101
|
Abstract
Over the past 20 years, the conception of brain development has radically changed from a fixed and limited hierarchical process to a more plastic and continuous one. Most surprising, the field has learned that postnatal neurogenesis is not just a seasonal phenomenon in songbirds but a process that occurs across species and seasons. Astrocytes, whose primary role in the central nervous system was thought to be strictly supportive, have emerged as a heterogeneous population, a subset of which is the neural stem cell. Postnatal neurogenesis persists in specialized niches within the rostral subventricular zone and hippocampal dentate gyrus and, for a limited period, within the white matter tracts and external granular layer of the cerebellum. These specialized microenvironments are influenced by factors in the blood, cerebrospinal fluid, and local extracellular matrix. This article reviews the current understanding of adult neurogenesis, which is conserved across many vertebrate species, underscoring the value of animal models in past and present studies of human neurogenesis and neurogenic disease.
Collapse
Affiliation(s)
- R. M. Walton
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
102
|
Arscott WT, Soltys J, Knight J, Mao-Draayer Y. Interferon β-1b directly modulates human neural stem/progenitor cell fate. Brain Res 2011; 1413:1-8. [PMID: 21855056 DOI: 10.1016/j.brainres.2011.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/23/2011] [Accepted: 07/18/2011] [Indexed: 01/10/2023]
Abstract
Interferon beta (IFN-β) is a mainline treatment for multiple sclerosis (MS); however its exact mechanism of action is not completely understood. IFN-β is known as an immunomodulator; although recent evidence suggests that IFN-β may also act directly on neural stem/progenitor cells (NPCs) in the central nervous system (CNS). NPCs can differentiate into all neural lineage cells, which could contribute to the remyelination and repair of MS lesions. Understanding how IFN-β influences NPC physiology is critical to develop more specific therapies that can better assist this repair process. In this study, we investigated the effects of IFN β-1b (Betaseron®) on human NPCs in vitro (hNPCs). Our data demonstrate a dose-dependent response of hNPCs to IFN β-1b treatment via sustained proliferation and differentiation. Furthermore, we offer insight into the signaling pathways involved in these mechanisms. Overall, this study shows a direct effect of IFN β-1b on hNPCs and highlights the need to further understand how current MS treatments can modulate endogenous NPC populations within the CNS.
Collapse
|
103
|
Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cell Mol Life Sci 2011; 69:461-70. [PMID: 21779868 PMCID: PMC3256316 DOI: 10.1007/s00018-011-0759-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/28/2011] [Accepted: 06/17/2011] [Indexed: 11/04/2022]
Abstract
While the availability of pluripotent stem cells has opened new prospects for generating neural donor cells for nervous system repair, their capability to integrate with adult brain tissue in a structurally relevant way is still largely unresolved. We addressed the potential of human embryonic stem cell-derived long-term self-renewing neuroepithelial stem cells (lt-NES cells) to establish axonal projections after transplantation into the adult rodent brain. Transgenic and species-specific markers were used to trace the innervation pattern established by transplants in the hippocampus and motor cortex. In vitro, lt-NES cells formed a complex axonal network within several weeks after the initiation of differentiation and expressed a composition of surface receptors known to be instrumental in axonal growth and pathfinding. In vivo, these donor cells adopted projection patterns closely mimicking endogenous projections in two different regions of the adult rodent brain. Hippocampal grafts placed in the dentate gyrus projected to both the ipsilateral and contralateral pyramidal cell layers, while axons of donor neurons placed in the motor cortex extended via the external and internal capsule into the cervical spinal cord and via the corpus callosum into the contralateral cortex. Interestingly, acquisition of these region-specific projection profiles was not correlated with the adoption of a regional phenotype. Upon reaching their destination, human axons established ultrastructural correlates of synaptic connections with host neurons. Together, these data indicate that neurons derived from human pluripotent stem cells are endowed with a remarkable potential to establish orthotopic long-range projections in the adult mammalian brain.
Collapse
|
104
|
Serre A, Snyder EY, Mallet J, Buchet D. Overexpression of basic helix-loop-helix transcription factors enhances neuronal differentiation of fetal human neural progenitor cells in various ways. Stem Cells Dev 2011; 21:539-53. [PMID: 21561385 DOI: 10.1089/scd.2011.0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In a perspective of regenerative medicine, multipotent human neural progenitor cells (hNPCs) offer a therapeutic advantage over pluripotent stem cells in that they are already invariantly "neurally committed" and lack tumorigenicity. However, some of their intrinsic properties, such as slow differentiation and uncontrolled multipotency, remain among the obstacles to their routine use for transplantation. Although rodent NPCs have been genetically modified in vitro to overcome some of these limitations, the translation of this strategy to human cells remains in its early stages. In the present study, we compare the actions of 4 basic helix-loop-helix transcription factors on the proliferation, specification, and terminal differentiation of hNPCs isolated from the fetal dorsal telencephalon. Consistent with their proneural activity, Ngn1, Ngn2, Ngn3, and Mash1 prompted rapid commitment of the cells. The Ngns induced a decrease in proliferation, whereas Mash1 maintained committed progenitors in a proliferative state. As opposed to Ngn1 and Ngn3, which had no effect on glial differentiation, Ngn2 induced an increase in astrocytes in addition to neurons, whereas Mash1 led to both neuronal and oligodendroglial specification. GABAergic, cholinergic, and motor neuron differentiations were considerably increased by overexpression of Ngn2 and, to a lesser extent, of Ngn3 and Mash1. Thus, we provide evidence that hNPCs can be efficiently, rapidly, and safely expanded in vitro as well as rapidly differentiated toward mature neural (typically neuronal) lineages by the overexpression of select proneural genes.
Collapse
Affiliation(s)
- Angéline Serre
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, UMR-S975, Paris, France
| | | | | | | |
Collapse
|
105
|
Tunici P, Pellegatta S, Finocchiaro G. The potential of stem cells for the treatment of brain tumors and globoid cell leukodystrophy. Cytotechnology 2011; 41:93-101. [PMID: 19002946 DOI: 10.1023/a:1024818621377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stem cells of different origin are under careful scrutiny as potential new tools for the treatment of several neurological diseases. The major focus of these reaserches have been neurodegenerative disorders, such as Huntington Chorea or Parkinson Disease (Shihabuddin et al., 1999). More recently attention has been devoted to their use for brain repair after stroke (Savitz et al., 2002). In this review we will focus on the potential of stem cell treatments for glioblastoma multiforme (Holland, 2000), the most aggressive primary brain tumor, and globoid cell leukodystrophy (Krabbe disease), a metabolic disorder of the white matter (Berger et al., 2001). These two diseases may offer a paradigm of what the stem cell approach may offer in term of treatment, alone or in combination with other therapeutic approaches. Two kinds of stem cells will be consideredhere: neural stem cells and hematopoietic stem cells, both obtained after birth. The review will focus on experimental models, with an eye on clinical perspectives.
