17/2006] [Accepted: 06/19/2006] [Indexed: 11/19/2022]
Abstract
Recently, atomic force microscopy (AFM) based force measurements have been applied biophysically and clinically to the field of molecular recognition as well as to the evaluation of dynamic parameters for various interactions between proteins and ligands in their native environment. The aim of this review is to describe the use of the AFM to measure the forces that control biological interaction, focusing especially on protein-ligand and protein-protein interaction modes. We first considered the measurements of specific and non-specific unbinding forces which together control protein-ligand interactions. As such, we will look at the theoretical background of AFM force measurement curves for evaluating the unbinding forces of protein-ligand complexes. Three AFM model dynamic parameters developed recently for use in protein-ligand interactions are reviewed: (i) unbinding forces, (ii) off rates, and (iii) binding energies. By reviewing the several techniques developed for measuring forces between biological structures and intermolecular forces in the literature, we show that use of an AFM for these applications provides an excellent tool in terms of spatial resolution and lateral resolution, especially for protein-protein and protein-ligand interactions.
Collapse
Affiliation(s)
- Chih-Kung Lee
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
111
|
Hill MA, Sun Z, Martinez-Lemus L, Meininger GA. New technologies for dissecting the arteriolar myogenic response. Trends Pharmacol Sci 2007; 28:308-15. [PMID: 17573129 DOI: 10.1016/j.tips.2007.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/10/2007] [Accepted: 05/25/2007] [Indexed: 11/26/2022]
Abstract
The arteriolar myogenic response is crucial for the setting of vascular resistance and for providing a level of tone upon which vasodilators can act. Despite its physiological importance, questions remain regarding the underlying signaling mechanisms of the arteriolar myogenic response. Does an increase in pressure within an arteriole exert its effects via the extracellular matrix, an action on cell membranes and/or deformation of cytoskeletal structures? Recent advances in methodology, particularly involving sophisticated imaging approaches, are enabling the study of forces at single-cell and even subcellular levels. Atomic force microscopy (AFM) not only enables detection of cell morphology and stiffness but also allows discrete forces to be applied to single smooth muscle cells and subsequent responses to be observed. Importantly, the repertoire of approaches involving AFM can be expanded by using it in combination with other imaging approaches - including fluorescence imaging for cellular signals such as Ca(2+), and total internal reflectance fluorescence, fluorescence resonance energy transfer and confocal microscopy for probing cellular contact function. Combinations of these advanced imaging and nanomechanical approaches will be instructive to studies of intact vessels and the circulatory system in general.
Collapse
Affiliation(s)
- Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
112
|
Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci U S A 2007; 104:9609-14. [PMID: 17535923 PMCID: PMC1887608 DOI: 10.1073/pnas.0702668104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The binding kinetics between cell surface receptors and extracellular biomolecules is critical to all intracellular and intercellular activity. Modeling and prediction of receptor-mediated cell functions are facilitated by measurement of the binding properties on whole cells, ideally indicating the subcellular locations or cytoskeletal associations that may affect the function of bound receptors. This dual need is particularly acute vis à vis ligand engineering and clinical applications of antibodies to neutralize pathological processes. Here, we map individual receptors and determine whole-cell binding kinetics by means of functionalized force imaging, enabled by scanning probe microscopy and molecular force spectroscopy of intact cells with biomolecule-conjugated mechanical probes. We quantify the number, distribution, and association/dissociation rate constants of vascular endothelial growth factor receptor-2 with respect to a monoclonal antibody on both living and fixed human microvascular endothelial cells. This general approach to direct receptor imaging simultaneously quantifies both the binding kinetics and the nonuniform distribution of these receptors with respect to the underlying cytoskeleton, providing spatiotemporal visualization of cell surface dynamics that regulate receptor-mediated behavior.
Collapse
Affiliation(s)
- Sunyoung Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Jelena Mandic
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Krystyn J. Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- *To whom correspondence should be addressed at:
Massachusetts Institute of Technology, Room 8-237, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail:
| |
Collapse
|
113
|
Huebsch ND, Mooney DJ. Fluorescent resonance energy transfer: A tool for probing molecular cell-biomaterial interactions in three dimensions. Biomaterials 2007; 28:2424-37. [PMID: 17270268 PMCID: PMC2176075 DOI: 10.1016/j.biomaterials.2007.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/04/2007] [Indexed: 12/11/2022]
Abstract
The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, fluorescence resonance energy transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two- and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3-D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications.
Collapse
Affiliation(s)
- Nathaniel D Huebsch
- Division of Engineering and Applied Sciences, Harvard University, USA; Harvard-MIT Division of Health Sciences and Technology, USA
| | | |
Collapse
|
114
|
Mijailovich SM, Hamada K, Tsuda A. IL-8 Response of Cyclically Stretching Alveolar Epithelial Cells Exposed to Non-fibrous Particles. Ann Biomed Eng 2007; 35:582-94. [PMID: 17242997 DOI: 10.1007/s10439-006-9233-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Using a cell stretcher device, we have previously shown that A549 cells exposed to asbestos fibers gave significantly increased cytokine responses (IL-8) when they were cyclically stretched [Tsuda, A., B. K. Stringer, S. M. Mijailovich, R. A. Rogers, K. Hamada, and M. L. Gray. Am. J. Respir. Cell Mol. Biol. 21(4):455-462, 1999]. In the present study, cell stretching experiments were performed using non-fibrous riebeckite particles, instead of fibrous particles. Riebeckite particles are ground asbestos fibers with the size of a few microns and non-fibrous shape, and are often used as "non-toxic" control particles in the studies of fibrous particle-induced pathogenesis. Although it is generally assumed that riebeckite particles do not elicit strong biological responses, in our studies in cyclically stretched cell cultures, the riebeckite particles coated with adhesion proteins induced significant IL-8 responses, but in static cell cultures the treatment with adhesion protein-coated riebeckite did not induce comparable cytokine responses. To interpret these data, we have developed a simple mathematical model of adhesive interactions between a cell layer and rigid fibrous/non-fibrous particles that were subjected to external tensile forces. The analysis showed that because of considerable dissimilarity in deformations (i.e., strain mismatch) between the cells and particles during breathing, the attachment of particles as small as 1 micro in size could induce significant mechanical forces on the cell surface receptors, which may trigger subsequent adverse cell response under dynamic stretching conditions.
