101
|
Comparison of Subjective and Objective Assessments on Improvement in Gait Function after Carotid Endarterectomy. SENSORS 2020; 20:s20226590. [PMID: 33218023 PMCID: PMC7698780 DOI: 10.3390/s20226590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The purpose of the present study was to determine whether objective gait test scores obtained using a tri-axial accelerometer can detect subjective improvement in gait as determined by the patient after carotid endarterectomy (CEA). Each patient undergoing CEA for ipsilateral internal carotid artery stenosis determined whether their gait was subjectively improved at six months after CEA when compared with preoperatively. Gait testing using a tri-axial accelerometer was also performed preoperatively and six months postoperatively. Twelve (15%) of 79 patients reported subjectively improved gait. Areas under the receiver operating characteristic curve for differences between pre- and postoperative test values in stride time, cadence, and ground floor reaction for detecting subjectively improved gait were 0.995 (95% confidence interval (CI), 0.945-1.000), 0.958 (95%CI, 0.887-0.990), and 0.851 (95%CI, 0.753-0.921), respectively. Cut-off points for value differences in detecting subjectively improved gait were identical to mean -1.7 standard deviation (SD) for stride time, mean +1.6 SD for cadence, and mean +0.4 SD for ground floor reaction of control values from normal subjects. Objective gait test scores obtained using the tri-axial accelerometer can detect subjective gait improvements after CEA. When determining significant postoperative improvements in gait using a tri-axial accelerometer, optimal cut-off points for each test value can be defined.
Collapse
|
102
|
Holtzer R, Ross D, Izzetoglu M. Intraindividual variability in neural activity in the prefrontal cortex during active walking in older adults. Psychol Aging 2020; 35:1201-1214. [PMID: 33180518 DOI: 10.1037/pag0000583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intraindividual variability in gait and cognitive performance is distinct from central-tendency measures and associated with clinical outcomes in aging. Knowledge concerning intraindividual variability in neural activity, however, has been relatively scarce, and no research to date has reported on such variability during active walking. The current study addressed this major gap in knowledge. Participants were community-residing older adults (n = 394; mean age = 76.29 ± 6.65 years; %female = 55). Functional near-infrared spectroscopy (fNIRS) was used to measure oxygenated hemoglobin (HbO2) in the prefrontal cortex under three experimental conditions: single-task-walk, single-task-alpha (cognitive task), and dual-task-walk, which required the participants to perform the two single tasks simultaneously. Intraindividual variability in neural activity was operationalized using the standard deviation of fNIRS-derived HbO2 observations assessed during a 30-s interval in each experimental condition. The increase in intraindividual variability in neural activity in the dual-task-walk condition compared to both single-task conditions was associated with the presence of cognitive impairments and being a male. Furthermore, measures of intraindividual variability in neural activity and gait performance were positively correlated only under the dual-task-walk condition. Intraindividual variability in the neural activity of gait may be a novel marker for age-related impairments in mobility and cognitive function. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University
| | - Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University
| |
Collapse
|
103
|
Binder E, Leimbach M, Pool EM, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Cortical reorganization after motor stroke: A pilot study on differences between the upper and lower limbs. Hum Brain Mapp 2020; 42:1013-1033. [PMID: 33165996 PMCID: PMC7856649 DOI: 10.1002/hbm.25275] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 11/11/2022] Open
Abstract
Stroke patients suffering from hemiparesis may show substantial recovery in the first months poststroke due to neural reorganization. While reorganization driving improvement of upper hand motor function has been frequently investigated, much less is known about the changes underlying recovery of lower limb function. We, therefore, investigated neural network dynamics giving rise to movements of both the hands and feet in 12 well-recovered left-hemispheric chronic stroke patients and 12 healthy participants using a functional magnetic resonance imaging sparse sampling design and dynamic causal modeling (DCM). We found that the level of neural activity underlying movements of the affected right hand and foot positively correlated with residual motor impairment, in both ipsilesional and contralesional premotor as well as left primary motor (M1) regions. Furthermore, M1 representations of the affected limb showed significantly stronger increase in BOLD activity compared to healthy controls and compared to the respective other limb. DCM revealed reduced endogenous connectivity of M1 of both limbs in patients compared to controls. However, when testing for the specific effect of movement on interregional connectivity, interhemispheric inhibition of the contralesional M1 during movements of the affected hand was not detected in patients whereas no differences in condition-dependent connectivity were found for foot movements compared to controls. In contrast, both groups featured positive interhemispheric M1 coupling, that is, facilitation of neural activity, mediating movements of the affected foot. These exploratory findings help to explain why functional recovery of the upper and lower limbs often develops differently after stroke, supporting limb-specific rehabilitative strategies.
Collapse
Affiliation(s)
- Ellen Binder
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Martha Leimbach
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva-Maria Pool
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Lukas J Volz
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany.,Institute for Clinical Neuroscience, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
104
|
Liang T, Zhang Q, Liu X, Lou C, Liu X, Wang H. Time-Frequency Maximal Information Coefficient Method and its Application to Functional Corticomuscular Coupling. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2515-2524. [PMID: 33001806 DOI: 10.1109/tnsre.2020.3028199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An important challenge in the study of functional corticomuscular coupling (FCMC) is an accurate capture of the coupling relationship between the cerebral cortex and the effector muscle. The coherence method is a linear analysis method, which has certain limitations in further revealing the nonlinear coupling between neural signals. Although mutual information (MI) and transfer entropy (TE) based on information theory can capture both linear and nonlinear correlations, the equitability of these algorithms is ignored and the nonlinear components of the correlation cannot be separated. The maximal information coefficient (MIC) is a suitable method to measure the coupling between neurophysiological signals. This study extends the MIC to the time-frequency domain, named time-frequency maximal information coefficient (TFMIC), to explore the FCMC in a specific frequency band. The effectiveness, equitability, and robustness of the algorithm on the simulation data was verified and compared with coherence, TE- and MI- based methods. Simulation results showed that the TFMIC could accurately detect the coupling for different functional relationships at low noise levels. The dorsiflexion experimental results revealed that the beta-band (14-30 Hz) significant coupling was observed at channels Cz, C4, FC4, and FCz. Additionally, the results showed that the coupling was higher in the alpha-band (8-13 Hz) and beta-band (14-30 Hz) than in the gamma-band (31-45 Hz). This might be related to a transition between sensorimotor states. Specifically, the nonlinear component of FCMC was also observed at channels Cz, C4, FC4, and FCz. This study expanded the research on nonlinear coupling components in FCMC.
Collapse
|
105
|
Pelicioni PHS, Lord SR, Okubo Y, Sturnieks DL, Menant JC. People With Parkinson’s Disease Exhibit Reduced Cognitive and Motor Cortical Activity When Undertaking Complex Stepping Tasks Requiring Inhibitory Control. Neurorehabil Neural Repair 2020; 34:1088-1098. [DOI: 10.1177/1545968320969943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background People with Parkinson’s disease (PD) have difficulties generating quick and accurate steps in anticipation of and/or in response to environmental hazards. However, neural mechanisms underlying performance in cognitively demanding stepping tasks are unclear. Objective This study compared activation patterns in cognitive and motor cortical regions using functional near-infrared spectroscopy (fNIRS) between people with PD and age-matched healthy older adults (HOA) during stepping tasks. Methods Fifty-two people with PD and 95 HOA performed a simple choice stepping reaction time test (CSRT) and 2 cognitively demanding stepping tests (inhibitory CSRT [iCSRT] and Stroop stepping test [SST]) on a computerized step mat. Cortical activation in the dorsolateral prefrontal cortex (DLPFC), Broca’s area, supplementary motor area (SMA), and premotor cortex (PMC) were recorded using fNIRS. Stepping performance and cortical activity were contrasted between groups and between the CSRT and the iCSRT and SST. Results The PD group performed worse than the HOA in all 3 stepping tests. A consistent pattern of interactions indicated differential hemodynamic responses between the groups. Compared with the CSRT, the PD group exhibited reduced DLPFC activity in the iCSRT and reduced SMA and PMC activity in the SST. The HOA exhibited increased DLPFC, SMA, and PMC activity when performing the SST in comparison with the CSRT task. Conclusions In contrast to the HOA, the PD group demonstrated reduced cortical activity in the DLPFC, SMA, and PMC during the more complex stepping tasks requiring inhibitory control. This may reflect subcortical and/or multiple pathway damage with subsequent deficient use of cognitive and motor resources.
Collapse
Affiliation(s)
- Paulo H. S. Pelicioni
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia
- School of Public Health and Community and Medicine, University of New South Wales, New South Wales, Australia
| | - Stephen R. Lord
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia
- School of Public Health and Community and Medicine, University of New South Wales, New South Wales, Australia
| | - Yoshiro Okubo
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia
- School of Public Health and Community and Medicine, University of New South Wales, New South Wales, Australia
| | - Daina L. Sturnieks
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Jasmine C. Menant
- Neuroscience Research Australia, University of New South Wales, New South Wales, Australia
- School of Public Health and Community and Medicine, University of New South Wales, New South Wales, Australia
| |
Collapse
|
106
|
Wang Y, Lü J, Rong J, Song L, Wang W, Jiang Y, Liu Y, Huang L. Acute Effects of Two Types of Dumbbell Exercise on Oxygenated Hemodynamic Concentration of Cerebral Activation in Healthy Young Male Adults: A Functional Near-Infrared Spectroscopy Study. Front Hum Neurosci 2020; 14:519171. [PMID: 33250726 PMCID: PMC7674780 DOI: 10.3389/fnhum.2020.519171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/01/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: To examine cerebral cortical activation differences in the frontal cortex and parietal lobe during the performance of two types of dumbbell exercise. Methods: A total of 22 young healthy male adults (mean age, 23.8 ± 2.05 years; height, 1.75 ± 0.06 m; weight, 71.4 ± 8.80 kg) participated in a crossover design study that involved two experimental exercise conditions: momentum dumbbell and conventional dumbbell. Performance tasks included 10, 10-s sets of single-arm dumbbell exercise, with a rest interval of 60 s between sets and a 5-min washout period between conditions. The primary outcome was the cerebral concentrations of oxygenated hemoglobin (HbO2) in the frontal cortex and parietal lobe assessed during performance of both exercises using functional near-infrared spectroscopy (fNIRS). The secondary outcome was upper-limb muscle activation measured using surface electromyography (sEMG). Outcome data were ascertained during exercise. Results: A significant between-condition difference in HbO2 was observed in the frontal and parietal regions with an increase in HbO2 during momentum, relative to conventional, dumbbell exercise (p < 0.05). Compared to conventional dumbbell exercise, performing a momentum dumbbell exercise led to a higher level of muscle activation in the anterior and posterior deltoids of the upper arm and in the flexor carpi radialis and extensor carpi radialis longus of the forearm (p < 0.05). However, no between-condition differences were found in the biceps and triceps brachii (p > 0.05). Conclusion: Dynamic, compared with conventional, dumbbell exercise resulted in higher hemodynamic responses and greater upper-limb muscle activation in young healthy adults. The findings of this study showed differential cortical hemodynamic responses during performance of the two types of dumbbell exercise with a higher activation level produced during momentum-based dumbbell exercise.