Collapse
Affiliation(s)
- Patrizia Tunici
- Istituto Nazionale Neurologico Besta, Unit of Neuro-Oncology and Gene Therapy, Milan, Italy (Author for correspondence)
| | | | | |
Collapse
|
106
|
Hook L, Vives J, Fulton N, Leveridge M, Lingard S, Bootman MD, Falk A, Pollard SM, Allsopp TE, Dalma-Weiszhausz D, Tsukamoto A, Uchida N, Gorba T. Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochem Int 2011; 59:432-44. [PMID: 21762743 DOI: 10.1016/j.neuint.2011.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022]
Abstract
The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells (Conti et al., 2005; Sun et al., 2008). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133(+)CD24(-/lo) cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca(2+) imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.
Collapse
|
107
|
Cristini S, Alessandri G, Acerbi F, Ciusani E, Colombo A, Fascio U, Nicosia RF, Invernizzi RW, Gelati M, Parati EA, Invernici G. Three-dimensional self-organizing neural architectures: a neural stem cells reservoir and a system for neurodevelopmental studies. Tissue Eng Part C Methods 2011; 17:1109-20. [PMID: 21721991 DOI: 10.1089/ten.tec.2010.0622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Complex microenvironmental stimuli influence neural cell properties. To study this, we developed a three-dimensional (3-D) neural culture system, composed of different populations including neurons, astrocytes, and neural stem cells (NSCs). In particular, these last-mentioned cells represent a source potentially exploitable to test drugs, to study neurodevelopment and cell-therapies for neuroregenerations. On seeding on matrigel in a medium supplemented with serum and mitogens, cells obtained from human fetal brain tissue formed 3-D self-organizing neural architectures. Immunocytochemical analysis demonstrated the presence of undifferentiated nestin+ and CD133+ cells, surrounded by β-tub-III+ and GFAP+ cells, suggesting the formation of niches containing potential human NSCs (hNSCs). The presence of hNSCs was confirmed by both neurosphere assay and RT-PCR, and their multipotentiality was demonstrated by both immunofluorescent staining and RT-PCR. Flow cytometry analysis revealed that neurosphere forming cells originating from at least two different subsets expressing, respectively, CD133 and CD146 markers were endowed with different proliferative and differentiation potential. Our data implicate that the complexity of environment within niches and aggregates of heterogeneous neural cell subsets may represent an innovative platform for neurobiological and neurodevelopmental investigations and a reservoir for a rapid expansion of hNSCs.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
One of the grand challenges in neuroengineering is to stimulate regeneration after central nervous system (CNS) or peripheral nervous system (PNS) injury to restore function. The state of the art today is that PNS injuries heal to a limited extent, whereas CNS injuries are largely intractable to regeneration. In this context, we examine the underlying biochemical and cellular constraints on endogenous healing of neural tissues. Identification and characterization of endogenous "rate-limiting" processes that constrain regeneration would allow one to craft solutions to overcome critical impediments for accelerated healing. It is increasingly evident that biochemical pathways triggered by the nature and duration of injury-triggered inflammatory response may determine the endogenous constraints and subsequently determine regenerative fate. In this paper, critical endogenous constraints of PNS and CNS regeneration are identified, and the effects of modulating the phenotypes of immune cells on neuronal regeneration are discussed.
Collapse
Affiliation(s)
- Nassir Mokarram
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
109
|
Kallur T, Farr TD, Böhm-Sturm P, Kokaia Z, Hoehn M. Spatio-temporal dynamics, differentiation and viability of human neural stem cells after implantation into neonatal rat brain. Eur J Neurosci 2011; 34:382-93. [DOI: 10.1111/j.1460-9568.2011.07759.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
110
|
Cunha C, Panseri S, Villa O, Silva D, Gelain F. 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int J Nanomedicine 2011; 6:943-55. [PMID: 21720506 PMCID: PMC3124398 DOI: 10.2147/ijn.s17292] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) in vitro models of cell culture aim to fill the gap between the standard two-dimensional cell studies and the in vivo environment. Especially for neural tissue regeneration approaches where there is little regenerative capacity, these models are important for mimicking the extracellular matrix in providing support, allowing the natural flow of oxygen, nutrients, and growth factors, and possibly favoring neural cell regrowth. We have previously demonstrated that a new self-assembling nanostructured biomaterial, based on matrigel, was able to support adult neural stem cell (NSC) culture. In this study, we developed a new 3D cell culture system that takes advantage of the nano- and microfiber assembling process, under physiologic conditions, of these biomaterials. The assembled scaffold forms an intricate and biologically active matrix that displays specifically designed functional motifs: RGD (Arg-Gly-Asp), BMHP1 (bone marrow homing peptide 1), and BMHP2, for the culture of adult NSCs. These scaffolds were prepared at different concentrations, and microscopic examination of the cell-embedded scaffolds showed that NSCs are viable and they proliferate and differentiate within the nanostructured environment of the scaffold. Such a model has the potential to be tailored to develop ad hoc designed peptides for specific cell lines.
Collapse
Affiliation(s)
- Carla Cunha
- Department of Biotechnology and Biosciences, University of Milano-Bicocca
- Center for Nanomedicine and Tissue Engineering, CNTE – A.O. Ospedale Niguarda Ca’ Granda, Milan
| | - Silvia Panseri
- Laboratory of Biomechanics and Technology Innovation, Rizzoli Orthopaedic Institute, Bologna
- Laboratory of Nano-Biomagnetism, Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Omar Villa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca
- Center for Nanomedicine and Tissue Engineering, CNTE – A.O. Ospedale Niguarda Ca’ Granda, Milan
| | - Diego Silva
- Department of Biotechnology and Biosciences, University of Milano-Bicocca
- Center for Nanomedicine and Tissue Engineering, CNTE – A.O. Ospedale Niguarda Ca’ Granda, Milan
| | - Fabrizio Gelain
- Department of Biotechnology and Biosciences, University of Milano-Bicocca
- Center for Nanomedicine and Tissue Engineering, CNTE – A.O. Ospedale Niguarda Ca’ Granda, Milan
| |
Collapse
|
111
|
Ferrari D, Binda E, De Filippis L, Vescovi AL. Isolation of neural stem cells from neural tissues using the neurosphere technique. ACTA ACUST UNITED AC 2011; Chapter 2:Unit2D.6. [PMID: 21049474 DOI: 10.1002/9780470151808.sc02d06s15] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes protocols for the derivation, characterization, and expansion of neural stem cell (NSC) lines from the adult mouse subventricular zone (mNSCs), embryonic mouse brain and from the human fetal brain (hNSCs). NSCs can be isolated by enzymatic digestion of specific regions (NSCs niches) of the central nervous system (CNS) and grown in suspension. By using this methodology, NSCs form spherical clusters called neurospheres, which are mechanically dissociated to a single-cell suspension and replated in the selective culture medium. Removal of growth factors and plating cells on an adherent substrate allows cells to differentiate into neurons, astrocytes, and oligodendrocytes, the main cell type of the CNS. Correct culturing of NSCs, according to this methodology, will allow cells to expand over 100 passages without alteration of cell karyotype, growth ability, and differentiation potential.