Collapse
Affiliation(s)
- S M Mijailovich
- Physiology Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
115
|
Chouinard JA, Khalil A, Vermette P. Method of imaging low density lipoproteins by atomic force microscopy. Microsc Res Tech 2007; 70:904-7. [PMID: 17661393 DOI: 10.1002/jemt.20492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This short paper reports a simple method to image low density lipoproteins (LDL) using atomic force microscopy (AFM). This instrument allows imaging of biological samples in liquid and presents the advantage of needing no sample preparation such as staining or fixation that may affect their general structure. Dimensions (diameter and height) of individual LDL particles were successfully measured. AFM imaging revealed that LDL have a quasi-spherical structure on the x and y axis with an oblate spheroid structure in the z axis (i.e., height). LDLs were found to have an average diameter of 23 +/- 3 nm. The obtained mean height was 10 +/- 2 nm.
Collapse
Affiliation(s)
- Julie A Chouinard
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
116
|
|
117
|
Rico F, Roca-Cusachs P, Sunyer R, Farré R, Navajas D. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J Mol Recognit 2007; 20:459-66. [PMID: 17891755 DOI: 10.1002/jmr.829] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell adhesion is required for essential biological functions such as migration, tissue formation and wound healing, and it is mediated by individual molecules that bind specifically to ligands on other cells or on the extracellular matrix. Atomic force microscopy (AFM) has been successfully used to measure cell adhesion at both single molecule and whole cell levels. However, the measurement of inherent cell adhesion properties requires a constant cell-probe contact area during indentation, a requirement which is not fulfilled in common pyramidal or spherical AFM tips. We developed a procedure using focused ion beam (FIB) technology by which we modified silicon pyramidal AFM cantilever tips to obtain flat-ended cylindrical tips with a constant and known area of contact. The tips were validated on elastic gels and living cells. Cylindrical tips showed a fairly linear force-indentation behaviour on both gels and cells for indentations >200 nm. Cylindrical tips coated with ligands were used to quantify inherent dynamic cell adhesion and elastic properties. Force, work of adhesion and elasticity showed a marked dynamic response. In contrast, the deformation applied to the cells before rupture was fairly constant within the probed dynamic range. Taken together, these results suggest that the dynamic adhesion strength is counterbalanced by the dynamic elastic response to keep a constant cell deformation regardless of the applied pulling rate.
Collapse
Affiliation(s)
- Félix Rico
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain
| | | | | | | | | |
Collapse
|
118
|
Rivière C, Marion S, Guillén N, Bacri JC, Gazeau F, Wilhelm C. Signaling through the phosphatidylinositol 3-kinase regulates mechanotaxis induced by local low magnetic forces in Entamoeba histolytica. J Biomech 2007; 40:64-77. [PMID: 16406381 DOI: 10.1016/j.jbiomech.2005.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 11/23/2005] [Indexed: 12/22/2022]
Abstract
In micro-organisms, as well as in metazoan cells, cellular polarization and directed migration are finely regulated by external stimuli, including mechanical stresses. The mechanisms sustaining the transduction of such external stresses into intracellular biochemical signals remain mainly unknown. Using an external magnetic tip, we generated a magnetic field gradient that allows migration analysis of cells submitted to local low-intensity magnetic forces (50 pN). We applied our system to the amoeba Entamoeba histolytica. Indeed, motility and chemotaxis are key activities that allow this parasite to invade and destroy the human tissues during amoebiasis. The magnetic force was applied either inside the cytoplasm or externally at the rear pole of the amoeba. We observed that the application of an intracellular force did not affect cell polarization and migration, whereas the application of the force at the rear pole of the cell induced a persistent polarization and strongly directional motion, almost directly opposed to the magnetic force. This phenomenon was completely abolished when phosphatidylinositol 3-kinase activity was inhibited by wortmanin. This result demonstrated that the applied mechanical stimulus was transduced and amplified into an intracellular biochemical signal, a process that allows such low-intensity force to strongly modify the migration behavior of the cell.
Collapse
Affiliation(s)
- C Rivière
- Pôle Matière et Systèmes Complexes, Université Paris 7, Denis Diderot, CNRS UMR7057, 140, rue de Lourmel, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
119
|
Lynch BP, Hilton AM, Simpson GJ. Nanoscale dielectrophoretic spectroscopy of individual immobilized mammalian blood cells. Biophys J 2006; 91:2678-86. [PMID: 16798803 PMCID: PMC1562388 DOI: 10.1529/biophysj.106.082412] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 05/23/2006] [Indexed: 11/18/2022] Open
Abstract
Dielectrophoretic force microscopy (DEPFM) and spectroscopy have been performed on individual intact surface-immobilized mammalian red blood cells. Dielectrophoretic force spectra were obtained in situ in approximately 125 ms and could be acquired over a region comparable in dimension to the effective diameter of a scanning probe microscopy tip. Good agreement was observed between the measured dielectrophoretic spectra and predictions using a single-shell cell model. In addition to allowing for highly localized dielectric characterization, DEPFM provided a simple means for noncontact imaging of mammalian blood cells under aqueous conditions. These studies demonstrate the feasibility of using DEPFM to monitor localized changes in membrane capacitance in real time with high spatial resolution on immobilized cells, complementing previous studies of mobile whole cells and cell suspensions.
Collapse
Affiliation(s)
- Brian P Lynch
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
120
|
Ma W, Sun Y, Han D, Chu W, Lin D, Chen D. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy. Microsc Res Tech 2006; 69:784-93. [PMID: 16892194 DOI: 10.1002/jemt.20346] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytoskeleton fibers form an intricate three-dimensional network to provide structure and function to microvessel endothelial cells. During accommodation to blood flowing, stress fiber bundles become more prominent and align with the direction of blood flow. This network either mechanically resists the applied shear stress (lateral force) or, if deformed, is dynamically remodeled back to a preferred architecture. However, the detailed response of these stress fiber bundles to applied lateral force at submicrometer scales are as yet poorly understood. In our in vitro study, the tip, topography probe in lateral force microscopy of atomic force microscopy, acted as a tool for exerting quantitative vertical and lateral force on the filaments of the cytoskeleton. Moreover, the authors developed a formula to calculate the value of lateral force exerted on every point of the filaments. The results show that cytoskeleton fibers of healthy tight junctions in rat cerebral microvessel endothelial cells formed a cross-type network, and were reinforced and elongated in the direction of scanning under lateral force of 15-42 nN. Under peroxidation (H(2)O(2) of 300 micromol/L), the cytoskeleton remodeled at intercellular junctions, and changed over the meshwork structures into a dense bundle, that redistributed the stress. Once mechanical forces were exerted on an area, the cells shrank and lost morphologic tight junctions. It would be useful in our understanding of certain pathological processes, such as cerebral ischemia/reperfusion injury, which maybe caused by biomechanical forces and which are overlooked in current disease models.
