101
|
Ma Q, Ding Y, Chang J, Sun X, Zhang L, Wei Q, Cheng Y, Chen L, Xu J, Deng X. Comprehensive insights on how 2,4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:61-74. [PMID: 24215076 PMCID: PMC3883282 DOI: 10.1093/jxb/ert344] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Auxin-like 2,4-dichlorophenoxyacetic acid (2,4-D), a high-efficiency anti-stalling agent for the post-harvest fresh fruit industry, has had its use restricted due to environmental concerns. However, no other substitutes for 2,4-D are available to the post-harvest industry. Insights into the molecular mechanism underlying the effects of 2,4-D on fruit quality preservation will provide a theoretical basis for exploring new safe and effective anti-stalling agents. This study comprehensively analysed changes in the peel of Olinda Valencia orange [Citrus sinensis (L.) Osbeck] induced by 500 ppm 2,4-D using 'omic'-driven approaches. Transcriptional profiling revealed that transcriptional factor (mainly AP2/ERF, WRKY, and NAC family members), transport, and hormone metabolism genes were over-represented and up-regulated within 24h post-treatment (HPT). Stress defence genes were up-regulated, while cell wall metabolism genes were down-regulated after 48 HPT. However, secondary metabolism genes, especially phenylpropanoid and lignin biosynthesis-related genes, were over-represented at all the time points. Comparative proteomic analysis indicated that the expression of proteins implicated in stress responses (25%), hormone metabolism, and signal transduction (12%) significantly accumulated at the post-transcriptional level. Hormone levels detected by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) showed that abscisic acid, salicylic acid, and 2,4-D significantly increased, while ethylene production (detected by gas chromatography) decreased after 2,4-D treatment. In addition, lignin and water content in the fruit peel also increased and the epicuticle wax ultrastructure was modified. In conclusion, 2,4-D retarded fruit senescence by altering the levels of many endogenous hormones and by improving stress defence capabilities by up-regulating defence-related genes and proteins.
Collapse
Affiliation(s)
- Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuduan Ding
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiwei Chang
- Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaohua Sun
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qingjiang Wei
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
- * To whom correspondence should be addressed. E-mail:
| | - Lingling Chen
- Center for Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
102
|
Folgado R, Sergeant K, Renaut J, Swennen R, Hausman JF, Panis B. Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. J Proteomics 2013; 98:99-111. [PMID: 24333155 DOI: 10.1016/j.jprot.2013.11.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/15/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED The key to successful cryopreservation lies in the induction of tolerance towards dehydration/desiccation and freezing. The accumulation of osmo-active compounds, which can be induced by drought and cold stress, is therefore important. In the present study, three-week old shoots from in vitro plantlets of the cultivated potato Solanum tuberosum and its frost-resistant relative Solanum commersonii were submitted to osmotic stress (by using sucrose) and chilling (6°C). After 14days of exposure, shoot tips were sampled in order to gain an insight into changes of the proteome and soluble sugars. Also, the effect of these treatments on growth performance behaviour and on the success of cryopreservation was evaluated. Identified proteins that changed in abundance due to stress were associated with stress response. Additionally, carbohydrate analyses in both species, after exposure to chilling, also indicated species-related differences; this observation could point towards a better-adapted physiological state of the donor plants of S. commersonii prior to the cryoprocedure and therefore a better recovery of the meristems. BIOLOGICAL SIGNIFICANCE To our knowledge, this is the first study in which cryopreservation experiments are combined with the observation of the responses to abiotic stress exposure involving the potato species S. commersonii and S. tuberosum. These two species are known to have a different cold-acclimation behaviour, which seems to be closely related to their tolerance towards cryopreservation. Furthermore, common and differential responses to abiotic stresses were observed in the two species indicating that some pathways could be crucial not only in the plant's response to stress but also in tolerance towards cryopreservation.