Collapse
Affiliation(s)
- Daniela Ferrari
- Department of Biotechnology and Biosciences, University Milan-Bicocca, Milan, Italy
| | | | | | | |
Collapse
|
112
|
Baghbaderani BA, Behie LA, Mukhida K, Hong M, Mendez I. New bioengineering insights into human neural precursor cell expansion in culture. Biotechnol Prog 2011; 27:776-87. [PMID: 21485037 DOI: 10.1002/btpr.583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/22/2011] [Indexed: 01/12/2023]
Abstract
Understanding initial cell growth, interactions associated with the process of expansion of human neural precursor cells (hNPCs), and cellular events pre- and postdifferentiation are important for developing bioprocessing protocols to reproducibly generate multipotent cells that can be used in basic research or the treatment of neurodegenerative disorders. Herein, we report the in vitro responses of telencephalon hNPCs grown in a serum-free growth medium using time-lapse live imaging as well as cell-surface marker, aggregate size, and immunocytochemical analyses. Time-lapse analysis of hNPC initial expansion indicated that cell-surface attachment in stationary culture and the frequency of cell-cell interaction in suspension conditions are important for subsequent aggregate formation and hNPC growth. In the absence of cell-surface attachment in low-attachment stationary culture, large aggregates of cells were formed and expansion was adversely affected. The majority of the telencephalon hNPCs expressed CD29, CD90, and CD44 (cell surface markers involved in cell-ECM and cell-cell interactions to regulate biological functions such as proliferation), suggesting that cell-surface attachment and cell-cell interactions play a significant role in the subsequent formation of cell aggregates and the expansion of hNPCs. Before differentiation, about 90% of the cells stained positive for nestin and expressed two neural precursor cells surface markers (CD133 and CD24). Upon withdrawal of growth cytokines, hNPCs first underwent cell division and then differentiated preferentially towards a neuronal rather than a glial phenotype. This study provides key information regarding human NPC behavior under different culture conditions and favorable culture conditions that are important in establishing reproducible hNPC expansion protocols.
Collapse
Affiliation(s)
- Behnam A Baghbaderani
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alta T2N 1N4
| | | | | | | | | |
Collapse
|
113
|
Gelain F, Silva D, Caprini A, Taraballi F, Natalello A, Villa O, Nam KT, Zuckermann RN, Doglia SM, Vescovi A. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS NANO 2011; 5:1845-1859. [PMID: 21314189 DOI: 10.1021/nn102663a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Self-assembling peptides (SAPs) are rapidly gaining interest as bioinspired scaffolds for cell culture and regenerative medicine applications. Bone Marrow Homing Peptide 1 (BMHP1) functional motif (PFSSTKT) was previously demonstrated to stimulate neural stem cell (NSC) viability and differentiation when linked to SAPs. We here describe a novel ensemble of SAPs, developed from the BMHP1 (BMHP1-SAPs), that spontaneously assemble into tabular fibers, twisted ribbons, tubes and hierarchical self-assembled sheets: organized structures in the nano- and microscale. Thirty-two sequences were designed and evaluated, including biotinylated and unbiotinylated sequences, as well as a hybrid peptide-peptoid sequence. Via X-ray diffraction (XRD), CD, and FTIR experiments we demonstrated that all of the BMHP1-SAPs share similarly organized secondary structures, that is, β-sheets and β-turns, despite their heterogeneous nanostructure morphology, scaffold stiffness, and effect over NSC differentiation and survival. Notably, we demonstrated the self-healing propensity of most of the tested BMHP1-SAPs, enlarging the set of potential applications of these novel SAPs. In in vitro cell culture experiments, we showed that some of these 10-mer peptides foster adhesion, differentiation, and proliferation of human NSCs. RGD-functionalized and hybrid peptide-peptoid self-assembling sequences also opened the door to BMHP1-SAP functionalization with further bioactive motifs, essential to tailor new scaffolds for specific applications. In in vivo experiments we verified a negligible reaction of the host nervous tissue to the injected and assembled BMHP1-SAP. This work will pave the way to the development of novel SAP sequences that may be useful for material science and regenerative medicine applications.
Collapse
Affiliation(s)
- Fabrizio Gelain
- Center for Nanomedicine and Tissue Engineering-A.O. Ospedale Niguarda Ca' Granda, Piazza dell'ospedale maggiore 3, Milan, 20162, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene 2011; 30:3454-67. [PMID: 21383690 DOI: 10.1038/onc.2011.58] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is necessary to understand mechanisms by which differentiating agents influence tumor-initiating cancer stem cells. Toward this end, we investigated the cellular and molecular responses of glioblastoma stem-like cells (GBM-SCs) to all-trans retinoic acid (RA). GBM-SCs were grown as non-adherent neurospheres in growth factor supplemented serum-free medium. RA treatment rapidly induced morphology changes, induced growth arrest at G1/G0 to S transition, decreased cyclin D1 expression and increased p27 expression. Immunofluorescence and western blot analysis indicated that RA induced the expression of lineage-specific differentiation markers Tuj1 and GFAP and reduced the expression of neural stem cell markers such as CD133, Msi-1, nestin and Sox-2. RA treatment dramatically decreased neurosphere-forming capacity, inhibited the ability of neurospheres to form colonies in soft agar and inhibited their capacity to propagate subcutaneous and intracranial xenografts. Expression microarray analysis identified ∼350 genes that were altered within 48 h of RA treatment. Affected pathways included retinoid signaling and metabolism, cell-cycle regulation, lineage determination, cell adhesion, cell-matrix interaction and cytoskeleton remodeling. Notch signaling was the most prominent of these RA-responsive pathways. Notch pathway downregulation was confirmed based on the downregulation of HES and HEY family members. Constitutive activation of Notch signaling with the Notch intracellular domain rescued GBM neurospheres from the RA-induced differentiation and stem cell depletion. Our findings identify mechanisms by which RA targets GBM-derived stem-like tumor-initiating cells and novel targets applicable to differentiation therapies for glioblastoma.
Collapse
|
115
|
Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture. Exp Cell Res 2011; 317:1016-27. [PMID: 21277299 DOI: 10.1016/j.yexcr.2011.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 12/12/2022]
Abstract
Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed "myospheres" or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.
Collapse
|
116
|
Lee IS, Jung K, Kim M, Park KI. Neural stem cells: properties and therapeutic potentials for hypoxic-ischemic brain injury in newborn infants. Pediatr Int 2010; 52:855-65. [PMID: 21029253 DOI: 10.1111/j.1442-200x.2010.03266.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) are defined by their ability to self-renew, to differentiate into cells of all glial and neuronal lineages throughout the neuraxis, and to populate developing or degenerating central nervous system (CNS) regions. The recognition that NSCs propagated in culture could be reimplanted into the mammalian brain, where they might integrate appropriately throughout the mammalian CNS and stably express foreign genes, has unveiled a new role for neural transplantation and gene therapy and a possible strategy for addressing the CNS manifestations of diseases that hitherto had been refractory to intervention. An intriguing phenomenon with possible therapeutic potentials has begun to emerge from our observations of the behavior of NSCs in animal models of neonatal hypoxic-ischemic (HI) brain injury. During phases of active neurodegeneration, factors seem to be transiently elaborated to which NSCs may respond by migrating to degenerating regions and differentiating specifically towards replacement of dying neural cells. NSCs may attempt to repopulate and reconstitute ablated regions. These 'repair mechanisms' may actually reflect the reexpression of basic developmental principles that may be harnessed for therapeutic ends. In addition, NSCs may serve as vehicles for gene delivery and appear capable of simultaneous neural cell replacement and gene therapy (e.g. with factors that might enhance neuronal differentiation, neurites outgrowth, proper connectivity, and/or neuroprotection). When combined with certain synthetic biomaterials, NSCs may be even more effective in 'engineering' the damaged CNS towards reconstitution. We have also cultured human NSCs or progenitors as neurospheres which were derived from fetal cadavers at 13 weeks of gestation, and transplanted them into HI-injured immature brains to investigate their therapeutic potentials in this type of model.
