101
|
Dual properties of hispidulin: antiproliferative effects on HepG2 cancer cells and selective inhibition of ABCG2 transport activity. Mol Cell Biochem 2015. [DOI: 10.1007/s11010-015-2518-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
102
|
Ting Y, Jiang Y, Lan Y, Xia C, Lin Z, Rogers MA, Huang Q. Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models. Mol Pharm 2015; 12:2229-36. [DOI: 10.1021/mp5007322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuwen Ting
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yike Jiang
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yaqi Lan
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Chunxin Xia
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Zhenyu Lin
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael A. Rogers
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
- New Jersey Institute for Food, Nutrition & Health, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department
of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
103
|
The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:186436. [PMID: 26089934 PMCID: PMC4454761 DOI: 10.1155/2015/186436] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/10/2015] [Indexed: 12/17/2022]
Abstract
Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2) cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM) for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.
Collapse
|
104
|
Xu C, Luo M, Jiang H, Yu L, Zeng S. Involvement of CAR and PXR in the transcriptional regulation of CYP2B6 gene expression by ingredients from herbal medicines. Xenobiotica 2015; 45:773-81. [DOI: 10.3109/00498254.2015.1020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
105
|
Zhang S, Sun X, Kong R, Xu M. Studies on the interaction of apigenin with calf thymus DNA by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1666-70. [PMID: 25459730 DOI: 10.1016/j.saa.2014.10.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 05/07/2023]
Abstract
The interaction between apigenin and calf thymus deoxyribonucleic acid (ctDNA) in a pH 7.4 Tris-HCl buffer solution was investigated by UV-Vis spectroscopy, fluorescence spectroscopy, DNA melting techniques, and viscosity measurements. It was found that apigenin molecules could intercalate into the base pairs of DNA, forming a apigenin-DNA complex with a binding constant of K310K=6.4×10(4)Lmol(-1). The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy (ΔG) were calculated to be 7.36×10(4)Jmol(-1), 329JK(-1)mol(-1) and -2.84×10(4)Jmol(-1) at 310K, respectively. Hydrophobic interaction was the predominant intermolecular force in stabilizing the apigenin-DNA complex. Thermal denaturation study suggested that the stabilization of the ctDNA helix was increased when the apigenin binding to ctDNA as indicated by the increase in thermal denaturation temperature of ctDNA at around 5.0°C in the presence of apigenin. Spectroscopic techniques together with melting techniques and viscosity determination provided evidences of intercalation mode of binding for the interaction between apigenin and ctDNA.
Collapse
Affiliation(s)
- Shufang Zhang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Shandong, Qufu 273165, People's Republic of China.
| | - Xuejun Sun
- College of Chemistry and Chemical Engineering, Qufu Normal University, Shandong, Qufu 273165, People's Republic of China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Shandong, Qufu 273165, People's Republic of China
| | - Mingming Xu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Shandong, Qufu 273165, People's Republic of China
| |
Collapse
|
106
|
Bai H, Jin H, Yang F, Zhu H, Cai J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. SCANNING 2014; 36:622-631. [PMID: 25327419 DOI: 10.1002/sca.21170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/11/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Apigenin is a flavonoid, which has been proved to possess effective anti-cancer bioactivities against variety of cell lines. However, little is known about its effect on the cell-surface and the interaction between cell-surface and the reacting drug. In this study, human breast cancer line (MCF-7) was selected to be as a cell model to investigate the effects of apigenin on cell growth, proliferation, apoptosis, cellular morphology, etc. MTT assay showed that the growth inhibition induced by apigenin was in a dose-dependent manner when treated with different concentrations of apigenin while had little cytotoxic effects on human normal cells (MCF-10A). Fluorescence-based flow cytometry was used to detect cellular apoptosis and ROS production. The results showed that 80 µM apigenin could effectively induce apoptosis and overproduction of ROS in MCF-7 cells. Here, atomic force microscopy (AFM) was utilized to detect the shapes and membrane structures of MCF-7 cells at cellular or subcellular level. The results showed that the control MCF-7 cells presented typical elongated-spindle shapes with abundant pseudopodia, while after treated with apigenin, the cells shrunk and became round, the pseudopodia diminished. Moreover, the images of ultrastructure indicated that the cell membrane was composed of nanoparticles of 49 nm, but with the treated concentrations of apigenin increasing, the sizes of membrane particles significantly increased to 400 nm. These results can improve our understanding of apigenin, which can be potentially developed as a new agent for treatment of cancers.
