101
|
Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 2004; 6:447-58. [PMID: 15542429 DOI: 10.1016/j.ccr.2004.09.028] [Citation(s) in RCA: 624] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 08/24/2004] [Accepted: 09/14/2004] [Indexed: 12/12/2022]
Abstract
The role of Ras oncogenes in promoting cellular transformation is well established. However, the contribution of Ras signaling to interactions between tumor cells and their host environment remains poorly characterized. Here, we demonstrate that the inflammatory mediator interleukin-8 (CXCL-8/IL-8) is a transcriptional target of Ras signaling. Using a tumor xenograft model, we show that Ras-dependent CXCL-8 secretion is required for the initiation of tumor-associated inflammation and neovascularization. Collectively, our data identify a novel mechanism by which the Ras oncogene can elicit a stromal response that fosters cancer progression.
Collapse
Affiliation(s)
- Anke Sparmann
- Graduate Program in Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
102
|
Seta KA, Yuan Y, Spicer Z, Lu G, Bedard J, Ferguson TK, Pathrose P, Cole-Strauss A, Kaufhold A, Millhorn DE. The role of calcium in hypoxia-induced signal transduction and gene expression. Cell Calcium 2004; 36:331-40. [PMID: 15261489 DOI: 10.1016/j.ceca.2004.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 01/25/2023]
Abstract
Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors.
Collapse
Affiliation(s)
- Karen A Seta
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Choi JH, Hur J, Yoon CH, Kim JH, Lee CS, Youn SW, Oh IY, Skurk C, Murohara T, Park YB, Walsh K, Kim HS. Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem 2004; 279:49430-8. [PMID: 15339925 DOI: 10.1074/jbc.m402088200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we reported that inhibition of glycogen synthase kinase-3beta (GSK3beta), a key regulator in many intracellular signaling pathways, enhances the survival and migration of vascular endothelial cells. Here we investigated the effect of inhibition of GSK3beta activity on the angiogenic function of endothelial progenitor cell (EPC) and demonstrated a new therapeutic angiogenesis strategy using genetically modified EPC. As we previously reported, two biologically distinct types of EPC, spindle-shaped "early EPC" and cobblestone-shaped "late EPC" could be cultivated from human peripheral blood. Catalytically inactive GSK3beta gene was transduced into both EPC. Inhibition of GSK3beta signaling pathway led to increased nuclear translocation of beta-catenin and increased secretion of angiogenic cytokines (vascular endothelial growth factor and interleukin-8). It enhanced the survival and proliferation of early EPC, whereas it promoted the survival and differentiation of late EPC. Transplantation of either of these genetically modified EPC into the ischemic hind limb model of athymic nude mouse significantly improved blood flow, limb salvage, and tissue capillary density compared with nontransduced EPC. Inhibition of GSK3beta signaling of either of these genetically modified EPC augmented the in vitro and in vivo angiogenic potency of these cell populations. These data provide evidence that GSK3beta has a key role in the angiogenic properties of EPC. Furthermore, the genetic modification of EPC to alter this signaling step can improve the efficacy of cell-based therapeutic vasculogenesis.
Collapse
Affiliation(s)
- Jin-Ho Choi
- Cardiovascular Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 110-744, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Dimova EY, Samoylenko A, Kietzmann T. Oxidative stress and hypoxia: implications for plasminogen activator inhibitor-1 expression. Antioxid Redox Signal 2004; 6:777-91. [PMID: 15242559 DOI: 10.1089/1523086041361596] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of urokinase-type and tissue-type plasminogen activators. It has gained special interest among clinicians because a number of pathological conditions, such as myocardial infarction, atherosclerosis, thrombosis, several types of cancer, and the metabolic syndrome, as well as type 2 diabetes mellitus, are associated with increased PAI-1 levels. Interestingly, a number of these diseases are also accompanied by oxidative stress and the enhanced production of reactive oxygen species or tissue hypoxia. This article tries to summarize some aspects leading to enhanced PAI-1 production under oxidative stress or hypoxia.
Collapse
Affiliation(s)
- Elitsa Y Dimova
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany
| | | | | |
Collapse
|
105
|
Abstract
An understanding of underlying mechanisms involved in the activation of HIF-1 in response to both hypoxic stress and oncogenic signals has important implications for how these processes may become deregulated in human cancer. Changes in microenvironmental stimuli such as hypoxia and growth factors in combination with genetic lesions, such as loss or inactivation of p53, PTEN or pVHL or oncogenic activation, can all lead to increased HIF-1 activity. This provides cancer cells with a distinct advantage for survival and proliferation, resulting in their ability to form vascular tumours, which are aggressive and metastatic. Accordingly, upregulation of HIF-1alpha, a key component of HIF-1, correlates with a poor treatment outcome using conventional therapies. A variety of mechanisms exist that regulate expression of HIF-1alpha. In recent years, it has become clear that an extensive network of signalling cascades converge on HIF-1alpha to regulate the transcriptional response. A better understanding of this regulation may provide a basis for the development of new cancer therapies.
Collapse
Affiliation(s)
- Julia I Bárdos
- Cell Growth Regulation and Angiogenesis Laboratory, Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, UK
| | | |
Collapse
|
106
|
Kranenburg O, Gebbink MFBG, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochim Biophys Acta Rev Cancer 2004; 1654:23-37. [PMID: 14984765 DOI: 10.1016/j.bbcan.2003.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 09/03/2003] [Indexed: 12/13/2022]
Abstract
Cells that have acquired a proliferative advantage form islets of hyperplasia during the initial stages of tumor development. Like normal cells, they require oxygen and nutrients to survive and proliferate. The centre of the islets is characterized by low oxygen pressure and low pH, conditions that stimulate the sprouting of new capillaries from nearby vascular beds. It is now well established that neovascularisation (angiogenesis) of the hyperplasias is essential for further development of the tumor. The family of ras oncogenes promotes the initiation of tumor growth by stimulating tumor cell proliferation, but also ensures tumor progression by stimulating tumor-associated angiogenesis. Oncogenic Ras proteins stimulate a number of effector pathways that culminate in the transcriptional activation of genes that control angiogenesis. Moreover, Ras signaling leads to stabilization of the produced mRNAs and, possibly, to enhanced initiation of their translation. In this review we describe the mechanisms that underlie Ras regulation of vascular endothelial growth factor (VEGF), cyclooxygenases (COX-1/-2), thrombospondins (TSP-1/-2), urokinase plasminogen activator (uPA) and matrix metalloproteases-2 and -9 (MMP-2/-9). As a result of these Ras-regulated changes in gene expression, the tumor cells cause stimulation of endothelial cells in nearby vascular beds (directly via VEGF, and indirectly via COX-produced prostaglandins) and promote remodeling of the extracellular matrix (by lowering TSP and increasing uPA/MMPs). The latter effect makes growth factors available for endothelial cell activation and migration. In addition, tumor cell-activated stromal cells also contribute to the stimulation of angiogenesis by further enhancing the production and secretion of pro-angiogenic factors into the tumor stroma.