Collapse
Affiliation(s)
- Il-Shin Lee
- Department of Pediatrics and BK21 Project for Medical Sciences, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | | | | | | |
Collapse
|
117
|
Kroonen J, Nassen J, Boulanger YG, Provenzano F, Capraro V, Bours V, Martin D, Deprez M, Robe P, Rogister B. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection. Int J Cancer 2010; 129:574-85. [PMID: 20886597 DOI: 10.1002/ijc.25709] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/10/2010] [Indexed: 01/16/2023]
Abstract
In patients with glioblastoma multiforme, recurrence is the rule despite continuous advances in surgery, radiotherapy and chemotherapy. Within these malignant gliomas, glioblastoma stem cells or initiating cells have been recently described, and they were shown to be specifically involved in experimental tumorigenesis. In this study, we show that some human glioblastoma cells injected into the striatum of immunodeficient nude mice exhibit a tropism for the subventricular zones. There and similarily to neurogenic stem cells, these subventricular glioblastoma cells were then able to migrate toward the olfactory bulbs. Finally, the glioblastoma cells isolated from the adult mouse subventricular zones and olfactory bulbs display high tumorigenicity when secondary injected in a new mouse brain. Together, these data suggest that neurogenic zones could be a reservoir for particular cancer-initiating cells.
Collapse
Affiliation(s)
- Jérôme Kroonen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L. Long-term survival of human neural stem cells in the ischemic rat brain upon transient immunosuppression. PLoS One 2010; 5:e14035. [PMID: 21124963 PMCID: PMC2988794 DOI: 10.1371/journal.pone.0014035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/29/2010] [Indexed: 12/20/2022] Open
Abstract
Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Laura Rota Nodari
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Daniela Ferrari
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Fabrizio Giani
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
| | - Mario Bossi
- Department of Neurosciences and Biomedical Technologies, University Milano Bicocca, Milan, Italy
| | | | - Giovanni Tredici
- Department of Neurosciences and Biomedical Technologies, University Milano Bicocca, Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
- IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, San Giovanni Rotondo, Italy
- * E-mail: (LDF); (ALV)
| | - Lidia De Filippis
- Department of Biotechnologies and Biosciences, University Milano Bicocca, Milan, Italy
- * E-mail: (LDF); (ALV)
| |
Collapse
|
119
|
Garvalov BK, Acker T. Cancer stem cells: a new framework for the design of tumor therapies. J Mol Med (Berl) 2010; 89:95-107. [DOI: 10.1007/s00109-010-0685-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/27/2010] [Accepted: 09/16/2010] [Indexed: 12/18/2022]
|
120
|
Yang JR, Liao CH, Pang CY, Huang LLH, Lin YT, Chen YL, Shiue YL, Chen LR. Directed Differentiation into Neural Lineages and Therapeutic Potential of Porcine Embryonic Stem Cells in Rat Parkinson's Disease Model. Cell Reprogram 2010; 12:447-61. [DOI: 10.1089/cell.2009.0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jenn-Rong Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Chia-Hsin Liao
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, R.O.C
- Institute of Medical Science, Buddhist Tzu-Chi University, Hualien, Taiwan, R.O.C
| | - Cheng-Yoong Pang
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Buddhist Tzu-Chi University, Hualien, Taiwan, R.O.C
| | - Lynn Ling-Huei Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Ting Lin
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
| | - Yi-Ling Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Biotechnology, Southern Taiwan University, Tainan, Taiwan, R.O.C
| |
Collapse
|
121
|
Hayashi MAF, Guerreiro JR, Cassola AC, Lizier NF, Kerkis A, Camargo ACM, Kerkis I. Long-term culture of mouse embryonic stem cell-derived adherent neurospheres and functional neurons. Tissue Eng Part C Methods 2010; 16:1493-502. [PMID: 20486784 DOI: 10.1089/ten.tec.2009.0788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells. It consists of obtaining embryoid bodies, followed by induction of neuronal differentiation with retinoic acid of nonadherent embryoid bodies (three-dimensional model), which further allows their adherence and formation of adherent neurospheres (AN, bi-dimensional model). The AN can be maintained for at least 12 weeks in culture under repetitive mechanical splitting, providing a constant microenvironment (in vitro niche) for the neuronal progenitor cells avoiding mechanical dissociation of AN. The expression of neuron-specific proteins, such as nestin, sox1, beta III-tubulin, microtubule-associated protein 2, neurofilament medium protein, Tau, neuronal nuclei marker, gamma-aminobutyric acid, and 5-hydroxytryptamine, were confirmed in these cells maintained during 3 months under several splitting. Additionally, expression pattern of microtubule-associated proteins, such as lissencephaly (Lis1) and nuclear distribution element-like (Ndel1), which were shown to be essential for differentiation and migration of neurons during embryogenesis, was also studied. As expected, both proteins were expressed in undifferentiated ES cells, AN, and nonrosette neurons, although presenting different spatial distribution in AN. In contrast to previous studies, using cultured neuronal cells derived from embryonic and adult tissues, only Ndel1 expression was observed in the centrosome region of early neuroblasts from AN. Mature neurons, obtained from ES cells in this work, display ionic channels and oscillations of membrane electrical potential typical of electrically excitable cells, which is a characteristic feature of the functional central nervous system (CNS) neurons. Taken together, our study demonstrated that AN are a long-term culture of neuronal cells that can be used to analyze the process of neuronal differentiation dynamics. Thus, the protocol described here provides a new experimental model for studying neurological diseases associated with neuronal differentiation during early development, as well as it represents a novel source of functional cells that can be used as tools for testing the effects of toxins and/or drugs on neuronal cells.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
122
|
Characterization of neural stem/progenitor cells expressing VEGF and its receptors in the subventricular zone of newborn piglet brain. Neurochem Res 2010; 35:1455-70. [PMID: 20552272 DOI: 10.1007/s11064-010-0207-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2010] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multipotent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Collapse
|
123
|
Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A. Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 2010; 5:e10145. [PMID: 20405042 PMCID: PMC2853578 DOI: 10.1371/journal.pone.0010145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/16/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell-based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation. METHODOLOGY/PRINCIPAL FINDINGS We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRalpha, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination. CONCLUSIONS/SIGNIFICANCE We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.
