101
|
N 6-methyladenosine (m 6A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol 2017; 24:870-878. [PMID: 28869609 DOI: 10.1038/nsmb.3462] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
Abstract
RNA modifications are integral to the regulation of RNA metabolism. One abundant mRNA modification is N6-methyladenosine (m6A), which affects various aspects of RNA metabolism, including splicing, translation and degradation. Current knowledge about the proteins recruited to m6A to carry out these molecular processes is still limited. Here we describe comprehensive and systematic mass-spectrometry-based screening of m6A interactors in various cell types and sequence contexts. Among the main findings, we identified G3BP1 as a protein that is repelled by m6A and positively regulates mRNA stability in an m6A-regulated manner. Furthermore, we identified FMR1 as a sequence-context-dependent m6A reader, thus revealing a connection between an mRNA modification and an autism spectrum disorder. Collectively, our data represent a rich resource and shed further light on the complex interplay among m6A, m6A interactors and mRNA homeostasis.
Collapse
|
102
|
Amaral DT, Silva JR, Viviani VR. Transcriptomes from the photogenic and non-photogenetic tissues and life stages of the Aspisoma lineatum firefly (Coleoptera: Lampyridae): Implications for the evolutionary origins of bioluminescence and its associated light organs. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
103
|
Effective estimation of the minimum number of amino acid residues required for functional divergence between duplicate genes. Mol Phylogenet Evol 2017; 113:126-138. [DOI: 10.1016/j.ympev.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/19/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
|
104
|
Barbieri R, Guryev V, Brandsma CA, Suits F, Bischoff R, Horvatovich P. Proteogenomics: Key Driver for Clinical Discovery and Personalized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 926:21-47. [PMID: 27686804 DOI: 10.1007/978-3-319-42316-6_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proteogenomics is a multi-omics research field that has the aim to efficiently integrate genomics, transcriptomics and proteomics. With this approach it is possible to identify new patient-specific proteoforms that may have implications in disease development, specifically in cancer. Understanding the impact of a large number of mutations detected at the genomics level is needed to assess the effects at the proteome level. Proteogenomics data integration would help in identifying molecular changes that are persistent across multiple molecular layers and enable better interpretation of molecular mechanisms of disease, such as the causal relationship between single nucleotide polymorphisms (SNPs) and the expression of transcripts and translation of proteins compared to mainstream proteomics approaches. Identifying patient-specific protein forms and getting a better picture of molecular mechanisms of disease opens the avenue for precision and personalized medicine. Proteogenomics is, however, a challenging interdisciplinary science that requires the understanding of sample preparation, data acquisition and processing for genomics, transcriptomics and proteomics. This chapter aims to guide the reader through the technology and bioinformatics aspects of these multi-omics approaches, illustrated with proteogenomics applications having clinical or biological relevance.
Collapse
Affiliation(s)
- Ruggero Barbieri
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frank Suits
- IBM T.J. Watson Research Centre, 1101 Kitchawan Road, Yorktown Heights, New York, 10598, NY, USA
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
105
|
Abstract
The classic model for the evolution of novel gene function is through gene duplication followed by evolution of a new function by one of the copies (neofunctionalization) [1, 2]. However, other modes have also been found, such as novel genes arising from non-coding DNA, chimeric fusions, and lateral gene transfers from other organisms [3-7]. Here we use the rapid turnover of venom genes in parasitoid wasps to study how new gene functions evolve. In contrast to the classic gene duplication model, we find that a common mode of acquisition of new venom genes in parasitoid wasps is co-option of single-copy genes from non-venom progenitors. Transcriptome and proteome sequencing reveal that recruitment and loss of venom genes occur primarily by rapid cis-regulatory expression evolution in the venom gland. Loss of venom genes is primarily due to downregulation of expression in the gland rather than gene death through coding sequence degradation. While the majority of venom genes have specialized expression in the venom gland, recent losses of venom function occur primarily among genes that show broader expression in development, suggesting that they can more readily switch functional roles. We propose that co-option of single-copy genes may be a common but relatively understudied mechanism of evolution for new gene functions, particularly under conditions of rapid evolutionary change.
Collapse
Affiliation(s)
- Ellen O Martinson
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | | | - Ching-Ho Chang
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - John H Werren
- Biology Department, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
106
|
Kinoti WM, Constable FE, Nancarrow N, Plummer KM, Rodoni B. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing. PLoS One 2017; 12:e0179284. [PMID: 28632759 PMCID: PMC5478126 DOI: 10.1371/journal.pone.0179284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Narelle Nancarrow
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Kim M. Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC, Australia
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio, La Trobe University, Melbourne, VIC, Australia
- School of Applied Systems Biology, AgriBio, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
107
|
Amaral DT, Silva JR, Viviani VR. Transcriptional comparison of the photogenic and non-photogenic tissues of Phrixothrix hirtus (Coleoptera: Phengodidae) and non-luminescent Chauliognathus flavipes (Coleoptera: Cantharidae) give insights on the origin of lanterns in railroad worms. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
108
|
Yap SD, Astals S, Jensen PD, Batstone DJ, Tait S. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 64:79-87. [PMID: 28302526 DOI: 10.1016/j.wasman.2017.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed-1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community.
Collapse
Affiliation(s)
- S D Yap
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - S Astals
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - P D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - D J Batstone
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - S Tait
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
109
|
Ghys LFE, Paepe D, Lefebvre HP, Reynolds BS, Croubels S, Meyer E, Delanghe JR, Daminet S. Evaluation of Cystatin C for the Detection of Chronic Kidney Disease in Cats. J Vet Intern Med 2017; 30:1074-82. [PMID: 27461722 PMCID: PMC5108422 DOI: 10.1111/jvim.14256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Serum cystatin C (sCysC) and urinary cystatin C (uCysC) are potential biomarkers for early detection of chronic kidney disease (CKD) in cats. An in-depth clinical validation is required. OBJECTIVES To evaluate CysC as a marker for CKD in cats and to compare assay performance of the turbidimetric assay (PETIA) with the previously validated nephelometric assay (PENIA). ANIMALS Ninety cats were included: 49 CKD and 41 healthy cats. METHODS Serum CysC and uCysC concentrations were prospectively evaluated in cats with CKD and healthy cats. Based on plasma exo-iohexol clearance test (PexICT), sCysC was evaluated to distinguish normal, borderline, and low GFR. Sensitivity and specificity to detect PexICT < 1.7 mL/min/kg were calculated. Serum CysC results of PENIA and PETIA were correlated with GFR. Statistical analysis was performed using general linear modeling. RESULTS Cats with CKD had significantly higher mean ± SD sCysC (1.4 ± 0.5 mg/L) (P < .001) and uCysC/urinary creatinine (uCr) (291 ± 411 mg/mol) (P < .001) compared to healthy cats (sCysC 1.0 ± 0.3 and uCysC/uCr 0.32 ± 0.97). UCysC was detected in 35/49 CKD cats. R(2) values between GFR and sCysC or sCr were 0.39 and 0.71, respectively (sCysC or sCr = μ + GFR + ε). Sensitivity and specificity were 22 and 100% for sCysC and 83 and 93% for sCr. Serum CysC could not distinguish healthy from CKD cats, nor normal from borderline or low GFR, in contrast with sCr. CONCLUSION Serum CysC is not a reliable marker of reduced GFR in cats and uCysC could not be detected in all CKD cats.
Collapse
Affiliation(s)
- L F E Ghys
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - D Paepe
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - H P Lefebvre
- Clinical Research Unit, National Veterinary School of Toulouse, Toulouse Cedex 3, France
| | - B S Reynolds
- Clinical Research Unit, National Veterinary School of Toulouse, Toulouse Cedex 3, France
| | - S Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J R Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Health Medicine and Life Sciences, Ghent University, Gent, Belgium
| | - S Daminet
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
110
|
Verwaaijen B, Wibberg D, Kröber M, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLoS One 2017; 12:e0177278. [PMID: 28486484 PMCID: PMC5423683 DOI: 10.1371/journal.pone.0177278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Magdalena Kröber
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Zrenner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
111
|
Al-Masaudi S, El Kaoutari A, Drula E, Al-Mehdar H, Redwan EM, Lombard V, Henrissat B. A Metagenomics Investigation of Carbohydrate-Active Enzymes along the Gastrointestinal Tract of Saudi Sheep. Front Microbiol 2017; 8:666. [PMID: 28473812 PMCID: PMC5397404 DOI: 10.3389/fmicb.2017.00666] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022] Open
Abstract
The digestive microbiota of humans and of a wide range of animals has recently become amenable to in-depth studies due to the emergence of DNA-based metagenomic techniques that do not require cultivation of gut microbes. These techniques are now commonly used to explore the feces of humans and animals under the assumption that such samples are faithful proxies for the intestinal microbiota. Sheep (Ovis aries) are ruminant animals particularly adapted to life in arid regions and in particular Najdi, Noaimi (Awassi), and Harrei (Harri) breeds that are raised in Saudi Arabia for milk and/or meat production. Here we report a metagenomics investigation of the distal digestive tract of one animal from each breed that (i) examines the microbiota at three intestinal subsites (small intestine, mid-colon, and rectum), (ii) performs an in-depth analysis of the carbohydrate-active enzymes genes encoded by the microbiota at the three subsites, and (iii) compares the microbiota and carbohydrate-active enzyme profile at the three subsites across the different breeds. For all animals we found that the small intestine is characterized by a lower taxonomic diversity than that of the large intestine and of the rectal samples. Mirroring this observation, we also find that the spectrum of encoded carbohydrate-active enzymes of the mid-colon and rectal sites is much richer than that of the small intestine. However, the number of encoded cellulases and xylanases in the various intestinal subsites was found to be surprisingly low, indicating that the bulk of the fiber digestion is performed upstream in the rumen, and that the carbon source for the intestinal flora is probably constituted of the rumen fungi and bacteria that pass in the intestines. In consequence we argue that ruminant feces, which are often analyzed for the search of microbial genes involved in plant cell wall degradation, are probably a poor proxy for the lignocellulolytic potential of the host.