Collapse
Affiliation(s)
- Onno Kranenburg
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
107
|
Abstract
Hypoxia-inducible factor-1 (HIF-1), composed of HIF-α and HIF-β subunits, is a heterodimeric transcriptional activator. In response to hypoxia, stimulation of growth factors, and activation of oncogenes as well as carcinogens, HIF-1α is overexpressed and/or activated and targets those genes which are required for angiogenesis, metabolic adaptation to low oxygen and promotes survival. HIF-1 is critical for both physiological and pathological processes. Several dozens of putative direct HIF-1 target genes have been identified on the basis of one or more cis-acting hypoxia-response elements that contain an HIF-1 binding site. A variety of regulators including growth factors, genetic alterations, stress activators, and some carcinogens have been documented for regulation of HIF-1 in which several signaling pathways are involved depending on the stimuli and cell types. Activation of HIF-1 in combination with activated signaling pathways and regulators is implicated in tumour progression and prognosis. This review presents a summary of the structure and function of HIF-1α, and correlation among specific regulators and their signaling pathways.
Collapse
Affiliation(s)
- Yong-Hong Shi
- Department of Pathology, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100083, China
| | | |
Collapse
|
108
|
Höpfl G, Ogunshola O, Gassmann M. HIFs and tumors--causes and consequences. Am J Physiol Regul Integr Comp Physiol 2004; 286:R608-23. [PMID: 15003941 DOI: 10.1152/ajpregu.00538.2003] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For most organisms oxygen is essential fo life. When oxygen levels drop below those required to maintain the minimum physiological oxygen requirement of an organism or tissue it is termed hypoxia. To counter act possible deleterious effects of such a state, an immediate molecular response is initiated causing adaptation responses aimed at cell survival. This response is mediated by the hypoxia-inducible factor-1 (HIF-1), which is a heterodimer consisting of an alpha- and a beta-subunit. HIF-1 alpha protein is stabilized under hypoxic conditions and therefore confers selectivity to this response. Hypoxia is characteristic of tumors, mainly because of impaired blood supply resulting from abnormal growth. Over the past few years enormous progress has been made in the attempt to understand how the activation of the physiological response to hypoxia influences neoplastic growth. In this review some aspects of HIF-1 pathway activation in tumors and the consequences for pathophysiology and treatment of neoplasia are discussed.
Collapse
Affiliation(s)
- Gisele Höpfl
- Institute of Veterinary Physiology, University of Zürich, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
109
|
Zhang Q, Wu Y, Chau CH, Ann DK, Bertolami CN, Le AD. Crosstalk of hypoxia-mediated signaling pathways in upregulating plasminogen activator inhibitor-1 expression in keloid fibroblasts. J Cell Physiol 2004; 199:89-97. [PMID: 14978738 DOI: 10.1002/jcp.10452] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Keloids are skin fibrotic conditions characterized by an excess accumulation of extracellular matrix (ECM) components secondary to trauma or surgical injuries. Previous studies have shown that plasminogen activator inhibitor-1 (PAI-1) can be upregulated by hypoxia and may contribute to keloid pathogenesis. In this study we investigate the signaling mechanisms involved in hypoxia-mediated PAI-1 expression in keloid fibroblasts. Using Northern and Western blot analysis, transient transfections, and pharmacological agents, we demonstrate that hypoxia-induced upregulation of PAI-1 expression is mainly controlled by hypoxia inducible factors-1alpha (HIF-1alpha) and that hypoxia leads to a rapid and transient activation of phosphatidylinositol-3-kinase/Akt (PI3-K/Akt) and extracellular signal-regulated kinases 1/2 (ERK1/2). Treatment of cells with PI-3K/Akt inhibitor (LY294002) and tyrosine protein kinase inhibitor (genistein) significantly attenuated hypoxia-induced PAI-1 mRNA and protein expression as well as promoter activation, apparently via an inhibition of the hypoxia-induced stabilization of HIF-1alpha protein, attenuation of the steady-state level of HIF-1alpha mRNA, and its DNA-binding activity. Even though disruption of ERK1/2 signaling pathway by PD98059 abolished hypoxia-induced PAI-1 promoter activation and mRNA/protein expression in keloid fibroblasts, it did not inhibit the hypoxia-mediated stabilization of HIF-1alpha protein and the steady-state level of HIF-1alpha mRNA nor its DNA binding activity. Our findings suggest that a combination of several signaling pathways, including ERK1/2, PI3-K/Akt, and protein tyrosine kinases (PTKs), may contribute to the hypoxia-mediated induction of PAI-1 expression via activation of HIF-1alpha in keloid fibroblasts.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | | | | | | | | | | |
Collapse
|
110
|
Mukhopadhyay D, Datta K. Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in tumors. Semin Cancer Biol 2004; 14:123-30. [PMID: 15018896 DOI: 10.1016/j.semcancer.2003.09.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
VPF/VEGF is a multi-functional cytokine with important roles in both vasculogenesis and angiogenesis. Its production is generally regulated by local oxygen concentration. Hypoxia stimulates VPF/VEGF production by increasing its gene transcription and the stability of its mRNA. The increase in transcription in hypoxia occurs mainly through the stabilization and activation of the transcription factor, Hypoxia Inducible Factor (HIF). Cellular oxygen concentration is not the only regulator of VPF/VEGF synthesis. Some cancer cells can produce high levels of VPF/VEGF even in normoxia. Clear cell renal carcinoma cell line (RCC) like 786-0, pancreatic carcinoma cell line, ASPC-1, fibrocarcinoma cell line, HT1080, ovarian cancer cells, etc. produce an elevated level of VPF/VEGF, which is not dependent on hypoxia. In this article, we discuss different regulatory pathways in tumor cells comprised of oncogenes, tumor suppressor genes etc. that play important roles, in both the transcription and stability of VPF/VEGF mRNA.