Collapse
Affiliation(s)
- Wanyun Ma
- The Key Laboratory of Atomic and Molecular Nanosciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
121
|
Kirkham J, Andreev I, Robinson C, Brookes SJ, Shore RC, Smith DA. Evidence for direct amelogenin-target cell interactions using dynamic force spectroscopy. Eur J Oral Sci 2006; 114 Suppl 1:219-24; discussion 254-6, 381-2. [PMID: 16674689 DOI: 10.1111/j.1600-0722.2006.00290.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests that amelogenin, long held to be a structural protein of developing enamel matrix, may also have cell signaling functions. However, a mechanism for amelogenin cell signaling has yet to be described. The aim of the present study was to use dynamic chemical force spectroscopy to measure amelogenin interactions with possible target cells. Full-length amelogenin (rM179) was covalently attached to silicon nitride AFM tips. Synthetic RGD peptides and unmodified AFM tips were used as controls. Amelogenin-RGD cell binding force measurements were carried out using human periodontal ligament fibroblasts (HPDF) from primary explants and a commercially available osteoblast-like human sarcoma cell line as the targets. Results indicated a linear logarithmic dependence between loading rate and unbinding force for amelogenin-RGD target cells across the range of loading rates used. For RGD controls, binding events measured at 5.5 nN s-1 force loading rate resulted in a mean force of 60 pN. Values for amelogenin-fibroblast and amelogenin-osteoblast-like cell unbinding forces, measured at similar loading rates, were 50 and 55 pN, respectively. These data suggest that amelogenin interacts with potential target cells with forces characteristic of specific ligand-receptor binding, suggesting a direct effect for amelogenin at target cell membranes.
Collapse
Affiliation(s)
- Jennifer Kirkham
- Department of Oral Biology, Leeds Dental Institute, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
122
|
Knöner G, Rolfe BE, Campbell JH, Parkin SJ, Heckenberg NR, Rubinsztein-Dunlop H. Mechanics of cellular adhesion to artificial artery templates. Biophys J 2006; 91:3085-96. [PMID: 16861267 PMCID: PMC1578459 DOI: 10.1529/biophysj.105.076125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-microm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces <40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.
Collapse
Affiliation(s)
- Gregor Knöner
- Centre for Biophotonics and Laser Science, and Centre for Research in Vascular Biology, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
123
|
Puntheeranurak T, Wildling L, Gruber HJ, Kinne RKH, Hinterdorfer P. Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci 2006; 119:2960-7. [PMID: 16787940 DOI: 10.1242/jcs.03035] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atomic force microscopy (AFM) was used to probe topology, conformational changes and initial substratecarrier interactions of Na+-glucose co-transporter (SGLT1) in living cells on a single-molecule level. By scanning SGLT1-transfected Chinese hamster ovary (CHO) cells with AFM tips carrying an epitope-specific antibody directed against the extramembranous C-terminal loop 13, significant recognition events could be detected. Specificity was confirmed by the absence of events in nontransfected CHO cells and by the use of free antigen and free antibody superfusion. Thus, contrary to computer predictions on SGLT1 topology, loop 13 seems to be part of the extracellular surface of the transporter. Binding probability of the antibody decreased upon addition of phlorizin, a specific inhibitor of SGLT1, suggesting a considerable conformational change of loop 13 when the inhibitor occludes the sugar translocation pathway. Using an AFM tip carrying 1-thio-D-glucose, direct evidence could be obtained that in the presence of Na+ a sugarbinding site appears on the transporter surface. The binding site accepts the sugar residue of the glucoside phlorizin, free D-glucose, and D-galactose, but not free Lglucose and probably represents the first of several selectivity filters of the transporter. This work demonstrates the potential of AFM to study the presence and dynamics of plasma membrane transporters in intact cells on the single molecule level.
Collapse
Affiliation(s)
- Theeraporn Puntheeranurak
- Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
| | | | | | | | | |
Collapse
|
124
|
Kim H, Arakawa H, Hatae N, Sugimoto Y, Matsumoto O, Osada T, Ichikawa A, Ikai A. Quantification of the number of EP3 receptors on a living CHO cell surface by the AFM. Ultramicroscopy 2006; 106:652-62. [PMID: 16677763 DOI: 10.1016/j.ultramic.2005.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/27/2005] [Indexed: 11/28/2022]
Abstract
The distribution of EP3 receptors on a living cell surface was quantitatively studied by atomic force microscopy (AFM). Green fluorescent protein (GFP) was introduced to the extracellular region of the EP3 receptor on a CHO cell. A microbead was used as a probe to ensure certain contact area, whose surface was coated with anti-GFP antibody. The interactions between the antibodies and GFP molecules on the cell surface were recorded to observe the distribution of the receptors. The result indicated that EP3 receptors were distributed on the CHO cell surface not uniformly but in small patches coincident with immunohistochemical observation. Repeated measurements on the same area of cell surface gave confirmation that it was unlikely that the receptors were extracted from the cell membrane during the experiments. The measurement of single molecular interaction between GFP and the anti-GFP antibody was succeeded on the cell surface using compression-free force spectroscopy. The value of separation work required to break a single molecular pair was estimated to be about 1.5 x 10(-18)J. The number of EP3 receptor on the CHO cell surface was estimated using this value to be about 1 x 10(4) under the assumption that the area of the cell surface was about 5,000 microm(2). These results indicated that the number of receptors on a living cell surface could be quantified through the force measurement by the AFM.