Collapse
Affiliation(s)
- Yana Wang
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai First Rehabilitation Hospital, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jifeng Rong
- Department of Rehabilitation Medicine, Shanghai First Rehabilitation Hospital, Shanghai, China
| | - Linjie Song
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wei Wang
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yifan Jiang
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Yu Liu Lingyan Huang
| | - Lingyan Huang
- Key Laboratory of Exercise and Health Science of Ministry of Education, Shanghai University of Sport, Shanghai, China
- *Correspondence: Yu Liu Lingyan Huang
| |
Collapse
|
107
|
Matsukawa K, Asahara R, Ishii K, Kunishi M, Yamashita Y, Hashiguchi Y, Liang N, Smith SA. Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans. J Appl Physiol (1985) 2020; 129:1161-1172. [DOI: 10.1152/japplphysiol.00392.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found using wireless near-infrared spectroscopy that prefrontal oxygenation increased before the onset of arbitrary over-ground walking, whereas the preexercise increase was absent when walking was suddenly started by cue. The difference in prefrontal oxygenation between start modes (considered related to central command) preceded heart rate response variances and demonstrated a positive relationship with the difference in heart rate. The central command-related prefrontal activity may contribute to cardiac adjustment, synchronized with the beginning of over-ground walking.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryota Asahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mayo Kunishi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yurino Yamashita
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Hashiguchi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
108
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Pelphrey K, Bhat A. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS One 2020; 15:e0240301. [PMID: 33119704 PMCID: PMC7595285 DOI: 10.1371/journal.pone.0240301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Engaging in socially embedded actions such as imitation and interpersonal synchrony facilitates relationships with peers and caregivers. Imitation and interpersonal synchrony impairments of children with Autism Spectrum Disorder (ASD) might contribute to their difficulties in connecting and learning from others. Previous fMRI studies investigated cortical activation in children with ASD during finger/hand movement imitation; however, we do not know whether these findings generalize to naturalistic face-to-face imitation/interpersonal synchrony tasks. Using functional near infrared spectroscopy (fNIRS), the current study assessed the cortical activation of children with and without ASD during a face-to-face interpersonal synchrony task. Fourteen children with ASD and 17 typically developing (TD) children completed three conditions: a) Watch-observed an adult clean up blocks; b) Do-cleaned up the blocks on their own; and c) Together-synchronized their block clean up actions to that of an adult. Children with ASD showed lower spatial and temporal synchrony accuracies but intact motor accuracy during the Together/interpersonal synchrony condition. In terms of cortical activation, children with ASD had hypoactivation in the middle and inferior frontal gyri (MIFG) as well as middle and superior temporal gyri (MSTG) while showing hyperactivation in the inferior parietal cortices/lobule (IPL) compared to the TD children. During the Together condition, the TD children showed bilaterally symmetrical activation whereas children with ASD showed more left-lateralized activation over MIFG and right-lateralized activation over MSTG. Additionally, using ADOS scores, in children with ASD greater social affect impairment was associated with lower activation in the left MIFG and more repetitive behavior impairment was associated with greater activation over bilateral MSTG. In children with ASD better communication performance on the VABS was associated with greater MIFG and/or MSTG activation. We identified objective neural biomarkers that could be utilized as outcome predictors or treatment response indicators in future intervention studies.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Hospital for Children, Wilmington, Delaware, United States of America
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kevin Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
109
|
Lee SH, Lee HJ, Shim Y, Chang WH, Choi BO, Ryu GH, Kim YH. Wearable hip-assist robot modulates cortical activation during gait in stroke patients: a functional near-infrared spectroscopy study. J Neuroeng Rehabil 2020; 17:145. [PMID: 33121535 PMCID: PMC7596937 DOI: 10.1186/s12984-020-00777-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background Gait dysfunction is common in post-stroke patients as a result of impairment in cerebral gait mechanism. Powered robotic exoskeletons are promising tools to maximize neural recovery by delivering repetitive walking practice. Objectives The purpose of this study was to investigate the modulating effect of the Gait Enhancing and Motivating System-Hip (GEMS-H) on cortical activation during gait in patients with chronic stroke. Methods. Twenty chronic stroke patients performed treadmill walking at a self-selected speed either with assistance of GEMS-H (GEMS-H) or without assistance of GEMS-H (NoGEMS-H). Changes in oxygenated hemoglobin (oxyHb) concentration in the bilateral primary sensorimotor cortex (SMC), premotor cortices (PMC), supplemental motor areas (SMA), and prefrontal cortices (PFC) were recorded using functional near infrared spectroscopy. Results Walking with the GEMS-H promoted symmetrical SMC activation, with more activation in the affected hemisphere than in NoGEMS-H conditions. GEMS-H also decreased oxyHb concentration in the late phase over the ipsilesional SMC and bilateral SMA (P < 0.05). Conclusions The results of the present study reveal that the GEMS-H promoted more SMC activation and a balanced activation pattern that helped to restore gait function. Less activation in the late phase over SMC and SMA during gait with GEMS-H indicates that GEMS-H reduces the cortical participation of stroke gait by producing rhythmic hip flexion and extension movement and allows a more coordinate and efficient gait patterns. Trial registration NCT03048968. Registered 06 Feb 2017
Collapse
Affiliation(s)
- Su-Hyun Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 115, Gangnam-gu, Seoul, 06355, Republic of Korea
| | - Hwang-Jae Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 115, Gangnam-gu, Seoul, 06355, Republic of Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Youngbo Shim
- Samsung Research, Samsung Electronics, 56, Seongchon-gil, Seocho-gu, Seoul, 06756, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 115, Gangnam-gu, Seoul, 06355, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Gyu-Ha Ryu
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.,The Office of R&D Strategy & Planning, Samsung Medical Center, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 115, Gangnam-gu, Seoul, 06355, Republic of Korea. .,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
110
|
Phase dependent modulation of cortical activity during action observation and motor imagery of walking: An EEG study. Neuroimage 2020; 225:117486. [PMID: 33164857 DOI: 10.1016/j.neuroimage.2020.117486] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/01/2023] Open
Abstract
Action observation (AO) and motor imagery (MI) are motor simulations which induce cortical activity related to execution of observed and imagined movements. Neuroimaging studies have mainly investigated where the cortical activities during AO and MI of movements are activated and if they match those activated during execution of the movements. However, it remains unclear how cortical activity is modulated; in particular, whether activity depends on observed or imagined phases of movements. We have previously examined the neural mechanisms underlying AO and MI of walking, focusing on the combined effect of AO with MI (AO+MI) and phase dependent modulation of corticospinal and spinal reflex excitability. Here, as a continuation of our previous studies, we investigated cortical activity depending on gait phases during AO and AO+MI of walking by using electroencephalography (EEG); 64-channel EEG signals were recorded in which participants observed walking with or without imagining it, respectively. EEG source and spectral analyses showed that, in the sensorimotor cortex during AO+MI and AO, the alpha and beta power were decreased, and power spectral modulations depended on walking phases. The phase dependent modulations during AO+MI, but not during AO, were like those which occur during actual walking as reported by previous walking studies. These results suggest that combinatory effects of AO+MI could induce parts of the phase dependent activation of the sensorimotor cortex during walking even without any movements. These findings would extend understanding of the neural mechanisms underlying walking and cognitive motor processes and provide clinically beneficial information towards rehabilitation for patients with neurological gait dysfunctions.
Collapse
|
111
|
Kim HJ, Bae S, Huh JH, Lee JW, Han DH. Hemodynamic Changes in Response to Aerobic Exercise: Near-infrared Spectroscopy Study. Int J Sports Med 2020; 42:377-385. [PMID: 33075828 DOI: 10.1055/a-1198-8465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study aimed to determine the neurophysiological mechanisms underlying the effects of aerobic exercise, which influence brain O2 consumption, on cognitive enhancement. Sixteen healthy men were asked to complete a 2-back test at rest and after moderate and high-intensity aerobic exercise. During the 2-back test, hemodynamic changes within the prefrontal cortex were assessed using high-density functional near-infrared spectroscopy. Scores of the 2-back test, regardless of the exercise intensity, were positively correlated with the hemodynamic changes within the right and left dorsolateral prefrontal cortex (DLPFC). During an 2-back test, there were differences in the hemodynamic changes within the DLPFC with moderate and high-intensity exercise conditions. In the 2-back condition, the accumulated oxyhemoglobin within the right DLPFC after moderate intensity exercise was 7.9% lower than that at baseline, while the accumulated oxyhemoglobin within the left DLPFC was 14.6% higher than that at baseline after high-intensity exercise. In response to the 2-back test, the accumulated oxygenated hemoglobin within the left DLPFC after high-intensity exercise increased more significantly than that observed after moderate intensity exercise. These results show that the right DLPFC consumes O2 more efficiently in response to moderate intensity aerobic exercise than in response to high-intensity aerobic exercise.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Sujin Bae
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| | - Jung Hun Huh
- Department of Human Motor Behavior, Chung-Ang University, An-seong, Korea (the Republic of)
| | - Jea Woog Lee
- Department of Information & Technology in Sport, Chung-Ang University, An-seong, Korea (the Republic of)
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Korea (the Republic of)
| |
Collapse
|
112
|
Reinhardt J, Rus-Oswald OG, Bürki CN, Bridenbaugh SA, Krumm S, Michels L, Stippich C, Kressig RW, Blatow M. Neural Correlates of Stepping in Healthy Elderly: Parietal and Prefrontal Cortex Activation Reflects Cognitive-Motor Interference Effects. Front Hum Neurosci 2020; 14:566735. [PMID: 33132879 PMCID: PMC7550687 DOI: 10.3389/fnhum.2020.566735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julia Reinhardt
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology, Division of Diagnostic and Interventional Neuroradiology, University Hospital of Basel, University of Basel, Basel, Switzerland
- *Correspondence: Julia Reinhardt,
| | - Oana G. Rus-Oswald
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Céline N. Bürki
- Department of Radiology, Division of Diagnostic and Interventional Neuroradiology, University Hospital of Basel, University of Basel, Basel, Switzerland
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | | | - Sabine Krumm
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Stippich
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto W. Kressig
- University Department of Geriatric Medicine Felix Platter, Basel, Switzerland
| | - Maria Blatow
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
113
|
Joo SY, Cho YS, Lee KJ, Lee SY, Seo CH. Frontal lobe oxyhemoglobin levels in patients with lower extremity burns assessed using a functional near-Infrared spectroscopy device during usual walking: a pilot study. Comput Methods Biomech Biomed Engin 2020; 24:115-121. [PMID: 32915075 DOI: 10.1080/10255842.2020.1812583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Understanding the mechanisms associated with locomotor networks may be of benefit for rehabilitation of burn victims with neurological locomotor deficits. A wearable functional near-infrared spectroscopy (fNIRS) device has been developed for studying cortical hemodynamics. OBJECTIVES To investigate cortical brain activity during usual walking, we examined patterns of cortical activation using fNIRS device (NIRSIT®; OBELAB Inc., Seoul, Korea), in patients with neurological injury caused by lower extremity burns. METHODS This cross-sectional study assessed 15 patients with lower extremity burns, 10 patients with upper extremity burns, and 11 healthy controls. We measured walking-related cortical activity using an fNIRS device at baseline and during usual walking. RESULTS There was no significant difference between the burns groups in terms of age (43.50 ± 14.08 and 44.67 ± 6.92 years, P = 1.00), pain score of NRS (Numeric rating scale) (5.83 ± 1.19 and 6.67 ± 1.21, P = 0.18) or the mean time since injury (228.50 ± 83.43 and 199.33 ± 68.84 days, P = 0.78). Measures showed increased cortical activation in the prefrontal cortex in patients with lower extremity burns than in patients with healthy controls(P = 0.015). The measured HbO2 datas of the regions during usual walking in patients with lower extremity burn were insignificantly higher compared with the datas in patient with upper extremity burn (P = 0.302). CONCLUSIONS The patients with neurological injury due to lower extremity burns significantly rely more on cognitive resources even when performing a usual walking task.