Collapse
Affiliation(s)
- Debabrata Mukhopadhyay
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
111
|
Abstract
Among novel promising approaches that have recently entered the scene of anti-cancer therapy angiogenesis inhibition and targeting cancer-causing genes (e.g. oncogenes) are of particular interest as potentially highly synergistic. One reason for this is that transforming genetic lesions driving cancer progression (e.g. mutations of ras and/or p53) are thought to be causative for the onset of tumor angiogenesis and thereby responsible for build up of vascular supply which is essential for cancer cell survival, malignant growth, invasion and metastasis. However, many of the same genetic alterations that emerge during disease progression and repeated rounds of mutagenic and/or apoptosis causing therapy could alter cellular hypoxia-, growth factor- and apoptotic pathways in such a manner, as to also render cancer cells (partially) refractory to the detrimental consequences of poor blood vessel accessibility (density), ischemia, hypoxia and growth factor deprivation. As recent experimental evidence suggests, such cancer cells could therefore display a reduced vascular demand and remain viable even in poorly perfused regions of the tumor as well as possess an overall growth/survival advantage. The latter circumstance may lead to (predict) diminished efficacy of anti-angiogenic agents in certain malignancies. Therefore, we propose that analysis of oncogenic pathways and gene expression profiling of cancer cells may lead to important clues as to potential efficacy of anti-angiogenic therapies, the direct target of which is the host vasculature, but which are ultimately aimed at (indirect) destruction/control of the cancer cells population. We also suggest that oncogene (tumor suppressor)-directed therapies may help reverse diminished vascular demand of highly transformed cancer cells and thereby facilitate (sensitize tumors to) therapies directed against vascular supply of cancers and their metastases.
Collapse
Affiliation(s)
- Janusz Rak
- Henderson Research Centre, McMaster University, 711 Concession Street, Hamilton, Ontario, Canada L8V 1C3.
| | | |
Collapse
|
112
|
Mizukami Y, Li J, Zhang X, Zimmer MA, Iliopoulos O, Chung DC. Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 2004; 64:1765-72. [PMID: 14996738 DOI: 10.1158/0008-5472.can-03-3017] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The induction of vascular endothelial growth factor (VEGF) is an essential feature of tumor angiogenesis, and the hypoxia-inducible factor-1 (HIF-1) transcription factor is known to be a key mediator of this process. In colon cancer, the frequently mutated K-ras oncogene also can regulate VEGF expression, but the role that K-ras may play in hypoxia is unknown. Hypoxia induced VEGF promoter activity, mRNA, and protein levels in colon cancer cells. Although HIF-1alpha was induced by hypoxia, VEGF reporter constructs with selectively mutated hypoxia-response elements remained responsive to hypoxia. In addition, "knockdown" of HIF-1alpha by RNA interference only minimally inhibited the hypoxic induction of VEGF. A region of the VEGF promoter between -420 and -90 bp mediated this HIF-independent induction by hypoxia. The introduction of K-ras(Val12) augmented the hypoxic induction of VEGF, and this was observed in wild-type and HIF-1alpha knockdown colon cancer cells. Thus, VEGF may be induced by hypoxia through HIF-dependent and HIF-independent pathways, and K-ras also can induce VEGF in hypoxia independent of HIF-1. These findings suggest the existence of multiple mechanisms regulating the hypoxic induction of VEGF in colon cancer.
Collapse
Affiliation(s)
- Yusuke Mizukami
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
113
|
Ding W, Bellusci S, Shi W, Warburton D. Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. Am J Physiol Lung Cell Mol Physiol 2004; 287:L52-9. [PMID: 14977631 DOI: 10.1152/ajplung.00430.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of Sprouty4 (Spry4), an intracellular FGF receptor antagonist, shows a temporally and spatially restricted pattern in embryonic lung and is induced by ERK signaling. To clarify the molecular mechanisms regulating Spry4 transcription, the genomic structure of the human Sprouty4 (hSpry4) gene was first determined by using the GenomeWalker kit. The hSpry4 gene spans > 14 kb and is organized in three exons and two introns. Multiple transcription start sites were subsequently mapped by 5'-rapid amplification of cDNA ends. Analysis of up to 4 kb of sequence in the 5'-flanking region of the gene showed the presence of multiple potential transcription factor binding sites but no TATA or CAAT boxes. Transient transfection using luciferase reporter gene constructs with progressive deletions of the hSpry4 5'-flanking region revealed that the core promoter activity is located within the proximal 0.4-kb region, whereas the minimal ERK-inducible promoter activity is between -69 and -31. Homology analysis further showed that the core promoter region of the hSpry4 gene exhibits significant similarity to the 5'-flanking region of the mouse gene.
Collapse
Affiliation(s)
- Wei Ding
- Developmental Biology Program, Saban Research Institute, Childrens Hospital Los Angeles, and Department of Pediatric Surgery, University of Southern California Keck School of Medicine and School of Dentistry, 90027, USA.
| | | | | | | |
Collapse
|
114
|
Abstract
Tumor growth without size restriction depends on vascular supply. The ability of tumor to induce new blood-vessel formation has been a major focus of cancer research over the past decade. It is now known that members of the vascular endothelial growth factor and angiopoietin families, mainly secreted by tumor cells, induce tumor angiogenesis, whereas other endogenous angiogenic inhibitors, including thrombospondin-1 and angiostatin, keep tumor in dormancy. Experimental and clinical evidence has suggested that the process of tumor metastasis depends on angiogenesis or lymphangiogenesis. This article summarizes the recent research progress for some basic pro- or anti-angiogenic factors in tumor angiogenesis.
