101
|
Kusumoto KI, Yamashita S, Nagata T, Ido T, Hamachi I, Akao T. Thin-film assembly of diethanolamine-based lipidic material as potential gene carrier in mouse embryonic neural stem cells. J Biomed Mater Res A 2009; 91:1-10. [DOI: 10.1002/jbm.a.32159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
102
|
Mine Y, Hayashi T, Yamada M, Okano H, Kawase T. ENVIRONMENTAL CUE-DEPENDENT DOPAMINERGIC NEURONAL DIFFERENTIATION AND FUNCTIONAL EFFECT OF GRAFTED NEUROEPITHELIAL STEM CELLS IN PARKINSONIAN BRAIN. Neurosurgery 2009; 65:741-53; discussion 753. [DOI: 10.1227/01.neu.0000351281.45986.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yutaka Mine
- Department of Neurosurgery, School of Medicine, Keio University, Tokyo, Japan
| | - Takuro Hayashi
- Department of Neurosurgery, Eiju General Hospital, Tokyo, Japan
| | - Motoyuki Yamada
- Department of Neurosurgery, College of Medicine, University of South Florida, Tampa, Florida
| | - Hideyuki Okano
- Department of Neurosurgery, Tokyo-Kita Social Insurance Hospital, Tokyo, Japan
| | - Takeshi Kawase
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
103
|
Park S, Kim HT, Yun S, Kim IS, Lee J, Lee IS, Park KI. Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Exp Mol Med 2009; 41:487-500. [PMID: 19322031 DOI: 10.3858/emm.2009.41.7.054] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural progenitor cells (NPs) have shown several promising benefits for the treatment of neurological disorders. To evaluate the therapeutic potential of human neural progenitor cells (hNPs) in amyotrophic lateral sclerosis (ALS), we transplanted hNPs or growth factor (GF)-expressing hNPs into the central nervous system (CNS) of mutant Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic mice. The hNPs were engineered to express brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), VEGF, neurotrophin-3 (NT-3), or glial cell-derived neurotrophic factor (GDNF), respectively, by adenoviral vector and GDNF by lentiviral vector before transplantation. Donor-derived cells engrafted and migrated into the spinal cord or brain of ALS mice and differentiated into neurons, oligodendrocytes, or glutamate transporter-1 (GLT1)-expressing astrocytes while some cells retained immature markers. Transplantation of GDNF- or IGF-1-expressing hNPs attenuated the loss of motor neurons and induced trophic changes in motor neurons of the spinal cord. However, improvement in motor performance and extension of lifespan were not observed in all hNP transplantation groups compared to vehicle-injected controls. Moreover, the lifespan of GDNF-expressing hNP recipient mice by lentiviral vector was shortened compared to controls, which was largely due to the decreased survival times of female animals. These results imply that although implanted hNPs differentiate into GLT1-expressing astrocytes and secrete GFs, which maintain dying motor neurons, inadequate trophic support could be harmful and there is sexual dimorphism in response to GDNF delivery in ALS mice. Therefore, additional therapeutic approaches may be required for full functional recovery.
Collapse
Affiliation(s)
- Sungju Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
104
|
Maciaczyk J, Singec I, Maciaczyk D, Klein A, Nikkhah G. Restricted Spontaneous In Vitro Differentiation and Region-Specific Migration of Long-Term Expanded Fetal Human Neural Precursor Cells After Transplantation Into the Adult Rat Brain. Stem Cells Dev 2009; 18:1043-58. [DOI: 10.1089/scd.2008.0346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jaroslaw Maciaczyk
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
- Department of General Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| | - Ilyas Singec
- Burnham Institute for Medical Research, Stem Cell and Regeneration Program, La Jolla, California
| | - Donata Maciaczyk
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| | - Alexander Klein
- The Brain Research Group, School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Guido Nikkhah
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany
| |
Collapse
|
105
|
Bai L, Lennon DP, Eaton V, Maier K, Caplan AI, Miller SD, Miller RH. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57:1192-203. [PMID: 19191336 PMCID: PMC2706928 DOI: 10.1002/glia.20841] [Citation(s) in RCA: 400] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell-based therapies are attractive approaches to promote myelin repair. Recent studies demonstrated a reduction in disease burden in mice with experimental allergic encephalomyelitis (EAE) treated with mouse mesenchymal stem cells (MSCs). Here, we demonstrated human bone marrow-derived MSCs (BM-hMSCs) promote functional recovery in both chronic and relapsing-remitting models of mouse EAE, traced their migration into the injured CNS and assayed their ability to modulate disease progression and the host immune response. Injected BM-hMSCs accumulated in the CNS, reduced the extent of damage and increased oligodendrocyte lineage cells in lesion areas. The increase in oligodendrocytes in lesions may reflect BM-hMSC-induced changes in neural fate determination, since neurospheres from treated animals gave rise to more oligodendrocytes and less astrocytes than nontreated neurospheres. Host immune responses were also influenced by BM-hMSCs. Inflammatory T-cells including interferon gamma producing Th1 cells and IL-17 producing Th17 inflammatory cells and their associated cytokines were reduced along with concomitant increases in IL-4 producing Th2 cells and anti-inflammatory cytokines. Together, these data suggest that the BM-hMSCs represent a viable option for therapeutic approaches.
Collapse
Affiliation(s)
- Lianhua Bai
- Case Western Reserve University, Centers for Stem Cells and Regenerative Medicine, Translational Neuroscience, Department of Neurosciences, Case School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
107
|
Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:688-702. [DOI: 10.1016/j.bbadis.2008.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/12/2008] [Accepted: 10/13/2008] [Indexed: 12/21/2022]
|
108
|
Madhavan L, Daley BF, Paumier KL, Collier TJ. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol 2009; 515:102-15. [PMID: 19399899 PMCID: PMC2737747 DOI: 10.1002/cne.22033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Realistically, future stem cell therapies for neurological conditions including Parkinson's disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP)-labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine (BrdU) labeling. Two weeks after transplantation, in animals transplanted with NPCs we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of dopamine neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh), and stromal cell-derived factor 1 alpha (SDF1alpha), providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs and protection of mature nigral neurons.
Collapse
Affiliation(s)
- Lalitha Madhavan
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267
| | - Brian F Daley
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267
| | - Katrina L Paumier
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267
| | - Timothy J Collier
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
109
|
Wakeman DR, Hofmann MR, Redmond DE, Teng YD, Snyder EY. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit2D.3. [PMID: 19455542 DOI: 10.1002/9780470151808.sc02d03s9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors.
Collapse
Affiliation(s)
- Dustin R Wakeman
- University of California at San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
110
|
Buchet D, Baron-Van Evercooren A. In search of human oligodendroglia for myelin repair. Neurosci Lett 2009; 456:112-9. [DOI: 10.1016/j.neulet.2008.09.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
|
111
|
O'Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 2009; 106:8754-9. [PMID: 19433789 PMCID: PMC2689002 DOI: 10.1073/pnas.0803955106] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Indexed: 11/18/2022] Open
Abstract
A reduction in dopaminergic innervation of the subventricular zone (SVZ) is responsible for the impaired proliferation of its resident precursor cells in this region in Parkinson's disease (PD). Here, we show that this effect involves EGF, but not FGF2. In particular, we demonstrate that dopamine increases the proliferation of SVZ-derived cells by releasing EGF in a PKC-dependent manner in vitro and that activation of the EGF receptor (EGFR) is required for this effect. We also show that dopamine selectively expands the GFAP(+) multipotent stem cell population in vitro by promoting their self-renewal. Furthermore, in vivo dopamine depletion leads to a decrease in precursor cell proliferation in the SVZ concomitant with a reduction in local EGF production, which is reversed through the administration of the dopamine precursor levodopa (L-DOPA). Finally, we show that EGFR(+) cells are depleted in the SVZ of human PD patients compared with age-matched controls. We have therefore demonstrated a unique role for EGF as a mediator of dopamine-induced precursor cell proliferation in the SVZ, which has potential implications for future therapies in PD.