Collapse
Affiliation(s)
- Hyonchol Kim
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Semler EJ, Dasgupta A, Moghe PV. Cytomimetic engineering of hepatocyte morphogenesis and function by substrate-based presentation of acellular E-cadherin. ACTA ACUST UNITED AC 2006; 11:734-50. [PMID: 15998215 DOI: 10.1089/ten.2005.11.734] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although cadherin-mediated intercellular contacts can be integral to the maintenance of functionally competent hepatocytes in vitro, the ability to engineer hepatocellular differentiated function via acellular E-cadherin has yet to be thoroughly explored. To investigate the potential of substrate-presented, acellular E-cadherin to modulate hepatocellular self-assembly and functional fate, rat hepatocytes were cultured at sparse densities on surfaces designed to display recombinant E-cadherin/Fc chimeras. On these substrates, hepatocytes were observed to recognize microdisplayed E-cadherin/Fc and responded by modulating the spatial distribution of the intracellular cadherin-complexing protein beta-catenin. Substrate-presented E-cadherin/Fc was also found to markedly alter patterns of hepatocyte morphogenesis, as cellular spreading and two-dimensional reorganization were significantly inhibited under these conditions, leading to multicellular aggregates that were considerably more three-dimensional in nature. Increasing cadherin exposure was also associated with elevated levels of albumin and urea secretion, two markers of hepatocyte differentiation, over control cultures. This suggested that cell-substrate cadherin engagement established more functionally competent hepatocellular phenotypes, coinciding with the notion that E-cadherin is a differentiation-inducing ligand for these cells. The morphogenetic and function-promoting effects of substrate-bound E-cadherin/Fc were further enhanced under conditions in which protein A was utilized as an anchoring molecule to present cadherin molecules, suggesting that ligand mobility may play an important role in the effective establishment of cell-to-substrate cadherin interactions. Interestingly, the percent increase in function detected for conditions of high cadherin exposure versus control cultures was found to be substantially higher at extremely low cell densities. This observation indicated that hepatocytes respond to substrate-presented E-cadherin even in the absence of native intercellular interactions and associated juxtacrine signaling. The incorporation of acellular E-cadherin on biomaterial substrates may thus potentially present a means to prevent hepatocellular dedifferentiation by maintaining liver-specific function in otherwise severely functionally repressive culture conditions.
Collapse
Affiliation(s)
- Eric J Semler
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
126
|
Idiris A, Kidoaki S, Usui K, Maki T, Suzuki H, Ito M, Aoki M, Hayashizaki Y, Matsuda T. Force measurement for antigen-antibody interaction by atomic force microscopy using a photograft-polymer spacer. Biomacromolecules 2005; 6:2776-84. [PMID: 16153118 DOI: 10.1021/bm0502617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine the intermolecular force on protein-protein interaction (PPI) by atomic force microscopy (AFM), a photograft-polymer spacer for protein molecules on both surfaces of the substrate and AFM probe tip was developed, and its effectiveness was assessed in a PPI model of a pair of human serum albumin (HSA) and its monoclonal antibody (anti-HSA). A carboxylated photoiniferter, N-(dithiocarboxy)sarcosine, was derivatized on both surfaces of the glass substrate and AFM probe tip, and subsequently water-soluble nonionic vinyl monomers, N,N-dimethylacrylamide (DMAAm), were graft-polymerized on them upon ultraviolet light irradiation. DMAAm-photograft-polymerized spacers with carboxyl groups at the growing chain end but with different chain lengths on both surfaces were prepared. The proteins were covalently bound to the carboxyl terminus of the photograft-polymer chain using a water-soluble condensation agent. The effects of the graft-spacer length on the profile of the force-distance curves and on the unbinding characteristics (unbinding force and unbinding distance) were examined in comparison with those in the case of the commercially available poly(ethylene glycol) (PEG) spacer. The frequency of the nonspecific adhesion force profile was markedly decreased with the use of the photograft spacers. Among the force curves detected, a high frequency of single-peak curves indicating the unbinding process of a single pair of proteins and a very low frequency of multiple-peak profiles were observed for the photograft spacers, regardless of the graft chain length, whereas a high frequency of no-force peaks was noted. These observations were in marked contrast with those for the PEG spacer. The force peak values determined ranged from 88 to 94 pN, irrespective of the type of spacer, while the standard deviation of force distribution observed for the photograft spacer was lower than that for the PEG spacer, indicating that the photograft spacers provide a higher accuracy of force determination.
Collapse
Affiliation(s)
- Alimjan Idiris
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sun Z, Martinez-Lemus LA, Trache A, Trzeciakowski JP, Davis GE, Pohl U, Meininger GA. Mechanical properties of the interaction between fibronectin and α5β1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol 2005; 289:H2526-35. [PMID: 16100245 DOI: 10.1152/ajpheart.00658.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanical properties of integrin-extracellular matrix (ECM) interactions are important for the mechanotransduction of vascular smooth muscle cells (VSMC), a process that is associated with focal adhesions, and can be of particular significance in cardiovascular disease. In this study, we characterized the unbinding force and binding activity of the initial fibronectin (FN)-α5β1 interaction on the surface of VSMC using atomic force microscopy (AFM). It is postulated that these initial binding events are important to the subsequent focal adhesion assembly. FN-VSMC adhesions were selectively blocked by antibodies against α5- and β1-integrins as well as RGD-containing peptides but not by antibodies against α4- and β3-integrins, indicating that FN primarily bound to α5β1. A characteristic unbinding force of 39 ± 8 pN was observed and interpreted to represent the FN-α5β1 single-bond strength. The ability of FN to adhere to VSMC (binding probability) was significantly reduced by integrin antagonists, serum starvation, and platelet-derived growth factor (PDGF)-BB, whereas lysophosphatidic acid (LPA) increased FN binding. However, no significant change in the resolved unbinding force was observed. After engagement, the force required to dislodge the FN-coated bead from VSMC increased with increasing of contact time, suggesting a time-dependent increase in number of adhesions and/or altered binding affinity. LPA enhanced this process, whereas PDGF reduced it, suggesting that these factors also affect the multimolecular process of focal contact assembly. Thus AFM is a powerful tool for the characterization of the mechanical properties of integrin-ECM interactions and their regulation. Our results indicate that the functional activity of α5β1 and focal contact assembly can be rapidly regulated.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Medical Physiology, Texas A&M University System Health Science Center, College Station, TX, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Trache A, Meininger GA. Atomic force-multi-optical imaging integrated microscope for monitoring molecular dynamics in live cells. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:064023. [PMID: 16409088 DOI: 10.1117/1.2146963] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A novel hybrid imaging system is constructed integrating atomic force microscopy (AFM) with a combination of optical imaging techniques that offer high spatial resolution. The main application of this instrument (the NanoFluor microscope) is the study of mechanotransduction with an emphasis on extracellular matrix-integrin-cytoskeletal interactions and their role in the cellular responses to changes in external chemical and mechanical factors. The AFM allows the quantitative assessment of cytoskeletal changes, binding probability, adhesion forces, and micromechanical properties of the cells, while the optical imaging applications allow thin sectioning of the cell body at the coverslip-cell interface, permitting the study of focal adhesions using total internal reflection fluorescence (TIRF) and internal reflection microscopy (IRM). Combined AFM-optical imaging experiments show that mechanical stimulation at the apical surface of cells induces a force-generating cytoskeletal response, resulting in focal contact reorganization on the basal surface that can be monitored in real time. The NanoFluor system is also equipped with a novel mechanically aligned dual camera acquisition system for synthesized Forster resonance energy transfer (FRET). The integrated NanoFluor microscope system is described, including its characteristics, applications, and limitations.