Collapse
Affiliation(s)
- Zhi Huang
- Cell Biology Research Lab, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China.
| | | |
Collapse
|
115
|
Paul SAM, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol 2004; 200:20-30. [PMID: 15137054 DOI: 10.1002/jcp.10479] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tissue hypoxia occurs where there is an imbalance between oxygen supply and consumption in both, solid tumors as a result of exponential cellular proliferation and in atherosclerotic diseases as a result of inefficient blood supply. Hypoxia-inducible factor 1 (HIF-1) is central in normal angiogenesis and cancer angiogenesis. HIF-1 is a transcriptional activator composed of an O(2)- and growth factor-regulated HIF-1alpha subunit and a constitutively expressed HIF-1beta subunit. Upon activation, HIF-1 drives the expression of genes controlling cell survival and governing the formation of new blood vessels. A better understanding of the regulation of HIF-1alpha levels by the receptor tyrosine kinases/phosphatidylinositol 3-kinase signaling pathway and by the HIF prolyl hydoxylases has provided new insights into the development of anticancer and revascularization therapeutics. We will focus on the potential of a new pharmacology for regulating HIF pathways in both, cancer and ischemic cardiac diseases. The consequences of the switch of HIF activation in these two disease states and the signaling pathway overlap that atherosclerosis and cancer angiogenesis share are discussed.
Collapse
Affiliation(s)
- Stefan A M Paul
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
116
|
Kasuno K, Takabuchi S, Fukuda K, Kizaka-Kondoh S, Yodoi J, Adachi T, Semenza GL, Hirota K. Nitric Oxide Induces Hypoxia-inducible Factor 1 Activation That Is Dependent on MAPK and Phosphatidylinositol 3-Kinase Signaling. J Biol Chem 2004; 279:2550-8. [PMID: 14600153 DOI: 10.1074/jbc.m308197200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of cellular adaptive responses to hypoxia. Levels of the HIF-1alpha subunit increase under hypoxic conditions. Exposure of cells to certain nitric oxide (NO) donors also induces HIF-1alpha expression under nonhypoxic conditions. We demonstrate that exposure of cells to the NO donor NOC18 or S-nitrosoglutathione induces HIF-1alpha expression and transcriptional activity. In contrast to hypoxia, NOC18 did not inhibit HIF-1alpha hydroxylation, ubiquitination, and degradation, indicating an effect on HIF-1alpha protein synthesis that was confirmed by pulse labeling studies. NOC18 stimulation of HIF-1alpha protein and HIF-1-dependent gene expression was blocked by treating cells with an inhibitor of the phosphatidylinositol 3-kinase or MAPK-signaling pathway. These inhibitors also blocked NOC18-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1alpha protein synthesis. In addition, expression of a dominant-negative form of Ras significantly suppressed HIF-1 activation by NOC18. We conclude that the NO donor NOC18 induces HIF-1alpha synthesis under conditions of NO formation during normoxia and that hydroxylation of HIF-1alpha is not regulated by NOC18.
Collapse
Affiliation(s)
- Kenji Kasuno
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, IKEDA, Osaka, Japan 563-0053
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
Sensing and responding to fluxes in oxygen tension is perhaps the single most important variable in physiology, and animal tissues have developed a number of essential mechanisms to cope with the stress of low physiological oxygen levels, or hypoxia. Among these coping mechanisms is the response mediated by the hypoxia-inducible transcription factor, or HIF-1. HIF-1 is an essential component in changing the transcriptional repertoire of tissues as oxygen levels drop, and could prove to be a very important target for drug development, as treatments evolve for diseases, such as cancer, heart disease and stroke, in which hypoxia is a central aspect.
Collapse
Affiliation(s)
- Amato Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5468, USA
| | | | | |
Collapse
|
118
|
Zhang SXL, Gozal D, Sachleben LR, Rane M, Klein JB, Gozal E. Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J 2003; 17:1709-11. [PMID: 12958184 DOI: 10.1096/fj.02-1111fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In neurons, hypoxia activates intracellular death-related pathways, yet the antiapoptotic mechanisms triggered by hypoxia remain unclear. In RN46A neuronal cells, minimum media growth conditions induced cell death as early as 12 h after the cells were placed in these conditions (i.e., after removal of B-27 supplement). However, apoptosis occurred in hypoxia (1% O2) only after 48 h, and in fact hypoxia reduced the apoptosis associated with trophic factor withdrawal. Furthermore, hypoxia induced time-dependent increases in expression of platelet-derived growth factor (PDGF) B mRNA and protein, as well as PDGF-beta receptor phosphorylation. Although exogenous PDGF-BB induced only transient Akt activation, hypoxia triggered persistent activation of Akt for up to 24 h. Inhibition of phosphatidylinositol 3-kinase (PI3K) or of PDGF-beta receptor phosphorylation abrogated both hypoxia-induced and exogenous PDGF-BB-induced Akt phosphorylation, and it completely abolished hypoxia-induced protection from media supplement deprivation, which suggests that the long-lasting activation of Akt during hypoxia and the prosurvival induction were due to endogenously generated PDGF-BB. Furthermore, these inhibitors decreased hypoxia-inducible factor 1alpha (HIF-1alpha) DNA binding, which suggests that the PDGF/PDGF-beta receptor/Akt pathway induces downstream HIF-1alpha gene transcription. We conclude that in RN46A neuronal cells, hypoxia activates an autocrine-paracrine antiapoptotic mechanism that involves up-regulation of PDGF-B and PDGF-beta receptor-dependent activation of the PI3K/Akt signaling pathway to induce downstream transcription of survival genes.