Collapse
Affiliation(s)
- Haihua Bai
- Department of Chemistry and Institute for Nano-Chemistry, Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
107
|
Zhu Y, Wu J, Li S, Wang X, Liang Z, Xu X, Xu X, Hu Z, Lin Y, Chen H, Qin J, Mao Q, Xie L. Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol Med Rep 2014; 11:1004-8. [PMID: 25351792 DOI: 10.3892/mmr.2014.2801] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 10/01/2014] [Indexed: 02/05/2023] Open
Abstract
The mortality rate associated with prostate cancer is mainly due to metastases rather than primary organ‑confined disease. Decreasing the incidence of metastasis is important in treating prostate cancer. 4',5,7‑trihydroxyflavone (apigenin) has been demonstrated to be effective in inhibiting several types of cancer. The aim of this study was to investigate the effect and mechanism of apigenin on the movement of prostate cancer cells. In the present study, DU145 cells were treated with varying concentrations of apigenin for different time periods. Cell viability was evaluated using an MTT assay. Cell motility and invasiveness were assayed using wound healing assays and a Matrigel migration and invasion assay. Flow cytometric and western blot analyses were performed to examine the cell cycle and signaling pathways. The results demonstrated that apigenin suppressed the proliferation and inhibited the migration and invasive potential of the DU145 prostate cancer cells in a dose‑ and time‑dependent manner, which was associated with epithelial mesenchymal transition. These findings suggested that apigenin may be effective in treating human prostate cancer.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shiqi Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xianglai Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiwei Lin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiqi Mao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
108
|
Lu J, Zhang Z, Ni Z, Shen H, Tu Z, Liu H, Lu R. QM/MM–PB/SA scoring of the interaction strength between Akt kinase and apigenin analogues. Comput Biol Chem 2014; 52:25-33. [DOI: 10.1016/j.compbiolchem.2014.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/20/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
|
109
|
Harrison ME, Power Coombs MR, Delaney LM, Hoskin DW. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt. Exp Mol Pathol 2014; 97:211-7. [DOI: 10.1016/j.yexmp.2014.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/18/2022]
|
110
|
Baldasquin-Caceres B, Gomez-Garcia FJ, López-Jornet P, Castillo-Sanchez J, Vicente-Ortega V. Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol 2014; 59:1101-7. [PMID: 25033381 DOI: 10.1016/j.archoralbio.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 06/08/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To evaluate the chemopreventive potential of phenolic compounds - potassium apigenin, cocoa, catechins, eriocitrin and rosmarinic acid in oral carcinogenesis induced in hamsters by means of the topical application of 7,12-dimethylbenz(a)anthracene(DMBA). STUDY DESIGN An experimental study at the University of Murcia. METHODS 50 male Syrian hamsters (Mesocricetus auratus) were divided into five groups of ten: Group I (control group): 0.5% DMBA; Group II: 0.5% DMBA+1.1mg/15ml potassium apigenin; Group III: 05% DMBA+2.5mg/15ml cocoa catechins; Group IV: 0.5% DMBA+6mg/15ml eriocitrin; Group V: 0.5% DMBA+1.3mg/15ml rosmarinic acid. The flavonoids were administered orally. All the animals were sacrificed after 12 weeks. Macroscopic, microscopic and immunohistochemical (PCNA and p53) analyses of the lesions were performed. RESULTS All the groups treated with phenolic compounds showed lower incidences of tumour, greater differentiation and lower scores in the tumour invasion front grading system in comparison with the control group. Potassium apigenin and rosmarinic acid achieved the best results, the former considerably reduced the carcinoma tumour volumes developed and both significantly reduced the intensity and aggression of the tumours. Immunoexpression of PCNA and p53 were significantly altered during DMBA-induced oral carcinogenesis. CONCLUSIONS Animals treated with phenolic compounds, particularly potassium apigenin and rosmarinic acid, showed a lower incidence of tumours.
Collapse
Affiliation(s)
- B Baldasquin-Caceres
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| | - F J Gomez-Garcia
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| | - P López-Jornet
- Oral Medicine Ageing Research Institute, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain.
| | - J Castillo-Sanchez
- I+D+I Nutrafur SA Murcia Spain Ageing Research Institute, University of Murcia, Murcia, Spain
| | - V Vicente-Ortega
- Department of Pathology and Anatomical Sciences, Faculty of Medicine and Dentistry, Ageing Research Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
111
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-46. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
112
|
Lu J, Zhang Z, Ni Z, Shen H, Tu Z, Liu H, Lu R, Shi H. The non-additive contribution of hydroxyl substituents to Akt kinase–apigenin affinity. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.913099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
113
|
Jana S, Patra K, Sarkar S, Jana J, Mukherjee G, Bhattacharjee S, Mandal DP. Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: an in vivo study in sarcoma-180 solid tumor model. Nutr Cancer 2014; 66:835-48. [PMID: 24779766 DOI: 10.1080/01635581.2014.904906] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coriander, used as a common food seasoning, contains linalool as the main constituent of its essential oil. In this study, we tested the effect of linalool vis-à-vis that of a conventional chemotherapeutic drug, cyclophosphamide, against solid S-180 tumor-bearing Swiss albino mice. Tumor volume, cell count, cell cycle phase distribution, apoptosis, and proliferation markers indicate that linalool has potent antitumor activity. In vitro and in vivo data suggest that induction of oxidative stress might be responsible for the anticancer effect of linalool. However, interestingly, unlike cyclophosphamide, linalool did not induce myelosuppression or hepatotoxicity in mice as evident from bone marrow cell count, status of hepatic oxidative stress/antioxidant enzymes, and histopathology. Thus, linalool exerted prooxidant effect in tumor tissue and an antioxidant effect in liver. This is also supported by the expression of Nrf-2 and p21, which are considered to be important players in response to oxidative stress. Moreover, administration of linalool modulated the proliferation of spleen cells in tumor-bearing mice challenged with lipopolysaccharide. Finally, the detection of linalool in sera and tumor tissues by HPLC confirmed its bioavailability. In conclusion, linalool showed differential cytotoxicity towards tumor and normal cells in contrast to cyclophosphamide, which is uniformly toxic to both.
Collapse
Affiliation(s)
- Samarjit Jana
- a Department of Zoology , West Bengal State University , West Bengal , India
| | | | | | | | | | | | | |
Collapse
|
114
|
Bao YY, Zhou SH, Fan J, Wang QY. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. Future Oncol 2014; 9:1353-64. [PMID: 23980682 DOI: 10.2217/fon.13.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural phytoestrogen flavonoid, has potential biological effects, including antioxidative, anti-inflammatory and anticancer activities. The mechanisms of anticancer activities of apigenin are unknown. Some studies have found that apigenin inhibits GLUT-1 mRNA and protein expression in cancer cells. Thus, we hypothesized that apigenin exerts similar effects on head and neck cancers through its inhibition of GLUT-1 expression. In this article, we review the anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers. In addition, we describe the current state of knowledge about the relationship between apigenin and GLUT-1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou City, Zhejiang Province, China
| | | | | | | |
Collapse
|
115
|
Swanson HI, Choi EY, Helton WB, Gairola CG, Valentino J. Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 117:214-20. [PMID: 24439916 DOI: 10.1016/j.oooo.2013.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/27/2013] [Accepted: 10/17/2013] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Apigenin and kaempferol are plant flavonoids with reported chemopreventive activities. This study aimed to determine the effect of apigenin and kaempferol on cell viability in cultured cells derived from the pharynx (FaDu cell line), an oral cavity carcinoma (PCI-13 cell line), and a metastatic lymph node (PCI-15B cell line) and in explanted FaDu cells. STUDY DESIGN The in vitro viability of FaDu, PCI-13, and PCI-15B cells treated with apigenin and kaempferol was determined. Tumor growth of FaDu explants was evaluated in athymic mice that were gavaged with either apigenin or kaempferol. RESULTS Although apigenin and kaempferol treatment decreased viability of cells in vitro, cell-type-dependent differences in responsiveness were observed. In vivo apigenin treatment significantly increased the tumor size of FaDu explants. Results obtained using kaempferol were similar. CONCLUSIONS The in vitro decrease in FaDu cell viability by apigenin and kaempferol was not observed in in vivo tumor explants using the conditions described in this study.