Collapse
Affiliation(s)
- So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Kuem Ju Lee
- Department of Rehabilitation & Assistive Technology, Korea National Rehabilitation Research Institute, National Rehabilitation Center, Seoul, Korea
| | - Seung Yeol Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Soonchunhyang University Hospital, Bucheon, Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| |
Collapse
|
114
|
Carius D, Seidel-Marzi O, Kaminski E, Lisson N, Ragert P. Characterizing hemodynamic response alterations during basketball dribbling. PLoS One 2020; 15:e0238318. [PMID: 32881901 PMCID: PMC7470377 DOI: 10.1371/journal.pone.0238318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
Knowledge on neural processing during complex non-stationary motion sequences of sport-specific movements still remains elusive. Hence, we aimed at investigating hemodynamic response alterations during a basketball slalom dribbling task (BSDT) using multi-distance functional near-infrared spectroscopy (fNIRS) in 23 participants (12 females). Additionally, we quantified how the brain adapts its processing as a function of altered hand use (dominant right hand (DH) vs. non-dominant left hand (NDH) vs. alternating hands (AH)) and pace of execution (slow vs. fast) in BSDT. We found that BSDT activated bilateral premotor cortex (PMC), supplementary motor cortex (SMA), primary motor cortex (M1) as well as inferior parietal cortex and somatosensory association cortex. Slow dominant hand dribbling (DHslow) evoked lower contralateral hemodynamic responses in sensorimotor regions compared to fast dribbling (DHfast). Furthermore, during DHslow dribbling, we found lower hemodynamic responses in ipsilateral M1 as compared to dribbling with alternating hands (AHslow). Hence, altered task complexity during BSDT induced differential hemodynamic response patterns. Furthermore, a correlation analysis revealed that lower levels of perceived task complexity are associated with lower hemodynamic responses in ipsilateral PMC-SMA, which is an indicator for neuronal efficiency in participants with better basketball dribbling skills. The present study extends previous findings by showing that varying levels of task complexity are reflected by specific hemodynamic response alterations even during sports-relevant motor behavior. Taken together, we suggest that quantifying brain activation during complex movements is a prerequisite for assessing brain-behavior relations and optimizing motor performance.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Oliver Seidel-Marzi
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elisabeth Kaminski
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Niklas Lisson
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
115
|
Passive, yet not inactive: robotic exoskeleton walking increases cortical activation dependent on task. J Neuroeng Rehabil 2020; 17:107. [PMID: 32778109 PMCID: PMC7418323 DOI: 10.1186/s12984-020-00739-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Experimental designs using surrogate gait-like movements, such as in functional magnetic resonance imaging (MRI), cannot fully capture the cortical activation associated with overground gait. Overground gait in a robotic exoskeleton may be an ideal tool to generate controlled sensorimotor stimulation of gait conditions like ‘active’ (i.e. user moves with the device) and ‘passive’ (i.e. user is moved by the device) gait. To truly understand these neural mechanisms, functional near-infrared spectroscopy (fNIRS) would yield greater ecological validity. Thus, the aim of this experiment was to use fNIRS to delineate brain activation differences between ‘Active’ and ‘Passive’ overground gait in a robotic exoskeleton. Methods Fourteen healthy adults performed 10 walking trials in a robotic exoskeleton for Passive and Active conditions, with fNIRS over bilateral frontal and parietal lobes, and electromyography (EMG) over bilateral thigh muscles. Digitization of optode locations and individual T1 MRI scans were used to demarcate the brain regions fNIRS recorded from. Results Increased oxyhemoglobin in the right frontal cortex was found for Passive compared with Active conditions. For deoxyhemoglobin, increased activation during Passive was found in the left frontal cortex and bilateral parietal cortices compared with Active; one channel in the left parietal cortex decreased during Active when compared with Passive. Normalized EMG mean amplitude was higher in the Active compared with Passive conditions for all four muscles (p ≤ 0.044), confirming participants produced the conditions asked of them. Conclusions The parietal cortex is active during passive robotic exoskeleton gait, a novel finding as research to date has not recorded posterior to the primary somatosensory cortex. Increased activation of the parietal cortex may be related to the planning of limb coordination while maintaining postural control. Future neurorehabilitation research could use fNIRS to examine whether exoskeletal gait training can increase gait-related brain activation with individuals unable to walk independently.
Collapse
|
116
|
Kim H, Park G, Shin JH, You JH. Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial. Sci Rep 2020; 10:12461. [PMID: 32719420 PMCID: PMC7385173 DOI: 10.1038/s41598-020-69367-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Detecting neuroplastic changes during locomotor neurorehabilitation is crucial for independent primal motor behaviours. However, long-term locomotor training-related neuroplasticity remains unexplored. We compared the effects of end-effector robot-assisted gait training (E-RAGT) and bodyweight-supported treadmill training (BWST) on cortical activation in individuals with hemiparetic stroke. Twenty-three men and five women aged 53.2 ± 11.2 years were recruited and randomly assigned to participate in E-RAGT (n = 14) or BWST (n = 14) for 30 min/day, 5 days/week, for 4 weeks. Cortical activity, lower limb motor function, and gait speed were evaluated before and after training. Activation of the primary sensorimotor cortex, supplementary motor area, and premotor cortex in the affected hemisphere significantly increased only in the E-RAGT group, although there were no significant between-group differences. Clinical outcomes, including the Fugl-Meyer assessment (FMA), timed up and go test, and 10-m walk test scores, improved after training in both groups, with significantly better FMA scores in the E-RAGT group than in the BWST group. These findings suggest that E-RAGT effectively improves neuroplastic outcomes in hemiparetic stroke, although its superiority over conventional training remains unclear. This may have clinical implications and provides insight for clinicians interested in locomotor neurorehabilitation after hemiparetic stroke.Trial Registration: ClinicalTrials.gov Identifier NCT04054739 (12/08/2019).
Collapse
Affiliation(s)
- Hayeon Kim
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Republic of Korea
| | - Gyulee Park
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Republic of Korea
| | - Joon-Ho Shin
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Seoul, Republic of Korea. .,Department of Rehabilitation Medicine, National Rehabilitation Center, 58, Samgaksan-ro, Gangbuk-gu, Seoul, 01022, Republic of Korea.
| | - Joshua H You
- Department of Physical Therapy, Dynamic Movement Institute and Technology, College of Health Science, Sports Movement Artificial-Intelligence Robotics Technology (SMART) Institute, "Yonsei GOODWELLNESS Center" for Sports, Wellness, and Fitness Across Life Span Disabilities, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
117
|
Identifying Resting-State Functional Connectivity Changes in the Motor Cortex Using fNIRS During Recovery from Stroke. Brain Topogr 2020; 33:710-719. [PMID: 32685998 DOI: 10.1007/s10548-020-00785-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/11/2020] [Indexed: 12/23/2022]
Abstract
Resting-state functional imaging has been used to study the functional reorganization of the brain. The application of functional near-infrared spectroscopy (fNIRS) to assess resting-state functional connectivity (rsFC) has already been demonstrated in recent years. The present study aimed to identify the difference in rsFC patterns during the recovery from the upper-limb deficit due to stroke. Twenty patients with mild stroke having an onset of four to eight weeks were recruited from the stroke clinic of our institute and an equal number of healthy volunteers were included in the study after ethical committee approval. The fNIRS signals were recorded bilaterally over the premotor area and supplementary motor area and over the primary motor cortex. Pearson Correlation is the method used to compute rsFC for the healthy group and patient group. For the healthy group, both intra-hemispheric and inter-hemispheric connections were stronger. RSFC analysis demonstrated changes from the healthy pattern for the patient group with an upper-limb deficit. The left hemisphere affected group showed disrupted ipsilesional and an increased contra-lesional connectivity. The longitudinal data analysis of rsFC showed improvement in the connections in the ipsilesional hemisphere between the primary motor area, somatosensory area, and premotor areas. In the future, the rsFC changes during the recovery could be used to predict the extent of recovery from stroke motor deficits.
Collapse
|
118
|
Cinar E, Saxena S, Gagnon I. Differential Effects of Concurrent Tasks on Gait in Typically Developing Children: A Meta-Analysis. J Mot Behav 2020; 53:509-522. [PMID: 32677588 DOI: 10.1080/00222895.2020.1791038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The objective of this study was to systematically analyze the literature surrounding dual-task (DT) effects on gait in typically developing children (TDC) and to conduct meta-analyses where applicable. After reviewing the abstracts of 676 articles, a total of 22 studies were included. The outcomes of interest were relative change in gait speed, cadence, stride length, double support time, variability in stride length between single and DT walking; and the exposures were concurrent tasks used for DT gait assessment. DT significantly affected each gait parameter (point estimate (PE), ranged from PE, -0.10; 95% CI, -0.13 to -0.08; p < .001 to PE, -0.66; 95% CI, -0.94 to -0.38; p < .001). The strength of DT effects varied by the concurrent task used. The greatest DT effect on gait speed, which was the most commonly presented outcome, was reported when upper extremity complex functional tasks (PE, -0.36; 95% CI, -0.49 to -0.23; p < .001, fine motor tasks (PE, -0.35; 95% CI, -0.38 to -0.32; p < .001), and verbal fluency tasks (PE, -0.26; 95% CI, -0.30 to -0.21; p < .001) were completed concurrently with gait. Children and adolescents experience performance decrements when they walk under DT conditions. Concurrent tasks differentially affect the degree of DT interference for each gait parameter.
Collapse
Affiliation(s)
- Eda Cinar
- School of Physical and Occupational Therapy, McGill University, Montréal, Québec, Canada
| | - Shikha Saxena
- School of Physical and Occupational Therapy, McGill University, Montréal, Québec, Canada.,Children's Hospital of Eastern Ontario Research Institute University of Ottawa, Ottawa, Ontario, Canada
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University, Montréal, Québec, Canada.,Concussion Research Lab, Trauma Center, Montreal Children's Hospital, MUHC, Westmount, Québec, Canada
| |
Collapse
|
119
|
Dynamics of the Prefrontal Cortex during Chess-Based Problem-Solving Tasks in Competition-Experienced Chess Players: An fNIR Study. SENSORS 2020; 20:s20143917. [PMID: 32674476 PMCID: PMC7411872 DOI: 10.3390/s20143917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
Abstract
This study aimed to compare the dynamics of the prefrontal cortex (PFC), between adult and adolescent chess players, during chess-based problem-solving tasks of increasing level of difficulty, relying on the identification of changes in oxygenated hemoglobin (HbO2) and hemoglobin (HHb) through the functional near-infrared spectroscopy (fNIRS) method. Thirty male federated chess players (mean age: 24.15 ± 12.84 years), divided into adults and adolescents, participated in this cross-sectional study. Participants were asked to solve three chess problems with different difficulties (low, medium, and high) while changes in HbO2 and HHb were measured over the PFC in real-time with an fNIRS system. Results indicated that the left prefrontal cortex (L-PFC) increased its activation with the difficulty of the task in both adolescents and adults. Interestingly, differences in the PFC dynamics but not in the overall performance were found between adults and adolescents. Our findings contributed to a better understanding of the PFC resources mobilized during complex tasks in both adults and adolescents.