Collapse
Affiliation(s)
- Gráinne C. O'Keeffe
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Pam Tyers
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Dag Aarsland
- Institute of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
- Norwegian Centre for Movement Disorders, Stavanger University Hospital Arm Hansen v 20, N-4005 Stavanger, Norway
| | - Jeffrey W. Dalley
- Behavioral and Clinical Neuroscience Institute and Department of Experimental Psychology, and
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and
| | - Roger A. Barker
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Maeve A. Caldwell
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
112
|
Date I, Yasuhara T. Neurological disorders and neural regeneration, with special reference to Parkinson’s disease and cerebral ischemia. J Artif Organs 2009; 12:11-6. [DOI: 10.1007/s10047-008-0441-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/29/2022]
|
113
|
Zhongling Feng, Gang Zhao, Lei Yu. Neural stem cells and Alzheimer's disease: challenges and hope. Am J Alzheimers Dis Other Demen 2009; 24:52-7. [PMID: 19116300 PMCID: PMC10846222 DOI: 10.1177/1533317508327587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease is characterized by degeneration and dysfunction of synapses and neurons in brain regions critical for learning and memory functions. The endogenous generation of new neurons in certain regions of the mature brain, derived from primitive cells termed neural stem cells, has raised hope that neural stem cells may be recruited for structural brain repair. Stem cell therapy has been suggested as a possible strategy for replacing damaged circuitry and restoring learning and memory abilities in patients with Alzheimer's disease. In this review, we outline the promising investigations that are raising hope, and understanding the challenges behind translating underlying stem cell biology into novel clinical therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Zhongling Feng
- Bio Group, Nitto Denko Technical Corporation, Oceanside, California 92058, USA.
| | | | | |
Collapse
|
114
|
Kelly CM, Dunnett SB, Rosser AE. Medium spiny neurons for transplantation in Huntington's disease. Biochem Soc Trans 2009; 37:323-8. [PMID: 19143656 DOI: 10.1042/bst0370323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell-replacement therapy for Huntington's disease is one of very few therapies that has reported positive outcomes in clinical trials. However, for cell transplantation to be made more readily available, logistical, standardization and ethical issues associated with the current methodology need to be resolved. To achieve these goals, it is imperative that an alternative cell source be identified. One of the key requirements of the cells is that they are capable of acquiring an MSN (medium spiny neuron) morphology, express MSN markers such as DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa), and function in vivo in a manner that replicates those that have been lost to the disease. Developmental biology has progressed in recent years to provide a vast array of information with regard to the key signalling events involved in the proliferation, specification and differentiation of striatal-specific neurons. In the present paper, we review the rationale for cell-replacement therapy in Huntington's disease, discuss some potential donor sources and consider the value of developmental markers in the identification of cells with the potential to develop an MSN phenotype.
Collapse
Affiliation(s)
- Claire M Kelly
- Brain Repair Group, School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | | | | |
Collapse
|
115
|
Sharp J, Keirstead HS. Stem cell-based cell replacement strategies for the central nervous system. Neurosci Lett 2009; 456:107-11. [PMID: 19429144 DOI: 10.1016/j.neulet.2008.04.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/15/2008] [Accepted: 04/27/2008] [Indexed: 12/26/2022]
Abstract
During human development, cells of the blastocyst inner cell mass proliferate and give rise to each cell in the human body. It is that potential which focuses intense interest on these stem cells as a substrate for cell-based regenerative medicine. An increased understanding of the interrelation of processes that govern the formation of various cell types will allow for the directed differentiation of stem cells into specified cells or tissues that can ameliorate the effects of disease or damage. Perhaps the most difficult cells and tissues to derive for use in cell replacement strategies are the diverse neurons, glia and complex networks of the central nervous system (CNS). Here we present emerging perspectives on the development of neuronal and glial cells from stem cells for clinical application to CNS diseases and injury.
Collapse
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-4292, United States
| | | |
Collapse
|
116
|
Zhang P, Li J, Liu Y, Chen X, Kang Q. Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 2009; 29:410-21. [PMID: 19170896 DOI: 10.1111/j.1440-1789.2008.00993.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of stem cells is a potential therapeutic strategy for stroke damage. The survival, migration, and differentiation of transplanted human embryonic neural stem cells in the acute post-ischemic environment were characterized and endogenous nestin expression after transplantation was investigated. Human embryonic neural stem cells obtained from the temporal lobe cortex were cultured and labeled with fluorescent 1,1'-dioctadecy-6,6'-di (4-sulfopheyl)-3,3,3',3'-tetramethylindocarbocyanin (DiI) in vitro. Labeled cells were transplanted into cortical peri-infarction zones of adult rats 24 h after permanent middle cerebral artery occlusion. Survival, migration, and differentiation of grafted cells were quantified in immunofluorescence-stained sections from rats sacrificed at 7, 14, and 28 days after transplantation. Endogenous nestin-positive cells in the cortical peri-infarction zone were counted at serial time points. The cells transplanted into the cortical peri-infarction zone displayed the morphology of living cells and became widely located around the ischemic area. Moreover, some of the transplanted cells expressed nestin, GFAP, or NeuN in the peri-infarction zone. Furthermore, compared with the control group, endogenous nestin-positive cells in the peri-infarction zone had increased significantly 7 days after cell transplantation. These results confirm the survival, migration, and differentiation of transplanted cells in the acute post-ischemic environment and enhanced endogenous nestin expression within a brief time window. These findings indicate that transplantation of neural stem cells into the peri-infarction zone may be performed as early as 24 h after ischemia.
Collapse
Affiliation(s)
- Pengbo Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | | | | | | | | |
Collapse
|
117
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
118
|
Abstract
Stem cells, as subjects of study for use in treating neurological diseases, are envisioned as a replacement for lost neurons and glia, a means of trophic support, a therapeutic vehicle, and, more recently, a tool for in vitro modeling to understand disease and to screen and personalize treatments. In this review we analyze the requirements of stem cell-based therapy for clinical translation, advances in stem cell research toward clinical application for neurological disorders, and different animal models used for analysis of these potential therapies. We focus on Parkinson's disease (typically defined by the progressive loss of dopaminergic nigral neurons), stroke (neurodegeneration associated with decreased blood perfusion in the brain), and multiple sclerosis (an autoimmune disorder that generates demyelination, axonal damage, astrocytic scarring, and neurodegeneration in the brain and spinal cord). We chose these disorders for their diversity and the number of people affected by them. An additional important consideration was the availability of multiple animal models in which to test stem cell applications for these diseases. We also discuss the relationship between the limited number of systematic stem cell studies performed in animals, in particular nonhuman primates and the delayed progress in advancing stem cell therapies to clinical success.