Collapse
Affiliation(s)
- Hollie I Swanson
- Professor, Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | - Eun-Young Choi
- Professor, Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - W Brian Helton
- Partner, Mark Veronneau Plastics and ENT, Prestonsburg, KY, USA
| | - C Gary Gairola
- Professor, Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Joseph Valentino
- Professor, Division of Otolaryngology-Head and Neck Surgery, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
116
|
Shao H, Jing K, Mahmoud E, Huang H, Fang X, Yu C. Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther 2013; 12:2640-50. [PMID: 24126433 DOI: 10.1158/1535-7163.mct-13-0066] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that shows modest antitumor activities in vitro and in vivo. Apigenin treatment resulted in cell growth arrest and apoptosis in various types of tumors by modulating several signaling pathways. In the present study, we evaluated interactions between apigenin and ABT-263 in colon cancer cells. We observed a synergistic effect between apigenin and ABT-263 on apoptosis of colon cancer cells. ABT-263 alone induced limited cell death while upregulating expression of Mcl-1, a potential mechanism for the acquired resistance to ABT-263. The presence of apigenin antagonized ABT-263-induced Mcl-1 upregulation and dramatically enhanced ABT-263-induced cell death. Meanwhile, apigenin suppressed AKT and ERK activation. Inactivation of either AKT or ERK by lentivirus-transduced shRNA or treatment with specific small-molecule inhibitors of these pathways enhanced ABT-263-induced cell death, mirroring the effect of apigenin. Moreover, the combination response was associated with upregulation of Bim and activation of Bax. Downregulation of Bax eliminated the synergistic effect of apigenin and ABT-263 on cell death. Xenograft studies in SCID mice showed that the combined treatment with apigenin and ABT-263 inhibited tumor growth by up to 70% without obvious adverse effects, while either agent only inhibited around 30%. Our results demonstrate a novel strategy to enhance ABT-263-induced antitumor activity in human colon cancer cells by apigenin via inhibition of the Mcl-1, AKT, and ERK prosurvival regulators.
Collapse
Affiliation(s)
- Huanjie Shao
- Corresponding Authors: Huanjie Shao, Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, VA 23298.
| | | | | | | | | | | |
Collapse
|
117
|
Kim EY, Kim AK. Apigenin Sensitizes Huh-7 Human Hepatocellular Carcinoma Cells to TRAIL-induced Apoptosis. Biomol Ther (Seoul) 2013; 20:62-7. [PMID: 24116276 PMCID: PMC3792203 DOI: 10.4062/biomolther.2012.20.1.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/29/2011] [Indexed: 11/05/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a promising agent for management of cancer because of its selective cytotoxicity to cancer cells. However, some cancer cells have resistance to TRAIL. Accordingly, novel treatment strategies are required to overcome TRAIL resistance. Here, we examined the synergistic apoptotic effect of apigenin in combination with TRAIL in Huh-7 cells. We found that combined treatment of TRAIL and apigenin markedly inhibited Huh-7 cell growth compared to either agent alone by inducing apoptosis. Combined treatment with apigenin and TRAIL induced chromatin condensation and the cleavage of poly (ADP-ribose) polymerase (PARP). In addition, enhanced apoptosis by TRAIL/apigenin combination was quantified by annexin V/PI flow cytometry analysis. Western blot analysis suggested that apigenin sensitizes cells to TRAIL-induced apoptosis by activating both intrinsic and extrinsic apoptotic pathway-related caspases. The augmented apoptotic effect by TRAIL/apigenin combination was accompanied by triggering mitochondria-dependent signaling pathway, as indicated by Bax/Bcl-2 ratio up-regulation. Our results demonstrate that combination of TRAIL and apigenin facilitates apoptosis in Huh-7 cells.
Collapse
Affiliation(s)
- Eun Young Kim
- College of Pharmacy, Sookmyung Womens University, Seoul 140-742, Republic of Korea
| | | |
Collapse
|
118
|
Sharma NK. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. JOURNAL OF RADIATION RESEARCH 2013; 54:789-797. [PMID: 23764456 PMCID: PMC3766282 DOI: 10.1093/jrr/rrs117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Apigenin (APG), a flavone, is known to exhibit antioxidant, antimutagenic and antitumorigenic activity, both in vivo and in vitro. The aim of this study is to investigate the modulatory effects of APG on human lymphocytes after irradiation with gamma rays (3 Gy) or treatment with the antineoplastic agent, mitomycin C (MMC), in vitro. Cytogenetic biomarkers such as chromosome aberrations (CAs), sister chromatid exchanges (SCEs) and cytochalasin-B blocked micronuclei (CBMN), were studied in blood lymphocytes treated with radiation, or antineoplastic agent (MMC), and APG. Whole blood lymphocytes were cultured in vitro using a standard protocol. No significant differences were found in the frequency of CAs or micronuclei (MN) in human peripheral blood lymphocytes irradiated with gamma rays (3 Gy) and then post-treated with APG. There was an increase in the frequency of SCEs per cell in APG-treated samples compared with the controls. Lymphocytes treated with MMC in the presence of APG exhibited a significant decrease (P < 0.01) in the frequency of SCEs compared with MMC treatment alone. The data for the MN test indicated that APG treatment significantly reduced (P < 0.01) the frequency of MMC-induced MN.