Collapse
Affiliation(s)
- Saad Al-Masaudi
- Department of Biological Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Abdessamad El Kaoutari
- Marseille Cancer Research Center, Institut Paoli-Calmettes, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Aix-Marseille UniversityMarseille, France
| | - Elodie Drula
- Centre National de la Recherche Scientifique UMR 7257, Aix-Marseille UniversityMarseille, France.,INRA, USC 1408 AFMBMarseille, France
| | - Hussein Al-Mehdar
- Department of Biological Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Department of Biological Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Vincent Lombard
- Centre National de la Recherche Scientifique UMR 7257, Aix-Marseille UniversityMarseille, France.,INRA, USC 1408 AFMBMarseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz UniversityJeddah, Saudi Arabia.,Centre National de la Recherche Scientifique UMR 7257, Aix-Marseille UniversityMarseille, France.,INRA, USC 1408 AFMBMarseille, France
| |
Collapse
|
112
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res 2017; 27:315-328. [PMID: 28106072 PMCID: PMC5339834 DOI: 10.1038/cr.2017.15] [Citation(s) in RCA: 1325] [Impact Index Per Article: 165.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in cell differentiation and tissue development. It regulates multiple steps throughout the RNA life cycle including RNA processing, translation, and decay, via the recognition by selective binding proteins. In the cytoplasm, m6A binding protein YTHDF1 facilitates translation of m6A-modified mRNAs, and YTHDF2 accelerates the decay of m6A-modified transcripts. The biological function of YTHDF3, another cytoplasmic m6A binder of the YTH (YT521-B homology) domain family, remains unknown. Here, we report that YTHDF3 promotes protein synthesis in synergy with YTHDF1, and affects methylated mRNA decay mediated through YTHDF2. Cells deficient in all three YTHDF proteins experience the most dramatic accumulation of m6A-modified transcripts. These results indicate that together with YTHDF1 and YTHDF2, YTHDF3 plays critical roles to accelerate metabolism of m6A-modified mRNAs in the cytoplasm. All three YTHDF proteins may act in an integrated and cooperative manner to impact fundamental biological processes related to m6A RNA methylation.
Collapse
Affiliation(s)
- Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiao Wang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Boxuan S Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Phillip J Hsu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
113
|
Charkoftaki G, Chen Y, Han M, Sandoval M, Yu X, Zhao H, Orlicky DJ, Thompson DC, Vasiliou V. Transcriptomic analysis and plasma metabolomics in Aldh16a1-null mice reveals a potential role of ALDH16A1 in renal function. Chem Biol Interact 2017; 276:15-22. [PMID: 28254523 DOI: 10.1016/j.cbi.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/23/2017] [Indexed: 01/24/2023]
Abstract
ALDH16A1 is a novel member of the ALDH superfamily that is enzymatically-inactive and highly expressed in the kidney. Recent studies identified an association between a rare missense single nucleotide variant (SNV) in the ALDH16A1 gene and elevated serum uric acid levels and gout. The present study explores the mechanisms by which ALDH16A1 influences uric acid homeostasis in the kidney. We generated and validated a mouse line with global disruption of the Aldh16a1 gene through gene targeting and performed RNA-seq analyses in the kidney of wild-type (WT) and Aldh16a1 knockout (KO) mice, along with plasma metabolomics. We found that ALDH16A1 is expressed in proximal and distal convoluted tubule cells in the cortex of the kidney and in zone 3 hepatocytes. RNA-seq and gene ontology enrichment analyses showed that cellular lipid and lipid metabolic processes are up-regulated. Three transporters localized in the apical membrane of the proximal convoluted tubule of the kidney known to influence urate/uric acid homeostasis were found to be up-regulated (Abcc4, Slc16a9) or down-regulated (Slc17a3). An initial metabolomics analysis in plasma revealed an altered lipid profile in KO mice that is in agreement with our RNA-seq analysis. This is the first study demonstrating a functional role of ALDH16A1 in the kidney.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Ming Han
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States; College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Monica Sandoval
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, United States
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO, 80045, United States
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, United States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
114
|
Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal. Sci Rep 2017; 7:41378. [PMID: 28155866 PMCID: PMC5290746 DOI: 10.1038/srep41378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
In most eutherian mammals, sex determination is governed by the Y-linked gene Sry, but in African pygmy mice Mus minutoides, Sry action is overridden by a variant X chromosome (X*), yielding X*Y females. We hypothesized that X*Y sex reversal may be underpinned not only by neomorphic X chromosome functionality, but also by a compromised Sry pathway. Here, we show that neither M. minutoides SRY nor its target, the Sox9-TESCO enhancer, had appreciable transcriptional activity in in vitro assays, correlating with sequence degradation compared to Mus musculus counterparts. However, M. minutoides SRY activated its cognate TESCO to a moderate degree, and can clearly engage the male pathway in M. minutoides in the wild, indicating that SRY and TESCO may have co-evolved in M. minutoides to retain function above a threshold level. We suggest that weakening of the SRY/TESCO nexus may have facilitated the rise and spread of a variant X* chromosome carrying female-inducing modifier gene(s).
Collapse
|
115
|
Heit C, Marshall S, Singh S, Yu X, Charkoftaki G, Zhao H, Orlicky DJ, Fritz KS, Thompson DC, Vasiliou V. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med 2017; 103:48-56. [PMID: 27939935 PMCID: PMC5513671 DOI: 10.1016/j.freeradbiomed.2016.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/02/2016] [Accepted: 12/07/2016] [Indexed: 01/22/2023]
Abstract
Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat-/-) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat-/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat-/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Stephanie Marshall
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Surrendra Singh
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Xiaoqing Yu
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven CT 06520, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Services, Yale School of Public Health, Yale University, 60 College St, New Haven CT 06520-8034, USA.
| |
Collapse
|
116
|
Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures. PLoS One 2016; 11:e0167216. [PMID: 27936240 PMCID: PMC5147896 DOI: 10.1371/journal.pone.0167216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Cost-effective biofuel production from lignocellulosic biomass depends on efficient degradation of the plant cell wall. One of the major obstacles for the development of a cost-efficient process is the lack of resistance of currently used fungal enzymes to harsh conditions such as high temperature. Adapted, thermophilic microbial communities provide a huge reservoir of potentially interesting lignocellulose-degrading enzymes for improvement of the cellulose hydrolysis step. In order to identify such enzymes, a leaf and wood chip compost was enriched on a mixture of thermo-chemically pretreated wheat straw, poplar and Miscanthus under thermophile conditions, but in two different set-ups. Unexpectedly, metagenome sequencing revealed that incubation of the lignocellulosic substrate with compost as inoculum in a suspension culture resulted in an impoverishment of putative cellulase- and hemicellulase-encoding genes. However, mimicking composting conditions without liquid phase yielded a high number and diversity of glycoside hydrolase genes and an enrichment of genes encoding cellulose binding domains. These identified genes were most closely related to species from Actinobacteria, which seem to constitute important players of lignocellulose degradation under the applied conditions. The study highlights that subtle changes in an enrichment set-up can have an important impact on composition and functions of the microcosm. Composting-like conditions were found to be the most successful method for enrichment in species with high biomass degrading capacity.