Collapse
Affiliation(s)
- Valerie L Joers
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
119
|
Mothe AJ, Kulbatski I, Parr A, Mohareb M, Tator CH. Adult spinal cord stem/progenitor cells transplanted as neurospheres preferentially differentiate into oligodendrocytes in the adult rat spinal cord. Cell Transplant 2008; 17:735-51. [PMID: 19044201 DOI: 10.3727/096368908786516756] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) capable of generating new neurons and glia reside in the adult mammalian spinal cord. Transplantation of NSPCs has therapeutic potential for spinal cord injury, although there is limited information on the ability of these cells to survive and differentiate in vivo. Neurospheres cultured from the periventricular region of the adult spinal cord contain NSPCs that are self-renewing and multipotent. We examined the survival, proliferation, migration, and differentiation of adult spinal cord NSPCs generated from green fluorescent protein (GFP) transgenic rats and transplanted into the intact spinal cord. The grafted GFP-expressing cells survived for at least 6 weeks in vivo and migrated from the injection site along the rostro-caudal axis of the spinal cord. Transplanted cells transiently proliferated following transplantation and approximately 17% of the GFP-positive cells were apoptotic at 1 day. Also, better survival was seen with NSPCs transplanted as neurospheres in comparison to NSPCs transplanted as dissociated cells. By 1 week posttransplantation, grafted cells primarily expressed an oligodendrocytic phenotype and only 2% differentiated into astrocytes. Approximately 75% versus 38% of the grafted cells differentiated into oligodendrocytes after transplantation into spinal white versus gray matter, respectively. This is the first report to examine the time course of cell survival, proliferation, apoptosis, and phenotypic differentiation of transplanted NSPSs in the spinal cord. This is also the first report to examine the differences between transplanted NSPCs grafted as neurospheres or dissociated cells, and to compare the differentiation potential after transplantation into spinal cord white versus gray matter.
Collapse
Affiliation(s)
- Andrea J Mothe
- Toronto Western Research Institute and Krembil Neuroscience Centre, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
120
|
Kim TS, Misumi S, Jung CG, Masuda T, Isobe Y, Furuyama F, Nishino H, Hida H. Increase in dopaminergic neurons from mouse embryonic stem cell-derived neural progenitor/stem cells is mediated by hypoxia inducible factor-1α. J Neurosci Res 2008; 86:2353-62. [DOI: 10.1002/jnr.21687] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
121
|
Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P. A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 2008; 372:520-4. [DOI: 10.1016/j.bbrc.2008.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/22/2022]
|
122
|
Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ, Sallmen T, Lipton JH, Talantova M, Okamoto SI, Lipton SA. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci 2008; 28:6557-68. [PMID: 18579729 PMCID: PMC2679693 DOI: 10.1523/jneurosci.0134-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/23/2008] [Accepted: 05/13/2008] [Indexed: 12/24/2022] Open
Abstract
Cell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes. We now report that expression of MEF2CA, both in vitro and in vivo, under regulation of the nestin enhancer effectively produces "neuronal" progenitor cells that differentiate into a virtually pure population of neurons. Histological, electrophysiological, and behavioral analyses demonstrate that MEF2C-directed neuronal progenitor cells transplanted into a mouse model of cerebral ischemia can successfully differentiate into functioning neurons and ameliorate stroke-induced behavioral deficits.
Collapse
Affiliation(s)
- Zhen Li
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Scott R. McKercher
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Jiankun Cui
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Zhiguo Nie
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Walid Soussou
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Amanda J. Roberts
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California 92037
| | - Tina Sallmen
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Jeffrey H. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Maria Talantova
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Shu-ichi Okamoto
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
| | - Stuart A. Lipton
- Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, and
- Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
123
|
Pax6 promotes neurogenesis in human neural stem cells. Mol Cell Neurosci 2008; 38:616-28. [PMID: 18595732 DOI: 10.1016/j.mcn.2008.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/15/2008] [Accepted: 05/09/2008] [Indexed: 12/14/2022] Open
Abstract
During brain embryogenesis, transcription factors drive stem cells towards neuronal fate. Here we show that the transcription factor Pax6 increased in vitro generation of neurons from striatal but not cortical neural stem cells (NSCs), derived from 6 to 9 weeks old human fetuses, without affecting survival and proliferation. Overexpression of mouse Pax6 produced increased numbers of GABA+ and DARPP-32+ (characteristic of striatum) but not glutamate+ neurons (characteristic of cortex). Pax6-overexpressing cells survived and migrated to the same extent as control cells at 1 month after intrastriatal transplantation into newborn rats and generated more neuroblasts. Overexpression of mouse Pax6 in human NSCs also leads to altered levels of lineage-appropriate genes as revealed by Q-PCR. Our data suggest that Pax6 function is conserved between species since its overexpression activates similar genes in mouse and human NSCs. Also, that Pax6 overexpression in striatal NSCs increases the number of neurons but their region-specificity is maintained.
Collapse
|
124
|
Lu H, Li M, Song T, Qian Y, Xiao X, Chen X, Zhang P, Feng X, Parker T, Liu Y. Retrovirus delivered neurotrophin-3 promotes survival, proliferation and neuronal differentiation of human fetal neural stem cells in vitro. Brain Res Bull 2008; 77:158-64. [PMID: 19875351 DOI: 10.1016/j.brainresbull.2008.02.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/10/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022]
Abstract
Poor survival and insufficient neuronal differentiation are the main obstacles to neural stem cell (NSC) transplantation therapy. Genetic modification of NSCs with neurotrophins is considered a promising approach to overcome these difficulties. In this study, the effects on survival, proliferation and neuronal differentiation of human fetal NSCs (hfNSCs) were observed after infection by a neurotrophin-3 (NT-3) recombinant retrovirus. The hfNSCs, from 12-week human fetal brains formed neurospheres, expressed the stem cell marker nestin and differentiated into the three main cell types of the nervous system. NT-3 recombinant retrovirus (Retro-NT-3) infected hfNSCs efficiently expressed NT-3 gene for at least 8 weeks, presented an accelerated proliferation, and therefore produced an increased number of neurospheres and after differentiation in vitro, contained a higher percentage of neuronal cells. Eight weeks after infection, 37.9+/-4.2% of hfNSCs in the Retro-NT-3 infection group expressed the neuronal marker, this was significantly higher than the control and mock infection groups. NT-3 transduced hfNSCs also displayed longer protruding neurites compared with other groups. Combined these results demonstrate that NT-3 modification promote the survival/proliferation, neuronal differentiation and growth of neurites of hfNSCs in vitro. This study proposes recombinant retrovirus mediated NT-3 modification may provide a promising means to resolve the poor survival and insufficient neuronal differentiation of NSCs.
Collapse
Affiliation(s)
- Haixia Lu
- Institute of Neurobiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Cells of the central nervous system were once thought to be incapable of regeneration. This dogma has been challenged in the last decade with studies showing new, migrating stem cells in the brain in many rodent injury models and findings of new neurones in the human hippocampus in adults. Moreover, there are reports of bone marrow-derived cells developing neuronal and vascular phenotypes and aiding in repair of injured brain. These findings have fuelled excitement and interest in regenerative medicine for neurological diseases, arguably the most difficult diseases to treat. There are numerous proposed regenerative approaches to neurological diseases. These include cell therapy approaches in which cells are delivered intracerebrally or are infused by an intravenous or intra-arterial route; stem cell mobilization approaches in which endogenous stem and progenitor cells are mobilized by cytokines such as granulocyte colony stimulatory factor (GCSF) or chemokines such as SDF-1; trophic and growth factor support, such as delivering brain-derived neurotrophic factor (BDNF) or glial-derived neurotrophic factor (GDNF) into the brain to support injured neurones; these approaches may be used together to maximize recovery. While initially, it was thought that cell therapy might work by a 'cell replacement' mechanism, a large body of evidence is emerging that cell therapy works by providing trophic or 'chaperone' support to the injured tissue and brain. Angiogenesis and neurogenesis are coupled in the brain. Increasing angiogenesis with adult stem cell approaches in rodent models of stroke leads to preservation of neurones and improved functional outcome. A number of stem and progenitor cell types has been proposed as therapy for neurological disease ranging from neural stem cells to bone marrow derived stem cells to embryonic stem cells. Any cell therapy approach to neurological disease will have to be scalable and easily commercialized if it will have the necessary impact on public health. Currently, bone marrow-derived cell populations such as the marrow stromal cell, multipotential progenitor cells, umbilical cord stem cells and neural stem cells meet these criteria the best. Of great clinical significance, initial evidence suggests these cell types may be delivered by an allogeneic approach, so strict tissue matching may not be necessary. The most immediate impact on patients will be achieved by making use of the trophic support capability of cell therapy and not by a cell replacement mechanism.