Collapse
Affiliation(s)
- Shelley X L Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, Louisville, Kentucky, USA
| | | | | | | | | | | |
Collapse
|
119
|
Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, Michiels C. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 2003; 278:31277-85. [PMID: 12764143 DOI: 10.1074/jbc.m300763200] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hypoxia initiates an intracellular signaling pathway leading to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 activity is regulated through different mechanisms involving stabilization of HIF-1alpha, phosphorylations, modifications of redox conditions, and interactions with coactivators. However, it appears that some of these steps can be cell type-specific. Among them, the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the regulation of HIF-1 by hypoxia remains controversial. Here, we investigated the activation state of PI3K/Akt/glycogen synthase kinase 3beta (GSK3beta) in HepG2 cells. Increasing incubation times in hypoxia dramatically decreased both the phosphorylation of Akt and the inhibiting phosphorylation of GSK3beta. The PI3K/Akt pathway was necessary for HIF-1alpha stabilization early during hypoxia. Indeed, its inhibition was sufficient to decrease HIF-1alpha protein level after 5-h incubation in hypoxia. However, longer exposure (16 h) in hypoxia resulted in a decreased HIF-1alpha protein level compared with early exposure (5 h). At that time, Akt was no longer present or active, which resulted in a decrease in the inhibiting phosphorylation of GSK3beta on Ser-9 and hence in an increased GSK3beta activity. GSK3 inhibition reverted the effect of prolonged hypoxia on HIF-1alpha protein level; more stabilized HIF-1alpha was observed as well as increased HIF-1 transcriptional activity. Thus, a prolonged hypoxia activates GSK3beta, which results in decreased HIF-1alpha accumulation. In conclusion, hypoxia induced a biphasic effect on HIF-1alpha stabilization with accumulation in early hypoxia, which depends on an active PI3K/Akt pathway and an inactive GSK3beta, whereas prolonged hypoxia results in the inactivation of Akt and activation of GSK3beta, which then down-regulates the HIF-1 activity through down-regulation of HIF-1alpha accumulation.
Collapse
Affiliation(s)
- Denis Mottet
- Laboratory of Biochemistry and Cellular Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
120
|
Roy S, Balasubramanian S, Wang J, Chandrashekhar Y, Charboneau R, Barke R. Morphine inhibits VEGF expression in myocardial ischemia. Surgery 2003; 134:336-44. [PMID: 12947338 DOI: 10.1067/msy.2003.247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) may contribute to the resolution of myocardial ischemia by stimulating collateral circulation. Morphine analgesia after myocardial ischemia is thought to increase infarct size. We hypothesize that morphine inhibits myocardial VEGF expression by inhibiting hypoxia-induced factor 1alpha (HIF-1alpha) and the signal transduction mechanisms involving Erk-1,2 MAP kinase (p42/p44), and PI3 kinase activity (phospho-Akt). METHODS (1) In vitro: primary cultures of rat cardiac myocytes; (2) in vivo: rat coronary ligation model; (3) mRNA measurement: real-time reverse transcriptase-polymerase chain reaction; (4) protein measurements: enzyme-linked immunosorbent assay, Western immunoblot, electromobility shift assay (EMSA), and immunohistochemistry. RESULTS Using rat cardiac myocytes in vitro, we show that morphine: (1) decreases hypoxia-induced VEGF(121) and VEGF(165) mRNA expression and VEGF protein concentration through an opioid receptor mechanism; (2) decreases HIF-1alpha protein expression (immunoblot) and nuclear protein binding to the VEGF HIF-1alpha DNA response element (EMSA); and (3) inhibits phospho-Erk-1,2 MAP kinase (immunoblot) and phospho-Akt kinase activity (immunoblot). Using a rat coronary ligation model, we show that morphine treatment: (1) decreases myocardial VEGF protein expression (immunohistochemistry); (2) decreases HIF-1alpha protein expression (immunoblot); and (3) decreases phospho-Erk-1,2 and phospho-Akt expression. CONCLUSIONS (1) Morphine inhibits hypoxia-induced VEGF transcription, in part, through an HIF-1alpha-mediated mechanism and (2) morphine inhibition of hypoxia-induced HIF-1alpha may be mediated by inhibition of ERK 1,2 MAP kinase activity and PI3 kinase activity.
Collapse
Affiliation(s)
- S Roy
- Department of Pharmacology, University of Minnesota, Minneapolis Veterans Affairs Medical Center, Minneapois, MN 55417, USA
| | | | | | | | | | | |
Collapse
|
121
|
Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146:159-216. [PMID: 12605307 DOI: 10.1007/s10254-002-0004-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle shows an enormous plasticity to adapt to stimuli such as contractile activity (endurance exercise, electrical stimulation, denervation), loading conditions (resistance training, microgravity), substrate supply (nutritional interventions) or environmental factors (hypoxia). The presented data show that adaptive structural events occur in both muscle fibres (myofibrils, mitochondria) and associated structures (motoneurons and capillaries). Functional adaptations appear to involve alterations in regulatory mechanisms (neuronal, endocrine and intracellular signalling), contractile properties and metabolic capacities. With the appropriate molecular techniques it has been demonstrated over the past 10 years that rapid changes in skeletal muscle mRNA expression occur with exercise in human and rodent species. Recently, gene expression profiling analysis has demonstrated that transcriptional adaptations in skeletal muscle due to changes in loading involve a broad range of genes and that mRNA changes often run parallel for genes in the same functional categories. These changes can be matched to the structural/functional adaptations known to occur with corresponding stimuli. Several signalling pathways involving cytoplasmic protein kinases and nuclear-encoded transcription factors are recognized as potential master regulators that transduce physiological stress into transcriptional adaptations of batteries of metabolic and contractile genes. Nuclear reprogramming is recognized as an important event in muscle plasticity and may be related to the adaptations in the myosin type, protein turnover, and the cytoplasma-to-myonucleus ratio. The accessibility of muscle tissue to biopsies in conjunction with the advent of high-throughput gene expression analysis technology points to skeletal muscle plasticity as a particularly useful paradigm for studying gene regulatory phenomena in humans.