Collapse
|
117
|
Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí J, Pellicer A, Ramon D, Simon C. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol 2016; 215:684-703. [PMID: 27717732 DOI: 10.1016/j.ajog.2016.09.075] [Citation(s) in RCA: 491] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/06/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Bacterial cells in the human body account for 1-3% of total body weight and are at least equal in number to human cells. Recent research has focused on understanding how the different bacterial communities in the body (eg, gut, respiratory, skin, and vaginal microbiomes) predispose to health and disease. The microbiota of the reproductive tract has been inferred from the vaginal bacterial communities, and the uterus has been classically considered a sterile cavity. However, while the vaginal microbiota has been investigated in depth, there is a paucity of consistent data regarding the existence of an endometrial microbiota and its possible impact in reproductive function. OBJECTIVE This study sought to test the existence of an endometrial microbiota that differs from that in the vagina, assess its hormonal regulation, and analyze the impact of the endometrial microbial community on reproductive outcome in infertile patients undergoing in vitro fertilization. STUDY DESIGN To identify the existence of an endometrial microbiota, paired samples of endometrial fluid and vaginal aspirates were obtained simultaneously from 13 fertile women in prereceptive and receptive phases within the same menstrual cycle (total samples analyzed n = 52). To investigate the hormonal regulation of the endometrial microbiota during the acquisition of endometrial receptivity, endometrial fluid was collected at prereceptive and receptive phases within the same cycle from 22 fertile women (n = 44). Finally, the reproductive impact of an altered endometrial microbiota in endometrial fluid was assessed by implantation, ongoing pregnancy, and live birth rates in 35 infertile patients undergoing in vitro fertilization (total samples n = 41) with a receptive endometrium diagnosed using the endometrial receptivity array. Genomic DNA was obtained either from endometrial fluid or vaginal aspirate and sequenced by 454 pyrosequencing of the V3-V5 region of the 16S ribosomal RNA (rRNA) gene; the resulting sequences were taxonomically assigned using QIIME. Data analysis was performed using R packages. The χ2 test, Student t test, and analysis of variance were used for statistical analyses. RESULTS When bacterial communities from paired endometrial fluid and vaginal aspirate samples within the same subjects were interrogated, different bacterial communities were detected between the uterine cavity and the vagina of some subjects. Based on its composition, the microbiota in the endometrial fluid, comprising up to 191 operational taxonomic units, was defined as a Lactobacillus-dominated microbiota (>90% Lactobacillus spp.) or a non-Lactobacillus-dominated microbiota (<90% Lactobacillus spp. with >10% of other bacteria). Although the endometrial microbiota was not hormonally regulated during the acquisition of endometrial receptivity, the presence of a non-Lactobacillus-dominated microbiota in a receptive endometrium was associated with significant decreases in implantation [60.7% vs 23.1% (P = .02)], pregnancy [70.6% vs 33.3% (P = .03)], ongoing pregnancy [58.8% vs 13.3% (P = .02)], and live birth [58.8% vs 6.7% (P = .002)] rates. CONCLUSION Our results demonstrate the existence of an endometrial microbiota that is highly stable during the acquisition of endometrial receptivity. However, pathological modification of its profile is associated with poor reproductive outcomes for in vitro fertilization patients. This finding adds a novel microbiological dimension to the reproductive process.
Collapse
|
118
|
Xiao J, Sekhwal MK, Li P, Ragupathy R, Cloutier S, Wang X, You FM. Pseudogenes and Their Genome-Wide Prediction in Plants. Int J Mol Sci 2016; 17:E1991. [PMID: 27916797 PMCID: PMC5187791 DOI: 10.3390/ijms17121991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022] Open
Abstract
Pseudogenes are paralogs generated from ancestral functional genes (parents) during genome evolution, which contain critical defects in their sequences, such as lacking a promoter, having a premature stop codon or frameshift mutations. Generally, pseudogenes are functionless, but recent evidence demonstrates that some of them have potential roles in regulation. The majority of pseudogenes are generated from functional progenitor genes either by gene duplication (duplicated pseudogenes) or retro-transposition (processed pseudogenes). Pseudogenes are primarily identified by comparison to their parent genes. Bioinformatics tools for pseudogene prediction have been developed, among which PseudoPipe, PSF and Shiu's pipeline are publicly available. We compared these three tools using the well-annotated Arabidopsis thaliana genome and its known 924 pseudogenes as a test data set. PseudoPipe and Shiu's pipeline identified ~80% of A. thaliana pseudogenes, of which 94% were shared, while PSF failed to generate adequate results. A need for improvement of the bioinformatics tools for pseudogene prediction accuracy in plant genomes was thus identified, with the ultimate goal of improving the quality of genome annotation in plants.
Collapse
Affiliation(s)
- Jin Xiao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Manoj Kumar Sekhwal
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Raja Ragupathy
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Xiue Wang
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Frank M You
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
119
|
A Novel Protective Vaccine Antigen from the Core Escherichia coli Genome. mSphere 2016; 1:mSphere00326-16. [PMID: 27904885 PMCID: PMC5120174 DOI: 10.1128/msphere.00326-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
E. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli. Escherichia coli is a versatile pathogen capable of causing intestinal and extraintestinal infections that result in a huge burden of global human disease. The diversity of E. coli is reflected by its multiple different pathotypes and mosaic genome composition. E. coli strains are also a major driver of antibiotic resistance, emphasizing the urgent need for new treatment and prevention measures. Here, we used a large data set comprising 1,700 draft and complete genomes to define the core and accessory genome of E. coli and demonstrated the overlapping relationship between strains from different pathotypes. In combination with proteomic investigation, this analysis revealed core genes that encode surface-exposed or secreted proteins that represent potential broad-coverage vaccine antigens. One of these antigens, YncE, was characterized as a conserved immunogenic antigen able to protect against acute systemic infection in mice after vaccination. Overall, this work provides a genomic blueprint for future analyses of conserved and accessory E. coli genes. The work also identified YncE as a novel antigen that could be exploited in the development of a vaccine against all pathogenic E. coli strains—an important direction given the high global incidence of infections caused by multidrug-resistant strains for which there are few effective antibiotics. IMPORTANCEE. coli is a multifaceted pathogen of major significance to global human health and an important contributor to increasing antibiotic resistance. Given the paucity of therapies still effective against multidrug-resistant pathogenic E. coli strains, novel treatment and prevention strategies are urgently required. In this study, we defined the core and accessory components of the E. coli genome by examining a large collection of draft and completely sequenced strains available from public databases. This data set was mined by employing a reverse-vaccinology approach in combination with proteomics to identify putative broadly protective vaccine antigens. One such antigen was identified that was highly immunogenic and induced protection in a mouse model of bacteremia. Overall, our study provides a genomic and proteomic framework for the selection of novel vaccine antigens that could mediate broad protection against pathogenic E. coli.
Collapse
|
120
|
Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E7126-E7135. [PMID: 27791167 DOI: 10.1073/pnas.1614788113] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequencing of ribosome footprints (ribosome profiling) maps and quantifies mRNA translation. Because ribosomes decode mRNA every 3 nt, the periodic property of ribosome footprints could be used to identify novel translated ORFs. However, due to the limited resolution of existing methods, the 3-nt periodicity is observed mostly in a global analysis, but not in individual transcripts. Here, we report a protocol applied to Arabidopsis that maps over 90% of the footprints to the main reading frame and thus offers super-resolution profiles for individual transcripts to precisely define translated regions. The resulting data not only support many annotated and predicted noncanonical translation events but also uncover small ORFs in annotated noncoding RNAs and pseudogenes. A substantial number of these unannotated ORFs are evolutionarily conserved, and some produce stable proteins. Thus, our study provides a valuable resource for plant genomics and an efficient optimization strategy for ribosome profiling in other organisms.
Collapse
|
121
|
Penzkofer T, Jäger M, Figlerowicz M, Badge R, Mundlos S, Robinson PN, Zemojtel T. L1Base 2: more retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res 2016; 45:D68-D73. [PMID: 27924012 PMCID: PMC5210629 DOI: 10.1093/nar/gkw925] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022] Open
Abstract
LINE-1 (L1) insertions comprise as much as 17% of the human genome sequence, and similar proportions have been recorded for other mammalian species. Given the established role of L1 retrotransposons in shaping mammalian genomes, it becomes an important task to track and annotate the sources of this activity: full length elements, able to encode the cis and trans acting components of the retrotransposition machinery. The L1Base database (http://l1base.charite.de) contains annotated full-length sequences of LINE-1 transposons including putatively active L1s. For the new version of L1Base, a LINE-1 annotation tool, L1Xplorer, has been used to mine potentially active L1 retrotransposons from the reference genome sequences of 17 mammals. The current release of the human genome, GRCh38, contains 146 putatively active L1 elements or full length intact L1 elements (FLIs). The newest versions of the mouse, GRCm38 and the rat, Rnor_6.0, genomes contain 2811 and 492 FLIs, respectively. Most likely reflecting the current level of completeness of the genome project, the latest reference sequence of the common chimpanzee genome, PT 2.19, only contains 19 FLIs. Of note, the current assemblies of the dog, CF 3.1 and the sheep, OA 3.1, genomes contain 264 and 598 FLIs, respectively. Further developments in the new version of L1Base include an updated website with implementation of modern web server technologies. including a more responsive design for an improved user experience, as well as the addition of data sharing capabilities for L1Xplorer annotation.