Collapse
Affiliation(s)
- Raquel Folgado
- Environment and Agro-biotechnologies department (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42 bus 2455, B-3001 Leuven, Belgium
| | - Kjell Sergeant
- Environment and Agro-biotechnologies department (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jenny Renaut
- Environment and Agro-biotechnologies department (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan 42 bus 2455, B-3001 Leuven, Belgium; Bioversity International, Willem de Croylaan 42 bus 2455, B-3001 Leuven, Belgium; International Institute of Tropical Agriculture, POB 10, Duluti, Arusha, Tanzania
| | - Jean-Francois Hausman
- Environment and Agro-biotechnologies department (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Bart Panis
- Bioversity International, Willem de Croylaan 42 bus 2455, B-3001 Leuven, Belgium
| |
Collapse
|
103
|
Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. The complexity of chloroplast chaperonins. TRENDS IN PLANT SCIENCE 2013; 18:688-94. [PMID: 24035661 DOI: 10.1016/j.tplants.2013.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
104
|
Basile A, Sorbo S, Conte B, Cardi M, Esposito S. Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales--Bryophyta). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:209-216. [PMID: 23933125 DOI: 10.1016/j.envpol.2013.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 05/29/2023]
Abstract
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum.
Collapse
Affiliation(s)
- Adriana Basile
- Dipartimento di Biologia, Complesso Universitario Monte Sant'Angelo, Università di Napoli "Federico II", Via Cinthia, 80126 Naples, Italy
| | | | | | | | | |
Collapse
|
105
|
Molecular characterization of a heat inducible rice gene, OsHSP1, and implications for rice thermotolerance. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0152-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
106
|
A comparative proteomic analysis of Pinellia ternata leaves exposed to heat stress. Int J Mol Sci 2013; 14:20614-34. [PMID: 24132150 PMCID: PMC3821634 DOI: 10.3390/ijms141020614] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/22/2013] [Accepted: 09/29/2013] [Indexed: 01/08/2023] Open
Abstract
Pinellia ternata is an important traditional Chinese medicinal plant. The growth of P. ternata is sensitive to high temperatures. To gain a better understanding of heat stress responses in P. ternata, we performed a comparative proteomic analysis. P. ternata seedlings were subjected to a temperature of 38 °C and samples were collected 24 h after treatment. Increased relative ion leakage and lipid peroxidation suggested that oxidative stress was frequently generated in rice leaves exposed to high temperature. Two-dimensional electrophoresis (2-DE) was used to analyze heat-responsive proteins. More than 600 protein spots were reproducibly detected on each gel; of these spots, 20 were up-regulated, and 7 were down-regulated. A total of 24 proteins and protein species were successfully identified by MALDI-TOF/TOF MS. These proteins and protein species were found to be primarily small heat shock proteins (58%) as well as proteins involved in RNA processing (17%), photosynthesis (13%), chlorophyll biosynthetic processes (4%), protein degradation (4%) and defense (4%). Using 2-DE Western blot analysis, we confirmed the identities of the cytosolic class II small heat shock protein (sHSPs-CII) identified by MS. The expression levels of four different proteins [cytosolic class I small heat shock protein (sHSPs-CI), sHSPs-CII, mitochondrial small heat shock protein (sHSPs-MIT), glycine-rich RNA-binding protein (GRP)] were analyzed at the transcriptional level by quantitative real-time PCR. The mRNA levels of three sHSPs correlated with the corresponding protein levels. However, GRP was down-regulated at the beginning of heat stress but then increased substantially to reach a peak after 24 h of heat stress. Our study provides valuable new insight into the responses of P. ternata to heat stress.