Collapse
Affiliation(s)
- M Flück
- Institute of Anatomy, University of Bern, Bühlstrasse 26, 3000, Bern 9, Switzerland.
| | | |
Collapse
|
122
|
Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 2003; 278:14013-9. [PMID: 12588875 PMCID: PMC4518846 DOI: 10.1074/jbc.m209702200] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factors (HIF) are a family of heterodimeric transcriptional regulators that play pivotal roles in the regulation of cellular utilization of oxygen and glucose and are essential transcriptional regulators of angiogenesis in solid tumor and ischemic disorders. The transactivation activity of HIF complexes requires the recruitment of p300/CREB-binding protein (CBP) by HIF-1 alpha and HIF-2 alpha that undergo oxygen-dependent degradation. HIF activation in tumors is caused by several factors including mitogen-activated protein kinase (MAPK) signaling. Here we investigated the molecular basis for HIF activation by MAPK. We show that MAPK is required for the transactivation activity of HIF-1 alpha. Furthermore, inhibition of MAPK disrupts the HIF-p300 interaction and suppresses the transactivation activity of p300. Overexpression of MEK1, an upstream MAPK activator, stimulates the transactivation of both p300 and HIF-1 alpha. Interestingly, the C-terminal transactivation domain of HIF-1 alpha is not a direct substrate of MAPK, and HIF-1 alpha phosphorylation is not required for HIF-CAD/p300 interaction. Taken together, our data suggest that MAPK signaling facilitates HIF activation through p300/CBP.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Caro
- To whom correspondence may be addressed: Cardeza Foundation and Dept. of Medicine, Thomas Jefferson University, 1015 Walnut St., Curtis Bldg., Rm. 809, Philadelphia, PA 19107. Tel.: 215-955-5118; Fax: 215-923-3836;
| |
Collapse
|
123
|
Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 2003; 101:1857-63. [PMID: 12406896 DOI: 10.1182/blood-2002-02-0582] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiostatin, an inhibitor of angiogenesis, contains 3 to 4 kringle domains that are derived from proteolytic cleavage of plasminogen. The antiangiogenic effects of angiostatin occur, in part, from its inhibition of endothelial cell surface adenosine triphosphate synthase, integrin functions, and pericellular proteolysis. Angiostatin has structural similarities to hepatocyte growth factor (HGF; "scatter factor"), a promoter of angiogenesis, that induces proliferation and migration of both endothelial and smooth muscle cells via its cell surface receptor, c-met. We hypothesized that angiostatin might block HGF-induced signaling in endothelial and smooth muscle cells. Angiostatin inhibited HGF-induced phosphorylation of c-met, Akt, and ERK1/2. Angiostatin also significantly inhibited proliferation of human umbilical vein endothelial cells (HUVECs) induced by HGF. In contrast, angiostatin did not inhibit vascular endothelial growth factor (VEGF)-or basic fibroblast growth factor (bFGF)-induced signaling events or HUVEC proliferation. Angiostatin bound to immobilized truncated c-met produced by A431 cells and could be immunoprecipitated as a complex with soluble c-met. HGF inhibited the binding of (125)I-angiostatin to HUVECs. Soluble c-met, produced by several tumor cell lines, could inhibit the antiangiogenic effect of angiostatin. The disruption of HGF/c-met signaling is a novel mechanism for the antiangiogenic effect of angiostatin.
Collapse
Affiliation(s)
- Nadeem Wajih
- Wake Forest University School of Medicine, Section of Cardiology, Winston-Salem, NC 27157-1045, USA.
| | | |
Collapse
|
124
|
Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 2003; 116:665-74. [PMID: 12538767 DOI: 10.1242/jcs.00286] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is the most endothelial cell-specific angiogenic factor characterised to date, and it is produced by a variety of cell types. In macrophages, VEGF has been shown to be upregulated by the inflammatory mediator lipopolysaccharide (LPS) and by engagement of CD40 by CD40 ligand (CD40L). Because LPS and CD40L activate nuclear factor-kappaB (NF-kappaB) in monocytes, we investigated in this study whether VEGF production in macrophages, when stimulated with either LPS or CD40L, is NF-kappaB-dependent. We used adenoviral constructs over-expressing either IkappaBalpha (AdvIkappaBalpha), the endogenous inhibitor of NF-kappaB, or a kinase-defective mutant of IKK-2 (AdvIKK-2dn), an upstream activator of IkappaBalpha, to infect normal human monocyte-derived macrophages. We observed that LPS-induced production of VEGF in human macrophages was almost completely inhibited (>90%) following adenoviral transfer of IkappaBalpha. In addition, we observed significant inhibition of the CD40L-induced VEGF production in macrophages following infection with AdvIkappaBalpha. Expression of IKK-2dn in macrophages decreased VEGF production in response to LPS or CD40L by approximately 50%, suggesting that in addition to IKK-2, other kinases might be involved in NF-kappaB activation. These results show for the first time that VEGF production in human macrophages is NF-kappaB dependent. NF-kappaB regulates many of the genes involved in immune and inflammatory responses, and our study adds the angiogenic cytokine VEGF to the list of NF-kappaB-dependent cytokines.
Collapse
Affiliation(s)
- Serafim Kiriakidis
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London W6 8LH, UK.
| | | | | | | | | | | |
Collapse
|
125
|
Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M, Abe K. Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res 2003; 962:21-6. [PMID: 12543452 DOI: 10.1016/s0006-8993(02)03774-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In order to determine possible coordinate expression of major survival signals, immunofluorescent analyses for phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt) were carried out after 90 min of transient middle cerebral artery occlusion (MCAO) in rats. p-Akt single positive cells (E-/A+) were found in the sham control brains with weak signal intensity. The levels of both survival signals concurrently increased from 1 to 3 h after the reperfusion with the peak at 1 h, and the signals were much stronger in the ischemic penumbra (IP) than ischemic core (IC). The number of E-/A+ cells was larger in both the IC and IP than that of p-ERK single positive cells (E+/A-). The E+/A- cells were primarily expressed at 1 h in the IP. The number of p-ERK plus p-Akt double positive cells (E+/A+) peaked at 1 h, and the intensity was much stronger in the IP than IC. These findings suggest that p-ERK and p-Akt play independent roles, respectively as emergency or maintenance signal for survival at an early stage after reperfusion, and that both signals were cooperatively expressed especially in the IP.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Kietzmann T, Samoylenko A, Roth U, Jungermann K. Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood 2003; 101:907-14. [PMID: 12393531 DOI: 10.1182/blood-2002-06-1693] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The expression of the plasminogen activator inhibitor-1 (PAI-1) gene is enhanced by insulin both in vivo and in various cell types. Because insulin exerts a number of its biologic activities via the phosphatidylinositol 3-kinase and protein kinase B (PI3K/PKB) signaling pathway, it was the aim of the present study to investigate the role of the PI3K/PKB pathway in the expression of the PAI-1 gene and to identify the insulin responsive promoter sequences. It was shown that the induction of PAI-1 mRNA and protein expression by insulin and mild hypoxia could be repressed by the PI3K inhibitor wortmannin. Overexpression of a constitutively active PKB led to induction of PAI-1 mRNA expression and of luciferase (Luc) activity from a gene construct containing 766 bp of the rat PAI-1 promoter. Mutation of the hypoxia response elements (HRE-1 and HRE-2) in rat PAI-1 promoter, which could bind hypoxia inducible factor-1 (HIF-1), abolished the induction of PAI-1 by insulin and PKB. Insulin and the constitutive active PKB also induced Luc expression in cells transfected with the pGl3EPO-HRE Luc construct, containing 3 copies of the HRE from the erythropoietin gene in front of the SV40 promoter. Furthermore, insulin and the active PKB enhanced all 3 HIF alpha-subunit protein levels and HIF-1 DNA-binding activity, as shown by electrophoretic mobility shift assays (EMSAs). Thus, the insulin-dependent activation of the PAI-1 gene expression can be mediated via the PI3K/PKB pathway and the transcription factor HIF-1 binding to the HREs in the PAI-1 gene promoter.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany.