Collapse
|
120
|
Almulla L, Al-Naib I, Althobaiti M. Hemodynamic responses during standing and sitting activities: a study toward fNIRS-BCI. Biomed Phys Eng Express 2020; 6:055005. [PMID: 33444236 DOI: 10.1088/2057-1976/aba102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we utilized functional near-infrared spectroscopy (fNIRS) technology to examine the hemodynamic responses in the motor cortex for two conditions, namely standing and sitting tasks. Nine subjects performed five trials of standing and sitting (SAS) tasks with both real movements and imagery thinking of SAS. A group level of statistical parametric mapping (SPM) analysis during these tasks showed bilateral activation of oxy-hemoglobin for both real movements and imagery experiments. Interestingly, the SPM analysis clearly revealed that the sitting tasks induced a higher oxy-hemoglobin level activation compared to the standing task. Remarkably, this finding is persistent across the 22 measured channels at the individual and group levels for both experiments. Furthermore, six features were extracted from pre-processed HbO signals and the performance of four different classifiers was examined in order to test the viability of using SAS tasks in future fNIRS-brain-computer interface (fNIRS-BCI) systems. In particular, two features-combination tests revealed that the signal slope with signal variance represents one of the three best two-combined features for its consistency in providing high accuracy results for both real and imagery experiments. This study shows the potential of implementing such tasks into the fNIRS-BCI system. In the future, the results of this work could pave the way towards the application of fNIRS-BCI in lower limb rehabilitation.
Collapse
Affiliation(s)
- Latifah Almulla
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | | |
Collapse
|
121
|
Mild Cognitive Impairments Attenuate Prefrontal Cortex Activations during Walking in Older Adults. Brain Sci 2020; 10:brainsci10070415. [PMID: 32630216 PMCID: PMC7407944 DOI: 10.3390/brainsci10070415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 01/15/2023] Open
Abstract
The presence of Mild Cognitive Impairments (MCI) is associated with worse gait performance. However, the effect of MCI on cortical control of gait, as assessed during active walking, is unknown. We hypothesized that MCI would be associated with attenuated activations and limited improvement in efficiency in the Prefrontal cortex (PFC) under cognitively-demanding walking conditions. Functional Near-Infrared Spectroscopy (fNIRS) was used to assess Oxygenated Hemoglobin (HbO2) in the PFC during Single-Task-Walk (STW), cognitive interference (Alpha) and Dual-Task-Walk (DTW) conditions. Three repeated trials in each experimental condition were administered. Healthy control (n = 71; mean age = 76.82 ± 6.21 years; %female = 50.7) and MCI (n = 11; mean age = 78.27 ± 4.31 years; %female = 45.5) participants were included. The increase in HbO2 from STW to DTW was attenuated among MCI participants compared to controls (estimate = 0.505; p = 0.001). Whereas, among controls, HbO2 increased from Alpha to DTW, the opposite was observed among MCI participants (estimate = 0.903; p < 0.001). In DTW, the decline in HbO2 from trial 1 to 2 was attenuated in MCI participants compared to controls (estimate = 0.397; p = 0.008). Moreover, whereas HbO2 declined from trial 1 to 3 among controls, MCI participants showed the opposite trend (estimate = 0.946; p < 0.001). MCI was associated with attenuated brain activation patterns and compromised ability to improve PFC efficiency during dual-task walking.
Collapse
|
122
|
Yokoyama H, Kaneko N, Masugi Y, Ogawa T, Watanabe K, Nakazawa K. Gait-phase-dependent and gait-phase-independent cortical activity across multiple regions involved in voluntary gait modifications in humans. Eur J Neurosci 2020; 54:8092-8105. [PMID: 32557966 DOI: 10.1111/ejn.14867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
Modification of ongoing walking movement to fit changes in external environments requires accurate voluntary control. In cats, the motor and posterior parietal cortices have crucial roles for precisely adjusting limb trajectory during walking. In human walking, however, it remains unclear which cortical information contributes to voluntary gait modification. In this study, we investigated cortical activity changes associated with visually guided precision stepping using electroencephalography source analysis. Our results demonstrated frequency- and gait-event-dependent changes in the cortical power spectrum elicited by voluntary gait modification. The main differences between normal walking and precision stepping were as follows: (a) the alpha, beta or gamma power decrease during the swing phases in the sensorimotor, anterior cingulate and parieto-occipital cortices, and (b) a power decrease in the theta, alpha and beta bands and increase in the gamma band throughout the gait cycle in the parieto-occipital cortex. Based on the previous knowledge of brain functions, the former change was considered to be related to execution and planning of leg movement, while the latter change was considered to be related to multisensory integration and motor awareness. Therefore, our results suggest that the gait modification is achieved by higher cortical involvements associated with different sensorimotor-related functions across multiple cortical regions including the sensorimotor, anterior cingulate and parieto-occipital cortices. The results imply the critical importance of the cortical contribution to voluntary modification in human locomotion. Further, the observed cortical information related to voluntary gait modification would contribute to developing volitional control systems of brain-machine interfaces for walking rehabilitation.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naotsugu Kaneko
- Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Saitama, Japan
| | - Tetsuya Ogawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Department of Clothing, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Art & Design, University of New South Wales, Sydney, NSW, Australia.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
123
|
Berchicci M, Russo Y, Bianco V, Quinzi F, Rum L, Macaluso A, Committeri G, Vannozzi G, Di Russo F. Stepping forward, stepping backward: a movement-related cortical potential study unveils distinctive brain activities. Behav Brain Res 2020; 388:112663. [DOI: 10.1016/j.bbr.2020.112663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023]
|
124
|
Zhu Y, Rodriguez-Paras C, Rhee J, Mehta RK. Methodological Approaches and Recommendations for Functional Near-Infrared Spectroscopy Applications in HF/E Research. HUMAN FACTORS 2020; 62:613-642. [PMID: 31107601 DOI: 10.1177/0018720819845275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The objective of this study was to systematically document current methods and protocols employed when using functional near-infrared spectroscopy (fNIRS) techniques in human factors and ergonomics (HF/E) research and generate recommendations for conducting and reporting fNIRS findings in HF/E applications. METHOD A total of 1,687 articles were identified through Ovid-MEDLINE, PubMed, Web of Science, and Scopus databases, of which 37 articles were included in the review based on review inclusion/exclusion criteria. RESULTS A majority of the HF/E fNIRS investigations were found in transportation, both ground and aviation, and in assessing cognitive (e.g., workload, working memory) over physical constructs. There were large variations pertaining to data cleaning, processing, and analysis approaches across the studies that warrant standardization of methodological approaches. The review identified major challenges in transparency and reporting of important fNIRS data collection and analyses specifications that diminishes study replicability, introduces potential biases, and increases likelihood of inaccurate results. As such, results reported in existing fNIRS studies need to be cautiously approached. CONCLUSION To improve the quality of fNIRS investigations and/or to facilitate its adoption and integration in different HF/E applications, such as occupational ergonomics and rehabilitation, recommendations for fNIRS data collection, processing, analysis, and reporting are provided.
Collapse
Affiliation(s)
- Yibo Zhu
- 14736 Texas A&M University, College Station, USA
| | | | - Joohyun Rhee
- 14736 Texas A&M University, College Station, USA
| | | |
Collapse
|
125
|
Orcioli-Silva D, Vitório R, Nóbrega-Sousa P, da Conceição NR, Beretta VS, Lirani-Silva E, Gobbi LTB. Levodopa Facilitates Prefrontal Cortex Activation During Dual Task Walking in Parkinson Disease. Neurorehabil Neural Repair 2020; 34:589-599. [DOI: 10.1177/1545968320924430] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background. Although dopaminergic medication improves dual task walking in people with Parkinson disease (PD), the underlying neural mechanisms are not yet fully understood. As prefrontal cognitive resources are involved in dual task walking, evaluation of the prefrontal cortex (PFC) is required. Objective. To investigate the effect of dopaminergic medication on PFC activity and gait parameters during dual task walking in people with PD. Methods. A total of 20 individuals with PD (69.8 ± 5.9 years) and 30 healthy older people (68.0 ± 5.6 years) performed 2 walking conditions: single and dual task (walking while performing a digit vigilance task). A mobile functional near infrared spectroscopy system and an electronic sensor carpet were used to analyze PFC activation and gait parameters, respectively. Relative concentrations of oxygenated hemoglobin (HbO2) from the left and right PFC were measured. Results. People with PD in the off state did not present changes in HbO2 level in the left PFC across walking conditions. In contrast, in the on state, they presented increased HbO2 levels during dual task compared with single task. Regardless of medication state, people with PD presented increased HbO2 levels in the right PFC during dual task walking compared with single task. The control group demonstrated increased PFC activity in both hemispheres during dual task compared with single task. People with PD showed increases in both step length and velocity in the on state compared with the off state. Conclusions. PD limits the activation of the left PFC during dual task walking, and dopaminergic medication facilitates its recruitment.
Collapse
Affiliation(s)
- Diego Orcioli-Silva
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Rodrigo Vitório
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Priscila Nóbrega-Sousa
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Núbia Ribeiro da Conceição
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Victor Spiandor Beretta
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Ellen Lirani-Silva
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Lilian Teresa Bucken Gobbi
- Institute of Biosciences, Posture and Gait Studies Laboratory (LEPLO), São Paulo State University (UNESP), Rio Claro, Brazil
- Graduate Program in Movement Sciences, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
126
|
Cortical Tasks-Based Optimal Filter Selection: An fNIRS Study. JOURNAL OF HEALTHCARE ENGINEERING 2020. [DOI: 10.1155/2020/9152369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is one of the latest noninvasive brain function measuring technique that has been used for the purpose of brain-computer interfacing (BCI). In this paper, we compare and analyze the effect of six most commonly used filtering techniques (i.e., Gaussian, Butterworth, Kalman, hemodynamic response filter (hrf), Wiener, and finite impulse response) on classification accuracies of fNIRS-BCI. To conclude with the best optimal filter for a specific cortical task owing to a specific cortical region, we divided our experimental tasks according to the three main cortical regions: prefrontal, motor, and visual cortex. Three different experiments were performed for prefrontal and motor execution tasks while one for visual stimuli. The tasks performed for prefrontal include rest (R) vs mental arithmetic (MA), R vs object rotation (OB), and OB vs MA. Similarly, for motor execution, R vs left finger tapping (LFT), R vs right finger tapping (RFT), and LFT vs RFT. Likewise, for the visual cortex, R vs visual stimuli (VS) task. These experiments were performed for ten trials with five subjects. For consistency among extracted data, six statistical features were evaluated using oxygenated hemoglobin, namely, slope, mean, peak, kurtosis, skewness, and variance. Combination of these six features was used to classify data by the nonlinear support vector machine (SVM). The classification accuracies obtained from SVM by using hrf and Gaussian were significantly higher for R vs MA, R vs OB, R vs RFT, and R vs VS and Wiener filter for OB vs MA. Similarly, for R vs LFT and LFT vs RFT, hrf was found to be significant p<0.05. These results show the feasibility of using hrf for effective removal of noises from fNIRS data.