Collapse
Affiliation(s)
- Tobias Penzkofer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marten Jäger
- Institut für Medizinische Genetik und Humangenetik, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-569 Poznan, Poland
| | - Richard Badge
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peter N Robinson
- Institut für Medizinische Genetik und Humangenetik, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,The Jackson Laboratory for Genomic medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Tomasz Zemojtel
- Institut für Medizinische Genetik und Humangenetik, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany .,Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-569 Poznan, Poland
| |
Collapse
|
122
|
Merchant ME, Trahan C, Moran C, White ME. Two Different Complement C3 Genes in Crocodilians. COPEIA 2016. [DOI: 10.1643/cp-15-349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
123
|
Pandey N, Rajagopal R. Molecular characterization and diversity analysis of bacterial communities associated with Dialeurolonga malleswaramensis (Hemiptera: Aleyrodidae) adults using 16S rDNA amplicon pyrosequencing and FISH. INSECT SCIENCE 2016; 23:704-711. [PMID: 25788442 DOI: 10.1111/1744-7917.12220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2014] [Indexed: 06/04/2023]
Abstract
Dialeurolonga malleswaramensis Sundararaj (Hemiptera: Aleyrodidae) is a phytophagous sap sucking insect. It infests Polyalthia longifolia, an important avenue tree of India, effective in alleviating noise pollution and having immense medicinal importance. Samples of this insect were collected from Polyalthia longifolia. The cytochrome c oxidase subunit I gene (mtCO1) helped in the molecular characterization of the insect. This study reports the bacterial diversity in D. malleswaramensis adults by high throughput 16S rDNA amplicon pyrosequencing. The major genera identified were Portiera and Arsenophonus. Other bacterial genera detected were uncultured alpha proteobacterium, Sphingopyxis and Methylobacterium. We also employed fluorescence in situ hybridization (FISH) in whole mount samples to confirm the presence of dominant endosymbionts Portiera and Arsenophonus to the bacteriocyte of D. malleswaramensis. This study concludes that combining techniques like 16S rDNA amplicon pyrosequencing and FISH reveal both dominant and rare bacteria. The data also predict the evolutionary position of this pest with respect to other whitefly species using a mitochondrial marker.
Collapse
Affiliation(s)
- Neeti Pandey
- Gut Biology Lab, Room No 117, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Raman Rajagopal
- Gut Biology Lab, Room No 117, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
124
|
Ollberding NJ, Völgyi E, Macaluso M, Kumar R, Morrow C, Tylavsky FA, Piyathilake CJ. Urinary Microbiota Associated with Preterm Birth: Results from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study. PLoS One 2016; 11:e0162302. [PMID: 27611781 PMCID: PMC5017737 DOI: 10.1371/journal.pone.0162302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of infant morbidity and mortality. Genitourinary infection is implicated in the initiation of spontaneous PTB; however, examination of the urinary microbiota in relation to preterm delivery using next-generation sequencing technologies is lacking. In a case-control study nested within the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study, we examined associations between the urinary microbiota and PTB. A total of 49 cases (delivery < 37 weeks gestation) and 48 controls (delivery ≥ 37 weeks gestation) balanced on health insurance type were included in the present analysis. Illumina sequencing of the 16S rRNA gene V4 region was performed on urine samples collected during the second trimester. We observed no difference in taxa richness, evenness, or community composition between cases and controls or for gestational age modeled as a continuous variable. Operational taxonomic units (OTUs) classified to Prevotella, Sutterella, L. iners, Blautia, Kocuria, Lachnospiraceae, and S.marcescens were enriched among cases (FDR corrected p≤ 0.05). A urinary microbiota clustering partition dominated by S. marcescens was also associated with PTB (OR = 3.97, 95% CI: 1.19–13.24). These data suggest a limited role for the urinary microbiota in PTB when measured during the second trimester by 16S rRNA gene sequencing. The enrichment among cases in several organisms previously reported to be associated with genitourinary pathology requires confirmation in future studies to rule out the potential for false positive findings.
Collapse
Affiliation(s)
- Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eszter Völgyi
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Maurizio Macaluso
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ranjit Kumar
- University of Alabama at Birmingham, Center for Clinical & Translational Science, Birmingham, Alabama, United States of America
| | - Casey Morrow
- University of Alabama at Birmingham, Department of Cell Developmental and Integrative Biology, Birmingham, Alabama, United States of America
| | - Frances A. Tylavsky
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Chandrika J. Piyathilake
- University of Alabama at Birmingham, Department of Nutrition Sciences, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
125
|
Hülsen T, Barry EM, Lu Y, Puyol D, Keller J, Batstone DJ. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. WATER RESEARCH 2016; 100:486-495. [PMID: 27232993 DOI: 10.1016/j.watres.2016.04.061] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/29/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
A key future challenge of domestic wastewater treatment is nutrient recovery while still achieving acceptable discharge limits. Nutrient partitioning using purple phototrophic bacteria (PPB) has the potential to biologically concentrate nutrients through growth. This study evaluates the use of PPB in a continuous photo-anaerobic membrane bioreactor (PAnMBR) for simultaneous organics and nutrient removal from domestic wastewater. This process could continuously treat domestic wastewater to discharge limits (<50 mgCOD L(-1), 5 mgN L(-1), 1.0 mgP L(-1)). Approximately 6.4 ± 1.3 gNH4-N and 1.1 ± 0.2 gPO4-P for every 100 gSCOD were removed at a hydraulic retention time of 8-24 h and volumetric loading rates of 0.8-2.5 COD kg m(3) d(-1). Thus, a minimum of 200 mg L(-1) of ethanol (to provide soluble COD) was required to achieve these discharge limits. Microbial community through sequencing indicated dominance of >60% of PPB, though the PPB community was highly variable. The outcomes from the current work demonstrate the potential of PPB for continuous domestic (and possibly industrial) wastewater treatment and nutrient recovery. Technical challenges include the in situ COD supply in a continuous reactor system, as well as efficient light delivery. Addition of external (agricultural or fossil) derived organics is not financially nor environmentally justified, and carbon needs to be sourced internally from the biomass itself to enable this technology. Reduced energy consumption for lighting is technically feasible, and needs to be addressed as a key objective in scaleup.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria 3800, Australia.
| | - Edward M Barry
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yang Lu
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria 3800, Australia
| | - Daniel Puyol
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria 3800, Australia
| | - Jürg Keller
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria 3800, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria 3800, Australia
| |
Collapse
|
126
|
Hülsen T, Barry EM, Lu Y, Puyol D, Batstone DJ. Low temperature treatment of domestic wastewater by purple phototrophic bacteria: Performance, activity, and community. WATER RESEARCH 2016; 100:537-545. [PMID: 27235774 DOI: 10.1016/j.watres.2016.05.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Low wastewater temperatures affect microbial growth rates and microbial populations, as well as physical chemical characteristics of the wastewater. Wastewater treatment plant design needs to accommodate changing temperatures, and somewhat limited capacity is a key criticism of low strength anaerobic treatment such as Anaerobic Membrane Bioreactors (AnMBR). This study evaluates the applicability of an alternative platform utilizing purple phototrophic bacteria for low temperature domestic wastewater treatment. Two photo-anaerobic membrane bioreactors (PAnMBR) at ambient (22 °C) and low temperatures (10 °C) were compared to fully evaluate temperature response of critical processes. The results show good functionality at 10 °C in comparison with ambient operation. This enabled operation at 10 °C to discharge limits (TCOD < 100 mg L(-1); TN < 10 mg L(-1) and TP < 1 mg L(-1)) at a HRT < 1 d. While capacity of the system was not limited, microbial community showed a strong shift to a far narrower diversity, almost complete dominance by PPB, and of a single Rhodobacter spp. compared to a more diverse community in the ambient reactor. The outcomes of the current work enable applicability of PPB for domestic wastewater treatment to a broad range of regions.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia.
| | - Edward M Barry
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| | - Yang Lu
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| | - Daniel Puyol
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia; Group of Chemical and Environmental Engineering (GIQA), University Rey Juan Carlos, Madrid, Spain
| | - Damien J Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia; CRC for Water Sensitive Cities, PO Box 8000, Clayton, Victoria, 3800, Australia
| |
Collapse
|
127
|
Doolette CL, Gupta VVSR, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ. Quantifying the Sensitivity of Soil Microbial Communities to Silver Sulfide Nanoparticles Using Metagenome Sequencing. PLoS One 2016; 11:e0161979. [PMID: 27575719 PMCID: PMC5004803 DOI: 10.1371/journal.pone.0161979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
Soils are a sink for sulfidised-silver nanoparticles (Ag2S-NPs), yet there are limited ecotoxicity data for their effects on microbial communities. Conventional toxicity tests typically target a single test species or function, which does not reflect the broader community response. Using a combination of quantitative PCR, 16S rRNA amplicon sequencing and species sensitivity distribution (SSD) methods, we have developed a new approach to calculate silver-based NP toxicity thresholds (HCx, hazardous concentrations) that are protective of specific members (operational taxonomic units, OTUs) of the soil microbial community. At the HC20 (80% of species protected), soil OTUs were significantly less sensitive to Ag2S-NPs compared to AgNPs and Ag+ (5.9, 1.4 and 1.4 mg Ag kg-1, respectively). However at more conservative HC values, there were no significant differences. These trends in OTU responses matched with those seen in a specific microbial function (rate of nitrification) and amoA-bacteria gene abundance. This study provides a novel molecular-based framework for quantifying the effect of a toxicant on whole soil microbial communities while still determining sensitive genera/species. Methods and results described here provide a benchmark for microbial community ecotoxicological studies and we recommend that future revisions of Soil Quality Guidelines for AgNPs and other such toxicants consider this approach.