| | | | | | | |
Collapse
|
127
|
Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003; 3:23-36. [PMID: 12559173 DOI: 10.1016/s1535-6108(02)00237-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Kaposi's sarcoma herpesvirus (KSHV) has been identified as the etiologic agent of Kaposi's sarcoma (KS), but initial events leading to KS development remain unclear. Characterization of the KSHV genome reveals the presence of numerous potential oncogenes. To address their contribution to the initiation of the endothelial cell-derived KS tumor, we developed a novel transgenic mouse that enabled endothelial cell-specific infection in vivo using virus expressing candidate KSHV oncogenes. Here we show that transduction of one gene, vGPCR, was sufficient to induce angioproliferative tumors that strikingly resembled human KS. Endothelial cells expressing vGPCR were further able to promote tumor formation by cells expressing KSHV latent genes, suggestive of a cooperative role among viral genes in the promotion of Kaposi's sarcomagenesis.
Collapse
MESH Headings
- Animals
- Avian Leukosis Virus/genetics
- Cell Transformation, Neoplastic
- Cells, Cultured
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Genetic Engineering/methods
- Herpesvirus 8, Human/genetics
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Microscopy, Electron
- Neoplasm Proteins/genetics
- Promoter Regions, Genetic
- Proto-Oncogene Proteins
- Receptors, Chemokine/metabolism
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/ultrastructure
- Sarcoma, Kaposi/virology
- Transduction, Genetic
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Silvia Montaner
- Cell Growth Regulation Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Michiels C, Minet E, Mottet D, Raes M. Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Radic Biol Med 2002; 33:1231-42. [PMID: 12398931 DOI: 10.1016/s0891-5849(02)01045-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aerobic life is dependent on molecular oxygen for ATP regeneration, but only possible in a narrow range of oxygen concentrations. Increased oxygen tension is toxic through the generation of reactive oxygen species (ROS), while a decrease in oxygen concentration impairs energy availability and, hence, cell viability. Cells have developed strategies to respond to changes in oxygen tension: specific systems detect excessive ROS and hypoxia, leading to the activation of specific transcription factors and expression of appropriate target genes. The aim of this review is to describe how hypoxia-inducible factor-1 (HIF-1) and nuclear factor-kappaB (NF-kappaB) are regulated and what could be the sensors to the changes in oxygen levels. Some of the physiological responses initiated by these transcription factors are also mentioned.
Collapse
Affiliation(s)
- Carine Michiels
- Biochemistry and Cellular Biology Laboratory, University of Namur, Belgium.
| | | | | | | |
Collapse
|
129
|
Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 2002; 277:38205-11. [PMID: 12149254 DOI: 10.1074/jbc.m203781200] [Citation(s) in RCA: 609] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.
Collapse
Affiliation(s)
- Ryo Fukuda
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
130
|
Affiliation(s)
- Marc D Basson
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201-1932, USA.
| |
Collapse
|
131
|
Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE. Responding to hypoxia: lessons from a model cell line. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re11. [PMID: 12189251 DOI: 10.1126/stke.2002.146.re11] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mammalian cells require a constant supply of oxygen to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. It is, therefore, not surprising that sophisticated mechanisms have evolved that allow cells to adapt to hypoxia. "Oxygen-sensing" is a special phenotype that functions to detect changes in oxygen tension and to transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in various organisms. Oxygen-sensing cells can be segregated into two distinct cell types: those that functionally depolarize (excitable) and those that do not functionally depolarize (nonexcitable) in response to reduced oxygen. Theoretically, excitable cells have all the same signaling capabilities as the nonexcitable cells, but the nonexcitable cells cannot have all the signaling capabilities as excitable cells. A number of signaling pathways have been identified that regulate gene expression during hypoxia. These include the Ca2+-calmodulin pathway, the 3'-5' adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, the p42 and p44 mitogen-activated protein kinase [(MAPK); also known as the extracellular signal-related kinase (ERK) for ERK1 and ERK2] pathway, the stress-activated protein kinase (SAPK; also known as p38 kinase) pathway, and the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. In this review, we describe hypoxia-induced signaling in the model O2-sensing rat pheochromocytoma (PC12) cell line, the current level of understanding of the major signaling events that are activated by reduced O2, and how these signaling events lead to altered gene expression in both excitable and nonexcitable oxygen-sensing cells.