Collapse
|
107
|
Aghdam MS, Bodbodak S. Postharvest Heat Treatment for Mitigation of Chilling Injury in Fruits and Vegetables. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1207-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
108
|
Parrotta L, Cresti M, Cai G. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton (Hoboken) 2013; 70:522-37. [PMID: 24039249 DOI: 10.1002/cm.21134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
109
|
Wang X, Han F, Yang M, Yang P, Shen S. Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy. RICE (NEW YORK, N.Y.) 2013; 6:17. [PMID: 24280421 PMCID: PMC4883738 DOI: 10.1186/1939-8433-6-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/18/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gibberellins (GAs) are plant-specific hormones that play a central role in the regulation of growth and development with respect to environmental variability. Plants respond to GAs signal through various biochemical and physiological processes. To better understand the response for GA signal, we carried out a proteomic study in rice (Oryza sativa L. spp. japonica) leaf. RESULTS Through two-dimensional gel electrophoresis (2-DE) and mass spectroscopy analysis, we identified 61 proteins as GA-responsive. These proteins were annotated in various biological functions, such as signal transduction and cell growth/division, photosynthesis and energy metabolism, protein stability and defense. Among these, photosynthetic proteins decreased while many catabolic proteins increased. In addition, GA up-regulated a variety of cell growth/division, protein stability and defense proteins such as cell division cycle protein 48, molecular chaperones, and catalases. CONCLUSION This is the first report that cell division cycle protein 48 may be responsible for leaf expansion after leaf sensing GA signal. The results presented here provide new insight into the mechanism of rice leaf in response to GA signal.
Collapse
Affiliation(s)
- Xiaoqin Wang
- />Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing, 102206 China
- />Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Feng Han
- />College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - Mingfeng Yang
- />Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing, 102206 China
| | - Pingfang Yang
- />Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Shihua Shen
- />Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
110
|
Liu MS, Li HC, Lai YM, Lo HF, Chen LFO. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. J Proteomics 2013; 93:133-44. [PMID: 23707232 DOI: 10.1016/j.jprot.2013.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/01/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Previously, we investigated transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and mimics the action of exogenous supplied CK in delaying postharvest senescence of broccoli. Here, we used proteomics and transcriptomics to compare the mechanisms of ipt-transgenic and N(6)-benzylaminopurine (BA) CK treatment of broccoli during postharvest storage. The 2 treatments conferred common and distinct mechanisms. BA treatment decreased the quantity of proteins involved in energy and carbohydrate metabolism and amino acid metabolism, and ipt-transgenic treatment increased that of stress-related proteins and molecular chaperones and slightly affected levels of carbohydrate metabolism proteins. Both treatments regulated genes involved in CK signaling, sugar transport, energy and carbohydrate metabolism, amino acid metabolism and lipid metabolism, although ipt-transgenic treatment to a lesser extent. BA treatment induced genes encoding molecular chaperones, whereas ipt-transgenic treatment induced stress-related genes for cellular protection during storage. Both BA and ipt-transgenic treatments acted antagonistically on ethylene functions. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. BIOLOGICAL SIGNIFICANCE Transgenic broccoli harboring senescence-associated-gene (SAG) promoter-triggered isopentenyltransferase (ipt), which encodes the key enzyme for cytokinin (CK) synthesis and N(6)-benzylaminopurine (BA) CK treated broccoli both showed retardation of postharvest senescence during storage. The mechanisms underlying the two treatments were compared. The combination of proteomic and transcriptomic evidences revealed that the 2 treatments conferred common and distinct mechanisms in delaying senescence of broccoli florets. We propose a long-term acclimation of metabolism and protection systems with ipt-transgenic treatment of broccoli and short-term modulation of metabolism and establishment of a protection system with both BA and ipt-transgenic treatments in delaying senescence of broccoli florets. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
111
|
Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, Ponnala L, van Wijk KJ. Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:157-79. [PMID: 23548781 PMCID: PMC3641200 DOI: 10.1104/pp.113.215699] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 05/18/2023]
Abstract
The plastid ClpPRT protease consists of two heptameric rings of ClpP1/ClpR1/ClpR2/ClpR3/ClpR4 (the R-ring) and ClpP3/ClpP4/ClpP5/ClpP6 (the P-ring) and peripherally associated ClpT1/ClpT2 subunits. Here, we address the contributions of ClpP3 and ClpP4 to ClpPRT core organization and function in Arabidopsis (Arabidopsis thaliana). ClpP4 is strictly required for embryogenesis, similar to ClpP5. In contrast, loss of ClpP3 (clpp3-1) leads to arrest at the hypocotyl stage; this developmental arrest can be removed by supplementation with sucrose or glucose. Heterotrophically grown clpp3-1 can be transferred to soil and generate viable seed, which is surprising, since we previously showed that CLPR2 and CLPR4 null alleles are always sterile and die on soil. Based on native gels and mass spectrometry-based quantification, we show that despite the loss of ClpP3, modified ClpPR core(s) could be formed, albeit at strongly reduced levels. A large portion of ClpPR subunits accumulated in heptameric rings, with overaccumulation of ClpP1/ClpP5/ClpP6 and ClpR3. Remarkably, the association of ClpT1 to the modified Clp core was unchanged. Large-scale quantitative proteomics assays of clpp3-1 showed a 50% loss of photosynthetic capacity and the up-regulation of plastoglobules and all chloroplast stromal chaperone systems. Specific chloroplast proteases were significantly up-regulated, whereas the major thylakoid protease (FtsH1/FtsH2/FtsH5/FtsH8) was clearly unchanged, indicating a controlled protease network response. clpp3-1 showed a systematic decrease of chloroplast-encoded proteins that are part of the photosynthetic apparatus but not of chloroplast-encoded proteins with other functions. Candidate substrates and an explanation for the differential phenotypes between the CLPP3, CLPP4, and CLPP5 null mutants are discussed.