Collapse
Affiliation(s)
- Andreea Trache
- Texas A&M University System Health Science Center, Department of Medical Physiology, Cardiovascular Research Institute, College of Medicine, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
129
|
Litvinov RI, Bennett JS, Weisel JW, Shuman H. Multi-step fibrinogen binding to the integrin (alpha)IIb(beta)3 detected using force spectroscopy. Biophys J 2005; 89:2824-34. [PMID: 16040750 PMCID: PMC1366781 DOI: 10.1529/biophysj.105.061887] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 06/20/2005] [Indexed: 01/15/2023] Open
Abstract
The regulated ability of integrin alphaIIbbeta3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific alphaIIbbeta3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified alphaIIbbeta3 and fibrinogen, covalently attached to underlying surfaces, ranged from approximately 20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20-60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80-90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to alphaIIbbeta3 antagonists or Mn2+, an alphaIIbbeta3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of alphaIIbbeta3-fibrinogen interactions was independent of the loading rate (160-16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of alphaIIbbeta3 and fibrinogen revealed at the single-molecule level.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | |
Collapse
|
130
|
Puech PH, Taubenberger A, Ulrich F, Krieg M, Muller DJ, Heisenberg CP. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci 2005; 118:4199-206. [PMID: 16155253 DOI: 10.1242/jcs.02547] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During vertebrate gastrulation, progenitor cells of different germ layers acquire specific adhesive properties that contribute to germ layer formation and separation. Wnt signals have been suggested to function in this process by modulating the different levels of adhesion between the germ layers, however, direct evidence for this is still lacking. Here we show that Wnt11, a key signal regulating gastrulation movements, is needed for the adhesion of zebrafish mesendodermal progenitor cells to fibronectin, an abundant extracellular matrix component during gastrulation. To measure this effect, we developed an assay to quantify the adhesion of single zebrafish primary mesendodermal progenitors using atomic-force microscopy (AFM). We observed significant differences in detachment force and work between cultured mesendodermal progenitors from wild-type embryos and from slb/wnt11 mutant embryos, which carry a loss-of-function mutation in the wnt11 gene, when tested on fibronectin-coated substrates. These differences were probably due to reduced adhesion to the fibronectin substrate as neither the overall cell morphology nor the cell elasticity grossly differed between wild-type and mutant cells. Furthermore, in the presence of inhibitors of fibronectin-integrin binding, such as RGD peptides, the adhesion force and work were strongly decreased, indicating that integrins are involved in the binding of mesendodermal progenitors in our assay. These findings demonstrate that AFM can be used to quantitatively determine the substrate-adhesion of cultured primary gastrulating cells and provide insight into the role of Wnt11 signalling in modulating cell adhesion at the single cell scale.
Collapse
Affiliation(s)
- Pierre-Henri Puech
- Center of Biotechnology, TU Dresden, Cellular Machines, Tatzberg 49, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
131
|
Trache A, Trzeciakowski JP, Gardiner L, Sun Z, Muthuchamy M, Guo M, Yuan SY, Meininger GA. Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy. Biophys J 2005; 89:2888-98. [PMID: 16055535 PMCID: PMC1366785 DOI: 10.1529/biophysj.104.057026] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomic force microscopy was used to investigate the cellular response to histamine, one of the major inflammatory mediators that cause endothelial hyperpermeability and vascular leakage. AFM probes were labeled with fibronectin and used to measure binding strength between alpha5beta1 integrin and fibronectin by quantifying the force required to break single fibronectin-integrin bonds. The cytoskeletal changes, binding probability, and adhesion force before and after histamine treatment on endothelial cells were monitored. Cell topography measurements indicated that histamine induces cell shrinkage. Local cell stiffness and binding probability increased twofold after histamine treatment. The force necessary to rupture single alpha5beta1-fibronectin bond increased from 34.0 +/- 0.5 pN in control cells to 39 +/- 1 pN after histamine treatment. Experiments were also conducted to confirm the specificity of the alpha5beta1-fibronectin interaction. In the presence of soluble GRGDdSP the probability of adhesion events decreased >50% whereas the adhesion force between alpha5beta1 and fibronectin remained unchanged. These data indicate that extracellular matrix-integrin interactions play an important role in the endothelial cell response to changes of external chemical mediators. These changes can be recorded as direct measurements on live endothelial cells by using atomic force microscopy.
Collapse
Affiliation(s)
- Andreea Trache
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Simon A, Durrieu MC. Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 2005; 37:1-13. [PMID: 16171998 DOI: 10.1016/j.micron.2005.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Atomic Force Microscopy (AFM) provides a range of strategies for investigating living cell adhesion to the extracellular matrix, other cells or biomaterials in their native environment. This review surveys the results obtained from major studies using AFM for mechanical force evaluation in the cell, morphological visualization of the cell and studies of the cell's response to chemical or mechanical stress. Recently, the use of AFM has been broadened to obtain experimental information about cell adhesion molecules. Quantitative measurements of binding forces between adhesion proteins and their ligands in the cell or on a surface are presented. These analyses provide data on individual molecules and their resulting collective behaviour at the cell level. They significantly contribute to the characterisation of cellular adhesion with physical principles relating to biochemistry.