Collapse
Affiliation(s)
- D C Hess
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
126
|
Emborg ME, Ebert AD, Moirano J, Peng S, Suzuki M, Capowski E, Joers V, Roitberg BZ, Aebischer P, Svendsen CN. GDNF-Secreting Human Neural Progenitor Cells Increase Tyrosine Hydroxylase and VMAT2 Expression in MPTP-Treated Cynomolgus Monkeys. Cell Transplant 2008. [DOI: 10.3727/096368908784423300] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human neural progenitor cells (hNPCs) have been proposed as a potential source of cells for ex vivo gene therapy. In this pilot study, three 5-year-old female cynomolgus monkeys received a single intracarotid infusion of MPTP, followed 1 week later by MRI-guided stereotaxic intrastriatal and intranigral injections of male hNPCs transgenic for GDNF. Immunosupression with oral cyclosporine (30–40 mg/kg) began 48 h before hNPC transplants and continued throughout the study. We monitored the animals using a clinical rating scale (CRS). Three months postsurgery, we euthanized the animals by transcardiac perfusion, then retrieved and processed their brains for morphological analysis. Our findings include the following. 1) hNPCs survived and produced GDNF in all animals 3 months postsurgery. 2) hNPCs remained in the areas of injection as observed by GDNF immunostaining and in situ hybridization for the human Y chromosome. 3) A “halo” of GDNF expression was observed diffusing from the center of the graft out into the surrounding area. 4) We observed increased TH- and VMAT2-positive fibers in areas of GDNF delivery in two of the three animals. The two animals with TH- and VMAT2-positive fibers also showed reductions in their CRS scores. 5) Some GFAP-positive perivascular cuffing was found in transplanted areas. 6) General blood chemistry and necropsies did not reveal any abnormalities. Therefore, we conclude that hNPCs releasing GDNF may be a possible alternative for intracerebral trophic factor delivery in Parkinson's disease.
Collapse
Affiliation(s)
- Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Jeff Moirano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Sun Peng
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | | | | | - Valerie Joers
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Ben Z. Roitberg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Neurosurgery, University of Illinois, Chicago, IL, USA
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clive N. Svendsen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Waisman Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
127
|
Zhao T, Zhang CP, Liu ZH, Wu LY, Huang X, Wu HT, Xiong L, Wang X, Wang XM, Zhu LL, Fan M. Hypoxia-driven proliferation of embryonic neural stem/progenitor cells--role of hypoxia-inducible transcription factor-1alpha. FEBS J 2008; 275:1824-34. [PMID: 18341590 DOI: 10.1111/j.1742-4658.2008.06340.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We recently reported that intermittent hypoxia facilitated the proliferation of neural stem/progenitor cells (NPCs) in the subventricule zone and hippocampus in vivo. Here, we demonstrate that hypoxia promoted the proliferation of NPCs in vitro and that hypoxia-inducible factor (HIF)-1alpha, which is one of the key molecules in the response to hypoxia, was critical in this process. NPCs were isolated from the rat embryonic mesencephalon (E13.5), and exposed to different oxygen concentrations (20% O(2), 10% O(2), and 3% O(2)) for 3 days. The results showed that hypoxia, especially 10% O(2), promoted the proliferation of NPCs as assayed by bromodeoxyuridine incorporation, neurosphere formation, and proliferation index. The level of HIF-1alpha mRNA and protein expression detected by RT-PCR and western blot significantly increased in NPCs subjected to 10% O(2). To further elucidate the potential role of HIF-1alpha in the proliferation of NPCs induced by hypoxia, an adenovirus construct was used to overexpress HIF-1alpha, and the pSilencer 1.0-U6 plasmid as RNA interference vector targeting HIF-1alpha mRNA was used to knock down HIF-1alpha. We found that overexpression of HIF-1alpha caused the same proliferative effect on NPCs under 20% O(2) as under 10% O(2). In contrast, knockdown of HIF-1alpha inhibited NPC proliferation induced by 10% O(2). These results demonstrated that moderate hypoxia was more beneficial to NPC proliferation and that HIF-1alpha was critical in this process.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Mukhida K, Baghbaderani BA, Hong M, Lewington M, Phillips T, McLeod M, Sen A, Behie LA, Mendez I. Survival, differentiation, and migration of bioreactor-expanded human neural precursor cells in a model of Parkinson disease in rats. Neurosurg Focus 2008; 24:E8. [DOI: 10.3171/foc/2008/24/3-4/e7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Object
Fetal tissue transplantation for Parkinson disease (PD) has demonstrated promising results in experimental and clinical studies. However, the widespread clinical application of this therapeutic approach is limited by a lack of fetal tissue. Human neural precursor cells (HNPCs) are attractive candidates for transplantation because of their long-term proliferation activity. Furthermore, these cells can be reproducibly expanded in a standardized fashion in suspension bioreactors. In this study the authors sought to determine whether the survival, differentiation, and migration of HNPCs after transplantation depended on the region of precursor cell origin, intracerebral site of transplantation, and duration of their expansion.
Methods
Human neural precursor cells were isolated from the telencephalon, brainstem, ventral mesencephalon, and spinal cord of human fetuses 8–10 weeks of gestational age, and their differentiation potential characterized in vitro. After expansion in suspension bioreactors, the HNPCs were transplanted into the striatum and substantia nigra of parkinsonian rats. Histological analyses were performed 7 weeks posttransplantation.
Results
The HNPCs isolated from various regions of the neuraxis demonstrated diverse propensities to differentiate into astrocytes and neurons and could all successfully expand under standardized conditions in suspension bioreactors. At 7 weeks posttransplantation, survival and migration were significantly greater for HNPCs obtained from the more rostral brain regions. The HNPCs differentiated predominantly into astrocytes after transplantation into the striatum or substantia nigra regions, and thus no behavioral improvement was observed.
Conclusions
Understanding the regional differences in HNPC properties is prerequisite to their application for PD cell restoration strategies.