Collapse
Affiliation(s)
- Narinder K Sharma
- Genetic Toxicology and Chromosome Studies Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
119
|
Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia 2013; 89:188-99. [DOI: 10.1016/j.fitote.2013.06.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 02/04/2023]
|
120
|
Maggioni D, Garavello W, Rigolio R, Pignataro L, Gaini R, Nicolini G. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int J Oncol 2013; 43:1675-82. [PMID: 23969487 DOI: 10.3892/ijo.2013.2072] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/21/2013] [Indexed: 11/05/2022] Open
Abstract
In the present study, we investigated the effect of apigenin, a flavonoid widely present in fruits and vegetables, on a tongue oral cancer-derived cell line (SCC-25) and on a keratinocyte cell line (HaCaT), with the aim of unveiling its antiproliferative mechanisms. The effect of apigenin on cell growth was evaluated by MTT assay, while apoptosis was investigated by phosphatidyl serine membrane translocation and cell cycle distribution by propidium iodide DNA staining through flow cytometry. In addition the expression of cyclins and cyclin-dependent kinases was evaluated by western blotting. A reduction of apigenin-induced cell growth was found in both cell lines, although SCC-25 cells were significantly more sensitive than the immortalized keratinocytes, HaCaT. Moreover, apigenin induced apoptosis and modulated the cell cycle in SCC-25 cells. Apigenin treatment resulted in cell cycle arrest at both G0/G1 and G2/M checkpoints, while western blot analysis revealed the decreased expression of cyclin D1 and E, and inactivation of CDK1 upon apigenin treatment. These results demonstrate the anticancer potential of apigenin in an oral squamous cell carcinoma cell line, suggesting that it may be a very promising chemopreventive agent due to its cancer cell cytotoxic activity and its ability to act as a cell cycle modulating agent at multiple levels.
Collapse
Affiliation(s)
- Daniele Maggioni
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, I-20900 Monza, Italy
| | | | | | | | | | | |
Collapse
|
121
|
Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, Gao AC. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther 2013; 12:1829-36. [PMID: 23861346 DOI: 10.1158/1535-7163.mct-13-0208] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Docetaxel is the first-line standard treatment for castration-resistant prostate cancer. However, relapse eventually occurs due to the development of resistance to docetaxel. To unravel the mechanism of acquired docetaxel resistance, we established docetaxel-resistant prostate cancer cells, TaxR, from castration-resistant C4-2B prostate cancer cells. The IC50 for docetaxel in TaxR cells was about 70-fold higher than parental C4-2B cells. Global gene expression analysis revealed alteration of expression of a total of 1,604 genes, with 52% being upregulated and 48% downregulated. ABCB1, which belongs to the ATP-binding cassette (ABC) transporter family, was identified among the top upregulated genes in TaxR cells. The role of ABCB1 in the development of docetaxel resistance was examined. Knockdown of ABCB1 expression by its specific shRNA or inhibitor resensitized docetaxel-resistant TaxR cells to docetaxel treatment by enhancing apoptotic cell death. Furthermore, we identified that apigenin, a natural product of the flavone family, inhibits ABCB1 expression and resensitizes docetaxel-resistant prostate cancer cells to docetaxel treatment. Collectively, these results suggest that overexpression of ABCB1 mediates acquired docetaxel resistance and targeting ABCB1 expression could be a potential approach to resensitize docetaxel-resistant prostate cancer cells to docetaxel treatment.
Collapse
Affiliation(s)
- Yezi Zhu
- Corresponding Author: Allen C. Gao, Department of Urology, University of California Davis Medical Center, 4645 2nd Ave, Research III, Suite 1300, Sacramento, CA 95817.
| | | | | | | | | | | | | |
Collapse
|
122
|
Choudhury D, Ganguli A, Dastidar DG, Acharya BR, Das A, Chakrabarti G. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie 2013; 95:1297-309. [DOI: 10.1016/j.biochi.2013.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/15/2013] [Indexed: 02/05/2023]
|
123
|
Tabrez S, Priyadarshini M, Urooj M, Shakil S, Ashraf GM, Khan MS, Kamal MA, Alam Q, Jabir NR, Abuzenadah AM, Chaudhary AGA, Damanhouri GA. Cancer chemoprevention by polyphenols and their potential application as nanomedicine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:67-98. [PMID: 23534395 DOI: 10.1080/10590501.2013.763577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Today cancer is a leading cause of death among the developed countries. Its highly complex nature makes it difficult to understand as it entails multiple cellular physiological systems such as cell signaling and apoptosis. The biggest challenges faced by cancer chemoprevention/chemotherapy is maintaining drug circulation and avoiding multidrug resistance. Overall there is modest evidence regarding the protective effects of nutrients from supplements against a number of cancers. Numerous scientific literatures available advocate the use of polyphenols for chemoprevention. Some groups have also suggested use of combination of nutrients in cancer prevention. However, we have yet to obtain the desired results in the line of cancer chemotherapy research. Nanotechnology can play a pivotal role in cancer treatment and prevention. Moreover, nanoparticles can be modified in various ways to prolong circulation, enhance drug localization, increase drug efficacy, and potentially decrease the chances of multidrug resistance. In this communication, we will cover the use of various polyphenols and nutrients in cancer chemoprevention. The application of nanotechnology in this regard will also be included. In view of available reports on the potential of nanoparticles, we suggest their usage along with different combination of nutrients as cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kim EY, Yu JS, Yang M, Kim AK. Sub-toxic dose of apigenin sensitizes HepG2 cells to TRAIL through ERK-dependent up-regulation of TRAIL receptor DR5. Mol Cells 2013; 35:32-40. [PMID: 23224239 PMCID: PMC3887848 DOI: 10.1007/s10059-013-2175-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/29/2012] [Accepted: 11/12/2012] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.