Collapse
Affiliation(s)
- Margherita Neri
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Claudio Maderna
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Daniela Ferrari
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Chiara Cavazzin
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Angelo L. Vescovi
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| |
Collapse
|
124
|
Baghbaderani BA, Mukhida K, Sen A, Kallos MS, Hong M, Mendez I, Behie LA. Bioreactor expansion of human neural precursor cells in serum-free media retains neurogenic potential. Biotechnol Bioeng 2010; 105:823-33. [PMID: 19882735 DOI: 10.1002/bit.22590] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human neural precursor cells (hNPCs), harvested from somatic tissue and grown in vitro, may serve as a source of cells for cell replacement strategies aimed at treating neurodegenerative disorders such as Parkinson's disease (PD), Huntington's disease (HD), and intractable spinal cord pain. A crucial element in a robust clinical production method for hNPCs is a serum-free growth medium that can support the rapid expansion of cells while retaining their multipotency. Here, we report the development of a cell growth medium (PPRF-h2) for the expansion of hNPCs, achieving an overall cell-fold expansion of 10(13) over a period of 140 days in stationary culture which is significantly greater than other literature results. More importantly, hNPC expansion could be scaled-up from stationary culture to suspension bioreactors using this medium. Serial subculturing of the cells in suspension bioreactors resulted in an overall cell-fold expansion of 7.8 x 10(13) after 140 days. These expanded cells maintained their multipotency including the capacity to generate large numbers of neurons (about 60%). In view of our previous studies regarding successful transplantation of the bioreactor-expanded hNPCs in animal models of neurological disorders, these results have demonstrated that PPRF-h2 (containing dehydroepiandrosterone, basic fibroblast growth factor and human leukemia inhibitory factor) can successfully facilitate the production of large quantities of hNPCs with potential to be used in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Behnam A Baghbaderani
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
125
|
Cristini S, Navone S, Canzi L, Acerbi F, Ciusani E, Hladnik U, de Gemmis P, Alessandri G, Colombo A, Parati E, Invernici G. Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects. Hum Mol Genet 2010; 19:1939-50. [PMID: 20159777 DOI: 10.1093/hmg/ddq072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The study of Lesch-Nyhan-diseased (LND) human brain is crucial for understanding how mutant hypoxanthine-phosphoribosyltransferase (HPRT) might lead to neuronal dysfunction. Since LND is a rare, inherited disorder caused by a deficiency of the enzyme HPRT, human neural stem cells (hNSCs) that carry this mutation are a precious source for delineating the consequences of HPRT deficiency and for developing new treatments. In our study we have examined the effect of HPRT deficiency on the differentiation of neurons in hNSCs isolated from human LND fetal brain. We have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in dopamine (DA) biosynthetic pathway. LND hNSCs demonstrate aberrant expression of several transcription factors and DA markers. HPRT-deficient dopaminergic neurons also demonstrate a striking deficit in neurite outgrowth. These results represent direct experimental evidence for aberrant neurogenesis in LND hNSCs and suggest developmental roles for other housekeeping genes in neurodevelopmental disease. Moreover, exposure of the LND hNSCs to retinoic acid medium elicited the generation of dopaminergic neurons. The lack of precise understanding of the neurological dysfunction in LND has precluded development of useful therapies. These results evidence aberrant neurogenesis in LND hNSCs and suggest a role for HPRT gene in neurodevelopment. These cells combine the peculiarity of a neurodevelopmental model and a human, neural origin to provide an important tool to investigate the pathophysiology of HPRT deficiency and more broadly demonstrate the utility of human neural stem cells for studying the disease and identifying potential therapeutics.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, UO Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18:625-34. [PMID: 20087316 DOI: 10.1038/mt.2009.317] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Collapse
Affiliation(s)
- Dachun Wang
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
127
|
Santilli G, Lamorte G, Carlessi L, Ferrari D, Rota Nodari L, Binda E, Delia D, Vescovi AL, De Filippis L. Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One 2010; 5:e8575. [PMID: 20052410 PMCID: PMC2797394 DOI: 10.1371/journal.pone.0008575] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/03/2009] [Indexed: 12/15/2022] Open
Abstract
Background Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%. Methodology/Principal Findings We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of β-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation. Conclusions/Significance These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Guido Santilli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Lamorte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Luigi Carlessi
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Rota Nodari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Binda
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Angelo L. Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- * E-mail: (ALV); (LDF)
| | - Lidia De Filippis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- * E-mail: (ALV); (LDF)
| |
Collapse
|
128
|
Tran KD, Ho A, Jandial R. Stem Cell Transplantation Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 671:41-57. [DOI: 10.1007/978-1-4419-5819-8_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
129
|
DING DF, XING SL, ZHOU MM, SONG HY. The Monolayer Culturing of The Neural Stem Cell Clone and Its Qualification. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
130
|
Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord 2009; 48:457-63. [PMID: 20010910 DOI: 10.1038/sc.2009.153] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
STUDY DESIGN The use of stem cells for functional recovery after spinal cord injury. OBJECTIVE The aim of this study was to evaluate the effects of a combination of autologous undifferentiated and neural-induced bone marrow mesenchymal stem cells (MSCs) on behavioral improvement in rats after inducing spinal cord injury and comparing with transplantation of undifferentiated and neural-induced MSCs alone. SETTING The study was conducted at the department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. METHODS The spinal cord was injured by contusion using a Fogarty embolectomy catheter at the T8-T9 level of the spinal cord, and autologous MSCs were transplanted into the center of the developing lesion cavity, 3 mm cranial and 3 mm caudal to the cavity, at 7 days after induction of spinal cord compression injury. RESULTS At 5 weeks after transplantation, the presence of transplanted cells was detected in the spinal cord parenchyma using immunohistochemistry analysis. In all treatment groups (differentiated, undifferentiated and mix), there was less cavitation than lesion sites in the control group. The Basso-Beattie-Bresnahan (BBB) score was significantly higher in rats transplanted with a combination of cells and in rats transplanted with neural-induced MSCs alone than in undifferentiated and control rats. CONCLUSION Pre-differentiation of MSCs to neuron-like cells has a very important role in achieving the best results for functional improvement.
Collapse
|
131
|
Reciprocal effects of conditioned medium on cultured glioma cells and neural stem cells. J Clin Neurosci 2009; 16:1619-23. [DOI: 10.1016/j.jocn.2009.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/18/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
|
132
|
Xu XM, Onifer SM. Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury. Respir Physiol Neurobiol 2009; 169:171-82. [PMID: 19665611 PMCID: PMC2800078 DOI: 10.1016/j.resp.2009.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/16/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022]
Abstract
Devastating central nervous system injuries and diseases continue to occur in spite of the tremendous efforts of various prevention programs. The enormity and annual escalation of healthcare costs due to them require that therapeutic strategies be responsibly developed. The dysfunctions that occur after injury and disease are primarily due to neurotransmission damage. The last two decades of both experimental and clinical research have demonstrated that neural and non-neural tissue and cell transplantation is a viable option for ameliorating dysfunctions to markedly improve quality of life. Moreover, significant progress has been made with tissue and cell transplantation in studies of pathophysiology, plasticity, sprouting, regeneration, and functional recovery. This article will review information about the ability and potential, particularly for traumatic spinal cord injury, that neural and non-neural tissue and cell transplantation has to replace lost neurons and glia, to reconstruct damaged neural circuitry, and to restore neurotransmitters, hormones, neurotrophic factors, and neurotransmission. Donor tissues and cells to be discussed include peripheral nerve, fetal spinal cord and brain, central and peripheral nervous systems' glia, stem cells, those that have been genetically engineered, and non-neural ones. Combinatorial approaches and clinical research are also reviewed.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
133
|
Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 2009; 15:519-30. [PMID: 19889578 DOI: 10.1016/j.molmed.2009.09.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 12/17/2022]
Abstract
Cancer propagating cells (CPCs) within primary central nervous system (CNS) tumors (glioblastoma multiforme (GBM), medulloblastoma (MB) and ependymoma) might be integral to tumor development and perpetuation. These cells, also known as brain cancer propagating cells (BCPCs), have the ability to self-renew and proliferate. BCPCs can initiate new tumors in mice with high efficiency and these exhibit many features that are characteristic of patient's brain tumors. Accumulating evidence suggests that BCPCs might originate from the transformation of neural stem cells (NSCs) and their progenitors. Furthermore, recent studies have shown that NSC surface markers also define BCPCs. Ultimately, treatments that include specific targeting of BCPCs might potentially be more effective at treating the entire tumor mass, translating to improved patient survival and quality of life.