Collapse
|
112
|
|
113
|
Genome-wide expression profiles of contrasting inbred lines of Chinese cabbage, Chiifu and Kenshin, under temperature stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0088-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
114
|
Li Z, Zhang L, Wang A, Xu X, Li J. Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS One 2013; 8:e54880. [PMID: 23349984 PMCID: PMC3551807 DOI: 10.1371/journal.pone.0054880] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/17/2012] [Indexed: 01/19/2023] Open
Abstract
Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions.
Collapse
Affiliation(s)
- Zhenjun Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lili Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of life science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, Heilongjiang, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, Heilongjiang, China
| |
Collapse
|
115
|
Bokszczanin KL, Fragkostefanakis S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. FRONTIERS IN PLANT SCIENCE 2013; 4:315. [PMID: 23986766 PMCID: PMC3750488 DOI: 10.3389/fpls.2013.00315] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/27/2013] [Indexed: 05/17/2023]
Abstract
Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response (HSR) and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of HSR mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant HSR. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on HSR of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen HSR and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into this process.
Collapse
Affiliation(s)
- Kamila L. Bokszczanin
- GenXPro GmbH, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am MainGermany
- *Correspondence: Kamila L. Bokszczanin, GenXPro GmbH, Altenhöferallee 3, Frankfurt am Main 60438, Germany e-mail: ; Sotirios Fragkostefanakis, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Street 9, Frankfurt am Main 60438, Germany e-mail:
| |
Collapse
|
116
|
Waters ER. The evolution, function, structure, and expression of the plant sHSPs. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:391-403. [PMID: 23255280 DOI: 10.1093/jxb/ers355] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Small heat shock proteins are a diverse, ancient, and important family of proteins. All organisms possess small heat shock proteins (sHSPs), indicating that these proteins evolved very early in the history of life prior to the divergence of the three domains of life (Archaea, Bacteria, and Eukarya). Comparing the structures of sHSPs from diverse organisms across these three domains reveals that despite considerable amino acid divergence, many structural features are conserved. Comparisons of the sHSPs from diverse organisms reveal conserved structural features including an oligomeric form with a β-sandwich that forms a hollow ball. This conservation occurs despite significant divergence in primary sequences. It is well established that sHSPs are molecular chaperones that prevent misfolding and irreversible aggregation of their client proteins. Most notably, the sHSPs are extremely diverse and variable in plants. Some plants have >30 individual sHSPs. Land plants, unlike other groups, possess distinct sHSP subfamilies. Most are highly up-regulated in response to heat and other stressors. Others are selectively expressed in seeds and pollen, and a few are constitutively expressed. As a family, sHSPs have a clear role in thermotolerance, but attributing specific effects to individual proteins has proved challenging. Considerable progress has been made during the last 15 years in understanding the sHSPs. However, answers to many important questions remain elusive, suggesting that the next 15 years will be at least equally rewarding.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
117
|