Collapse
|
127
|
Dierick F, Buisseret F, Renson M, Luta AM. Digital natives and dual task: Handling it but not immune against cognitive-locomotor interferences. PLoS One 2020; 15:e0232328. [PMID: 32428037 PMCID: PMC7236988 DOI: 10.1371/journal.pone.0232328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Digital natives developed in an electronic dual tasking world. This paper addresses two questions. Do digital natives respond differently under a cognitive load realized during a locomotor task in a dual-tasking paradigm and how does this address the concept of safety? We investigate the interplay between cognitive (talking and solving Raven’s matrices) and locomotor (walking on a treadmill) tasks in a sample of 17 graduate level participants. The costs of dual-tasking on gait were assessed by studying changes in stride interval time and its variability at long-range. A safety index was designed and computed from total relative change between the variability indices in the single walking and dual-task conditions. As expected, results indicate high Raven’s scores with gait changes found between the dual task conditions compared to the single walking task. Greater changes are observed in the talking condition compared to solving Raven’s matrices, resulting in high safety index values observed in 5 participants. We conclude that, although digital natives are efficient in performing the dual tasks when they are not emotional-based, modification of gait are observable. Due to the variation within participants and the observation of high safety index values in several of them, individuals that responded poorly to low cognitive loads should be encouraged to not perform dual task when executing a primate task of safety to themselves or others.
Collapse
Affiliation(s)
- Frédéric Dierick
- CeREF, Mons, Belgium
- Centre National de Rééducation Fonctionnelle et de Réadaptation – Rehazenter, Laboratoire d’Analyse du Mouvement et de la Posture (LAMP), Luxembourg, Grand-Duché de Luxembourg
- * E-mail:
| | - Fabien Buisseret
- CeREF, Mons, Belgium
- Laboratoire Forme et Fonctionnement Humain, HELHa, Montignies-sur-Sambre, Belgium
- Service de Physique Nucléaire et Subnucléaire, Université de Mons, UMONS Research Institute for Complex Systems, Mons, Belgium
| | - Mathieu Renson
- Laboratoire Forme et Fonctionnement Humain, HELHa, Montignies-sur-Sambre, Belgium
| | - Adèle Mae Luta
- Eleda International Ltd, Ormond Beach, Florida, United States of America
| |
Collapse
|
128
|
Caliandro P, Molteni F, Simbolotti C, Guanziroli E, Iacovelli C, Reale G, Giovannini S, Padua L. Exoskeleton-assisted gait in chronic stroke: An EMG and functional near-infrared spectroscopy study of muscle activation patterns and prefrontal cortex activity. Clin Neurophysiol 2020; 131:1775-1781. [PMID: 32506008 DOI: 10.1016/j.clinph.2020.04.158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 04/16/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Gait impairment dramatically affects stroke patients' functional independence. The Ekso™ is a wearable powered exoskeleton able to improve over-ground gait abilities, but the relationship between the cortical gait control mechanisms and lower limbs kinematics is still unclear. Our aims are: to assess whether the Ekso™ induces an attention-demanding process with prefrontal cortex activation during a gait task; to describe the relationship between the gait-induced muscle activation pattern and the prefrontal cortex activity. METHODS We enrolled 22 chronic stroke patients and 15 matched controls. We registered prefrontal cortex (PFC) activity with functional Near-Infrared Spectroscopy (fNIRS) and muscle activation with surface-electromyography (sEMG) during an over-ground gait task, performed with and without the Ekso™. RESULTS We observed prefrontal cortex activation during normal gait and a higher activation during Ekso-assisted walking among stroke patients. Furthermore, we found that muscle hypo-activation and co-activation of non-paretic limb are associated to a high prefrontal metabolism. CONCLUSIONS Among stroke patients, over-ground gait is an attention-demanding task. Prefrontal activity is modulated both by Ekso-assisted tasks and muscle activation patterns of non-paretic lower limb. Further studies are needed to elucidate if other Ekso™ settings induce different cortical and peripheral effects. SIGNIFICANCE This is the first study exploring the relationship between central and peripheral mechanisms during an Ekso-assisted gait task.
Collapse
Affiliation(s)
- Pietro Caliandro
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17 23845 Costa Masnaga, Lecco, Italy
| | - Chiara Simbolotti
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17 23845 Costa Masnaga, Lecco, Italy
| | | | - Giuseppe Reale
- Department of Geriatrics, Neurosciences and Orthopedics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Giovannini
- Rehabilitation Units, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Luca Padua
- Department of Geriatrics, Neurosciences and Orthopedics, Università Cattolica del Sacro Cuore, Rome, Italy; Neurorehabilitation Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
129
|
Schack J, Pripp AAH, Mirtaheri P, Steen H, Güler E, Gjøvaag T. Increased prefrontal cortical activation during challenging walking conditions in persons with lower limb amputation - an fNIRS observational study. Physiother Theory Pract 2020; 38:255-265. [PMID: 32367750 DOI: 10.1080/09593985.2020.1758979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Lower limb amputation (LLA) alters the sensorimotor control systems. Despite the self-reports of increased attention during mobility, the interaction between mobility and cognitive control mechanisms is not fully understood.Objective: Concurrently evaluate walking performance and prefrontal cortical (PFC) activity in persons with and without LLA during different walking conditions.Methods: Thirty-nine persons with LLA and thirty-three able-bodied controls participated. Walking performance was evaluated using the Figure-of 8-walk-test during three conditions: 1) UW (Usual walking with self-selected walking speed); 2) WCT (walking and carrying a tray with two cups filled with water); and 3) WUT (walking on uneven terrain). PFC activity was assessed using functional near-infrared spectroscopy (fNIRS). Linear mixed models were used to detect changes between groups and between walking conditions within each group.Results: Between-group comparisons showed increased PFC activity in persons with LLA during UW and WUT, and a significant decrease in walking performance during WCT and WUT compared to controls. Within-group comparisons showed increased PFC activity during WUT compared with UW and WCT and an overall difference in walking performance between the conditions (WU > WUT > WCT) in both groups. However, the effect of walking condition on PFC activity and walking performance was not modified by group (P > .1).Conclusion: The results suggest that persons with LLA have increased attentional demands during walking but choose the same cognitive-mobility strategy during challenging walking conditions as able-bodied persons. However, the attentional demands seem to depend on the complexity of the task.
Collapse
Affiliation(s)
- Jette Schack
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - aAre Hugo Pripp
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Peyman Mirtaheri
- Faculty Of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Harald Steen
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,Biomechanics Lab, Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | - Evin Güler
- Faculty Of Technology, Art and Design, Oslo Metropolitan University, Oslo, Norway
| | - Terje Gjøvaag
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
130
|
Holtzer R, Izzetoglu M, Chen M, Wang C. Distinct fNIRS-Derived HbO2 Trajectories During the Course and Over Repeated Walking Trials Under Single- and Dual-Task Conditions: Implications for Within Session Learning and Prefrontal Cortex Efficiency in Older Adults. J Gerontol A Biol Sci Med Sci 2020; 74:1076-1083. [PMID: 30107534 DOI: 10.1093/gerona/gly181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Neural trajectories of gait are not well established. We determined two distinct, clinically relevant neural trajectories, operationalized via functional near-infrared spectroscopy (fNIRS) HbO2 measures in the prefrontal cortex (PFC), under Single-Task-Walk (STW), and Dual-Task-Walk (DTW) conditions. Course trajectory assessed neural activity associated with attention during the course of a walking task; the second trajectory assessed neural activity associated with learning over repeated walking trials. Improved neural efficiency was defined as reduced PFC HbO2 after practice. METHODS Walking was assessed under STW and DTW conditions. fNIRS was utilized to quantify HbO2 in the PFC while walking. Burst measurement included three repeated trials for each experimental condition. The course of each walking task consisted of six consecutive segments. RESULTS Eighty-three nondemented participants (mean age = 78.05 ± 6.37 years; %female = 49.5) were included. Stride velocity (estimate = -0.5259 cm/s, p = <.0001) and the rate of correct letter generation (log estimate of rate ratio = -0.0377, p < .0001) declined during the course of DTW. In contrast, stride velocity (estimate = 1.4577 cm/s, p < .0001) and the rate of correct letter generation (log estimate of rate ratio = 0.0578, p < .0001) improved over repeated DTW trials. Course and trial effects were not significant in STW. HbO2 increased during the course of DTW (estimate = 0.0454 μM, p < .0001) but declined over repeated trials (estimate = -0.1786 μM, p < .0001). HbO2 declined during the course of STW (estimate = -.0542 μM, p < .0001) but did not change significantly over repeated trials. CONCLUSION We provided evidence for distinct attention (course) and learning (repeated trials) trajectories and their corresponding PFC activity. Findings suggest that learning and improved PFC efficiency were demonstrated in one experimental session involving repeated DTW trials.
Collapse
Affiliation(s)
- Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, Pennsylvania
| | - Michelle Chen
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, New York
| | - Cuiling Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
131
|
Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: a functional near-infrared spectroscopy study. Neuroreport 2020; 30:822-827. [PMID: 31283713 DOI: 10.1097/wnr.0000000000001283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study was designed to determine the association between motor functional recovery and interhemispheric imbalance in cortical brain activity in sub-cortical stroke patients with moderate-to-severe upper limb hemiparesis admitted to the convalescent rehabilitation ward. SUBJECTS AND METHODS The study included first-ever stroke patients with moderate-to-severe upper limb hemiparesis who received multidisciplinary rehabilitation therapy in the rehabilitation ward. Motor function of the affected upper extremity was evaluated by the Fugl-Meyer assessment and action research arm test at 1 (T1) and 3 months (T2) after stroke onset. We also conducted serial functional near-infrared spectroscopy at the same time points and calculated the laterality index, which is based on changes in oxyhaemoglobin in primary sensorimotor cortex (Brodmann Area 4), pre-motor cortex and supplementary motor cortex (PMC + SMA, BA6). RESULTS The study included eight patients (seven females, mean age: 68.8). Both the Fugl-Meyer assessment and action research arm test scores improved significantly during the study. Laterality index did not change significantly from T1 to T2. There was a no significant correlation between changes in laterality index in each region and improvement in Fugl-Meyer assessment score. In contrast, a significant and negative correlation was noted between ΔLI in Brodmann Area 4 and improvement in action research arm test score. CONCLUSION Our results suggested that activation of the non-lesional hemisphere in sub-acute stroke associated with motor recovery in moderate-to-severe upper limb hemiparesis. A multidisciplinary rehabilitation of stroke patients with moderate-to-severe upper limb hemiparesis might enhance the compensatory movements and pre-existing motor network from the non-lesional motor cortex.
Collapse
|
132
|
Hoppes CW, Huppert TJ, Whitney SL, Dunlap PM, DiSalvio NL, Alshebber KM, Furman JM, Kwon YH, Rosso AL. Changes in Cortical Activation During Dual-Task Walking in Individuals With and Without Visual Vertigo. J Neurol Phys Ther 2020; 44:156-163. [PMID: 32168158 PMCID: PMC7112165 DOI: 10.1097/npt.0000000000000310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Persons with vestibular disorders are known to have slower gait speed with greater imbalance and veering during dual-task walking than healthy individuals, but the cerebral mechanisms are unknown. The purpose of this study was to determine whether individuals with visual vertigo (VV) have different cerebral activation during dual-task walking compared with control subjects. METHODS Fourteen individuals with VV and 14 healthy controls (CON) were included (mean 39 years old, 85% women). A cross-sectional experimental study consisting of 4 combinations of 2 surfaces (even and uneven) and 2 task conditions (single- and dual-task) was performed. Participants walked over an even (level flooring) or uneven (wood prisms underneath carpeting) surface, either quietly or while reciting every other letter of the alphabet. Changes in cerebral activation over the bilateral prefrontal cortices were recorded using functional near-infrared spectroscopy during 4 task conditions relative to quiet standing. Gait speed and cognitive performance were recorded. RESULTS There were no between-group differences in cognitive performance. Both groups slowed when walking on an uneven surface or performing a dual-task; participants in the VV group walked more slowly than those in the CON group in all conditions. Participants with VV had decreased cerebral activation in the bilateral prefrontal regions in comparison to CON participants in all conditions. DISCUSSION AND CONCLUSIONS Participants with VV had lower prefrontal cortex activation than CON participants during dual-task walking. Lower cortical activity in those with VV may be due to shifted attention away from the cognitive task to prioritize maintenance of dynamic balance.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A303).