Collapse
|
134
|
Sun P, Xia S, Lal B, Eberhart CG, Quinones-Hinojosa A, Maciaczyk J, Matsui W, Dimeco F, Piccirillo SM, Vescovi AL, Laterra J. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 2009; 27:1473-86. [PMID: 19544453 DOI: 10.1002/stem.89] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.
Collapse
Affiliation(s)
- Peng Sun
- Department of Neurology, The Johns Hopkins University School of Medicine and The Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, 't Hart B, Vescovi A, Martino G. Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 2009; 66:343-54. [PMID: 19798728 DOI: 10.1002/ana.21745] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Transplanted neural stem/precursor cells (NPCs) display peculiar therapeutic plasticity in vivo. Although the replacement of cells was first expected as the prime therapeutic mechanism of stem cells in regenerative medicine, it is now clear that transplanted NPCs simultaneously instruct several therapeutic mechanisms, among which replacement of cells might not necessarily prevail. A comprehensive understanding of the mechanism(s) by which NPCs exert their therapeutic plasticity is lacking. This study was designed as a preclinical approach to test the feasibility of human NPC transplantation in an outbreed nonhuman primate experimental autoimmune encephalomyelitis (EAE) model approximating the clinical and complex neuropathological situation of human multiple sclerosis (MS) more closely than EAE in the standard laboratory rodent. METHODS We examined the safety and efficacy of the intravenous (IV) and intrathecal (IT) administration of human NPCs in common marmosets affected by human myelin oligodendrocyte glycoprotein 1-125-induced EAE. Treatment commenced upon the occurrence of detectable brain lesions on a 4.7T spectrometer. RESULTS EAE marmosets injected IV or IT with NPCs accumulated lower disability and displayed increased survival, as compared with sham-treated controls. Transplanted NPCs persisted within the host central nervous system (CNS), but were also found in draining lymph nodes, for up to 3 months after transplantation and exhibited remarkable immune regulatory capacity in vitro. INTERPRETATION Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS.
Collapse
Affiliation(s)
- Stefano Pluchino
- Neuroimmunology Unit, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Piccirillo SGM, Binda E, Fiocco R, Vescovi AL, Shah K. Brain cancer stem cells. J Mol Med (Berl) 2009; 87:1087-95. [PMID: 19784875 DOI: 10.1007/s00109-009-0535-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 12/21/2022]
Abstract
Cancers comprise heterogeneous cells, ranging from highly proliferative immature precursors to more differentiated cell lineages. In the last decade, several groups have demonstrated the existence of cancer stem cells in both nonsolid solid tumors, including some of the brain: glioblastoma multiforme (GBM), medulloblastoma, and ependymoma. These cells, like their normal counterpart in homologous tissues, are multipotent, undifferentiated, self-sustaining, yet transformed cells. In particular, glioblastoma-stem like cells (GBSCs) self-renew under clonal conditions and differentiate into neuron- and glia-like cells, with aberrant, mixed neuronal/astroglial phenotypes. Remarkably, upon subcutaneous and intracerebral transplantation in immunosuppressed mice, GBSCs are able to form secondary tumors that closely resemble the human pathology, a property retained also throughout serial transplantation. The search is up for the identification of the markers and the molecular mechanisms that underpin the tumorigenic potential of these cells. This is critical if we aim at defining new therapeutic approaches for the treatment of malignant brain tumors. Lately, it has been shown that some key regulatory system that plays pivotal roles in neural stem cell physiology can also regulate the tumorigenic ability of cancer stem cells in GBMs. This suggests that the study of cancer stem cells in brain tumors might help to identify new and more specific therapeutic molecular effectors, with the cancer stem cells themselves representing one of the main targets, in fact the Holy Grail, in cancer cell therapy. This review includes a summary review on brain cancer cells and their usefulness as emerging targets in cancer cell therapy.
Collapse
Affiliation(s)
- Sara G M Piccirillo
- Department of Biosciences and Biotechnology, University of Milan Bicocca, Piazza della Scienza 2, Building U3, 20126 Milan, Italy
| | | | | | | | | |
Collapse
|
137
|
Raedt R, Van Dycke A, Waeytens A, Wyckhuys T, Vonck K, Wadman W, Boon P. Unconditioned adult-derived neurosphere cells mainly differentiate towards astrocytes upon transplantation in sclerotic rat hippocampus. Epilepsy Res 2009; 87:148-59. [PMID: 19758788 DOI: 10.1016/j.eplepsyres.2009.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 01/17/2023]
Abstract
PURPOSE Cell transplantation is being investigated as an alternative treatment for medically refractory temporal lobe epilepsy (TLE). In this study the fate of adult-derived neurosphere cells was evaluated after transplantation in the lesioned hippocampus of the intrahippocampal kainic acid (KA) model for TLE. METHODS Neurosphere-forming cells were derived from the subventricular zone (SVZ) of transgenic green fluorescent protein (GFP) reporter mice and expanded in culture. After 10 passages in vitro neurosphere-derived cells were transplanted in the hippocampus three days (KA3d group) and three weeks (KA3w group) after intrahippocampal KA injection. Survival and differentiation of neurosphere cells were evaluated three and six weeks after transplantation. RESULTS A fraction (about 1%) of GFP-expressing neurosphere cells survived for at least six weeks after transplantation with a higher and more robust survival rate in the KA3d compared to the KA3w group. Although a small fraction of the cells expressed the neuronal marker NeuN, neurosphere cells mainly differentiated towards astrocytes. DISCUSSION Our results indicate that adult-derived neurosphere cells are able to survive upon transplantation in the sclerotic hippocampus. The transplanted cells do not or hardly contribute to neuronal replacement and mainly adopt an astrogliotic fate.