Collapse
Affiliation(s)
- Karim Mukhida
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Behnam A. Baghbaderani
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Murray Hong
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Matthew Lewington
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Timothy Phillips
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Marcus McLeod
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| | - Arindom Sen
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Leo A. Behie
- 2Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Ivar Mendez
- 1Division of Neurosurgery, Department of Surgery, Cell Restoration Laboratory, Dalhousie Medical School; Departments of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia; and
| |
Collapse
|
129
|
Abstract
OBJECTIVES The aim of this review is to provide an overview of the fundamental features of the neurosphere assay (NSA), which was initially described in 1992, and has since been used not only to detect the presence of stem cells in embryonic and adult mammalian neural tissues, but also to study their characteristics in vitro. Implicit in this review is a detailed examination of the limitations of the NSA, and how this assay is most accurately and appropriately used. Finally we will point out criteria that should be challenged to design alternative ways to overcome the limits of this assay. METHODS NSA is used to isolate putative neural stem cells (NSCs) from the central nervous system (CNS) and to demonstrate the critical stem cell attributes of proliferation, extensive self-renewal and the ability to give rise to a large number of differentiated and functional progeny. Nevertheless, the capability of neural progenitor cells to form neurospheres precludes its utilisation to accurately quantify bona fide stem cell frequency based simply on neurosphere numbers. New culture conditions are needed to be able to distinguish the activity of progenitor cells from stem cells. CONCLUSION A commonly used, and arguably misused, methodology, the NSA has provided a wealth of information on precursor activity of cells derived from the embryonic through to the aged CNS. Importantly, the NSA has contributed to the demise of the 'no new neurogenesis' dogma, and the beginning of a new era of CNS regenerative medicine. Nevertheless, the interpretations arising from the utilisation of the NSA need to take into consideration its limits, so as not to be used beyond its specificity and sensitivity.
Collapse
Affiliation(s)
- Loic P Deleyrolle
- 1Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Rodney L Rietze
- 1Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Brent A Reynolds
- 1Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
130
|
Sharp J, Keirstead HS. Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr Opin Biotechnol 2008; 18:434-40. [PMID: 18023336 DOI: 10.1016/j.copbio.2007.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 12/21/2022]
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine, 2111 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, United States.
| | | |
Collapse
|
131
|
Behrstock S, Ebert AD, Klein S, Schmitt M, Moore JM, Svendsen CN. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF. Cell Transplant 2008; 17:753-62. [PMID: 19044202 PMCID: PMC2650839 DOI: 10.3727/096368908786516819] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson's and Huntington's disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line-derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration, or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington's model) with indirect lesions of the dopamine system (Parkinson's model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC, which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Sandra Klein
- The Waisman Center, University of Wisconsin Madison, Madison, WI, USA
| | - Melanie Schmitt
- The Waisman Center, University of Wisconsin Madison, Madison, WI, USA
| | | | - Clive N. Svendsen
- The Waisman Center, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
132
|
Haas SJP, Petrov S, Kronenberg G, Schmitt O, Wree A. Orthotopic transplantation of immortalized mesencephalic progenitors (CSM14.1 cells) into the substantia nigra of hemiparkinsonian rats induces neuronal differentiation and motoric improvement. J Anat 2007; 212:19-30. [PMID: 18036147 DOI: 10.1111/j.1469-7580.2007.00834.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural progenitor cell grafting is a promising therapeutic option in the treatment of Parkinson's disease. In previous experiments we grafted temperature-sensitive immortalized CSM14.1 cells, derived from the ventral mesencephalon of E14-rats, bilaterally in the caudate putamen of adult hemiparkinsonian rats. In these studies we were not able to demonstrate either a therapeutic improvement or neuronal differentiation of transplanted cells. Here we examined whether CSM14.1 cells grafted bilaterally orthotopically in the substantia nigra of hemiparkinsonian rats have the potential to differentiate into dopaminergic neurons. Adult male rats received 6-hydroxydopamine into the right medial forebrain bundle, and successful lesions were evaluated with apomorphine-induced rotations 12 days after surgery. Two weeks after a successful lesion the animals received bilateral intranigral grafts consisting of either about 50 000 PKH26-labelled undifferentiated CSM14.1 cells (n = 16) or a sham-graft (n = 9). Rotations were evaluated 3, 6, 9 and 12 weeks post-grafting. Animals were finally perfused with 4% paraformaldehyde. Cryoprotected brain slices were prepared for immunohistochemistry using the freeze-thaw technique to preserve PKH26-labelling. Slices were immunostained against neuronal epitopes (NeuN, tyrosine hydroxylase) or glial fibrillary acidic protein. The CSM14.1-cell grafts significantly reduced the apomorphine-induced rotations 12 weeks post-grafting compared to the sham-grafts (P < 0.05). There was an extensive mediolateral migration (400-700 microm) of the PKH26-labelled cells within the host substantia nigra. Colocalization with NeuN or glial fibrillary acidic protein in transplanted cells was confirmed with confocal microscopy. No tyrosine hydroxylase-immunoreactive grafted cells were detectable. The therapeutic effect of the CSM14.1 cells could be explained either by their glial cell-derived neurotrophic factor-expression or their neural differentiation with positive effects on the basal ganglia neuronal networks.
Collapse
|
133
|
From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 2007; 331:323-36. [PMID: 18034267 DOI: 10.1007/s00441-007-0541-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons. First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest, and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages. In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation of stem cell technology into the clinical arena.
Collapse
|
134
|
Ng YL, Chase HA. Novel bioreactors for the culture and expansion of aggregative neural stem cells. Bioprocess Biosyst Eng 2007; 31:393-400. [PMID: 18026758 DOI: 10.1007/s00449-007-0174-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 12/19/2022]
Abstract
Neural stem cells have been cultured as three-dimensional aggregates in a number of different types of bioreactors. The design and configuration of the bioreactor are shown to be crucial factors for the successful propagation of the cells. A novel bioreactor with liquid re-circulation and a working volume of 200 ml has been designed, tested and shown to be able to produce a higher cell vitality compared to those produced in multi-well plates, shake flasks and stirred flasks. The novel reactor was able to produce a total density of cells of 3.5 x 10(6) cells/ml consisting of a larger number of smaller and proliferative aggregates, compared to only 1.8 x 10(6) cells/ml produced in a multi-well plate. Shake flasks and stirred flasks commonly used for facilitating mass transfer in the culture of micro-organisms are shown to be unsuitable for the propagation of neural stem cells.