Li M, Ji L, Yang X, Meng Q, Guo S. The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. PLANT CELL REPORTS 2012; 31:1969-79. [PMID: 22790321 DOI: 10.1007/s00299-012-1309-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/23/2012] [Indexed: 05/25/2023]
Abstract
A known sweet pepper cDNA clone, CaHSP26 encoding the chloroplast-localized small heat shock protein (CPsHSP), was isolated and introduced into tobacco plants. It has been reported that CaHSP26 is a member of the CPsHSP gene family related to extreme temperature tolerance in plants. In the present work, the transcripts were detected in the transgenic tobacco lines. The actual quantum yield of photosynthesis (ΦPSII), non-photochemical quenching, and stomatal conductance (gs) in the transgenic lines overexpressing CaHSP26 were higher than those in the wild-type plants under a range of photosynthetic photon flux density during chilling stress. Electron microscopic analysis showed that the transgenic line (L1) had larger size of stomata to lessen stomatal limitation. The activities of ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) were also higher in the transgenic lines than those in wild-type plants. Additionally, a significant increase in cis-unsaturated fatty acid contents was observed in transgenic lines due to lower temperatures. These results suggested that CaHSP26 protein plays an important role in protection of PSII by maintaining the antioxidative enzyme activities to avoid or mitigate photooxidation and increasing the fluidity of the thylakoid membrane during chilling stress under low irradiance. Key message CaHSP26 protein protects PSII by maintaining the antioxidative enzyme activities to avoid or mitigate photooxidation and increases the fluidity of the thylakoid membrane during chilling stress under low irradiance.
Collapse
Affiliation(s)
- Meifang Li
- College of Life Science, Liaocheng University, Liaocheng, 252059, China
| | | | | | | | | |
Collapse
|
118
|
Chauhan H, Khurana N, Nijhavan A, Khurana JP, Khurana P. The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress. PLANT, CELL & ENVIRONMENT 2012; 35:1912-31. [PMID: 22530593 DOI: 10.1111/j.1365-3040.2012.02525.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The nuclear-encoded chloroplast small heat shock proteins (sHSPs) are present in all plant species from algae to angiosperms. Expression analysis shows that the wheat chloroplastic sHSP (HSP26) is highly inducible by heat stress in almost all the vegetative and generative tissues and is also expressed constitutively in certain developmental growth stages. We characterize wheat chloroplastic sHSP 26 through transgenic approach using Arabidopsis and report cloning of the promoter and its characterization. Transgenic Arabidopsis plants were substantially tolerant under continuous high temperature regimen than wild-type plants, as measured by photosystem II (PSII) activity, accumulation of more photosynthetic pigments, higher biomass and seed yield. Transgenic plants produced bold seeds under high temperature, having higher germination potential than the wild-type plants. Further, antisense Arabidopsis plants showed negligible tolerance even for non-lethal heat shock, impaired in basal thermo-tolerance, and accumulated less biomass and seed yield under normal growth conditions. Promoter analysis revealed the presence of several heat and other abiotic stress responsive cis-acting elements along with developmental stage and tissue-specific elements. Analysis of promoter through GUS reporter system in both transgenic rice and Arabidopsis further confirms the role of chloroplastic sHsp26 in heat and other abiotic stresses as well as during seed maturation and germination. Genome-wide expression analysis of overexpression Arabidopsis plants revealed that the transcriptome remained unchanged in the transgenic plants and the tolerance was due to the overexpression of chloroplastic heat shock protein (HSP) only.