Collapse
Affiliation(s)
- Casey L. Doolette
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- * E-mail:
| | | | - Yang Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia
| | - Justin L. Payne
- School of Natural and Built Environments, University of South Australia, Adelaide, Australia
| | - Damien J. Batstone
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, Australia
| | - Jason K. Kirby
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| | - Divina A. Navarro
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| | - Mike J. McLaughlin
- School of Agriculture Food and Wine, The University of Adelaide, Adelaide, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies Research Program, Adelaide, Australia
| |
Collapse
|
128
|
Wang J, Suzuki T, Dohra H, Takigami S, Kako H, Soga A, Kamei I, Mori T, Kawagishi H, Hirai H. Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq. BMC Genomics 2016; 17:616. [PMID: 27515927 PMCID: PMC4982002 DOI: 10.1186/s12864-016-2977-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2016] [Indexed: 08/25/2023] Open
Abstract
Background The white-rot fungus Phlebia sp. MG-60 shows valuable properties such as high ethanol yield from several lignocellulosic materials, although white-rot fungi commonly degrade woody components to CO2 and H2O. In order to identify genes involved in ethanol production by Phlebia sp. MG-60, we compared genes differentially expressed by the ethanol producing fungus Phlebia sp. MG-60 and the model white-rot fungus Phanerochaete chrysosporium under ethanol fermenting and non-fermenting conditions using next-generation sequencing technologies. Results mRNAs from mycelia of Phlebia sp. MG-60 and P. chrysosporium under fermenting and non-fermenting conditions were sequenced using the MiSeq system. To detect differentially expressed genes, expression levels were measured in fragments per kilobase of exon per million mapped reads (FPKM). Differentially expressed genes were annotated using BLAST searches, Gene Ontology classifications, and KEGG pathway analysis. Functional analyses of differentially expressed genes revealed that genes involved in glucose uptake, glycolysis, and ethanol synthesis were widely upregulated in Phlebia sp. MG-60 under fermenting conditions. Conclusions In this study, we provided novel transcriptomic information on Phlebia sp. MG-60, and these RNA-seq data were useful in targeting genes involved in ethanol production for future genetic engineering. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2977-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianqiao Wang
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan
| | - Hideo Dohra
- Institute for Genetic Research and Biotechnology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shoko Takigami
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hiroko Kako
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ayumi Soga
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ichiro Kamei
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Toshio Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
129
|
Diomandé SE, Doublet B, Vasaï F, Guinebretière MH, Broussolle V, Brillard J. Expression of the genes encoding the CasK/R two-component system and the DesA desaturase during Bacillus cereus cold adaptation. FEMS Microbiol Lett 2016; 363:fnw174. [PMID: 27435329 DOI: 10.1093/femsle/fnw174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2016] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCS) allow a cell to elaborate a variety of adaptive responses to environment changes. The recently discovered CasK/R TCS plays a role in the optimal unsaturation of fatty acids necessary for cold adaptation of the foodborne-pathogen Bacillus cereus Here, we showed that the promoter activity of the operon encoding this TCS was repressed during growth at low temperature in the stationary phase in the parental strain when compared to the casK/R mutant, suggesting that CasR negatively regulates the activity of its own promoter in these conditions. The promoter activity of the desA gene encoding the Δ5 fatty acid desaturase, providing unsaturated fatty acids (UFAs) required for low temperature adaptation, was repressed in the casK/R mutant grown at 12°C versus 37°C. This result suggests that CasK/R activates desA expression during B. cereus growth at low temperature, allowing an optimal unsaturation of the fatty acids. In contrast, desA expression was repressed during the lag phase at low temperature in presence of UFAs, in a CasK/R-independent manner. Our findings confirm that the involvement of this major TCS in B. cereus cold adaptation is linked to the upregulation of a fatty acid desaturase.
Collapse
Affiliation(s)
| | | | | | | | | | - Julien Brillard
- SQPOV, INRA, Univ. Avignon, 84000 Avignon, France DGIMI, INRA, Univ. Montpellier, 34095 Montpellier, France
| |
Collapse
|
130
|
Breen MS, White CH, Shekhtman T, Lin K, Looney D, Woelk CH, Kelsoe JR. Lithium-responsive genes and gene networks in bipolar disorder patient-derived lymphoblastoid cell lines. THE PHARMACOGENOMICS JOURNAL 2016; 16:446-53. [PMID: 27401222 DOI: 10.1038/tpj.2016.50] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Lithium (Li) is the mainstay mood stabilizer for the treatment of bipolar disorder (BD), although its mode of action is not yet fully understood nor is it effective in every patient. We sought to elucidate the mechanism of action of Li and to identify surrogate outcome markers that can be used to better understand its therapeutic effects in BD patients classified as good (responders) and poor responders (nonresponders) to Li treatment. To accomplish these goals, RNA-sequencing gene expression profiles of lymphoblastoid cell lines (LCLs) were compared between BD Li responders and nonresponders with healthy controls before and after treatment. Several Li-responsive gene coexpression networks were discovered indicating widespread effects of Li on diverse cellular signaling systems including apoptosis and defense response pathways, protein processing and response to endoplasmic reticulum stress. Individual gene markers were also identified, differing in response to Li between BD responders and nonresponders, involved in processes of cell cycle and nucleotide excision repair that may explain part of the heterogeneity in clinical response to treatment. Results further indicated a Li gene expression signature similar to that observed with clonidine treatment, an α2-adrenoceptor agonist. These findings provide a detailed mechanism of Li in LCLs and highlight putative surrogate outcome markers that may permit for advanced treatment decisions to be made and for facilitating recovery in BD patients.
Collapse
Affiliation(s)
- M S Breen
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C H White
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - T Shekhtman
- Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - K Lin
- Department of Affective Disorder, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China.,Laboratory of Cognition and Emotion, Guangzhou Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - D Looney
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA
| | - C H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J R Kelsoe
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.,Veterans Administration, San Diego Healthcare System, San Diego, CA, USA.,Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
131
|
Rastorguev SM, Nedoluzhko AV, Levina MA, Prokhorchuk EB, Skryabin KG, Levin BA. Pleiotropic effect of thyroid hormones on gene expression in fish as exemplified from the blue bream Ballerus ballerus (Cyprinidae): Results of transcriptomic analysis. DOKL BIOCHEM BIOPHYS 2016; 467:124-7. [DOI: 10.1134/s1607672916020137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 11/23/2022]
|
132
|
Hu YOO, Karlson B, Charvet S, Andersson AF. Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea. Front Microbiol 2016; 7:679. [PMID: 27242706 PMCID: PMC4864665 DOI: 10.3389/fmicb.2016.00679] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 105 sequences/sample) of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.
Collapse
Affiliation(s)
- Yue O O Hu
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | - Bengt Karlson
- Oceanography, Research & Development, Swedish Meteorological and Hydrological Institute Gothenburg, Sweden
| | - Sophie Charvet
- Leibniz Institute for Baltic Sea Research Warnemünde Rostock, Germany
| | - Anders F Andersson
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| |
Collapse
|
133
|
Cubells JF, Schroeder JP, Barrie ES, Manvich DF, Sadee W, Berg T, Mercer K, Stowe TA, Liles LC, Squires KE, Mezher A, Curtin P, Perdomo DL, Szot P, Weinshenker D. Human Bacterial Artificial Chromosome (BAC) Transgenesis Fully Rescues Noradrenergic Function in Dopamine β-Hydroxylase Knockout Mice. PLoS One 2016; 11:e0154864. [PMID: 27148966 PMCID: PMC4857931 DOI: 10.1371/journal.pone.0154864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022] Open
Abstract
Dopamine β-hydroxylase (DBH) converts dopamine (DA) to norepinephrine (NE) in noradrenergic/adrenergic cells. DBH deficiency prevents NE production and causes sympathetic failure, hypotension and ptosis in humans and mice; DBH knockout (Dbh -/-) mice reveal other NE deficiency phenotypes including embryonic lethality, delayed growth, and behavioral defects. Furthermore, a single nucleotide polymorphism (SNP) in the human DBH gene promoter (-970C>T; rs1611115) is associated with variation in serum DBH activity and with several neurological- and neuropsychiatric-related disorders, although its impact on DBH expression is controversial. Phenotypes associated with DBH deficiency are typically treated with L-3,4-dihydroxyphenylserine (DOPS), which can be converted to NE by aromatic acid decarboxylase (AADC) in the absence of DBH. In this study, we generated transgenic mice carrying a human bacterial artificial chromosome (BAC) encompassing the DBH coding locus as well as ~45 kb of upstream and ~107 kb of downstream sequence to address two issues. First, we characterized the neuroanatomical, neurochemical, physiological, and behavioral transgenic rescue of DBH deficiency by crossing the BAC onto a Dbh -/- background. Second, we compared human DBH mRNA abundance between transgenic lines carrying either a "C" or a "T" at position -970. The BAC transgene drove human DBH mRNA expression in a pattern indistinguishable from the endogenous gene, restored normal catecholamine levels to the peripheral organs and brain of Dbh -/- mice, and fully rescued embryonic lethality, delayed growth, ptosis, reduced exploratory activity, and seizure susceptibility. In some cases, transgenic rescue was superior to DOPS. However, allelic variation at the rs1611115 SNP had no impact on mRNA levels in any tissue. These results indicate that the human BAC contains all of the genetic information required for tissue-specific, functional expression of DBH and can rescue all measured Dbh deficiency phenotypes, but did not reveal an impact of the rs11115 variant on DBH expression in mice.