Collapse
Affiliation(s)
- Eun Young Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Ji Sun Yu
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - An Keun Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
125
|
Rithidech KN, Tungjai M, Reungpatthanaphong P, Honikel L, Simon SR. Attenuation of oxidative damage and inflammatory responses by apigenin given to mice after irradiation. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:29-38. [DOI: 10.1016/j.mrgentox.2012.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 04/08/2023]
|
126
|
Gómez-García FJ, López-Jornet MP, Alvarez-Sánchez N, Castillo-Sánchez J, Benavente-García O, Vicente Ortega V. Effect of the phenolic compounds apigenin and carnosic acid on oral carcinogenesis in hamster induced by DMBA. Oral Dis 2012; 19:279-86. [PMID: 22892006 DOI: 10.1111/j.1601-0825.2012.01975.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/22/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate oral carcinogenesis in hamster induced by the topical application of 7,12-dimethyl benzanthracene (DMBA) to evaluate the different lesions produced and the possible preventive effects of the phenolic compounds apigenin (flavone) and carnosic acid (diterpene). MATERIALS AND METHODS Thirty-two Syrian hamsters were divided into three groups: I: 0.5% DMBA (n = 12); II: 0.5% DMBA + potassium apigenin (n = 8); III: 0.5% DMBA + carnosic acid (n = 12). All the animals were sacrificed after 11 weeks, and a macroscopic and light microscopic study was made of the lesions. RESULTS The largest number of neoplasms, showing the most aggressive biological behavior, corresponded to the control group. The group treated with potassium apigenin ranked second in tumor incidence, although the tumors were not very aggressive behavior. In the group treated with carnosic acid, only one malignancy was recorded, showing the smallest volume of all the recorded tumor lesions. CONCLUSIONS Our findings indicate that both potassium apigenin and carnosic acid have chemoprotective effects against carcinogenesis induced by DMBA in hamster.
Collapse
|
127
|
Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:71-76. [DOI: 10.1016/j.mrgentox.2012.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 03/13/2012] [Accepted: 04/02/2012] [Indexed: 11/23/2022]
|
128
|
Mafuvadze B, Liang Y, Besch-Williford C, Zhang X, Hyder SM. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Discov Oncol 2012; 3:160-71. [PMID: 22569706 DOI: 10.1007/s12672-012-0114-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/30/2012] [Indexed: 02/06/2023] Open
Abstract
Recent clinical and epidemiological evidence shows that hormone replacement therapy (HRT) containing both estrogen and progestin increases the risk of primary and metastatic breast cancer in post-menopausal women while HRT containing only estrogen does not. We and others previously showed that progestins promote the growth of human breast cancer cells in vitro and in vivo. In this study, we sought to determine whether apigenin, a low molecular weight anti-carcinogenic flavonoid, inhibits the growth of aggressive Her2/neu-positive BT-474 xenograft tumors in nude mice exposed to medroxyprogesterone acetate (MPA), the most commonly used progestin in the USA. Our data clearly show that apigenin (50 mg/kg) inhibits progression and development of these xenograft tumors by inducing apoptosis, inhibiting cell proliferation, and reducing expression of Her2/neu. Moreover, apigenin reduced levels of vascular endothelial growth factor (VEGF) without altering blood vessel density, indicating that continued expression of VEGF may be required to promote tumor cell survival and maintain blood flow. While previous studies showed that MPA induces receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rodent mammary gland, MPA reduced levels of RANKL in human tumor xenografts. RANKL levels remained suppressed in the presence of apigenin. Exposure of BT-474 cells to MPA in vitro also resulted in lower levels of RANKL; an effect that was independent of progesterone receptors since it occurred both in the presence and absence of the antiprogestin RU-486. In contrast to our in vivo observations, apigenin protected against MPA-dependent RANKL loss in vitro, suggesting that MPA and apigenin modulate RANKL levels differently in breast cancer cells in vivo and in vitro. These preclinical findings suggest that apigenin has potential as an agent for the treatment of progestin-dependent breast disease.
Collapse
Affiliation(s)
- Benford Mafuvadze
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
129
|
Eskander RN, Randall LM, Sakai T, Guo Y, Hoang B, Zi X. Flavokawain B, a novel, naturally occurring chalcone, exhibits robust apoptotic effects and induces G2/M arrest of a uterine leiomyosarcoma cell line. J Obstet Gynaecol Res 2012; 38:1086-94. [PMID: 22540374 DOI: 10.1111/j.1447-0756.2011.01841.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM To examine the effects of flavokawain B (FKB), a novel kava chalcone, on the growth of uterine leiomyosarcoma (LMS) cells and investigated its utility in the treatment of uterine LMS. MATERIAL AND METHODS Uterine leiomyosarcoma (SK-LMS-1), endometrial adenocarcinoma (ECC-1) and the non-malignant, human endometrium fibroblast-like (T-HESC) cell lines were cultured and treated with different concentrations of FKB. Cell viability was determined by MTT assays and the IC(50) was estimated. Fluorescent-activated cell sorting (FACS) analysis of apoptosis and cell cycle was performed. Real-time reverse-transcription polymerase chain reaction and western blot analysis were utilized to evaluate differences in the expression of apoptotic markers. RESULTS FKB preferentially inhibited the growth of SK-LMS-1 and ECC-1 cells compared to T-HESC control cells. FKB significantly increased both early and late apoptosis in SK-LMS-1 and ECC-1 cells relative to control. Cell cycle analysis illustrated an increase in the G2/M fraction in treated cell lines relative to control. Furthermore, FKB induced the expression of pro-apoptotic death receptor 5 (DR5), Bim, and Puma, and decreased expression of an inhibitor of apoptosis, survivin. FKB also acted synergistically when combined with docetaxel and gemcitabine (combination index = 0.260). CONCLUSION FKB treatment results in cell cycle arrest and a robust induction of apoptosis in SK-LMS-1 and ECC-1 cell lines. This natural product deserved further investigation as a potential therapeutic agent in the treatment of uterine LMS.