Collapse
Affiliation(s)
- K A Seta
- Department of Genome Science and the Genome Research Institute, 231 Albert Sabin Way, P.O. Box 670505, University of Cincinnati, Cincinnati, OH 45267-0505, USA
| | | | | | | | | |
Collapse
|
132
|
Seta KA, Spicer Z, Yuan Y, Lu G, Millhorn DE. Responding to Hypoxia: Lessons From a Model Cell Line. Sci Signal 2002. [DOI: 10.1126/scisignal.1462002re11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
133
|
Jung F, Haendeler J, Hoffmann J, Reissner A, Dernbach E, Zeiher AM, Dimmeler S. Hypoxic induction of the hypoxia-inducible factor is mediated via the adaptor protein Shc in endothelial cells. Circ Res 2002; 91:38-45. [PMID: 12114320 DOI: 10.1161/01.res.0000024412.24491.ca] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tyrosine kinase cascades may play a role in the hypoxic regulation of hypoxia-inducible factor (HIF)-1. We investigated the role of tyrosine kinase phosphorylation and of the Shc/Ras cascade on hypoxic HIF-1 stabilization. Exposure of human umbilical vein endothelial cells to hypoxia results in HIF protein stabilization as early as 10 minutes, with a maximum at 3 hours, and also in Shc tyrosine phosphorylation, with a maximum at 10 minutes. To test whether Shc directly mediates hypoxia-induced HIF stabilization, human umbilical vein endothelial cells were transfected with a dominant-negative Shc mutant (dnShc), resulting in significantly reduced HIF protein levels compared with control. Similar results were obtained with cells transfected with dominant-negative Ras, a known downstream effector of Shc. Hypoxia-induced Ras activity was significantly reduced in cells transfected with dnShc compared with control levels, indicating that Ras indeed acts downstream from Shc. Moreover, cells pretreated with a specific Raf-1 kinase inhibitor, a known downstream effector of Ras, exhibited reduced HIF protein levels. To examine the functional consequences of Shc in hypoxic signaling, HIF-1 ubiquitination, protein stabilization, and endothelial cell migration were assessed. Overexpression of dnShc increased ubiquitination of HIF-1 and reduced the half-life of the protein. Moreover, dnShc, dominant-negative Ras, or the Raf-1 kinase inhibitor significantly inhibited migration under hypoxia. Thus, Shc in concert with Ras and Raf-1 contributes to hypoxia-induced HIF-1alpha protein stabilization and endothelial cell migration.
Collapse
Affiliation(s)
- Frank Jung
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
134
|
Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 2002; 282:H1821-7. [PMID: 11959648 DOI: 10.1152/ajpheart.01015.2001] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis plays a central role in wound healing. Among many known growth factors, vascular endothelial growth factor (VEGF) is believed to be the most prevalent, efficacious, and long-term signal that is known to stimulate angiogenesis in wounds. Whereas a direct role of copper to facilitate angiogenesis has been evident two decades ago, the specific targets of copper action remained unclear. This report presents first evidence showing that inducible VEGF expression is sensitive to copper and that the angiogenic potential of copper may be harnessed to accelerate dermal wound contraction and closure. At physiologically relevant concentrations, copper sulfate induced VEGF expression in primary as well as transformed human keratinocytes. Copper shared some of the pathways utilized by hypoxia to regulate VEGF expression. Topical copper sulfate accelerated closure of excisional murine dermal wound allowed to heal by secondary intention. Copper-sensitive pathways regulate key mediators of wound healing such as angiogenesis and extracellular matrix remodeling. Copper-based therapeutics represents a feasible approach to promote dermal wound healing.
Collapse
Affiliation(s)
- Chandan K Sen
- Laboratory of Molecular Medicine, Department of Surgery, 512 Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
135
|
Arsham AM, Plas DR, Thompson CB, Simon MC. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 2002; 277:15162-70. [PMID: 11859074 DOI: 10.1074/jbc.m111162200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The serine/threonine kinase Akt/PKB and the oxygen-responsive transcription factor HIF-1 share the ability to induce such processes as angiogenesis, glucose uptake, and glycolysis. Akt activity and HIF-1 are both essential for development and implicated in tumor growth. Upon activation by products of phosphatidylinositol 3-kinase (PI3K), Akt phosphorylates downstream targets that stimulate growth and inhibit apoptosis. Previous reports suggest that Akt may achieve its effects on angiogenesis and glucose metabolism by stimulating HIF-1 activity. We report here that, whereas serum stimulation can induce a slight accumulation of HIF-1 alpha protein in a PI3K/Akt pathway-dependent fashion, hypoxia induces much higher levels of HIF-1 alpha protein and HIF-1 DNA binding activity independently of PI3K and mTOR activity. In addition, we find the effects of constitutively active Akt on HIF-1 activity are cell-type specific. High levels of Akt signaling can modestly increase HIF-1 alpha protein, but this increase does not affect HIF-1 target gene expression. Therefore, the PI3K/Akt pathway is not necessary for hypoxic induction of HIF-1 subunits or activity, and constitutively active Akt is not itself sufficient to induce HIF-1 activity.
Collapse
Affiliation(s)
- Andrew M Arsham
- Committee on Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
136
|
Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Bürgel T. Normoxic induction of the hypoxia-inducible factor 1alpha by insulin and interleukin-1beta involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002; 512:157-62. [PMID: 11852072 DOI: 10.1016/s0014-5793(02)02247-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric DNA-binding complex of the subunits alpha and beta with relevance in O(2) and energy homeostasis. The labile component, HIF-1alpha, is not only activated by hypoxia but also by peptides such as insulin and interleukin-1 (IL-1) in normoxia. We investigated whether inhibitors of mitogen-activated protein kinase kinases (MAPKKs: PD 98059, U0126) and phosphatidylinositol 3-kinase (PI3K: LY 294002) do not only lower the hypoxia-induced, but also the insulin- and IL-1-induced HIF-1alpha accumulation and HIF-1 DNA-binding in human hepatoma cell cultures (line HepG2). The results show that LY 294002 suppressed HIF-1 activation in a dose-dependent manner irrespective of the stimulus. With respect to target proteins controlled by HIF-1, the production of erythropoietin was fully blocked and that of vascular endothelial growth factor reduced following inhibition of the PI3K pathway. The role of MAPKKs in this process remained in question, because PD 98059 and U0126 did not significantly reduce HIF-1alpha levels at non-toxic doses. We propose that PI3K signaling is not only important in the hypoxic induction of HIF-1 but it is also crucially involved in the response to insulin and IL-1.
Collapse
Affiliation(s)
- Daniel P Stiehl
- Institute of Physiology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | | | | | | |
Collapse
|