Collapse
Affiliation(s)
- Joseph F. Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Autism Center, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. Schroeder
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elizabeth S. Barrie
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel F. Manvich
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Tiina Berg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kristina Mercer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Taylor A. Stowe
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - L. Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Katherine E. Squires
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew Mezher
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Patrick Curtin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dannie L. Perdomo
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Patricia Szot
- MIRECC, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
134
|
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533:125-9. [PMID: 27120160 DOI: 10.1038/nature17664] [Citation(s) in RCA: 660] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/11/2016] [Indexed: 12/23/2022]
Abstract
The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
Collapse
Affiliation(s)
- Dominik Paquet
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Dylan Kwart
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Antonia Chen
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Andrew Sproul
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Samson Jacob
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Shaun Teo
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Kimberly Moore Olsen
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Andrew Gregg
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, The Rockefeller University and Sloan-Kettering Institute Tri-institutional MD-PhD Program, 1300 York Avenue, New York, New York 10065, USA
| | - Scott Noggle
- The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
135
|
Affiliation(s)
- Jingtian Hu
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andrew L. Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
136
|
Baker CW, Miller CR, Thaweethai T, Yuan J, Baker MH, Joyce P, Weinreich DM. Genetically Determined Variation in Lysis Time Variance in the Bacteriophage φX174. G3 (BETHESDA, MD.) 2016; 6:939-55. [PMID: 26921293 PMCID: PMC4825663 DOI: 10.1534/g3.115.024075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022]
Abstract
Researchers in evolutionary genetics recently have recognized an exciting opportunity in decomposing beneficial mutations into their proximal, mechanistic determinants. The application of methods and concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed them to understand how natural selection sees mutations influencing life history. This work motivated the research presented here, in which we explored whether, under consistent experimental conditions, small differences in the genome of bacteriophage φX174 could lead to altered life history phenotypes among a panel of eight genetically distinct clones. We assessed the clones' phenotypes by applying a novel statistical framework to the results of a serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate host volumes with ∼1 phage particle. We sequentially plated the volumes over the course of infection and counted the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a single volume as a function of time. From repeated assays, we inferred significant, genetically determined heterogeneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic and phenotypic constraints on the single-protein lysis mechanism of φX174. We speculate briefly on the mechanisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution.
Collapse
Affiliation(s)
- Christopher W Baker
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Craig R Miller
- Department of Mathematics, University of Idaho, Moscow, Idaho 83844 Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844 Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho 83844
| | - Tanayott Thaweethai
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Jeffrey Yuan
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Meghan Hollibaugh Baker
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912
| | - Paul Joyce
- Department of Mathematics, University of Idaho, Moscow, Idaho 83844
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912 Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
137
|
Abstract
The FASTA programs provide a comprehensive set of rapid similarity searching tools (fasta36, fastx36, tfastx36, fasty36, tfasty36), similar to those provided by the BLAST package, as well as programs for slower, optimal, local, and global similarity searches (ssearch36, ggsearch36), and for searching with short peptides and oligonucleotides (fasts36, fastm36). The FASTA programs use an empirical strategy for estimating statistical significance that accommodates a range of similarity scoring matrices and gap penalties, improving alignment boundary accuracy and search sensitivity. The FASTA programs can produce "BLAST-like" alignment and tabular output, for ease of integration into existing analysis pipelines, and can search small, representative databases, and then report results for a larger set of sequences, using links from the smaller dataset. The FASTA programs work with a wide variety of database formats, including mySQL and postgreSQL databases. The programs also provide a strategy for integrating domain and active site annotations into alignments and highlighting the mutational state of functionally critical residues. These protocols describe how to use the FASTA programs to characterize protein and DNA sequences, using protein:protein, protein:DNA, and DNA:DNA comparisons.
Collapse
Affiliation(s)
- William R Pearson
- University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
138
|
Shapiro LR, Scully ED, Straub TJ, Park J, Stephenson AG, Beattie GA, Gleason ML, Kolter R, Coelho MC, De Moraes CM, Mescher MC, Zhaxybayeva O. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila. Genome Biol Evol 2016; 8:649-64. [PMID: 26992913 PMCID: PMC4824170 DOI: 10.1093/gbe/evw016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
Modern industrial agriculture depends on high-density cultivation of genetically similar crop plants, creating favorable conditions for the emergence of novel pathogens with increased fitness in managed compared with ecologically intact settings. Here, we present the genome sequence of six strains of the cucurbit bacterial wilt pathogen Erwinia tracheiphila (Enterobacteriaceae) isolated from infected squash plants in New York, Pennsylvania, Kentucky, and Michigan. These genomes exhibit a high proportion of recent horizontal gene acquisitions, invasion and remarkable amplification of mobile genetic elements, and pseudogenization of approximately 20% of the coding sequences. These genome attributes indicate that E. tracheiphila recently emerged as a host-restricted pathogen. Furthermore, chromosomal rearrangements associated with phage and transposable element proliferation contribute to substantial differences in gene content and genetic architecture between the six E. tracheiphila strains and other Erwinia species. Together, these data lead us to hypothesize that E. tracheiphila has undergone recent evolution through both genome decay (pseudogenization) and genome expansion (horizontal gene transfer and mobile element amplification). Despite evidence of dramatic genomic changes, the six strains are genetically monomorphic, suggesting a recent population bottleneck and emergence into E. tracheiphila's current ecological niche.
Collapse
Affiliation(s)
- Lori R Shapiro
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Erin D Scully
- Grain, Forage, and Bioenergy Research Unit, USDA-ARS, Lincoln, Nebraska and Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | | | - Jihye Park
- Graduate Program in Bioinformatics and Genomics, Pennsylvania State University Present address: Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University
| | - Roberto Kolter
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts
| | - Miguel C Coelho
- Department of Molecular and Cellular Biology, Harvard University
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College Department of Computer Science, Dartmouth College
| |
Collapse
|
139
|
Mezoff EA, Hawkins JA, Ollberding NJ, Karns R, Morrow AL, Helmrath MA. The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal. Am J Physiol Gastrointest Liver Physiol 2016; 310:G427-38. [PMID: 26702137 PMCID: PMC4796291 DOI: 10.1152/ajpgi.00305.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/22/2015] [Indexed: 01/31/2023]
Abstract
Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation.
Collapse
Affiliation(s)
- Ethan A. Mezoff
- 1Cincinnati Children's Hospital Medical Center, Division of Gastroenterology, Hepatology, and Nutrition;
| | - Jennifer A. Hawkins
- 2Cincinnati Children's Hospital Medical Center, Division of Pediatric General and Thoracic Surgery;
| | - Nicholas J. Ollberding
- 3Cincinnati Children's Hospital Medical Center, Division of Biostatistics and Epidemiology;
| | - Rebekah Karns
- 4Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics; and
| | - Ardythe L. Morrow
- 5Cincinnati Children's Hospital Medical Center, Division of Neonatology and Pulmonary Biology
| | - Michael A. Helmrath
- 2Cincinnati Children's Hospital Medical Center, Division of Pediatric General and Thoracic Surgery;
| |
Collapse
|
140
|
Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H, Eng C. The Urinary Microbiome Differs Significantly Between Patients With Chronic Prostatitis/Chronic Pelvic Pain Syndrome and Controls as Well as Between Patients With Different Clinical Phenotypes. Urology 2016; 92:26-32. [PMID: 26970449 DOI: 10.1016/j.urology.2016.02.043] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/10/2016] [Accepted: 02/26/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the urinary microbiome of patients with Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) compared with controls. METHODS We identified 25 patients with CP/CPPS and 25 men who were either asymptomatic or only had urinary symptoms. Midstream urine was collected. Symptom severity was measured with the National Institutes of Health Chronic Prostatitis Symptom Index and clinical phenotype with UPOINT. Total DNA was extracted from the urine pellet and bacterial-specific 16Sr-DNA-capture identified by MiSeq sequencing. Taxonomic and functional bioinformatic analyses used principal coordinate analysis (PCoA)/MacQIIME, LEfSe, and PiCRUSt algorithms. RESULTS Patients and controls were similar ages (52.3 vs 57.0 years, P = .27). For patients, median duration was 48 months, mean Chronic Prostatitis Symptom Index was 26.0, and mean UPOINT domains was 3.6. Weighted 3D UniFrac PCoA revealed tighter clustering of controls distinct from the wider clustering of cases (P = .001; α-diversity P = .005). Seventeen clades were overrepresented in patients, for example, Clostridia, and 5 were underrepresented, eg, Bacilli, resulting in predicted perturbations in functional pathways. PiCRUSt inferred differentially regulated pathways between cases and controls that may be of relevance including sporulation, chemotaxis, and pyruvate metabolism. PCoA-derived microbiomic differences were noted for neurologic/systemic domains (P = .06), whereas LEfSe identified differences associated with each of the 6 clinical features. CONCLUSION Urinary microbiomes from patients with CP/CPPS have significantly higher alpha(phylogenetic) diversity which cluster differently from controls, and higher counts of Clostridia compared with controls, resulting in predicted perturbations of functional pathways which could suggest metabolite-specific targeted treatment. Several measures of severity and clinical phenotype have significant microbiome differences.