Collapse
Affiliation(s)
- Ramez N Eskander
- Departments of Obstetrics and Gynecology, University of California Irvine, Orange, CA, USA
| | | | | | | | | | | |
Collapse
|
130
|
Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim Biophys Acta Gen Subj 2012; 1820:1081-91. [PMID: 22554915 DOI: 10.1016/j.bbagen.2012.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. METHODS The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. RESULTS Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. CONCLUSIONS Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. GENERAL SIGNIFICANCE These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells.
Collapse
|
131
|
Weng CJ, Yen GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 2012; 31:323-51. [DOI: 10.1007/s10555-012-9347-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
132
|
Zinov'eva V, Spasov A. Mechanisms of anti-cancer effects of plant polyphenols II. Suppression on tumor growth. ACTA ACUST UNITED AC 2012; 58:257-71. [DOI: 10.18097/pbmc20125803257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanisms of suppression of carcinogenesis promotion/progression by plant polyphenols have been considered. They can decrease cyclins and cycline dependent kinases and activate inhibitor proteins in tumor cells that results in cell cycle arrest. Plant polyphenols can induce apoptosis by modulating anti/proapoptotic proteins and also can inhibit tumor metastasis and angiogenesis. Polyphenols act through the regulation of cell signal transduction and gene expression.
Collapse
Affiliation(s)
- V.N. Zinov'eva
- Research Institute of Pharmacology, Volgograd State Medical University
| | - A.A. Spasov
- Research Institute of Pharmacology, Volgograd State Medical University
| |
Collapse
|
133
|
Ono M, Fujimori K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13346-13352. [PMID: 22098587 DOI: 10.1021/jf203490a] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Adipocyte differentiation (adipogenesis) is a complex process including the coordinated changes in hormone sensitivity and gene expression in response to various stimuli. Natural compounds are known to be involved in the regulation of this process. Here we investigated the effects of dietary apigenin, a plant flavonoid, on adipogenesis. Apigenin suppressed adipocyte differentiation of mouse adipocytic 3T3-L1 cells and reduced the accumulation of intracellular lipids. Quantitative PCR and Western blot analyses revealed that apigenin decreased the levels of peroxisome proliferator-activated receptor γ and its target genes such as fatty acid binding protein 4 (aP2) and stearoyl-CoA desaturase. Apigenin decreased or had no effect on the expression of lipolytic genes such as adipose triglyceride lipase, hormone sensitive lipase, and monoacyl glyceride lipase, thereby reducing glycerol release from adipocytes. Noteworthily, apigenin activated 5'-adenosine monophosphate-activated protein kinase (AMPK) in an apigenin dose-dependent manner, which activation is known to suppress adipogenesis. These results provide a novel insight into the molecular mechanism involved in the action of apigenin: the apigenin-induced activation of AMPK leads to decreased expression of adipogenic and lipolytic genes, thus suppressing adipogenesis in 3T3-L1 cells. Thus, dietary apigenin may contribute to lower body-fat content and body-weight gain through the activation of AMPK.
Collapse
Affiliation(s)
- Mafuyu Ono
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | |
Collapse
|
134
|
Nakazaki E, Tsolmon S, Han J, Isoda H. Proteomic study of granulocytic differentiation induced by apigenin 7-glucoside in human promyelocytic leukemia HL-60 cells. Eur J Nutr 2011; 52:25-35. [PMID: 22113421 DOI: 10.1007/s00394-011-0282-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/14/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND Nutritional factors is one of the most important regulators in the progression of cancer. Some dietary elements promote the growth of cancer but others, such as plant-derived compounds, may reverse this process. PURPOSE We tried to investigate yet another approach of cancer prevention through cancer cell differentiation, using a common non-mutagenic flavonoid apigenin 7-glucoside. METHODS HL-60 cells were treated with or without apigenin 7-glucoside. Cell proliferation was measured by MTT assay, and the cell cycle distribution was estimated by propidium iodide staining of DNA. To determine cellular differentiation, cell surface differentiation markers CD11b and CD14 were used. Two-dimensional gel electrophoresis was then performed to identify proteins that may be important in HL-60 cell differentiation following apigenin 7-glucoside treatment. RESULTS Apigenin 7-glucoside inhibited HL-60 cell growth, dose- and time-dependently, but did not cause apoptosis. The distribution of cells at different stages in the cell cycle indicated an accumulation of treated cells in G(2)/M phase. Moreover, apigenin 7-glucoside induced granulocytic differentiation of HL-60 cells. Ten proteins that might play essential role in granulocytic differentiation were identified by proteomics. CONCLUSIONS A complete understanding of the preventive effects of plant-based diet on cancer depends on the mechanisms of action of different plant components on processes. We hope these findings may contribute to the understandings of the different approaches for chemoprevention of cancer.
Collapse
Affiliation(s)
- Eri Nakazaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | |
Collapse
|
135
|
Valdameri G, Trombetta-Lima M, Worfel PR, Pires ARA, Martinez GR, Noleto GR, Cadena SMSC, Sogayar MC, Winnischofer SMB, Rocha MEM. Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem Biol Interact 2011; 193:180-9. [PMID: 21756884 DOI: 10.1016/j.cbi.2011.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023]
Abstract
Apigenin has been reported to inhibit proliferation of cancer cells; however, the mechanism underlying its action is not completely understood. Here, we evaluated the effects of apigenin on the levels of expression and activity of antioxidant enzymes, and the involvement of ROS in the mechanism of cell death induced by apigenin in HepG2 human hepatoma cells. Upon treatment with apigenin, HepG2 cells displayed a reduction in cell viability in a dose- and time-dependent manner, and some morphological changes. In addition, apigenin treatment induced ROS generation and significantly decreased the mRNA levels and activity of catalase and levels of intracellular GSH. On the other hand, apigenin treatment did not alter the expression or activity levels of other antioxidant enzymes. Addition of exogenous catalase significantly reduced the effects of apigenin on HepG2 cell death. We also demonstrated that HepG2 cells are more sensitive to apigenin-mediated cell death than are primary cultures of mouse hepatocytes, suggesting a differential toxic effect of this agent in tumor cells. Our results suggest that apigenin-induced apoptosis in HepG2 cells may be mediated by a H(2)O(2)-dependent pathway via reduction of the antioxidant defenses.