Collapse
Affiliation(s)
- Yuen Ling Ng
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge, UK
| | | |
Collapse
|
135
|
Darsalia V, Kallur T, Kokaia Z. Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 2007; 26:605-14. [PMID: 17686040 DOI: 10.1111/j.1460-9568.2007.05702.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke is a neurodegenerative disorder and the leading cause of disability in adult humans. Treatments to support efficient recovery in stroke patients are lacking. Several studies have demonstrated the ability of grafted neural stem cells (NSCs) to partly improve impaired neurological functions in stroke-subjected animals. Recently, we reported that NSCs from human fetal striatum and cortex exhibit region-specific differentiation in vitro, but survive, migrate and form neurons to a similar extent after intrastriatal transplantation in newborn rats. Here, we have transplanted the same cells into the stroke-damaged striatum of adult rats. The two types of NSCs exhibited a similar robust survival (30%) at 1 month after transplantation, and migrated throughout the damaged striatum. Striatal NSCs migrated farther and occupied a larger volume of striatum. In the transplantation core, cells were undifferentiated and expressed nestin and, to a lesser extent, also GFAP, betaIII-tubulin, DCX and calretinin, markers of immature neural lineage. Immunocytochemistry using markers of proliferation (p-H3 and Ki67) revealed a very low content of proliferating cells (<1%) in the grafts. Human cells outside the transplantation core differentiated, exhibited mature neuronal morphology and expressed mature neuronal markers such as HuD, calbindin and parvalbumin. Interestingly, striatal NSCs generated a greater number of parvalbumin+ and calbindin+ neurons. Virtually none of the grafted cells differentiated into astrocytes or oligodendrocytes. Based on these data, human fetal striatum- and cortex-derived NSCs could be considered potentially safe and viable for transplantation, with strong neurogenic potential, for further exploration in animal models of stroke.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, University Hospital BMC B10, Klinikgatan 26, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
136
|
Abstract
Neural stem and progenitor cells have great potential for the treatment of neurological disorders. However, many obstacles remain to translate this field to the patient's bedside, including rationales for using neural stem cells in individual neurological disorders; the challenges of neural stem cell biology; and the caveats of current strategies of isolation and culturing neural precursors. Addressing these challenges is critical for the translation of neural stem cell biology to the clinic. Recent work using neural stem cells has yielded novel biologic concepts such as the importance of the reciprocal interaction between neural stem cells and the neurodegenerative environment. The prospect of using transplants of neural stem cells and progenitors to treat neurological diseases requires a better understanding of the molecular mechanisms of both neural stem cell behavior in experimental models and the intrinsic repair capacity of the injured brain.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
137
|
Wang L, Martin DR, Baker HJ, Zinn KR, Kappes JC, Ding H, Gentry AS, Harper S, Snyder EY, Cox NR. Neural progenitor cell transplantation and imaging in a large animal model. Neurosci Res 2007; 59:327-40. [PMID: 17897743 DOI: 10.1016/j.neures.2007.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 07/10/2007] [Accepted: 08/06/2007] [Indexed: 01/19/2023]
Abstract
To evaluate neural stem/progenitor cell (NPC) transplantation therapy in cat models of neurodegenerative diseases, we have isolated, expanded and characterized feline NPCs (fNPCs) from normal fetal cat brain. Feline NPCs responsive to both human epidermal growth factor (hEGF) and human fibroblast growth factor 2 (hFGF2) proliferated as neurospheres, which were able to differentiate to neurons and glial cells. The analysis of growth factors indicated that both hEGF and hFGF2 were required for proliferation of fNPCs. In contrast to the effect on human NPCs, human leukemia inhibitory factor (hLIF) enhanced differentiation of fNPCs. Expanded fNPCs were injected into the brains of normal adult cats. Immunohistochemical analysis showed that the majority of transplanted cells were located adjacent to the injection site and some fNPCs differentiated into neurons. The survival of transplanted fNPCs over time was monitored using non-invasive bioluminescent imaging technology. This study provided the first evidence of allotransplantation of fNPCs into feline CNS. Cats have heterogeneous genetic backgrounds and possess neurological diseases that closely resemble analogous human diseases. The characterization of fNPCs and exploration of non-invasive bioluminescent imaging to track transplanted cells in this study will allow evaluation of NPC transplantation therapy using feline models of human neurological diseases.
Collapse
Affiliation(s)
- Lei Wang
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5525, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2007; 2:e689. [PMID: 17668067 PMCID: PMC1925150 DOI: 10.1371/journal.pone.0000689] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by rapid loss of muscle control and eventual paralysis due to the death of large motor neurons in the brain and spinal cord. Growth factors such as glial cell line derived neurotrophic factor (GDNF) are known to protect motor neurons from damage in a range of models. However, penetrance through the blood brain barrier and delivery to the spinal cord remains a serious challenge. Although there may be a primary dysfunction in the motor neuron itself, there is also increasing evidence that excitotoxicity due to glial dysfunction plays a crucial role in disease progression. Clearly it would be of great interest if wild type glial cells could ameliorate motor neuron loss in these models, perhaps in combination with the release of growth factors such as GDNF. Methodology/Principal Findings Human neural progenitor cells can be expanded in culture for long periods and survive transplantation into the adult rodent central nervous system, in some cases making large numbers of GFAP positive astrocytes. They can also be genetically modified to release GDNF (hNPCGDNF) and thus act as long-term ‘mini pumps’ in specific regions of the rodent and primate brain. In the current study we genetically modified human neural stem cells to release GDNF and transplanted them into the spinal cord of rats over-expressing mutant SOD1 (SOD1G93A). Following unilateral transplantation into the spinal cord of SOD1G93A rats there was robust cellular migration into degenerating areas, efficient delivery of GDNF and remarkable preservation of motor neurons at early and end stages of the disease within chimeric regions. The progenitors retained immature markers, and those not secreting GDNF had no effect on motor neuron survival. Interestingly, this robust motor neuron survival was not accompanied by continued innervation of muscle end plates and thus resulted in no improvement in ipsilateral limb use. Conclusions/Significance The potential to maintain dying motor neurons by delivering GDNF using neural progenitor cells represents a novel and powerful treatment strategy for ALS. While this approach represents a unique way to prevent motor neuron loss, our data also suggest that additional strategies may also be required for maintenance of neuromuscular connections and full functional recovery. However, simply maintaining motor neurons in patients would be the first step of a therapeutic advance for this devastating and incurable disease, while future strategies focus on the maintenance of the neuromuscular junction.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jacalyn McHugh
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Craig Tork
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brandon Shelley
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sandra M. Klein
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patrick Aebischer
- Brain & Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clive N. Svendsen
- The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Departments of Anatomy and Neurology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
139
|
Anderson L, Caldwell MA. Human neural progenitor cell transplants into the subthalamic nucleus lead to functional recovery in a rat model of Parkinson's disease. Neurobiol Dis 2007; 27:133-40. [PMID: 17587588 DOI: 10.1016/j.nbd.2007.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 01/03/2023] Open
Abstract
Despite the success of foetal nigral transplantation for the treatment of Parkinson's disease, supply limitations of tissue means that alternative sources must be found. Transplantation of human neural progenitor cells (HNPCs) may offer a solution, however few studies have shown functional recovery in animal models of PD without cell modification. Here we show that unmodified HNPC grafted into the subthalamic nucleus (STN) show excellent survival of up to 5 months and induce significant functional recovery following amphetamine-induced rotations within 4 weeks. For the first time we also show that HNPCs, which remain in an immature nestin-positive state, produce VEGF in vivo allowing further modification of the host brain. This suggests that even in the absence of cell replacement strategies utilising immature progenitor cells could be of real therapeutic value.
Collapse
Affiliation(s)
- Lucy Anderson
- Centre for Brain Repair and Department of Clinical Neurosciences, University Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | |
Collapse
|
140
|
Ng YL, Chase HA. Separation and enrichment of neural stem cells using segregation in an expanded bed. Biotechnol Lett 2007; 29:1745-51. [PMID: 17611723 DOI: 10.1007/s10529-007-9458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/11/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
An expanded bed system has been developed for a novel application in which the separation and enrichment of neural stem cells from a sample containing a mixture of stem and progenitor cells is achieved based on the difference in the sizes of the aggregates of these types of cells. Inert Sephadex beads and flocculated yeast cells were used as experimental controls and references. The characteristics of the separation of neural stem cell aggregates based on size are similar to those achieved with flocculated yeast where cell-to-cell aggregation controls the pattern of size separation different from those of inert Sephadex beads.