Collapse
Affiliation(s)
- Daniel A Shoskes
- Department of Urology, Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195.
| | - Jessica Altemus
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Alan S Polackwich
- Department of Urology, Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Barbara Tucky
- Department of Urology, Glickman Urological Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Hannah Wang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195; Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
141
|
RNA Sequencing Reveals the Alteration of the Expression of Novel Genes in Ethanol-Treated Embryoid Bodies. PLoS One 2016; 11:e0149976. [PMID: 26930486 PMCID: PMC4773011 DOI: 10.1371/journal.pone.0149976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Fetal alcohol spectrum disorder is a collective term representing fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not well characterized. In this present study, our aim is to profile important genes that regulate cellular development during fetal development. Human embryonic carcinoma cells (NCCIT) are cultured to form embryoid bodies and then treated in the presence and absence of ethanol (50 mM). We employed RNA sequencing to profile differentially expressed genes in the ethanol-treated embryoid bodies from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH data sets. A total of 632, 205 and 517 differentially expressed genes were identified from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. Functional annotation using bioinformatics tools reveal significant enrichment of differential cellular development and developmental disorders. Furthermore, a group of 42, 15 and 35 transcription factor-encoding genes are screened from all of the differentially expressed genes obtained from NCCIT vs. EB, NCCIT vs. EB+EtOH and EB vs. EB+EtOH, respectively. We validated relative gene expression levels of several transcription factors from these lists by quantitative real-time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanism underlying the pathology of alcohol-mediated anomalies and ease further research.
Collapse
|
142
|
Strader ME, Aglyamova GV, Matz MV. Red fluorescence in coral larvae is associated with a diapause‐like state. Mol Ecol 2016; 25:559-69. [DOI: 10.1111/mec.13488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Marie E. Strader
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Galina V. Aglyamova
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Mikhail V. Matz
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| |
Collapse
|
143
|
Dubinkina VB, Ischenko DS, Ulyantsev VI, Tyakht AV, Alexeev DG. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC Bioinformatics 2016; 17:38. [PMID: 26774270 PMCID: PMC4715287 DOI: 10.1186/s12859-015-0875-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A rapidly increasing flow of genomic data requires the development of efficient methods for obtaining its compact representation. Feature extraction facilitates classification, clustering and model analysis for testing and refining biological hypotheses. "Shotgun" metagenome is an analytically challenging type of genomic data - containing sequences of all genes from the totality of a complex microbial community. Recently, researchers started to analyze metagenomes using reference-free methods based on the analysis of oligonucleotides (k-mers) frequency spectrum previously applied to isolated genomes. However, little is known about their correlation with the existing approaches for metagenomic feature extraction, as well as the limits of applicability. Here we evaluated a metagenomic pairwise dissimilarity measure based on short k-mer spectrum using the example of human gut microbiota, a biomedically significant object of study. RESULTS We developed a method for calculating pairwise dissimilarity (beta-diversity) of "shotgun" metagenomes based on short k-mer spectra (5 ≤ k ≤ 11). The method was validated on simulated metagenomes and further applied to a large collection of human gut metagenomes from the populations of the world (n=281). The k-mer spectrum-based measure was found to behave similarly to one based on mapping to a reference gene catalog, but different from one using a genome catalog. This difference turned out to be associated with a significant presence of viral reads in a number of metagenomes. Simulations showed limited impact of bacterial genetic variability as well as sequencing errors on k-mer spectra. Specific differences between the datasets from individual populations were identified. CONCLUSIONS Our approach allows rapid estimation of pairwise dissimilarity between metagenomes. Though we applied this technique to gut microbiota, it should be useful for arbitrary metagenomes, even metagenomes with novel microbiota. Dissimilarity measure based on k-mer spectrum provides a wider perspective in comparison with the ones based on the alignment against reference sequence sets. It helps not to miss possible outstanding features of metagenomic composition, particularly related to the presence of an unknown bacteria, virus or eukaryote, as well as to technical artifacts (sample contamination, reads of non-biological origin, etc.) at the early stages of bioinformatic analysis. Our method is complementary to reference-based approaches and can be easily integrated into metagenomic analysis pipelines.
Collapse
Affiliation(s)
- Veronika B Dubinkina
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya, Moscow, 119435, Russia. .,Moscow Institute of Physics and Technology (State University), Institutskiy per., Dolgoprudny, 141700, Russia.
| | - Dmitry S Ischenko
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya, Moscow, 119435, Russia. .,Moscow Institute of Physics and Technology (State University), Institutskiy per., Dolgoprudny, 141700, Russia.
| | | | - Alexander V Tyakht
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya, Moscow, 119435, Russia. .,Moscow Institute of Physics and Technology (State University), Institutskiy per., Dolgoprudny, 141700, Russia.
| | - Dmitry G Alexeev
- Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya, Moscow, 119435, Russia. .,Moscow Institute of Physics and Technology (State University), Institutskiy per., Dolgoprudny, 141700, Russia.
| |
Collapse
|
144
|
Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide. ChemElectroChem 2016. [DOI: 10.1002/celc.201500530] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
145
|
Rukov JL, Gravesen E, Mace ML, Hofman-Bang J, Vinther J, Andersen CB, Lewin E, Olgaard K. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing. Am J Physiol Renal Physiol 2016; 310:F477-91. [PMID: 26739890 DOI: 10.1152/ajprenal.00472.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho.
Collapse
Affiliation(s)
- Jakob L Rukov
- Faculty of Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eva Gravesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, Copenhagen, Denmark
| | - Maria L Mace
- Nephrological Department P, Rigshospitalet, Copenhagen, Denmark; Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | | | - Jeppe Vinther
- Faculty of Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ewa Lewin
- Nephrological Department P, Rigshospitalet, Copenhagen, Denmark; Nephrological Department B, Herlev Hospital, Copenhagen, Denmark
| | - Klaus Olgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Nephrological Department P, Rigshospitalet, Copenhagen, Denmark;
| |
Collapse
|
146
|
Hu YOO, Karlson B, Charvet S, Andersson AF. Diversity of Pico- to Mesoplankton along the 2000 km Salinity Gradient of the Baltic Sea. Front Microbiol 2016; 7:679. [PMID: 27242706 DOI: 10.3389/fmicb.2016.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023] Open
Abstract
Microbial plankton form the productive base of both marine and freshwater ecosystems and are key drivers of global biogeochemical cycles of carbon and nutrients. Plankton diversity is immense with representations from all major phyla within the three domains of life. So far, plankton monitoring has mainly been based on microscopic identification, which has limited sensitivity and reproducibility, not least because of the numerical majority of plankton being unidentifiable under the light microscope. High-throughput sequencing of taxonomic marker genes offers a means to identify taxa inaccessible by traditional methods; thus, recent studies have unveiled an extensive previously unknown diversity of plankton. Here, we conducted ultra-deep Illumina sequencing (average 10(5) sequences/sample) of rRNA gene amplicons of surface water eukaryotic and bacterial plankton communities sampled in summer along a 2000 km transect following the salinity gradient of the Baltic Sea. Community composition was strongly correlated with salinity for both bacterial and eukaryotic plankton assemblages, highlighting the importance of salinity for structuring the biodiversity within this ecosystem. In contrast, no clear trends in alpha-diversity for bacterial or eukaryotic communities could be detected along the transect. The distribution of major planktonic taxa followed expected patterns as observed in monitoring programs, but groups novel to the Baltic Sea were also identified, such as relatives to the coccolithophore Emiliana huxleyi detected in the northern Baltic Sea. This study provides the first ultra-deep sequencing-based survey on eukaryotic and bacterial plankton biogeography in the Baltic Sea.