Collapse
Affiliation(s)
- Anne Simon
- INSERM U577 Biomaterials and tissue repair, Université Victor Segalen Bordeaux 2, France
| | | |
Collapse
|
133
|
Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A. Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 2005; 567:225-38. [PMID: 15946960 PMCID: PMC1474168 DOI: 10.1113/jphysiol.2005.088344] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell-matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin alpha2beta1. Cells reached their maximum motility at pHe approximately 7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell-matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin alpha2beta1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell-matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition).
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Robert-Koch-Str.27b, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Kienberger F, Kada G, Mueller H, Hinterdorfer P. Single Molecule Studies of Antibody–Antigen Interaction Strength Versus Intra-molecular Antigen Stability. J Mol Biol 2005; 347:597-606. [PMID: 15755453 DOI: 10.1016/j.jmb.2005.01.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 01/18/2005] [Indexed: 11/21/2022]
Abstract
We investigated molecular recognition of antibodies to membrane-antigens and extraction of the antigens out of membranes at the single molecule level. Using dynamic force microscopy imaging and enzyme immunoassay, binding of anti-sendai antibodies to sendai-epitopes genetically fused into bacteriorhodopsin molecules from purple membranes were detected under physiological conditions. The antibody/antigen interaction strength of 70-170 pN at loading rates of 2-50 nN/second yielded a barrier width of x = 0.12 nm and a kinetic off-rate (corresponding to the barrier height) of k(off) = 6s(-1), respectively. Bacteriorhodopsin unfolding revealed a characteristic intra-molecular force pattern, in which wild-type and sendai-bacteriorhodopsin molecules were clearly distinguishable in their length distributions, originating from the additional 13 amino acid residues epitope in sendai purple membranes. The inter-molecular antibody/antigen unbinding force was significantly lower than the force required to mechanically extract the binding epitope-containing helix pair out of the membrane and unfold it (126 pN compared to 204 pN at the same loading rate), meeting the expectation that inter-molecular unbinding forces are weaker than intra-molecular unfolding forces responsible for stabilizing native conformations of proteins.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | | | | | | |
Collapse
|
135
|
Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 2005; 118:1587-94. [PMID: 15784682 DOI: 10.1242/jcs.02292] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly conserved and ubiquitous heat shock proteins (HSP) are essential for the cellular homeostasis and efficiently trigger cellular responses to stress conditions. Both microbial and human HSP act as dominant antigens in numerous infectious and autoimmune diseases such as atherosclerosis, inducing a strong immune-inflammatory response. In the present study, the surface localization of HSP60 on stressed and unstressed human umbilical venous endothelial cells (HUVECs) was investigated using sensitive high resolution microscopy methods and flow cytometry. Confocal laser scanning microscopy (CLSM) revealed an increase of HSP60 in the mitochondria and on the surface of heat-stressed living and fixed HUVECs compared to unstressed cells. Atomic force microscopy (AFM), which has developed as sensitive surface-probe technique in biology, confirmed the presence of HSP60 on the membrane of stressed cells at an even higher lateral resolution by detecting specific single molecule binding events between the monoclonal antibody AbII-13 tethered to AFM tips and HSP60 molecules on cells. The interaction force (force required to break a single AbII-13/HSP60 bond) was 59+/-2 pN, which correlated nicely to the 51+/-1 pN measured with isolated HSP60 attached to mica surfaces. Overall, we found clear evidence for the occurrence of HSP60 on the surface of stressed HUVECs in a very similar patchy distribution pattern in living and fixed cells. The relevance of our findings with respect to the role of HSP60 in atherogenesis is discussed.
Collapse
Affiliation(s)
- Gerald Pfister
- Institute for Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
136
|
Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci U S A 2005; 102:4300-5. [PMID: 15767572 PMCID: PMC555469 DOI: 10.1073/pnas.0405873102] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.
Collapse
Affiliation(s)
- Hyun Joon Kong
- Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
137
|
Arya M, Kolomeisky AB, Romo GM, Cruz MA, López JA, Anvari B. Dynamic force spectroscopy of glycoprotein Ib-IX and von Willebrand factor. Biophys J 2005; 88:4391-401. [PMID: 15764659 PMCID: PMC1305666 DOI: 10.1529/biophysj.104.046318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The first stage in hemostasis is the binding of the platelet membrane receptor glycoprotein (GP) Ib-IX complex to the A1 domain of von Willebrand factor in the subendothelium. A bleeding disorder associated with this interaction is platelet-type von Willebrand disease, which results from gain-of-function (GOF) mutations in amino acid residues 233 or 239 of the GP Ibalpha subunit of GP Ib-IX. Using optical tweezers and a quadrant photodetector, we investigated the binding of A1 to GOF and loss-of-function mutants of GP Ibalpha with mutations in the region containing the two known naturally occurring mutations. By dynamically measuring unbinding force profiles at loading rates ranging from 200-20,000 pN/s, we found that the bond strengths between A1 and GP Ibalpha GOF mutants (233, 235, 237, and 239) were significantly greater than the A1/wild-type GP Ib-IX bond at all loading rates examined (p < 0.05). In addition, mutants 231 and 232 exhibited significantly lower bond strengths with A1 than the wild-type receptors (p < 0.05). We computed unloaded dissociation rate constant (k(off)(0)) values for interactions involving mutant and wild-type GP Ib-IX receptors with A1 and found the A1/wild-type GP Ib-IX k(off)(0) value of 5.47 +/- 0.25 s(-1) to be significantly greater than the GOF k(off)(0) values and significantly less than the loss-of-function k(off)(0) values. Our data illustrate the importance of the bond kinetics associated with the VWF/GP Ib-IX interaction in hemostasis and also demonstrate the drastic changes in binding that can occur when only a single amino acid of GP Ibalpha is altered.