Collapse
Affiliation(s)
- Glaucio Valdameri
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Turktekin M, Konac E, Onen HI, Alp E, Yilmaz A, Menevse S. Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J Med Food 2011; 14:1107-17. [PMID: 21548803 DOI: 10.1089/jmf.2010.0208] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone) is one of the leading components supporting targeted treatment options. We explored the cytotoxic and apoptotic effects of various doses of apigenin administered alone and together with 5-fluorouracil (5-FU)-a chemotherapeutic agent with high cytotoxicity-for different incubation periods, on morphologic, DNA, RNA (messenger RNA [mRNA]), and protein levels on the p53 mutant HT29 human colon adenocarcinoma cell line. Treatment with apigenin alone for a 72-hour incubation at 90-μM dose resulted in an apoptotic percentage of 24.92% (P=.001). A higher percentage (29.13%) was observed after treatment with the same dose of apigenin plus 5-FU for the same incubation period (P=.001). These results were confirmed as mRNA and protein expression levels of caspase-3 increased 2.567-fold and mRNA expression levels of caspase-8 increased 3.689-fold compared with the control group. On the other hand, mRNA expression levels of mammalian target of rapamycin (mTOR) and cyclin D1 (CCND1) decreased by 0.423-fold and 0.231-fold, respectively. To our knowledge this is the first study showing that treatment with apigenin alone results in cell cycle arrest through activation of caspase cascade and stimulation of apoptosis in HT29 cells. It also shows that use of apigenin plus 5-FU further increases this effect. This study draws attention to the probable clinical effectiveness of apigenin plus a chemotherapeutic agent with high cytotoxicity. It also highlights the induction of desirable apoptotic effects by targeting the caspase cascade pathway through administration of reduced doses for shorter incubation periods.
Collapse
Affiliation(s)
- Mehmet Turktekin
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
137
|
Mafuvadze B, Benakanakere I, López Pérez FR, Besch-Williford C, Ellersieck MR, Hyder SM. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Cancer Prev Res (Phila) 2011; 4:1316-24. [PMID: 21505181 DOI: 10.1158/1940-6207.capr-10-0382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor (ER/PR) levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins.
Collapse
Affiliation(s)
- Benford Mafuvadze
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
138
|
Chatuphonprasert W, Kondo S, Jarukamjorn K, Kawasaki Y, Sakuma T, Nemoto N. Potent modification of inducible CYP1A1 expression by flavonoids. Biol Pharm Bull 2011; 33:1698-703. [PMID: 20930378 DOI: 10.1248/bpb.33.1698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study examined modifications of β-naphthoflavone (β-NF)-induced cytochrome P450 1A1 (CYP1A1) expression by flavonoids in mouse hepatocytes in primary culture. Some flavonoids (apigenin, chrysin, flavone, flavanone, galangin, luteolin, and naringenin) by themselves induced CYP1A1 mRNA expression, especially flavone which was even more effective than β-NF. The effect on β-NF-induced CYP1A1 mRNA expression was varied, namely additive, suppressive, or both. An additive effect was observed after combined treatment with flavanone, naringenin, and chrysin, whereas kaempferol, myricetin, and quercetin decreased CYP1A1 levels. Apigenin, chrysin, galangin, luteolin, and morin synergistically enhanced β-NF-induced CYP1A1 expression at 24 h, but considerably suppressed it at 9 h. The structure-activity relationship of flavonoids affecting CYP1A1 expression as inducers or inhibitors is discussed. The present observations suggest the need to reveal the mechanism by which CYP1A1 expression is modified by flavonoids for risk assessment, since CYP1A1 activates environmental carcinogenic polycyclic hydrocarbons and flavonoids are major constituents in food.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Department of Toxicology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | | | | | | |
Collapse
|
139
|
Myoung HJ, Kim G, Nam KW. Apigenin isolated from the seeds of Perilla frutescens britton var crispa (Benth.) inhibits food intake in C57BL/6J mice. Arch Pharm Res 2010; 33:1741-6. [DOI: 10.1007/s12272-010-1105-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/24/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023]
|
140
|
Wang YF, Ni ZY, Dong M, Cong B, Shi QW, Gu YC, Kiyota H. Secondary Metabolites of Plants from the Genus Saussurea: Chemistry and Biological Activity. Chem Biodivers 2010; 7:2623-59. [DOI: 10.1002/cbdv.200900406] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
141
|
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15:7313-52. [PMID: 20966876 PMCID: PMC6259146 DOI: 10.3390/molecules15107313] [Citation(s) in RCA: 1765] [Impact Index Per Article: 126.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023] Open
Abstract
Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.
Collapse
Affiliation(s)
- Jin Dai
- Four Tigers LLC, 1501 Bull Lea Road, Suite 105, Lexington, Kentucky 40511 USA; (J.D.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Russell J. Mumper
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-966-1271; Fax: +1-919-966-6919
| |
Collapse
|
142
|
Lu HF, Chie YJ, Yang MS, Lu KW, Fu JJ, Yang JS, Chen HY, Hsia TC, Ma CY, Ip SW, Chung JG. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum Exp Toxicol 2010; 30:1053-61. [DOI: 10.1177/0960327110386258] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apigenin (4,5,7-trihydroxyflavone), a promising chemopreventive agent presented in fruits and vegetables, has been shown to induce cell cycle arrest and apoptosis in many types of human cancer cell lines. However, there is no available information to address the effects of apigenin on human lung cancer H460 cells. In the present studies, H460 cells were treated with apigenin for different time and then were analyzed for the morphological changes, induction of apoptosis, protein levels associated with apoptosis and results in dose-dependent induction of morphological changes, decrease in the percentage of viability, induced DNA damage and apoptosis; down-modulation of the protein expression of Bid, Bcl-2, procaspase-8; up-regulation of protein levels of Bax, caspase-3, AIF, cytochrome c, GRP78 and GADD153; decreased the levels of mitochondrial membrane potential and increased the productions of reactive oxygen species (ROS) and Ca2+ in H460 cells. Taken together, this is the first systematic in vitro study showing the involvement of apoptosis regulatory proteins as potential molecular targets of apigenin in human lung cancer H460 cells.