Collapse
Affiliation(s)
- Robrecht Raedt
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
138
|
Bhattacharyya A, McMillan E, Chen SI, Wallace K, Svendsen CN. A critical period in cortical interneuron neurogenesis in down syndrome revealed by human neural progenitor cells. Dev Neurosci 2009; 31:497-510. [PMID: 19738365 DOI: 10.1159/000236899] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/30/2009] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is a developmental disorder whose mental impairment is due to defective cortical development. Human neural progenitor cells (hNPCs) derived from fetal DS cortex initially produce normal numbers of neurons, but generate fewer neurons with time in culture, similar to the pattern of neurogenesis that occurs in DS in vivo. Microarray analysis of DS hNPCs at this critical time reveals gene changes indicative of defects in interneuron progenitor development. In addition, dysregulated expression of many genes involved in neural progenitor cell biology points to changes in the progenitor population and subsequent reduction in interneuron neurogenesis. Delineation of a critical period in interneuron development in DS provides a foundation for investigation of the basis of reduced neurogenesis in DS and defines a time when these progenitor cells may be amenable to therapeutic treatment.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Stem Cell Research Group, The Waisman Center, University of Wisconsin, Madison, Wisc. 53705, USA.
| | | | | | | | | |
Collapse
|
139
|
Yao R, Zhang L, Li X, Li L. Effects of Epimedium flavonoids on proliferation and differentiation of neural stem cells in vitro. Neurol Res 2009; 32:736-42. [PMID: 19703337 DOI: 10.1179/174313209x459183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the effects of Epimedium flavonoids (EF), which is extracted from a traditional Chinese Epimedium herb, and its effect on the proliferation and differentiation of neural stem cells (NSCs) in vitro. METHODS The single cells isolated from the hippocampi of 1 day old neonatal rats were cultured in a serum-free condition medium DMEM/F12 (1 : 1) with different concentrations of EF or 20 ng/ml epidermal growth factor (EGF) and 10 ng/ml basic fibroblast growth factor (bFGF). After 7 and 28 days, the neurospheres' diameters were measured. The formed neurospheres were cultured in the differentiation medium containing EF or 10% fetal bovine serum (FBS). After 12 hours and 7 days, immunofluorescent studies for nestin, Musashi-1, BrdU, beta-III-tubulin, NF-200 and GFAP were performed. The number and lengths of 10-15 axons of NF-200 immunopositive cells were measured. RESULTS The results showed that the isolated cells had the ability to propagate as neurospheres in the medium with 200 and 400 m g/ml EF, but without any EGF or bFGF, and the volume of neurospheres increase gradually from 7 to 28 days. In comparison with FBS control, the number of NF-200 positive neurons had significantly increased in the EF groups where the newborn neurons were morphologically more mature and able to migrate farther away from neurospheres than in the FBS control. DISCUSSION The results demonstrate that EF effectively promotes the proliferation and differentiation of NSCs in vitro, suggesting that EF may have new properties of regulating central nervous system function by neurogenesis.
Collapse
Affiliation(s)
- Ruiqin Yao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | | | | | | |
Collapse
|
140
|
Shakhbazov AV, Goncharova NV, Kosmacheva SM, Kartel’ NA, Potapnev MP. Plasticity of Human Mesenchymal Stem Cell Phenotype and Expression Profile under Neurogenic Conditions. Bull Exp Biol Med 2009; 147:513-6. [DOI: 10.1007/s10517-009-0547-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
141
|
Kim HJ, McMillan E, Han F, Svendsen CN. Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells 2009; 27:390-8. [PMID: 19008346 DOI: 10.1634/stemcells.2007-1047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human neural progenitor cells (hNPC) derived from the developing brain can be expanded in culture and subsequently differentiated into neurons and glia. They provide an interesting source of tissue for both modeling brain development and developing future cellular replacement therapies. It is becoming clear that hNPC are regionally and temporally specified depending on which brain region they were isolated from and its developmental stage. We show here that hNPC derived from the developing cortex (hNPC(CTX)) and ventral midbrain (hNPC(VM)) have similar morphological characteristics and express the progenitor cell marker nestin. However, hNPC(CTX) cultures were highly proliferative and produced large numbers of neurons, whereas hNPC(VM) divided slowly and produced fewer neurons but more astrocytes. Microarray analysis revealed a similar expression pattern for some stemness markers between the two growing cultures, overlaid with a regionally specific profile that identified some important differentially expressed neurogenic transcription factors. By overexpressing one of these, the transcription factor ASCL1, we were able to regain neurogenesis from hNPC(VM) cultures, which produced larger neurons with more neurites than hNPC(CTX) but no fully mature dopamine neurons. Thus, hNPC are regionally specified and can be induced to undergo neurogenesis following genetic manipulation. Although this restores neuronal production with a region-specific phenotype, it does not restore full neurochemical maturation, which may require additional factors.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | |
Collapse
|
142
|
Cheshier SH, Kalani MYS, Lim M, Ailles L, Huhn SL, Weissman IL. A NEUROSURGEON'S GUIDE TO STEM CELLS, CANCER STEM CELLS, AND BRAIN TUMOR STEM CELLS. Neurosurgery 2009; 65:237-49; discussion 249-50; quiz N6. [DOI: 10.1227/01.neu.0000349921.14519.2a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Samuel H. Cheshier
- Stanford Institute of Stem Cell Biology and Regenerative Medicine, Departments of Neurosurgery and Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - M. Yashar S. Kalani
- Stanford Institute of Stem Cell Biology and Regenerative Medicine, Departments of Neurosurgery and Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Laurie Ailles
- Stanford Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Steven L. Huhn
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, Stem Cells, Inc., Palo Alto, California
| | - Irving L. Weissman
- Stanford Institute of Stem Cell Biology and Regenerative Medicine, Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
143
|
Leonard BW, Mastroeni D, Grover A, Liu Q, Yang K, Gao M, Wu J, Pootrakul D, van den Berge SA, Hol EM, Rogers J. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol 2009; 515:269-94. [PMID: 19425077 PMCID: PMC2757160 DOI: 10.1002/cne.22040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mice and in young adult humans, the subventricular zone (SVZ) contains multipotent, dividing astrocytes, some of which, when cultured, produce neurospheres that differentiate into neurons and glia. It is unknown whether the SVZ of very old humans has this capacity. Here, we report that neural stem/progenitor cells can also be cultured from rapid autopsy samples of SVZ from elderly human subjects, including patients with age-related neurologic disorders. Histological sections of SVZ from these cases showed a glial fibrillary acidic protein (GFAP)-positive ribbon of astrocytes similar to the astrocyte ribbon in human periventricular white matter biopsies that is reported to be a rich source of neural progenitors. Cultures of the SVZ contained 1) neurospheres with a core of Musashi-1-, nestin-, and nucleostemin-immunopositive cells as well as more differentiated GFAP-positive astrocytes; 2) SMI-311-, MAP2a/b-, and beta-tubulin(III)-positive neurons; and 3) galactocerebroside-positive oligodendrocytes. Neurospheres continued to generate differentiated progeny for months after primary culturing, in some cases nearly 2 years postinitial plating. Patch clamp studies of differentiated SVZ cells expressing neuron-specific antigens revealed voltage-dependent, tetrodotoxin-sensitive, inward Na+ currents and voltage-dependent, delayed, slowly inactivating K+ currents, electrophysiologic characteristics of neurons. A subpopulation of these cells also exhibited responses consistent with the kinetics and pharmacology of the h-current. However, although these cells displayed some aspects of neuronal function, they remained immature, insofar as they did not fire action potentials. These studies suggest that human neural progenitor activity may remain viable throughout much of the life span, even in the face of severe neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew Grover
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| | - Qiang Liu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Kechun Yang
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Ming Gao
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | - Jie Wu
- Barrow Neurological Institute, Phoenix, AZ 85013, U.S.A
| | | | - Simone A. van den Berge
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Elly M. Hol
- Netherlands Institute for Neuroscience, an institute of the NetherlandsRoyal Academy of Arts and Sciences, Meibergdreef 47, 1105 BAAmsterdam, The Netherlands
| | - Joseph Rogers
- Sun Health Research Institute, Sun City, AZ 85351, U.S.A
| |
Collapse
|
144
|
Chong YK, Toh TB, Zaiden N, Poonepalli A, Leong SH, Ong CEL, Yu Y, Tan PB, See SJ, Ng WH, Ng I, Hande MP, Kon OL, Ang BT, Tang C. Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells 2009; 27:29-39. [PMID: 18845764 PMCID: PMC2729678 DOI: 10.1634/stemcells.2008-0009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs.