Collapse
Affiliation(s)
- Carrie W. Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, Fort Sam Houston, TX, USA
| | | | | | | | - Nikki L. DiSalvio
- University of Southern California/Rancho Los Amigos National Rehabilitation Center, Los Angeles, CA, USA
| | | | | | - Yong H. Kwon
- Yeungnam University College, Nam-gu, Daegu, South Korea
| | | |
Collapse
|
133
|
St-Amant G, Rahman T, Polskaia N, Fraser S, Lajoie Y. Unveilling the cerebral and sensory contributions to automatic postural control during dual-task standing. Hum Mov Sci 2020; 70:102587. [DOI: 10.1016/j.humov.2020.102587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/30/2023]
|
134
|
Prefrontal Cortical Activation With Open and Closed-Loop Tactile Cueing When Walking and Turning in Parkinson Disease: A Pilot Study. J Neurol Phys Ther 2020; 44:121-131. [DOI: 10.1097/npt.0000000000000286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
135
|
Lee A, Kim H, Kim J, Choi DS, Jung JH, Lee J, Kim YH. Modulating Effects of Whole-body Vibration on Cortical Activity and Gait Function in Chronic Stroke Patients. BRAIN & NEUROREHABILITATION 2020; 13:e12. [PMID: 36744184 PMCID: PMC9879458 DOI: 10.12786/bn.2020.13.e12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 11/08/2022] Open
Abstract
Whole-body vibration exercise (WBVe) can provide proper somatosensory stimulation and improve muscle strength in stroke patients. This study investigated the effects of WBVe on gait function and cortical activity in patients with chronic stroke. Thirty stroke patients were randomly assigned to either the WBVe or the control group. The WBVe group received the vibration in a half-squat position for 5 minutes at an intensity of 20 Hz. The control group kept the same posture but did not receive the vibration. Cortical activity was investigated using functional near-infrared spectroscopy (fNIRS). Gait function was assessed by a 10-m walk test (10MWT), a timed up and go (TUG) test, a Fugl-Meyer Assessment, and a Tinetti Performance-Oriented Mobility Assessment (TPOMA). In group analysis of the fNIRS data, oxygenated hemoglobin concentration was significantly increased in the ipsilesional supplementary motor area, bilateral sensorimotor cortex, and contralesional prefrontal cortex in the WBVe group compared to the control group (p < 0.05). Functional assessment demonstrated a significant interaction between time and group for the 10MWT and TUG test, suggesting that the WBVe group demonstrated meaningful improvement after intervention (p < 0.05). These results suggested that WBVe modulated the cerebral cortical activities and resulted in improvement of gait function in chronic stroke patients. Trial Registration ClinicalTrials.gov Identifier: NCT03375346.
Collapse
Affiliation(s)
- Ahee Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heegoo Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinuk Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jae Hwan Jung
- Department of Physical and Rehabilitation Medicine, Ilsan Central Hospital, Ilsan, Korea
| | - Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun-Hee Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Medical Device Management and Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
136
|
Short MR, Damiano DL, Kim Y, Bulea TC. Children With Unilateral Cerebral Palsy Utilize More Cortical Resources for Similar Motor Output During Treadmill Gait. Front Hum Neurosci 2020; 14:36. [PMID: 32153376 PMCID: PMC7047842 DOI: 10.3389/fnhum.2020.00036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Children with unilateral cerebral palsy (CP) walk independently although with an asymmetrical, more poorly coordinated pattern compared to their peers. While gait biomechanics in unilateral CP and their alteration from those without CP have been well documented, cortical mechanisms underlying gait remain inadequately understood. To the best of our knowledge, this is the first study utilizing electroencephalography (EEG) during treadmill gait in older children with and without CP. Lower limb surface electromyographic (EMG) data were collected and muscle synergy analyses performed to quantify motor output. Our primary goal was to evaluate the relationships between cortical and muscle activation within and across groups and hemispheres to provide novel insights into neural control of gait and how it may be disrupted by an early unilateral brain injury. Participants included 9 children with unilateral CP, mean age 16.0 ± 2.7 years, and 12 with typical development (TD), mean age 14.8 ± 3.0 years. EEG data were collected during a standing baseline and treadmill walking at self-selected speed. EMG of 16 lower limb muscles were also collected bilaterally and synchronized with EEG. No significant group differences were found in synergy number or structure across groups. Six cortical clusters were identified as having gait-related activation and all contained participants from both CP and TD groups; however, the percent of individuals per group appearing in different clusters varied. Notably, the cluster least represented in CP was the non-dominant motor region. Both groups showed mu-band ERD in the motor clusters during gait although sustained beta-band ERD was not evident in TD. The CP group showed greater cortical activation than TD during walking as measured by mu- and beta-ERD in the dominant and non-dominant motor and parietal regions and elevated low gamma-activity in the frontal and parietal areas, a unique finding in CP. CP showed greater bilateral motor EEG-EMG coherence in the gamma-band with the hallucis longus compared to TD. In summary, individuals with CP display increased cortical activation during gait possibly relating to differences in distal motor control of the more affected side. Strategies that iteratively reduce cortical activation while improving selective motor control are needed in CP.
Collapse
Affiliation(s)
- Matthew R. Short
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, United States
| | - Diane L. Damiano
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, United States
| | - Yushin Kim
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, United States
- Sports Health Rehabilitation, Cheongju University, Cheongju, South Korea
| | - Thomas C. Bulea
- Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
137
|
Polskaia N, St-Amant G, Fraser S, Lajoie Y. A functional near-infrared spectroscopy (fNIRS) examination of how self-initiated sequential movements become automatic. Exp Brain Res 2020; 238:657-666. [PMID: 32030471 DOI: 10.1007/s00221-020-05742-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
The neural mechanisms underlying movement automaticity have been investigated using PET and fMRI and more recently functional near-infrared spectroscopy (fNIRS). As fNIRS is an emerging technique, the objective of the present study was to replicate the functional magnetic resonance imaging-related motor sequence findings as reported by Wu et al. (J Neurophysiol 91:1690-1698, https://doi.org/10.1152/jn.01052.2003, 2004) using fNIRS. Seventeen right-handed participants practiced self-initiated sequential finger movements of two lengths (4 and 12) until a level of automaticity was achieved. Automaticity was evaluated by performing a visual-letter-counting task concurrently with the sequential finger movements. Our data were unable to replicate the pre-to-post-practice decrease in cortical activity in the left dorsolateral prefrontal cortex for both motor sequence tasks. The findings did reveal increased contribution from the right hemisphere following learning. The observed lateralization is suggestive of explicit learning and the involvement of working memory in motor sequence production.
Collapse
Affiliation(s)
- Nadia Polskaia
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, 125 University Avenue, Ottawa, ON, K1N 6N5, Canada
| | - Gabrielle St-Amant
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, 125 University Avenue, Ottawa, ON, K1N 6N5, Canada
| | - Sarah Fraser
- Faculty of Health Science, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yves Lajoie
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, 125 University Avenue, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
138
|
Comparison of the Effects of Continuous and Intermittent Exercise on Cerebral Oxygenation and Cognitive Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:209-214. [PMID: 31893412 DOI: 10.1007/978-3-030-34461-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cognitive function is reported to improve by moderate aerobic exercise. However, the effects of intermittent exercise with rest between the moderate-intensity exercise are unclear. Therefore, this study aimed to compare the effects of continuous and intermittent exercise on cerebral oxygenation and cognitive function. This study included 18 healthy adults. For the continuous exercise protocol, 5 min of rest was followed by 30 min of exercise; 5 min of rest was allowed after each exercise. For the intermittent exercise protocol, 3 sets of 10 min of exercise were completed, with 5 min of rest between the sets. Exercise intensity was 50% of maximum oxygen uptake. Oxyhemoglobin (O2Hb) in the prefrontal cortex (PFC) was measured during each protocol, and cognitive tasks (Stroop test) were performed before and after exercise. O2Hb levels for the left and right PFCs were significantly higher post-exercise than pre-exercise for both exercise protocols (p < 0.01). The average reaction time in the Stroop test was significantly shorter post-exercise than pre-exercise for both protocols (p < 0.01). There was no significant difference in the error rate pre- and post-exercise for both protocols (continuous p = 0.22; intermittent p = 0.44). There was no significant difference between both protocols in all measurement results (O2Hb: p = 0.67; average reaction time p = 0.50; error rate p = 0.24). O2Hb was higher and average reaction time was shorter after exercise than before exercise for both exercise protocols. Intermittent and continuous exercise may improve cognitive function to the same degree after exercise.
Collapse
|
139
|
Hinton DC, Conradsson D, Bouyer L, Paquette C. Does dual task placement and duration affect split-belt treadmill adaptation? Gait Posture 2020; 75:115-120. [PMID: 31675553 DOI: 10.1016/j.gaitpost.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dual tasking during prolonged split-belt adaptation (10-15 min) has shown to slow the adaptation process and prolong aftereffects. Therefore, dual tasks during split-belt adaptation are being explored for their potential in gait symmetry rehabilitation. However, the ideal paradigm configuration it is still not clear. RESEARCH QUESTION To determine whether split-belt adaptation and ensuing aftereffects are altered by dual task placement, specifically looking at onset of split-belt adaptation or later part way through Adaptation (Experiment 1) and dual task duration (Experiment 2). METHODS Healthy young adults (n = 40) performed 5 min of tied-belt walking, followed by 14 min of split-belts (Adaptation, 1:3 ratio) and 5 min of de-adaptation (both belts at same speed) to assess after effects (Post-Adaptation). Experiment 1: To assess the effects of dual task placement, an auditory version of an n-back task was presented during the first 8 min or last 8 min of Adaptation. Experiment 2: To assess the effects of dual task duration, the cognitive task was presented during the entire split-belt Adaptation phase (14 min) or during four 2-minute bouts (8 min). Cognitive task accuracy, dual support symmetry, and rates of adaptation and de-adaptation were compared. RESULTS When both the onset of the auditory cognitive task and the onset of Adaptation (split-belts) occurred simultaneously, participants prioritized split-belt adaptation and in doing so, cognitive task accuracy was reduced (Experiment 1). By prioritizing gait symmetry over cognitive performance, there were no differences in dual support symmetry adaptation (magnitude, variability or rate of Adaptation/De-adaptation) regardless of cognitive task placement or duration (Experiment 2). SIGNIFICANCE We believe the early portion of split-belt treadmill adaptation to be a cognitive interference period. These results support future work exploring the use of dual task in a rehabilitation setting with more complicated motor-cognitive dual task paradigms during this key period.