Collapse
Affiliation(s)
- Maneesh Arya
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | |
Collapse
|
138
|
Reddy CVG, Malinowska K, Menhart N, Wang R. Identification of TrkA on living PC12 cells by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1667:15-25. [PMID: 15533302 DOI: 10.1016/j.bbamem.2004.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 08/17/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.
Collapse
Affiliation(s)
- C V Gopal Reddy
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
139
|
Craig D, Gao M, Schulten K, Vogel V. Structural Insights into How the MIDAS Ion Stabilizes Integrin Binding to an RGD Peptide under Force. Structure 2004; 12:2049-58. [PMID: 15530369 DOI: 10.1016/j.str.2004.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/24/2004] [Accepted: 09/03/2004] [Indexed: 01/16/2023]
Abstract
Integrin alpha(V)beta(3) binds to extracellular matrix proteins through the tripeptide Arg-Gly-Asp (RGD), forming a shallow crevice rather than a deep binding pocket. A dynamic picture of how the RGD-alpha(V)beta(3) complex resists dissociation by mechanical force is derived here from steered molecular dynamic (SMD) simulations in which the major force peak correlates with the breaking of the contact between Asp(RGD) and the MIDAS ion. SMD predicts that the RGD-alpha(V)beta(3) complex is stabilized from dissociation by a single water molecule tightly coordinated to the divalent MIDAS ion, thereby blocking access of free water molecules to the most critical force-bearing interaction. The MIDAS motif is common to many other proteins that contain the phylogenetically ancient von Willebrand A (vWA) domain. The functional role of single water molecules tightly coordinated to the MIDAS ion might reflect a general strategy for the stabilization of protein-protein adhesion against cell-derived forces through divalent cations.
Collapse
Affiliation(s)
- David Craig
- Center of Nanotechnology and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
140
|
Kim H, Tsuruta S, Arakawa H, Osada T, Ikai A. Quantitative analysis of the number of antigens immobilized on a glass surface by AFM. Ultramicroscopy 2004; 100:203-10. [PMID: 15231311 DOI: 10.1016/j.ultramic.2004.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Revised: 11/26/2003] [Accepted: 01/07/2004] [Indexed: 11/20/2022]
Abstract
To develop force measurements using an atomic force microscope (AFM) in a quantitative manner, it is necessary to estimate the number density of target molecules on a sample surface, and for this, the sensitivity of detection should be known. In this study, the AFM was used as a mechanical detector and an antigen and its antibody were used as a model to evaluate the sensitivity of detection. Antigens were immobilized on a glass surface and number density was estimated by monitoring optical absorbance due to product formation by the reaction of crosslinkers. The concentration of antigen was controlled by mixing control peptides. A microbead was used as a probe and antibodies were immobilized on the bead. AFM force measurements were then made for a range of number densities in the order of 10-10(6) antigen molecules per square micrometer of surface and were compared to evaluate the sensitivity of detection. Our result establishes the reliability of estimating a number of molecules like receptors on the cell surface, and indicates that the AFM is useful as a mechanical detector with high sensitivity.
Collapse
Affiliation(s)
- Hyonchol Kim
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | |
Collapse
|
141
|
Gaudet C, Marganski WA, Kim S, Brown CT, Gunderia V, Dembo M, Wong JY. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys J 2004; 85:3329-35. [PMID: 14581234 PMCID: PMC1303610 DOI: 10.1016/s0006-3495(03)74752-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We examine the relationships of three variables (projected area, migration speed, and traction force) at various type I collagen surface densities in a population of fibroblasts. We observe that cell area is initially an increasing function of ligand density, but that above a certain transition level, increases in surface collagen cause cell area to decline. The threshold collagen density that separates these two qualitatively different regimes, approximately 160 molecules/ microm(2), is approximately equal to the cell surface density of integrin molecules. These results suggest a model in which collagen density induces a qualitative transition in the fundamental way that fibroblasts interact with the substrate. At low density, the availability of collagen binding sites is limiting and the cells simply try to flatten as much as possible by pulling on the few available sites as hard as they can. The force per bond under these conditions approaches 100 pN, approximately equal to the force required for rupture of integrin-peptide bonds. In contrast, at high collagen density adhesion, traction force and motility are limited by the availability of free integrins on the cell surface since so many of these receptors are bound to the surface ligand and the force per bond is very low.
Collapse
Affiliation(s)
- Christianne Gaudet
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 2004; 287:C1-11. [PMID: 15189819 DOI: 10.1152/ajpcell.00559.2003] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces.
Collapse
Affiliation(s)
- Hayden Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | |
Collapse
|
143
|
Kokkoli E, Ochsenhirt SE, Tirrell M. Collective and single-molecule interactions of alpha5beta1 integrins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:2397-2404. [PMID: 15835701 DOI: 10.1021/la035597l] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel biomimetic system was used to study collective and single-molecule interactions of the alpha5beta1 receptor-GRGDSP ligand system with an atomic force microscope (AFM). Bioartificial membranes, which display peptides that mimic the cell adhesion domain of the extracellular matrix protein fibronectin, are constructed from peptide-amphiphiles. The interaction measured with the immobilized alpha5beta1 integrins and GRGDSP peptide-amphiphiles is specifically related to the integrin-peptide binding. It is affected by divalent cations in a way that accurately mimics the adhesion function of the alpha5beta1 receptor. The recognition of the immobilized receptor was significantly increased for a surface that presented both the primary recognition site (GRGDSP) and the synergy site (PHSRN) compared to the adhesion measured with surfaces that displayed only the GRGDSP peptide. At the collective level, the separation process of the receptor-ligand pairs is a combination of multiple unbinding and stretching events that can accurately be described by the wormlike chain (WLC) model of polymer elasticity. In contrast, stretching was not observed at the single-molecule level. The dissociation of single alpha5beta1-GRGDSP pairs under loading rates of 1-305 nN/s revealed the presence of two activation energy barriers in the unbinding process. The high-strength regime above 59 nN/s maps the inner barrier at a distance of 0.09 nm along the direction of the force. Below 59 nN/s a low-strength regime appears with an outer barrier at 2.77 nm and a much slower transition rate that defines the dissociation rate (off-rate) in the absence of force (k(off) degrees = 0.015 s(-1)).