Collapse
Affiliation(s)
- Yuk-Kien Chong
- Singapore Institute for Clinical Sciences, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
| | - Tan-Boon Toh
- Department of Research, National Neuroscience InstituteSingapore
| | - Norazean Zaiden
- Department of Research, National Neuroscience InstituteSingapore
| | - Anuradha Poonepalli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Siew Hong Leong
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
| | | | - Yiting Yu
- Cell and Medical Biology, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
| | - Patrick B Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- Cell and Medical Biology, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| | - Siew-Ju See
- Department of Neurology, National Neuroscience InstituteSingapore
| | - Wai-Hoe Ng
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Ivan Ng
- Duke-National University of Singapore Graduate Medical SchoolSingapore
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Manoor P Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Oi Lian Kon
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| | - Beng-Ti Ang
- Singapore Institute for Clinical Sciences, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Carol Tang
- Department of Research, National Neuroscience InstituteSingapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
145
|
Wakeman DR, Hofmann MR, Redmond DE, Teng YD, Snyder EY. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit2D.3. [PMID: 19455542 DOI: 10.1002/9780470151808.sc02d03s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors.
Collapse
Affiliation(s)
- Dustin R Wakeman
- University of California at San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
146
|
Abstract
Congenital cytomegalovirus (CMV) infection is a significant cause of brain disorders, such as microcephaly, mental retardation, hearing loss and visual disorders in humans. The type and severity of brain disorder may be dependent on the stage of embryonic development when the congenital infection occurs. Developmental disorders may be associated with the type of embryonic cells to which CMV is susceptible and the effects of the infection on the cellular functions of these cells. Early murine embryos, including embryonic stem (ES) cells, are not susceptible to CMV infection. A part of the embryonic cells acquire susceptibility during early development. Mesenchymal cells are the targets of infection at midgestation, affecting organogenesis of the brain, eyes and oral-facial regions. In contrast to ES cells, neural stem progenitor cells (NSPC) from fetal brains are susceptible to murine CMV (MCMV) infection. The viral infection inhibits proliferation and differentiation of the NSPC to neuronal and glial cells in addition to induction of neuronal cell loss. These cellular events may cause brain malformations, such as microcephaly and polymicrogyria. Furthermore, MCMV persists in neuronal cells in developing brains, presumably resulting in neuronal dysfunction.
Collapse
|
147
|
Lee DC, Hsu YC, Chung YF, Hsiao CY, Chen SL, Chen MS, Lin HK, Chiu IM. Isolation of neural stem/progenitor cells by using EGF/FGF1 and FGF1B promoter-driven green fluorescence from embryonic and adult mouse brains. Mol Cell Neurosci 2009; 41:348-63. [DOI: 10.1016/j.mcn.2009.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 03/27/2009] [Accepted: 04/22/2009] [Indexed: 01/24/2023] Open
|
148
|
Buchet D, Baron-Van Evercooren A. In search of human oligodendroglia for myelin repair. Neurosci Lett 2009; 456:112-9. [DOI: 10.1016/j.neulet.2008.09.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 08/15/2008] [Accepted: 09/04/2008] [Indexed: 11/15/2022]
|
149
|
Martino S, Tiribuzi R, Tortori A, Conti D, Visigalli I, Lattanzi A, Biffi A, Gritti A, Orlacchio A. Specific Determination of β-Galactocerebrosidase Activity via Competitive Inhibition of β-Galactosidase. Clin Chem 2009; 55:541-8. [DOI: 10.1373/clinchem.2008.115873] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: The determination of cellular β-galactocerebrosidase activity is an established procedure to diagnose Krabbe disease and monitor the efficacy of gene/stem cell-based therapeutic approaches aimed at restoring defective enzymatic activity in patients or disease models. Current biochemical assays for β-galactocerebrosidase show high specificity but generally require large protein amounts from scanty sources such as hematopoietic or neural stem cells. We developed a novel assay based on the hypothesis that specific measurements of β-galactocerebrosidase activity can be performed following complete inhibition of β-galactosidase activity.
Methods: We performed the assay using 2–7.5 μg of sample proteins with the artificial fluorogenic substrate 4-methylumbelliferone-β-galactopyranoside (1.5 mmol/L) resuspended in 0.1/0.2 mol/L citrate/phosphate buffer, pH 4.0, and AgNO3. Reactions were incubated for 30 min at 37 °C. Fluorescence of liberated 4-methylumbelliferone was measured on a spectrofluorometer (λex 360 nm, λem 446 nm).
Results: AgNO3 was a competitive inhibitor of β-galactosidase [inhibition constant (Ki) = 0.12 μmol/L] and completely inhibited β-galactosidase activity when used at a concentration of 11 μmol/L. Under this condition, the β-galactocerebrosidase activity was preserved and could be specifically and accurately measured. The assay can detect β-galactocerebrosidase activity in as little as 2 μg cell protein extract or 7.5 μg tissue. Assay validation was performed using (a) brain tissues from wild-type and twitcher mice and (b) murine GALC−/− hematopoietic stem cells and neural precursor cells transduced by GALC-lentiviral vectors.
Conclusions: The procedure is straightforward, rapid, and reproducible. Within a clinical context, our method unequivocally discriminated cells from healthy subjects and Krabbe patients and is therefore suitable for diagnostic applications.
Collapse
Affiliation(s)
- Sabata Martino
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- S. Martino and R. Tiribuzi contributed equally to this work
| | - Roberto Tiribuzi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- S. Martino and R. Tiribuzi contributed equally to this work
| | - Andrea Tortori
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
| | - Daniele Conti
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
- San Raffaele Telethon Institute for Gene Therapy, Milano, Italy
| | | | | | | | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Milano, Italy
| | - Aldo Orlacchio
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare, University of Perugia, Perugia, Italy
| |
Collapse
|
150
|
Ebert AD, McMillan EL, Svendsen CN. Isolating, expanding, and infecting human and rodent fetal neural progenitor cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit 2D.2. [PMID: 18819085 DOI: 10.1002/9780470151808.sc02d02s6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural progenitor cells have tremendous utility for understanding basic developmental processes, disease modeling, and therapeutic intervention. The protocols described in this unit provide detailed information to isolate and expand human and rodent neural progenitor cells in culture for several months as floating aggregates (termed neurospheres) or plated cultures. Detailed protocols for cryopreservation, neural differentiation, exogenous gene expression using lentivirus, and transplantation into the rodent nervous system are also described.
Collapse
Affiliation(s)
- Allison D Ebert
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|