Collapse
Affiliation(s)
- Dorelle C Hinton
- Department of Kinesiology & Physical Education, McGill University, Canada; Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR) Canada
| | - David Conradsson
- Department of Kinesiology & Physical Education, McGill University, Canada; Department of Neurobiology, Health Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Sweden
| | - Laurent Bouyer
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Laval University, Canada
| | - Caroline Paquette
- Department of Kinesiology & Physical Education, McGill University, Canada; Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR) Canada.
| |
Collapse
|
140
|
Prime M, McKay JL, Bay A, Hart A, Kim C, Abraham A, Hackney ME. Differentiating Parkinson Disease Subtypes Using Clinical Balance Measures. J Neurol Phys Ther 2020; 44:34-41. [PMID: 31834219 PMCID: PMC6991154 DOI: 10.1097/npt.0000000000000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE People with Parkinson disease (PD) present phenotypes that are characterized as tremor-dominant (TD) or postural instability/gait difficulty (PIGD) subtypes. Differentiation of subtypes allows clinicians to predict disease course and adjust treatment. We examined whether brief mobility and balance measures can discriminate PIGD from TD phenotypes. METHODS We performed a cross-sectional study with individuals with PD (n = 104). Blinded raters assessed participants with the Unified Parkinson's Disease Rating Scale (UPDRS) or Movement Disorders Society revision (MDS-UPDRS), and balance assessments: 360° turn test, one-leg stance, a reactive postural control test, and tandem walk. Participants were classified as PIGD or TD based on the UPDRS or MDS-UPDRS assessment results. Differences in balance variables between subtypes were assessed with univariate analyses. Receiver operating characteristic (ROC) curve analyses were performed to investigate the ability of balance variables to differentiate PD subtypes. RESULTS No differences between subtypes were observed for tandem walk or reactive postural control. Participants with PIGD performed worse on number of steps and time to complete the 360° turn test and on one-leg stance time. ROC curves showed only the 360° turn test discriminated PIGD from TD with high specificity (0.84). Post hoc analyses revealed that the 360° turn test is the most discriminatory for classifying PD subtypes in early stages of the disease. ROC analyses based on combined models including both the 360° test and tandem walk test performance increased the specificity to 0.97. DISCUSSION AND CONCLUSIONS The 360° turn test requires minimal time to administer and may be useful in mild-moderate PD for distinguishing PIGD from TD subtypes.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A295).
Collapse
Affiliation(s)
- Morgane Prime
- Faculty of Biology, University of Toulouse III - Paul Sabatier, Toulouse, France
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - J. Lucas McKay
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Allison Bay
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Ariel Hart
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Chaejin Kim
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Amit Abraham
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Madeleine E. Hackney
- Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, USA
- Department of Rehabilitation Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
141
|
Effect of Exercise Duration on Post-Exercise Persistence of Oxyhemoglobin Changes in the Premotor Cortex: A Near-Infrared Spectroscopy Study in Moderate-Intensity Cycling Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1232:193-199. [PMID: 31893410 DOI: 10.1007/978-3-030-34461-0_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Measurement of oxyhemoglobin (O2Hb) changes in the cerebral cortex using near-infrared spectroscopy (NIRS) shows that its levels increase during moderate-intensity exercise and persists after exercise. However, the effects of exercise duration on O2Hb persistence in the premotor cortex (PMC) are unknown. We aimed to determine the effects of exercise duration on the persistence of O2Hb changes after moderate-intensity cycling as exercise. Healthy young volunteers were recruited to participate in this study. After a 3-min rest period, the exercise was initiated at a workload corresponding to 50% VO2peak. The exercise continued for 10 min and 20 min, followed by 15 min of rest. The O2Hb levels in the right (R-PMC) and left premotor cortices (L-PMC) were measured using an NIRS system. The O2Hb values during the 15-min post-exercise rest period in the R-PMC were 0.010 ± 0.011 mM·cm after the 10-min exercise and 0.035 ± 0.010 mM·cm after the 20-min exercise, without significant differences (p = 0.104). The O2Hb value in the L-PMC during post-exercise rest (0.055 ± 0.010 mM·cm) after the 20-min exercise was significantly higher than that after the 10-min exercise (0.023 ± 0.007 mM·cm; p = 0.014). Thus, the effects of exercise duration on O2Hb persistence have laterality in the PMC.
Collapse
|
142
|
Berger A, Horst F, Steinberg F, Thomas F, Müller-Eising C, Schöllhorn WI, Doppelmayr M. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. J Neuroeng Rehabil 2019; 16:161. [PMID: 31882008 PMCID: PMC6935063 DOI: 10.1186/s12984-019-0636-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gait disorders are major symptoms of neurological diseases affecting the quality of life. Interventions that restore walking and allow patients to maintain safe and independent mobility are essential. Robot-assisted gait training (RAGT) proved to be a promising treatment for restoring and improving the ability to walk. Due to heterogenuous study designs and fragmentary knowlegde about the neural correlates associated with RAGT and the relation to motor recovery, guidelines for an individually optimized therapy can hardly be derived. To optimize robotic rehabilitation, it is crucial to understand how robotic assistance affect locomotor control and its underlying brain activity. Thus, this study aimed to investigate the effects of robotic assistance (RA) during treadmill walking (TW) on cortical activity and the relationship between RA-related changes of cortical activity and biomechanical gait characteristics. METHODS Twelve healthy, right-handed volunteers (9 females; M = 25 ± 4 years) performed unassisted walking (UAW) and robot-assisted walking (RAW) trials on a treadmill, at 2.8 km/h, in a randomized, within-subject design. Ground reaction forces (GRFs) provided information regarding the individual gait patterns, while brain activity was examined by measuring cerebral hemodynamic changes in brain regions associated with the cortical locomotor network, including the sensorimotor cortex (SMC), premotor cortex (PMC) and supplementary motor area (SMA), using functional near-infrared spectroscopy (fNIRS). RESULTS A statistically significant increase in brain activity was observed in the SMC compared with the PMC and SMA (p < 0.05), and a classical double bump in the vertical GRF was observed during both UAW and RAW throughout the stance phase. However, intraindividual gait variability increased significantly with RA and was correlated with increased brain activity in the SMC (p = 0.05; r = 0.57). CONCLUSIONS On the one hand, robotic guidance could generate sensory feedback that promotes active participation, leading to increased gait variability and somatosensory brain activity. On the other hand, changes in brain activity and biomechanical gait characteristics may also be due to the sensory feedback of the robot, which disrupts the cortical network of automated walking in healthy individuals. More comprehensive neurophysiological studies both in laboratory and in clinical settings are necessary to investigate the entire brain network associated with RAW.
Collapse
Affiliation(s)
- Alisa Berger
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Fabian Steinberg
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- School of Kinesiology, Louisiana State University, Baton Rouge, USA
| | - Fabian Thomas
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
| | | | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Doppelmayr
- Department of Sport Psychology, Institute of Sport Science, Johannes Gutenberg-University Mainz, Albert Schweitzer Straße 22, 55128 Mainz, Germany
- Centre for Cognitive Neuroscience, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
143
|
Modulation of Cortical Activity by High-Frequency Whole-Body Vibration Exercise: An fNIRS Study. J Sport Rehabil 2019; 28:665-670. [PMID: 30222484 DOI: 10.1123/jsr.2017-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/05/2018] [Accepted: 07/24/2018] [Indexed: 11/18/2022]
Abstract
CONTEXT Whole-body vibration (WBV) has shown many positive effects on the human body in rehabilitation and clinical settings in which vibration has been used to elicit muscle contractions in spastic and paretic muscles. OBJECTIVE The purpose of this study was to investigate whether WBV exercise (WBVe) differently modulates the cortical activity associated with motor and prefrontal function based on its frequency. METHODS A total of 18 healthy male adults (mean age: 25.3 [2.4] y) participated in this study and performed WBVe (Galileo Advanced plus; Novotec Medical, Pforzheim, Germany) under 3 different vibration frequency conditions (4-mm amplitude with 10-, 20-, and 27-Hz frequencies) and a control condition (0-mm amplitude with 0-Hz frequency). Each condition consisted of 2 alternating tasks (squatting and standing) every 30 seconds for 5 repetitions. All subjects performed the 4 conditions in a randomized order. MAIN OUTCOME MEASURE Cortical activation during WBVe was measured by relative changes in oxygenated hemoglobin concentration over the primary motor cortex, premotor cortex, supplementary motor area, and prefrontal and somatosensory cortices using functional near-infrared spectroscopy. RESULTS Oxygenated hemoglobin concentration was higher during the 27-Hz vibration condition than the control and 10-Hz vibration conditions. Specifically, these changes were pronounced in the bilateral primary motor cortex (P < .05) and right prefrontal cortex (P < .05). In contrast, no significant changes in oxygenated hemoglobin concentration were observed in any of the cortical areas during the 10-Hz vibration condition compared with the control condition. CONCLUSION This study provides evidence that the motor network and prefrontal cortical areas of healthy adult males can be activated by 27-Hz WBVe. However, WBVe at lower frequencies did not induce significant changes in cortical activation.
Collapse
|
144
|
O'Connor JD, O'Connell MDL, Nolan H, Newman L, Knight SP, Kenny RA. Impact of Standing Speed on the Peripheral and Central Hemodynamic Response to Orthostasis: Evidence From the Irish Longitudinal Study on Ageing. Hypertension 2019; 75:524-531. [PMID: 31838912 DOI: 10.1161/hypertensionaha.119.14040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Assessment of the cerebrovascular and cardiovascular response to standing has prognostic value for a range of outcomes in the older adult population. Studies generally attempt to control for standing speed differences by asking participants to stand in a specified time but little is known about the range of transition times observed. This study aimed to characterize how standing speed associates with cardiovascular and cerebrovascular measures following transition from supine to standing. Continuous cerebral oxygenation, heart rate, systolic and diastolic blood pressure were monitored for 3 minutes after transitioning from supine to standing. An algorithm was used to calculate the time taken to transition from existing Finometer data (from the height correction unit). Linear mixed-effects models were used to assess the influence of transition time on each of the signals while adjusting for covariates. Transition time ranged from 2 to 27 s with 17% of participants taking >10 s to stand. Faster transition was associated with a more extreme decrease 10 s after standing but improved recovery at 20 s for cerebral oxygenation and blood pressure. Standing faster was associated with an elevated heart rate on initiation of stand and a quicker recovery 10 to 20 s after standing. The speed of transitioning from supine to standing position is associated with cardiovascular and cerebrovascular response in the early period after standing (<40 s). Care should be taken in the interpretation of findings which may be confounded by standing speed and statistical adjustment for standing time should be applied where appropriate.