Collapse
Affiliation(s)
- Yue O O Hu
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | - Bengt Karlson
- Oceanography, Research & Development, Swedish Meteorological and Hydrological Institute Gothenburg, Sweden
| | - Sophie Charvet
- Leibniz Institute for Baltic Sea Research Warnemünde Rostock, Germany
| | - Anders F Andersson
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| |
Collapse
|
147
|
Das A, Panitz F, Gregersen VR, Bendixen C, Holm LE. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes. BMC Genomics 2015; 16:1043. [PMID: 26645365 PMCID: PMC4673847 DOI: 10.1186/s12864-015-2249-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background Over the last few years, continuous development of high-throughput sequencing platforms and sequence analysis tools has facilitated reliable identification and characterization of genetic variants in many cattle breeds. Deep sequencing of entire genomes within a cattle breed that has not been thoroughly investigated would be imagined to discover functional variants that are underlying phenotypic differences. Here, we sequenced to a high coverage the Danish Holstein cattle breed to detect and characterize single nucleotide polymorphisms (SNPs), insertion/deletions (Indels), and loss-of-function (LoF) variants in protein-coding genes in order to provide a comprehensive resource for subsequent detection of causal variants for recessive traits. Results We sequenced four genetically unrelated Danish Holstein cows with a mean coverage of 27X using an Illumina Hiseq 2000. Multi-sample SNP calling identified 10,796,794 SNPs and 1,295,036 indels whereof 482,835 (4.5 %) SNPs and 231,359 (17.9 %) indels were novel. A comparison between sequencing-derived SNPs and genotyping from the BovineHD BeadChip revealed a concordance rate of 99.6–99.8 % for homozygous SNPs and 93.3–96.5 % for heterozygous SNPs. Annotation of the SNPs discovered 74,886 SNPs and 1937 indels affecting coding sequences with 2145 being LoF mutations. The frequency of LoF variants differed greatly across the genome, a hot spot with a strikingly high density was observed in a 6 Mb region on BTA18. LoF affected genes were enriched for functional categories related to olfactory reception and underrepresented for genes related to key cellular constituents and cellular and biological process regulation. Filtering using sequence derived genotype data for 288 Holstein animals from the 1000 bull genomes project removing variants containing homozygous individuals retained 345 of the LoF variants as putatively deleterious. A substantial number of the putative deleterious LoF variants had a minor allele frequency >0.05 in the 1000 bull genomes data set. Conclusions Deep sequencing of Danish Holstein genomes enabled us to identify 12.1 million variants. An investigation into LoF variants discovered a set of variants predicted to disrupt protein-coding genes. This catalog of variants will be a resource for future studies to understand variation underlying important phenotypes, particularly recessively inherited lethal phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2249-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashutosh Das
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | | | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Lars-Erik Holm
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| |
Collapse
|
148
|
Summers CF, Gulliford CM, Carlson CH, Lillis JA, Carlson MO, Cadle-Davidson L, Gent DH, Smart CD. Identification of Genetic Variation between Obligate Plant Pathogens Pseudoperonospora cubensis and P. humuli Using RNA Sequencing and Genotyping-By-Sequencing. PLoS One 2015; 10:e0143665. [PMID: 26599440 PMCID: PMC4658093 DOI: 10.1371/journal.pone.0143665] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/06/2015] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing (RNA-seq) and genotyping-by-sequencing (GBS) were used for single nucleotide polymorphism (SNP) identification from two economically important obligate plant pathogens, Pseudoperonospora cubensis and P. humuli. Twenty isolates of P. cubensis and 19 isolates of P. humuli were genotyped using RNA-seq and GBS. Principle components analysis (PCA) of each data set showed genetic separation between the two species. Additionally, results supported previous findings that P. cubensis isolates from squash are genetically distinct from cucumber and cantaloupe isolates. A PCA-based procedure was used to identify SNPs correlated with the separation of the two species, with 994 and 4,231 PCA-correlated SNPs found within the RNA-seq and GBS data, respectively. The corresponding unigenes (n = 800) containing these potential species-specific SNPs were then annotated and 135 putative pathogenicity genes, including 3 effectors, were identified. The characterization of genes containing SNPs differentiating these two closely related downy mildew species may contribute to the development of improved detection and diagnosis strategies and improve our understanding of host specificity pathways.
Collapse
Affiliation(s)
- Carly F. Summers
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Colwyn M. Gulliford
- Cornell Laboratory for Accelerator-based Sciences and Education, Cornell University, Ithaca, New York, United States of America
| | - Craig H. Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Jacquelyn A. Lillis
- United States Department of Agriculture Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| | - Maryn O. Carlson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| | - Lance Cadle-Davidson
- United States Department of Agriculture Agricultural Research Service, Grape Genetics Research Unit, Geneva, New York, United States of America
| | - David H. Gent
- United States Department of Agriculture Agricultural Research Service, Forage Seed and Cereal Research Unit and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christine D. Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, New York, United States of America
| |
Collapse
|
149
|
Wang R, Li L, Huang Y, Luo F, Liang W, Gan X, Huang T, Lei A, Chen M, Chen L. Comparative genome analysis identifies two large deletions in the genome of highly-passaged attenuated Streptococcus agalactiae strain YM001 compared to the parental pathogenic strain HN016. BMC Genomics 2015; 16:897. [PMID: 26537657 PMCID: PMC4634907 DOI: 10.1186/s12864-015-2026-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus agalactiae (S. agalactiae), also known as group B Streptococcus (GBS), is an important pathogen for neonatal pneumonia, meningitis, bovine mastitis, and fish meningoencephalitis. The global outbreaks of Streptococcus disease in tilapia cause huge economic losses and threaten human food hygiene safety as well. To investigate the mechanism of S. agalactiae pathogenesis in tilapia and develop attenuated S. agalactiae vaccine, this study sequenced and comparatively analyzed the whole genomes of virulent wild-type S. agalactiae strain HN016 and its highly-passaged attenuated strain YM001 derived from tilapia. Methods We performed Illumina sequencing of DNA prepared from strain HN016 and YM001. Sequencedreads were assembled and nucleotide comparisons, single nucleotide polymorphism (SNP) , indels were analyzed between the draft genomes of HN016 and YM001. Clustered regularly interspaced short palindromic repeats (CRISPRs) and prophage were detected and analyzed in different S. agalactiae strains. Results The genome of S. agalactiae YM001 was 2,047,957 bp with a GC content of 35.61 %; it contained 2044 genes and 88 RNAs. Meanwhile, the genome of S. agalactiae HN016 was 2,064,722 bp with a GC content of 35.66 %; it had 2063 genes and 101 RNAs. Comparative genome analysis indicated that compared with HN016, YM001 genome had two significant large deletions, at the sizes of 5832 and 11,116 bp respectively, resulting in the deletion of three rRNA and ten tRNA genes, as well as the deletion and functional damage of ten genes related to metabolism, transport, growth, anti-stress, etc. Besides these two large deletions, other ten deletions and 28 single nucleotide variations (SNVs) were also identified, mainly affecting the metabolism- and growth-related genes. Conclusions The genome of attenuated S. agalactiae YM001 showed significant variations, resulting in the deletion of 10 functional genes, compared to the parental pathogenic strain HN016. The deleted and mutated functional genes all encode metabolism- and growth-related proteins, not the known virulence proteins, indicating that the metabolism- and growth-related genes are important for the pathogenesis of S. agalactiae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2026-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Yan Huang
- Guangxi Center for Disease Control and Prevention, Nanning, 530028, People's Republic of China.
| | - Fuguang Luo
- Liuzhou's Aquaculture Technology Extending Station, Liuzhou, 545006, People's Republic of China.
| | - Wanwen Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Xi Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, People's Republic of China.
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
150
|
Darus L, Lu Y, Ledezma P, Keller J, Freguia S. Fully reversible current driven by a dual marine photosynthetic microbial community. BIORESOURCE TECHNOLOGY 2015; 195:248-253. [PMID: 26099438 DOI: 10.1016/j.biortech.2015.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
The electrochemical activity of two seawater microbial consortia were investigated in three-electrode bioelectrochemical cells. Two seawater inocula - from the Sunshine Coast (SC) and Gold Coast (GC) shores of Australia - were enriched at +0.6 V vs. SHE using 12/12 h day/night cycles. After re-inoculation, the SC consortium developed a fully-reversible cathodic/anodic current, with a max. of -62 mA m(-2) during the day and +110 mA m(-2) at night, while the GC exhibited negligible daytime output but +98 mA m(-2) at night. Community analysis revealed that both enrichments were dominated by cyanobacteria, indicating their potential as biocatalysts for indirect light conversion to electricity. Moreover, the presence of γ-proteobacterium Congregibacter in SC biofilm was likely related to the cathodic reductive current, indicating its effectiveness at catalysing cathodic oxygen reduction at a surprisingly high potential. For the first time a correlation between a dual microbial community and fully reversible current is reported.
Collapse
Affiliation(s)
- Libertus Darus
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yang Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jürg Keller
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|