Collapse
Affiliation(s)
- Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, Taipei, Taiwan
| | - Yu-Jie Chie
- Department of Biological science and Technology, China Medical University, Taichung, Taiwan
| | - Ming-Sung Yang
- Department of General Thoracic Surgery, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jene-John Fu
- Chief Medical Office, Landseed International Medical Group, Taoyuan, Taiwan
| | - Jai-Sing Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - Hung-Yi Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Te-Chun Hsia
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yu Ma
- Department of Food and Beverage Management, Technology and Science Institute of Northern Taiwan, Taipei, Taiwan
| | - Siu-Wan Ip
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological science and Technology, China Medical University, Taichung, Taiwan, Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan,
| |
Collapse
|
143
|
Importance of the core structure of flavones in promoting inhibition of the mitochondrial respiratory chain. Chem Biol Interact 2010; 188:52-8. [DOI: 10.1016/j.cbi.2010.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/21/2023]
|
144
|
Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int J Cancer 2010; 127:1758-68. [PMID: 20112340 DOI: 10.1002/ijc.25210] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limited success has been achieved in extending the survival of patients with metastatic and hormone-refractory prostate cancer (HRPC). There is a strong need for novel agents in the treatment and prevention of HRPC. We have shown that flavokawain B (FKB), a kava chalcone, is about 4- to 12-fold more effective in reducing the cell viabilities of androgen receptor (AR)-negative, HRPC cell lines DU145 and PC-3 than AR-positive, hormone-sensitive prostate cancer cell lines LAPC4 and LNCaP, with minimal effect on normal prostatic epithelial and stromal cells. FKB induces apoptosis with an associated increased expression of proapoptotic proteins: death receptor-5, Bim and Puma and a decreased expression of inhibitors of apoptosis protein: XIAP and survivin. Among them, Bim expression was significantly induced by FKB as early as 4 hr of the treatment. Knockdown of Bim expression by short-hairpin RNAs attenuates the inhibitory effect on anchorage-dependent and -independent growth and caspase cleavages induced by FKB. These findings suggest that the effect of FKB, at least in part, requires Bim expression. In addition, FKB synergizes with TRAIL for markedly enhanced induction of apoptosis. Furthermore, FKB treatment of mice bearing DU145 xenograft tumors results in tumor growth inhibition and increases Bim expression in tumor tissues. Together, these results suggest robust mechanisms for FKB induction of apoptosis preferentially for HRPC and the potential usefulness of FKB for prevention and treatment of HRPC in an adjuvant setting.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
145
|
Apigenin blocks induction of vascular endothelial growth factor mRNA and protein in progestin-treated human breast cancer cells. Menopause 2010; 17:1055-63. [DOI: 10.1097/gme.0b013e3181dd052f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
146
|
Apigenin: a promising molecule for cancer prevention. Pharm Res 2010; 27:962-78. [PMID: 20306120 DOI: 10.1007/s11095-010-0089-7] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/09/2010] [Indexed: 12/18/2022]
Abstract
Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant and anticancer properties. Epidemiologic studies suggest that a diet rich in flavones is related to a decreased risk of certain cancers, particularly cancers of the breast, digestive tract, skin, prostate and certain hematological malignancies. It has been suggested that apigenin may be protective in other diseases that are affected by oxidative process, such as cardiovascular and neurological disorders, although more research needs to be conducted in this regard. Human clinical trials examining the effect of supplementation of apigenin on disease prevention have not been conducted, although there is considerable potential for apigenin to be developed as a cancer chemopreventive agent.
Collapse
|
147
|
Sheng X, Sun Y, Yin Y, Chen T, Xu Q. Cirsilineol inhibits proliferation of cancer cells by inducing apoptosis via mitochondrial pathway. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.11.0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
Cirsilineol (4′,5-dihydroxy-3′,6,7-trimethoxyflavone) is a compound isolated from the herb of Artemisia vestita Wall (Compositae). In this study, we aimed at examining the anti-proliferative activity of cirsilineol against multiple types of cancer cells and the underlying mechanisms. Cirsilineol significantly inhibited proliferation of Caov-3, Skov-3, PC3 and Hela cells in a concentration-dependent manner. The compound also dose-dependently induced apoptosis in Caov-3 cells, as determined by annexin V/propidium iodide staining. Besides, cirsilineol induced a remarkable change in mitochondrial membrane potential and caused release of cytochrome c to cytosol. Furthermore, the compound caused a marked activation of capase-3, caspase-9 and poly (ADP-ribose) polymerase (PARP). These results suggested that the induction of apoptosis via the mitochondrial pathway was involved in the anti-proliferative activity of cirsilineol against cancer cells.
Collapse
Affiliation(s)
- Xia Sheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| | - Ye Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| | - Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| |
Collapse
|
148
|
Xu Y, Zhao D, Fu C, Cheng L, Wang N, Han L, Ma F. Determination of flavonoid compounds fromSaussurea involucrataby liquid chromatography electrospray ionisation mass spectrometry. Nat Prod Res 2009; 23:1689-98. [DOI: 10.1080/14786410802187742] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
149
|
Shin GC, Kim C, Lee JM, Cho WS, Lee SG, Jeong M, Cho J, Lee K. Apigenin-induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes. Chem Biol Interact 2009; 182:29-36. [DOI: 10.1016/j.cbi.2009.07.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/19/2009] [Accepted: 07/23/2009] [Indexed: 01/18/2023]
|
150
|
Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett 2009; 583:1999-2003. [PMID: 19447105 DOI: 10.1016/j.febslet.2009.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Apigenin, a common dietary flavonoid, has been shown to possess anti-tumor properties. However, the mechanism by which apigenin inhibits cancer cells is not fully understood. Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. Here, we demonstrate that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin suppressed the expression of Id1 through activating transcription factor 3 (ATF3). Our results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells.
Collapse
|