Collapse
Affiliation(s)
- John D O'Connor
- From Department of Medical Gerontology, The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin, Ireland (J.D.O., H.N., L.N., S.P.K., R.A.K.)
| | | | - Hugh Nolan
- From Department of Medical Gerontology, The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin, Ireland (J.D.O., H.N., L.N., S.P.K., R.A.K.)
| | - Louise Newman
- From Department of Medical Gerontology, The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin, Ireland (J.D.O., H.N., L.N., S.P.K., R.A.K.)
| | - Silvin P Knight
- From Department of Medical Gerontology, The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin, Ireland (J.D.O., H.N., L.N., S.P.K., R.A.K.)
| | - Rose Anne Kenny
- From Department of Medical Gerontology, The Irish Longitudinal Study on Ageing, Trinity College, University of Dublin, Ireland (J.D.O., H.N., L.N., S.P.K., R.A.K.)
| |
Collapse
|
145
|
Kitatani R, Koganemaru S, Maeda A, Mikami Y, Matsuhashi M, Mima T, Yamada S. Gait-synchronized oscillatory brain stimulation modulates common neural drives to ankle muscles in patients after stroke: A pilot study. Neurosci Res 2019; 156:256-264. [PMID: 31726081 DOI: 10.1016/j.neures.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022]
Abstract
The present study aimed to investigate the long-term effects of gait intervention with transcranial alternating current stimulation (tACS) synchronized with gait cycle frequency on the cortical control of muscle activity during gait, using coherence analyses, in patients after stroke. Eight chronic post-stroke patients participated in a single-blinded crossover study, and 7 patients completed the long-term intervention. Each patient received tACS over the primary motor cortex foot area on the affected side, which was synchronized with individual gait cycle frequency, and sham stimulation during treadmill gait in a random order. Electrical neuromuscular stimulation was used to assist the paretic ankle movement in both conditions. After gait intervention with tACS, beta band (15-35 Hz) coherence, which is considered to have a cortical origin, significantly increased in the paretic tibialis anterior (TA) muscle during 6-min of over-ground gait. The change in beta band coherence in the paretic TA muscle was positively correlated with the change in gait distance. These results indicate that gait intervention with tACS synchronized with gait cycle frequency may induce gait-specific plasticity that modulates the common neural drive to the TA motoneurons on the paretic side during gait and leads to changes in gait function in patients after stroke.
Collapse
Affiliation(s)
- Ryosuke Kitatani
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Rehabilitation, Kansai Rehabilitation Hospital, Osaka, Japan.
| | - Satoko Koganemaru
- Department of Physiology and Biological Information, Dokkyo Medical University, Tochigi, Japan
| | - Ayaka Maeda
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Mikami
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Shigehito Yamada
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
146
|
Wang H, Chen Y, Li X, Wang J, Zhou Y, Zhou C. Moderate-Intensity Aerobic Exercise Restores Appetite and Prefrontal Brain Activity to Images of Food Among Persons Dependent on Methamphetamine: A Functional Near-Infrared Spectroscopy Study. Front Hum Neurosci 2019; 13:400. [PMID: 31798434 PMCID: PMC6863778 DOI: 10.3389/fnhum.2019.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
The brain prefrontal control system is critical to successful recovery from substance use disorders, and the prefrontal cortex (PFC) regulates striatal reward-related processes. Substance-dependent individuals exhibit an increased response to drug rewards and decreased response to natural, nondrug rewards. Short-term aerobic exercise can ameliorate craving and inhibitory deficits in methamphetamine users, but the effect of exercise on food reward is unknown. This study used functional near-infrared spectroscopy (fNIRS) to measure the effects of moderate- and high-intensity short-term aerobic exercise on prefrontal activity related to food images and recorded the subjective feelings of appetite in methamphetamine-dependent users. In total, 56 men who met the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria for methamphetamine dependence, with a mean (SD) body mass index of 24.7 (3.5) kg/m2 and age of 30.2 (5.1) years, were randomly assigned to one of two exercise groups: moderate intensity (n = 28; 65%-75% of maximum heart rate) and high intensity (n = 28; 76%-85% of heart rate maximum). Each group also performed a resting control session for 35 min 1 week before or after the exercise, in a counterbalanced order. Mean oxygenated hemoglobin concentration changes in the PFC when viewing visual food cues were assessed by fNIRS, and subjective feelings of appetite were self-rated using visual analog scales after moderate- or high-intensity aerobic exercise and after the resting control session. A continuous-wave NIRS device was used to obtain functional data: eight sources and seven detectors were placed on the scalp covering the PFC, resulting in 20 channels per participant. We found that moderate-intensity aerobic exercise significantly increased both, the activation of the left orbitofrontal cortex (OFC) to images of high-calorie food (P = 0.02) and subjective sensations of hunger (F (1,54) = 7.16, P = 0.01). To our knowledge, this study provides the first evidence that moderate-intensity aerobic exercise increases OFC activity associated with high-calorie food images and stimulates appetite in methamphetamine-dependent individuals. These changes suggest that exercise may reestablish the food reward pathway hijacked by drugs and restore sensitivity to natural rewards. This evidence may contribute to the development of specific exercise programs for populations with methamphetamine dependence.
Collapse
Affiliation(s)
- Hongbiao Wang
- Department of Physical Education, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yifan Chen
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Xiawen Li
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Jiakuan Wang
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Yu Zhou
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, China
| | - Chenglin Zhou
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
147
|
Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol 2019; 10:1188. [PMID: 31803130 PMCID: PMC6868423 DOI: 10.3389/fneur.2019.01188] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that the corticoreticular tract (CRT) has an important role in motor function almost next to the corticospinal tract (CST) in the human brain. Herein, the CRT is reviewed with regard to its anatomy, function, and recovery mechanisms after injury, with particular focus on previous diffusion tensor tractography-based studies. The CRT originates from several cortical areas but mainly from the premotor cortex. It descends through the subcortical white matter anteromedially to the CST with a 6- to 12-mm separation in the anteroposterior direction, then passing through the mesencephalic tegmentum and the pontine and pontomedullary reticular formations. Regarding its motor functions, the CRT appears to be mainly involved in the motor function of proximal joint muscles accounting for ~30–40% of the motor function of these joint muscles. In addition, the CRT is involved in gait function and postural stability. However, further studies that clearly rule out the effects of other motor function-related neural tracts are necessary to clarify the precise portion of the total motor function for which the CRT is responsible. With regard to recovery mechanisms for an injured CRT, three recovery mechanisms were suggested in five previous studies: recovery through the original pathway, recovery through perilesional reorganization, and recovery through the transcallosal pathway. However, each of those studies was single-case reports; therefore, further original studies including a larger number of patients are warranted.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung Jun Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
148
|
Marchal V, Sellers J, Pélégrini-Issac M, Galléa C, Bertasi E, Valabrègue R, Lau B, Leboucher P, Bardinet E, Welter ML, Karachi C. Deep brain activation patterns involved in virtual gait without and with a doorway: An fMRI study. PLoS One 2019; 14:e0223494. [PMID: 31634356 PMCID: PMC6802850 DOI: 10.1371/journal.pone.0223494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/22/2019] [Indexed: 11/23/2022] Open
Abstract
The human gait program involves many brain areas such as motor cortices, cerebellum, basal ganglia, brainstem, and spinal cord. The mesencephalic locomotor region (MLR), which contains the pedunculopontine (PPN) and cuneiform (CN) nuclei, is thought to be one of the key supraspinal gait generators. In daily life activities, gait primarily occurs in complex conditions, such as through narrow spaces, or while changing direction or performing motor or cognitive tasks. Here, we aim to explore the activity of these subcortical brain areas while walking through narrow spaces, using functional MRI in healthy volunteers and designing a virtual reality task mimicking walking down a hallway, without and with an open doorway to walk through. As a control, we used a virtual moving walkway in the same environment. Twenty healthy volunteers were scanned. Fifteen subjects were selected for second level analysis based on their ability to activate motor cortices. Using the contrast Gait versus Walkway, we found activated clusters in motor cortices, cerebellum, red nucleus, thalamus, and the left MLR including the CN and PPN. Using the contrast Gait with Doorway versus Walkway with Doorway, we found activated clusters in motor cortices, left putamen, left internal pallidum, left substantia nigra, right subthalamic area, and bilateral MLR involving the CN and PPN. Our results suggest that unobstructed gait involves a motor network including the PPN whereas gait through a narrow space requires the additional participation of basal ganglia and bilateral MLR, which may encode environmental cues to adapt locomotion.
Collapse
Affiliation(s)
- Véronique Marchal
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Jason Sellers
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | | | - Cécile Galléa
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Eric Bertasi
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Centre de Neuroimagerie de recherche (CENIR), ICM, Paris, France
| | - Romain Valabrègue
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Centre de Neuroimagerie de recherche (CENIR), ICM, Paris, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Pierre Leboucher
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Plateforme PRISME, ICM, Paris, France
| | - Eric Bardinet
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Centre de Neuroimagerie de recherche (CENIR), ICM, Paris, France
- * E-mail:
| | - Marie-Laure Welter
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Service de Neurophysiologie, CHU Rouen, Université de Rouen, Rouen, France
| | - Carine Karachi
- Sorbonne Universités, UPMC Univ Paris, CNRS, INSERM, AP HP GH Pitié Salpêtrière, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Service de Neurochirurgie, AP-HP, GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
149
|
Catrambone V, Greco A, Averta G, Bianchi M, Vanello I, Bicchi A, Valenza G, Scilingo EP. EEG Processing to Discriminate Transitive-Intransitive Motor Imagery Tasks: Preliminary Evidences using Support Vector Machines. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:231-234. [PMID: 30440380 DOI: 10.1109/embc.2018.8512239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is known that brain dynamics significantly changes during motor imagery tasks of upper limb involving different kind of interactions with an object. Nevertheless, an automatic discrimination of transitive (i.e., actions involving an object) and intransitive (i.e., meaningful gestures that do not include the use of objects) imaginary actions using EEG dynamics has not been performed yet. In this study we exploit measures of EEG spectra to automatically discern between imaginary transitive and intransitive movements of the upper limb. To this end, nonlinear support vector machine algorithms are used to properly combine EEG-derived features, while a recursive feature elimination procedure highlights the most discriminant cortical regions and associated EEG frequency oscillations. Results show the significance of $\gamma ( 30 -45$ Hz) oscillations over the fronto-occipital and ipsilateral-parietal areas for the automatic classification of transitive-intransitive imaginary upper limb movements with a satisfactory accuracy of 70.97%.
Collapse
|
150
|
McCrimmon CM, Wang PT, Heydari P, Nguyen A, Shaw SJ, Gong H, Chui LA, Liu CY, Nenadic Z, Do AH. Electrocorticographic Encoding of Human Gait in the Leg Primary Motor Cortex. ACTA ACUST UNITED AC 2019; 28:2752-2762. [PMID: 28981644 DOI: 10.1093/cercor/bhx155] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 11/14/2022]
Abstract
While prior noninvasive (e.g., electroencephalographic) studies suggest that the human primary motor cortex (M1) is active during gait processes, the limitations of noninvasive recordings make it impossible to determine whether M1 is involved in high-level motor control (e.g., obstacle avoidance, walking speed), low-level motor control (e.g., coordinated muscle activation), or only nonmotor processes (e.g., integrating/relaying sensory information). This study represents the first invasive electroneurophysiological characterization of the human leg M1 during walking. Two subjects with an electrocorticographic grid over the interhemispheric M1 area were recruited. Both exhibited generalized γ-band (40-200 Hz) synchronization across M1 during treadmill walking, as well as periodic γ-band changes within each stride (across multiple walking speeds). Additionally, these changes appeared to be of motor, rather than sensory, origin. However, M1 activity during walking shared few features with M1 activity during individual leg muscle movements, and was not highly correlated with lower limb trajectories on a single channel basis. These findings suggest that M1 primarily encodes high-level gait motor control (i.e., walking duration and speed) instead of the low-level patterns of leg muscle activation or movement trajectories. Therefore, M1 likely interacts with subcortical/spinal networks, which are responsible for low-level motor control, to produce normal human walking.
Collapse
Affiliation(s)
- Colin M McCrimmon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Po T Wang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Payam Heydari
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA
| | - Angelica Nguyen
- Electrophysiology Lab, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Susan J Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Luis A Chui
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Charles Y Liu
- Department of Neurosurgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.,Center for Neurorestoration, University of Southern California, Los Angeles, CA, USA.,Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, CA, USA
| | - An H Do
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|