Collapse
Affiliation(s)
- Yuen Ling Ng
- Department of Chemical Engineering, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | | |
Collapse
|
141
|
Kim DY, Park SH, Lee SU, Choi DH, Park HW, Paek SH, Shin HY, Kim EY, Park SP, Lim JH. Effect of human embryonic stem cell-derived neuronal precursor cell transplantation into the cerebral infarct model of rat with exercise. Neurosci Res 2007; 58:164-75. [PMID: 17408791 DOI: 10.1016/j.neures.2007.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/01/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
We analyzed the therapeutic effect of the transplantation of the human embryonic stem cell (NIH Code: MB01)-derived neuronal precursor (hES-NP) cell and post-ischemic exercise in rats with the middle cerebral artery (MCA) infarct model. A cortical infarct was induced in 20 adult Sprague-Dawley rats by occlusion and reperfusion of the MCA. The rats were divided into four groups: hES-NP cell transplantation and exercise, transplantation only, exercise only, and Sham-operated with no exercise. In the cell-transplanted group, hES-NP cells were transplanted by stereotactic inoculation into the ipsilateral basal ganglia 7 days after infarct. We evaluated the clinical recovery of deficit, the size of infarct and the survival, migration, and differentiation of the transplanted cells. The transplanted hES-NP cells survived robustly in the ischemic brains 3 weeks post transplant. The majority of migrating cells in the ischemic rats had a neuronal phenotype. The clinical scores of all of the experimental groups were better than those of the Sham-operated group. Whereas the exercise-only group showed continuous clinical improvement, the cell-transplanted groups manifested less improvement than the exercise-only group. Moreover, the cell-transplanted groups did not differ in clinical improvement according to postinfarct-exercise or not. The infarct size was significantly reduced in both the cell-transplanted groups and the post-ischemic exercise group, compared with the Sham-operated group; however, the reduction of infarct size was most prominent in the exercise-only group. In our study, the inoculated site of the basal ganglia showed some damage induced by inoculation, such as loss of neuroglial cells, reactive gliosis and microcalcification, which was found in the Sham-operated group as well, and yet no inoculation-site injury has ever been reported. Our study revealed that stem cell transplantation can have a positive effect on behavioral recovery and reduction of infarct size, but the effect shown was no better than the effect of the exercise, which finding reconfirmed the importance of post-infarct rehabilitation. In addition, it was found that cell inoculation should be replaced by a noninvasive procedure.
Collapse
Affiliation(s)
- Dae-Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Shin S, Sun Y, Liu Y, Khaner H, Svant S, Cai J, Xu QX, Davidson BP, Stice SL, Smith AK, Goldman SA, Reubinoff BE, Zhan M, Rao MS, Chesnut JD. Whole Genome Analysis of Human Neural Stem Cells Derived from Embryonic Stem Cells and Stem and Progenitor Cells Isolated from Fetal Tissue. Stem Cells 2007; 25:1298-306. [PMID: 17272497 DOI: 10.1634/stemcells.2006-0660] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multipotent neural stem cells (NSC) have been derived from human embryonic stem cells (hESC) as well as isolated from fetal tissues. However, there have been few exclusive markers of NSC identified to date, and the differences between NSC from various sources are poorly understood. Although cells isolated from these two sources share many important characteristics, it is not clear how closely they are related in terms of gene expression. Here, we compare the gene expression profiles of 11 lines of NSC derived from hESC (ES_NSC), four lines of NSC isolated from fetus (F_NSC), and two lines of restricted progenitors in order to characterize these cell populations and identify differences between NSC derived from these two sources. We showed that ES_NSC were clustered together with high transcriptional similarities but were distinguished from F_NSC, oligodendrocyte precursor cells, and astrocyte precursor cells. There were 17 genes expressed in both ES_NSC and F_NSC whose expression was not identified in restricted neural progenitors. Furthermore, the major differences between ES_NSC and F_NSC were mostly observed in genes related to the key neural differentiation pathways. Here, we show that comparison of global gene expression profiles of ES_NSC, F_NSC, and restricted neural progenitor cells makes it possible to identify some of the common characteristics of NSC and differences between similar stem cell populations derived from hESCs or isolated from fetal tissue. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Soojung Shin
- Stem Cells and Regenerative Medicine, Invitrogen, Carlsbad, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Anderson L, Burnstein RM, He X, Luce R, Furlong R, Foltynie T, Sykacek P, Menon DK, Caldwell MA. Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol 2007; 204:512-24. [PMID: 17306795 DOI: 10.1016/j.expneurol.2006.12.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/22/2006] [Accepted: 12/26/2006] [Indexed: 12/19/2022]
Abstract
Numerous cell culture protocols have been described for the proliferation of multipotent human neural progenitor cells (HNPCs). The mitogen combinations used to expand HNPCs vary, and it is not clear to what extent this may affect the subsequent differentiation of these cells. In this study human foetal cortical tissue was cultured in the presence of either EGF, or FGF-2, or a combination of both using a unique chopping method in which cell to cell contact is maintained. The differentiation potential of neurospheres following mitogen withdrawal was assessed at early (8 weeks) and late (20 weeks) times of expansion, both in vitro and in vivo. In addition, changes in gene expression with time were analysed by microarray experiments. Results show that the presence of FGF-2 was highly predictive of neuronal differentiation after short term culture both in vitro and in vivo. In addition, time in culture had a significant effect on transplant size and neural constituents suggesting that cells have a limited life span and restricted lineage potential. Array analysis confirms that following extensive time in culture cells are entering growth arrest with fundamental expression changes in genes associated with cell cycle regulation, apoptosis and immune functions.
Collapse
Affiliation(s)
- Lucy Anderson
- Centre for Brain Repair and Department of Clinical Neurosciences, University Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J, McKercher S, Meerloo J, Muller FJ, Park KI, Butters TD, Dwek RA, Schwartz P, Tong G, Wenger D, Lipton SA, Seyfried TN, Platt FM, Snyder EY. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 2007; 13:439-47. [PMID: 17351625 DOI: 10.1038/nm1548] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 01/16/2007] [Indexed: 02/07/2023]
Abstract
Intracranial transplantation of neural stem cells (NSCs) delayed disease onset, preserved motor function, reduced pathology and prolonged survival in a mouse model of Sandhoff disease, a lethal gangliosidosis. Although donor-derived neurons were electrophysiologically active within chimeric regions, the small degree of neuronal replacement alone could not account for the improvement. NSCs also increased brain beta-hexosaminidase levels, reduced ganglioside storage and diminished activated microgliosis. Additionally, when oral glycosphingolipid biosynthesis inhibitors (beta-hexosaminidase substrate inhibitors) were combined with NSC transplantation, substantial synergy resulted. Efficacy extended to human NSCs, both to those isolated directly from the central nervous system (CNS) and to those derived secondarily from embryonic stem cells. Appreciating that NSCs exhibit a broad repertoire of potentially therapeutic actions, of which neuronal replacement is but one, may help in formulating rational multimodal strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Pyo Lee
- Stem Cell & Regeneration Program, Center for Neuroscience and Aging Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Gamm DM, Wang S, Lu B, Girman S, Holmes T, Bischoff N, Shearer RL, Sauvé Y, Capowski E, Svendsen CN, Lund RD. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2007; 2:e338. [PMID: 17396165 PMCID: PMC1828619 DOI: 10.1371/journal.pone.0000338] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/07/2007] [Indexed: 12/17/2022] Open
Abstract
Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo.
Collapse
Affiliation(s)
- David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Johnson MA, Weick JP, Pearce RA, Zhang SC. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 2007; 27:3069-77. [PMID: 17376968 PMCID: PMC2735200 DOI: 10.1523/jneurosci.4562-06.2007] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 01/11/2007] [Accepted: 02/06/2007] [Indexed: 12/16/2022] Open
Abstract
How a naive human neuroepithelial cell becomes an electrophysiologically active neuron remains unknown. Here, we describe the early physiological development of neurons differentiating from naive human embryonic stem (hES) cells. We found that differentiating neuronal cells progressively decrease their resting membrane potential, gain characteristic Na+ and K+ currents, and fire mature action potentials by 7 weeks of differentiation. This is similar to the maturation pattern observed in animals, albeit on a greatly expanded time scale. An additional 3 weeks of differentiation resulted in neurons that could fire repetitive trains of action potentials in response to depolarizing current pulses. The onset of spontaneous synaptic activity also occurred after 7 weeks of differentiation, in association with the differentiation of astrocytes within the culture. Cocultures of hES cell-derived neuroepithelial cells with exogenous astrocytes significantly accelerated the onset of synaptic currents but did not alter action potential generation. These findings suggest that the development of membrane characteristics and action potentials depend on the intrinsic maturation of Na+ and K+ currents, whereas synaptic transmission is enhanced by astrocytes, which may be achieved independently of the maturation of action potentials. Furthermore, we found that although astrocyte-conditioned medium accelerated synaptic protein localization, it did not increase synaptic activity, suggesting a contact-dependent mechanism by which astrocytes augment synaptic activity. These results lay the foundation for future studies examining the functional development of human neurons and provide support for the potential application of human cells in restorative neuronal therapies.