Collapse
Affiliation(s)
- Harsh Chauhan
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India
| | | | | | | | | |
Collapse
|
119
|
Zi J, Zhang J, Wang Q, Lin L, Tong W, Bai X, Zhao J, Chen Z, Fu X, Liu S. Proteomics study of rice embryogenesis: discovery of the embryogenesis-dependent globulins. Electrophoresis 2012; 33:1129-38. [PMID: 22539316 DOI: 10.1002/elps.201100398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The plant embryo is the germination center of the seed. How an embryo forms during seed maturation remains unclear, especially in the case of monocotyledonous plants. Generally, the complex processes of embryogenesis result from the action of a coordinated network of genes. Thus, a large-scale survey of changes in protein abundance during embryogenesis is an effective approach to study the molecular events of embryogenesis. In this study, two-dimensional gel electrophoresis (2DE) was applied to separate rice embryo proteins collected during the three phases of embryogenesis: 6 days after pollination (DAP), 12 DAP, and 18 DAP. We then employed matrix-assisted laser desorption-ionization time of flight/time of flight mass spectrometry(MALDI TOF/TOF MS) to identify the phase-dependent differential 2DE spots. A total of 66 spots were discovered to be regulated during embryogenesis, and of these spots, 53 spots were identified. These proteins were further categorized into several functional classes, including storage, embryo development, stress response, glycolysis, and protein metabolism. Intriguingly, the major differential spots originated from three globulins. We further examined the possible mechanism underlying the globulins' multiple forms using Western blotting, proteolysis, and blue native gel electrophoresis techniques and found that the multiple forms of globulins were produced as a result of enhanced proteolysis during embryogenesis, indicating that these globulin forms may serve as chaperone proteins participating in the formation of multiple protein complexes during embryogenesis.
Collapse
Affiliation(s)
- Jin Zi
- China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Lee JH, Yun HS, Kwon C. Molecular communications between plant heat shock responses and disease resistance. Mol Cells 2012; 34:109-16. [PMID: 22710621 PMCID: PMC3887810 DOI: 10.1007/s10059-012-0121-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 609-735,
Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701,
Korea
| | - Chian Kwon
- Department of Molecular Biology, Brain Korea 21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701,
Korea
| |
Collapse
|
121
|
Kirienko DR, Luo A, Sylvester AW. Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. PLANT PHYSIOLOGY 2012; 159:1309-18. [PMID: 22706447 PMCID: PMC3425180 DOI: 10.1104/pp.112.199737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) transformation routinely produces stable transgenic lines essential for functional genomics; however, transient expression of target proteins in maize cells is not yet routine. Such techniques are critical for rapid testing of transgene constructs and for experimental studies. Here, we report bombardment methods that depend on leaf developmental stage and result in successful expression with broad applications. Fluorescent marker genes were constructed and bombarded into five developmental regions in a growing maize leaf. Expression efficiency was highest in the basal-most 3 cm above the ligule of an approximately 50-cm growing adult leaf. Straightforward dissection procedures provide access to the receptive leaf regions, increasing efficiency from less than one transformant per cm(2) to over 21 transformants per cm(2). Successful expression was routine for proteins from full genomic sequences driven by native regulatory regions and from complementary DNA sequences driven by the constitutive maize polyubiquitin promoter and a heterologous terminator. Four tested fusion proteins, maize PROTEIN DISULFIDE ISOMERASE-Yellow Fluorescent Protein, GLOSSY8a-monomeric Red Fluorescent Protein and maize XYLOSYLTRANSFERASE, and maize Rho-of-Plants7-monomeric Teal Fluorescent Protein, localized as predicted in the endoplasmic reticulum, Golgi, and plasma membrane, respectively. Localization patterns were similar between transient and stable modes of expression, and cotransformation was equally successful. Coexpression was also demonstrated by transiently transforming cells in a stable line expressing a second marker protein, thus increasing the utility of a single stable transformant. Given the ease of dissection procedures, this method replaces heterologous expression assays with a more direct, native, and informative system, and the techniques will be useful for localization, colocalization, and functional studies.