Collapse
Affiliation(s)
- Efrosini Kokkoli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
144
|
Santos NC, Castanho MARB. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004; 107:133-49. [PMID: 14962595 DOI: 10.1016/j.bpc.2003.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Revised: 07/30/2003] [Accepted: 09/04/2003] [Indexed: 11/27/2022]
Abstract
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.
Collapse
Affiliation(s)
- Nuno C Santos
- Instituto de Bioquímica/Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
145
|
Lehtolainen P, Wirth T, Taskinen AK, Lehenkari P, Leppänen O, Lappalainen M, Pulkkanen K, Marttila A, Marjomäki V, Airenne KJ, Horton M, Kulomaa MS, Ylä-Herttuala S. Targeting of biotinylated compounds to its target tissue using a low-density lipoprotein receptor–avidin fusion protein. Gene Ther 2003; 10:2090-7. [PMID: 14595382 DOI: 10.1038/sj.gt.3302120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The very high binding affinity of avidin to biotin is one of the highest to occur in nature. We constructed a fusion protein composed of avidin and the endocytotic LDL receptor in order to target biotinylated molecules to cells of the desired tissues. In addition to the native avidin, charge-mutated and nonglycosylated avidins were utilized as part of the fusion proteins, in order to modify its properties. All of the fusion protein versions retained the biotin-binding capacity. Although the specificity was not increased, however, fusion proteins composed of natural avidin and nonglycosylated avidin bound most efficiently to the biotinylated ligands. Fluorescence microscopy and atomic force microscopy studies revealed the expression of the fusion protein on cell membranes, and demonstrated specific and high-affinity binding of biotin to the low-density lipoprotein receptor (LDLR)-avidin fusion protein in vitro. Additionally, systemically administered biotinylated ligand targeted with high specificity the intracerebral tumors of rats that were expressing fusion protein after the virus-mediated gene transfer. These results suggest that local gene transfer of the fusion protein to target tissues may offer a novel tool for the delivery of biotinylated molecules in vitro and in vivo for therapeutic and imaging purposes.
Collapse
Affiliation(s)
- P Lehtolainen
- A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Litvinov RI, Vilaire G, Shuman H, Bennett JS, Weisel JW. Quantitative analysis of platelet alpha v beta 3 binding to osteopontin using laser tweezers. J Biol Chem 2003; 278:51285-90. [PMID: 14534308 DOI: 10.1074/jbc.m304581200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine whether platelet adhesion to surfaces coated with the matrix protein osteopontin requires an agonist-induced increase in the affinity of the integrin alpha v beta 3 for this ligand, we used laser tweezers to measure the rupture force between single alpha v beta 3 molecules on the platelet surface and osteopontin-coated beads. Virtually all platelets stimulated with 10 microM ADP bound strongly to osteopontin, producing rupture forces as great as 100 piconewtons (pN) with a peak at 45-50 pN. By contrast, 90% of unstimulated, resting non-reactive platelets bound weakly to osteopontin, with rupture forces rarely exceeding 30-35 pN. However, approximately 10% of unstimulated platelets, resting reactive platelets, exhibited rupture force distributions similar to stimulated platelets. Moreover, ADP stimulation resulted in a 12-fold increase in the probability of detecting rupture forces >30 pN compared with resting non-reactive platelets. Pre-incubating stimulated platelets with the inhibitory prostaglandin E1, a cyclic RGD peptide, the monoclonal antibody abciximab, or the alpha v beta 3-specific cyclic peptide XJ735 returned force histograms to those of non-reactive platelets. These experiments demonstrate that ADP stimulation increases the strength of the interaction between platelet alpha v beta 3 and osteopontin. Furthermore, they indicate that platelet adhesion to osteopontin-coated surfaces requires an agonist-induced exposure of alpha v beta 3-binding sites for this ligand.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6058, USA
| | | | | | | | | |
Collapse
|
147
|
Kim H, Arakawa H, Osada T, Ikai A. Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3-E1 cell. Ultramicroscopy 2003; 97:359-63. [PMID: 12801689 DOI: 10.1016/s0304-3991(03)00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Distribution of vitronectin (VN) receptors on a living murine osteoblastic cell was successfully measured by atomic force microscopy (AFM). First, the distribution of the integrin beta(5) subunit which constitutes a part of the VN receptor on the cell was confirmed by conventional immunohistochemistry after fixing the cell. To visualize the distribution of the receptor on a living cell by an independent and potentially a more quantitative method, the AFM was used with a microbead attached to the cantilever tip to increase the area of contact and VN was immobilized on the microbead. Force measurements were then performed over a large area of a living murine osteoblastic cell using the microbead covered with VN.
Collapse
Affiliation(s)
- H Kim
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | |
Collapse
|
148
|
Green JBD. Analytical instrumentation based on force measurements: combinatorial atomic force microscopy. Anal Chim Acta 2003. [DOI: 10.1016/j.aca.2003.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
149
|
Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci U S A 2003; 100:7616-21. [PMID: 12805567 PMCID: PMC164635 DOI: 10.1073/pnas.1337546100] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The tetraspanin CD151 molecule associates specifically with laminin-binding integrins, including alpha6beta1. To probe strength of alpha6beta1-dependent adhesion to laminin-1, defined forces (0-1.5 nN) were applied to magnetic laminin-coated microbeads bound to NIH 3T3 cells. For NIH 3T3 cells bearing wild-type CD151, adhesion strengthening was observed, as bead detachment became more difficult over time. In contrast, mutant CD151 (with the C-terminal region replaced) showed impaired adhesion strengthening. Static cell adhesion to laminin-1, and detachment of beads coated with fibronectin or anti-alpha6 antibody were all unaffected by CD151 mutation. Hence, CD151 plays a key role in selectively strengthening alpha6beta1 integrin-mediated adhesion to laminin-1.
Collapse
Affiliation(s)
- Jan Lammerding
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
150
|
Charras G, Lehenkari P, Horton M. Biotechnological applications of atomic force microscopy. Methods Cell Biol 2003; 68:171-91. [PMID: 12053729 DOI: 10.1016/s0091-679x(02)68009-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Guillaume Charras
- Bone and Mineral Center, Department of Medicine, Rayne Institute, University College London, London, WC1E 6JJ, United Kingdom
| | | | | |
Collapse
|