Collapse
Affiliation(s)
- M. Austin Johnson
- Neuroscience Training Program
- Medical Scientist Training Program
- Waisman Center, and
| | | | - Robert A. Pearce
- Neuroscience Training Program
- Anesthesiology, School of Medicine and Public Health
| | - Su-Chun Zhang
- Neuroscience Training Program
- Departments of Anatomy
- Neurology, and
- Waisman Center, and
- WiCell Institute, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
147
|
Kallur T, Darsalia V, Lindvall O, Kokaia Z. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res 2007; 84:1630-44. [PMID: 17044030 DOI: 10.1002/jnr.21066] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human fetal brain is a potential source of neural stem cells (NSCs) for cell replacement therapy in neurodegenerative diseases. We explored whether NSCs isolated from cortex and striatum of human fetuses, aged 6-9 weeks post-conception, maintain their regional identity and differentiate into specific neuron types in culture and after intrastriatal transplantation in neonatal rats. We observed no differences between cortex- and striatum-derived NSCs expanded as neurospheres in proliferative capacity, growth rate, secondary sphere formation, and expression of neural markers. After 4 weeks of differentiation in vitro, cortical and striatal NSCs gave rise to similar numbers of GABAergic and VMAT2- and parvalbumin-containing neurons. However, whereas cortical NSCs produced higher number of glutamatergic and tyrosine hydroxylase- and calretinin-positive neurons, several-fold more neurons expressing the striatal projection neuron marker, DARPP-32, were observed in cultures of striatal NSCs. Human cortical and striatal NSCs survived and migrated equally well after transplantation. The two NSC types also generated similar numbers of mature NeuN-positive neurons, which were several-fold higher at 4 months as compared to at 1 month after grafting. At 4 months, the grafts contained cells with morphologic characteristics of neurons, astrocytes, and oligodendrocytes. Many of neurons were expressing parvalbumin. Our data show that NSCs derived from human fetal cortex and striatum exhibit region-specific differentiation in vitro, and survive, migrate, and form mature neurons to the same extent after intrastriatal transplantation in newborn rats.
Collapse
Affiliation(s)
- Therése Kallur
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, Stem Cell Institute, University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
148
|
O’Keeffe G, Barker RA. Cell repair in Parkinson’s disease. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative movement disorder with the cardinal clinical features of muscular rigidity, resting tremor and bradykinesia. The prevalence of this disease is approximately 2% of those aged over 65 years, thus causing significant morbidity. The disease is characterized by degeneration of dopaminergic cells in the substantia nigra pars compacta, resulting in reduced dopaminergic input to the striatum. Significant clinical benefit can be achieved through the restoration of dopamine levels in this system with pharmacological interventions, although these therapies are only symptomatic and the disease progresses. Indeed, with disease progression other features often appear, including autonomic, affective and cognitive dysfunction, reflecting pathology at non-nigral sites. The occurrence of neural stem cells (NSCs) in the adult CNS, which, under certain conditions, are able to proliferate and renew neuronal numbers, has raised great expectations for alternative therapeutic applications in the treatment of PD. Indeed, it is potentially possible to harness this capacity either directly (increase of local proliferation, directed migration and differentiation) or indirectly (in vitro expansion before their transplantation), to facilitate the generation of specific cell types in order to replace missing neurons in neurodegenerative diseases. The manipulation of embryonic stem cells or their derivatives also offers a promising alternative as extensive proliferation may be achieved and, most importantly, directed differentiation to a dopaminergic phenotype is possible. Nevertheless, neuronal replacement will only be possible if proliferating or transplanted NSCs and their progeny can be harnessed at sites of pathology. It is the manipulation of stem cells both in vivo and in vitro, in the context of repairing the core pathological hallmark of PD, that is the main focus of this report.
Collapse
Affiliation(s)
- G O’Keeffe
- University of Cambridge, Cambridge Centre for Brain Repair, CB2 2PY, UK
| | - RA Barker
- University of Cambridge, Cambridge Centre for Brain Repair, CB2 2PY, UK
| |
Collapse
|
149
|
Takahashi J. Stem cell therapy for Parkinson's disease. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:229-44. [PMID: 16903426 DOI: 10.1007/3-540-31437-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transplantation of fetal dopaminergic (DA) neurons can produce symptomatic relief for patients with Parkinson's disease, but the technical and ethical difficulties have limited the application of this therapy. Neural precursor cells and embryonic stem cells (ESCs) are expected to be candidates of potential donor cells for transplantation. Human neural precursor cells obtained from the midbrain give rise to TH-positive neurons. The growth of the cells, however, is slow and the differentiation rate of DA neurons is still low for clinical application. Monkey ESCs give rise to midbrain DA neurons, and the transplanted ESC-derived neurospheres function as DA neurons, attenuating the neurological symptoms of the monkey Parkinson's disease model. These results suggest the possibility of using stem cells for the treatment of Parkinson's disease, but problems such as the low survival rate in vivo and tumor formation must be solved.
Collapse
Affiliation(s)
- J Takahashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
150
|
Kan I, Melamed E, Offen D. Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 2007:219-42. [PMID: 17554511 DOI: 10.1007/978-3-540-68976-8_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases are characterized by a progressive degeneration of selective neural populations. This selective hallmark pathology and the lack of effective treatment modalities make these diseases appropriate candidates for cell therapy. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewing precursors that reside in the bone marrow and may further be exploited for autologous transplantation. Autologous transplantation of MSCs entirely circumvents the problem of immune rejection, does not cause the formation of teratomas, and raises very few ethical or political concerns. More than a few studies showed that transplantation of MSCs resulted in clinical improvement. However, the exact mechanisms responsible for the beneficial outcome have yet to be defined. Possible rationalizations include cell replacement, trophic factors delivery, and immunomodulation. Cell replacement theory is based on the idea that replacement of degenerated neural cells with alternative functioning cells induces long-lasting clinical improvement. It is reasoned that the transplanted cells survive, integrate into the endogenous neural network, and lead to functional improvement. Trophic factor delivery presents a more practical short-term approach. According to this approach, MSC effectiveness may be credited to the production of neurotrophic factors that support neuronal cell survival, induce endogenous cell proliferation, and promote nerve fiber regeneration at sites of injury. The third potential mechanism of action is supported by the recent reports claiming that neuroinflammatory mechanisms play an important role in the pathogenesis of neurodegenerative disorders. Thus, inhibiting chronic inflammatory stress might explain the beneficial effects induced by MSC transplantation. Here, we assemble evidence that supports each theory and review the latest studies that have placed MSC transplantation into the spotlight of biomedical research.
Collapse
Affiliation(s)
- I Kan
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus Tel Aviv University, Sackler School of Medicine, 49100 Petah-Tikva, Israel
| | | | | |
Collapse
|