Collapse
|
122
|
Park HS, Jeong WJ, Kim E, Jung Y, Lim JM, Hwang MS, Park EJ, Ha DS, Choi DW. Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:332-342. [PMID: 22068390 DOI: 10.1007/s10126-011-9417-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
Heat shock proteins and molecular chaperones are key components contributing to survival in the abiotic stress response. Porphyra seriata grows on intertidal rocks exposed to dynamic environmental changes associated with the turning tides, including desiccation and heat stress. Analysis of the ESTs of P. seriata allows us to identify the nine HSP cDNAs, which are predicted to be PsHSP90, three PsHSP70, PsHSP40 and PsHSP20, and three 5'-truncated HSP cDNAs. RT-PCR results show that most of the PsHSP transcripts were detected under normal cell growth conditions as well as heat stress, with the exception of two cDNAs. In particular, PsHSP70b and PsHSP20 transcripts were upregulated by heat stress. When the putative mitochondrial PsHSP70b was introduced and overexpressed in Chlamydomonas, transformed Chlamydomonas evidenced higher rates of survival and growth than those of the wild type under heat stress conditions. Constitutive overexpression of the PsHSP70b gene increases the transcription of the HSF1 as well as the CrHSP20 and CrHSP70 gene. These results indicate that PsHSP70b is involved in tolerance to heat stress and the effects on transcription of the CrHSP20 and CrHSP70 genes.
Collapse
Affiliation(s)
- Hong-Sil Park
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Kwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomics 2012; 75:2670-84. [DOI: 10.1016/j.jprot.2012.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 03/14/2012] [Indexed: 12/23/2022]
|
124
|
AL-Quraan NA, Locy RD, Singh NK. Heat and cold stresses phenotypes of Arabidopsis thaliana calmodulin mutants: regulation of gamma-aminobutyric acid shunt pathway under temperature stress. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2012. [DOI: 10.4081/pb.2012.e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plants have evolved mechanisms to cope with changes in surrounding temperatures. T-DNA insertions in seven calmodulin genes of <em>Arabidopsis thaliana</em> were used to investigate the role of specific calmodulin isoforms in tolerance of plants to low and high temperature for seed germination, susceptibility to low and high temperature induced oxidative damage, and changes in the levels of gammaaminobutyric acid (GABA) shunt metabolites in response to temperature stress. Exposure of wild type (WT) and <em>cam</em> mutant seeds at 4°C showed reduction in germination of <em>cam5-4</em> and <em>cam6-1</em> seeds. Exposure of cam seedlings to 42°C for 2 hr showed reduction in seed germination and survival of seedlings in <em>cam5-4</em> and <em>cam6-1</em> mutants compared to WT and other <em>cam</em> mutants. Oxidative damage by heat and cold stress measured as the level of malonaldehyde (MDA) was detected increased in root and shoot tissues of cam5- 4 and cam6-1. Oxidative damage by heat measured as the level of MDA was detected in root and shoot of most cam mutants with highest levels in <em>cam5-4</em> and <em>cam6-1</em>. Level of GABA shunt metabolites in seedlings were gradually increased after 1 hr and 3 hr with maximum level after 6 hr and 12 hr treatments at 4ºC. GABA shunt metabolites in both root and shoot were generally elevated after 30 min and 1 hr treatment at 42°C, and increased substantially after 2 hr at 42°C comparing to the control (no treatment). GABA and glutamate levels were increased significantly more than alanine in root and shoot tissues of all cam mutants and wild type compared to the control. Alanine levels showed significant decreases in all cam mutants and in WT for 30 and 60 min of heat stress. Sensitivity of <em>cam5-4 </em>and <em>cam6-1</em> to low temperatures suggests a role of the <em>CAM5</em> and <em>CAM6</em> genes in seed germination and protection against cold induced oxidative damage. Increases in the level of GABA shunt metabolites in response to cold treatment after initial reduction in some cam mutants suggests a role for calmodulin protein (<em>cam</em>) in the activation of glutamate decarboxylase (GAD) after exposure to cold, while increased metabolite levels may indicate involvement of other factors like reduction in cytoplasmic pH in cold regulation. Initial general elevation in GABA shunt metabolites after 30 min heat treatment in cam mutants suggests regulation of GABA level by <em>cam</em>. These data suggest that regulation by factors other than cam is likely, and that this factor may relate to the regulation of GAD by intracellular pH and/or metabolite partitioning under heat stress.
Collapse
|
125
|
Tsai YCC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 2012; 287:20471-81. [PMID: 22518837 DOI: 10.1074/jbc.m112.365411] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)β(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.
Collapse
Affiliation(s)
- Yi-Chin C Tsai
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
126
|
Flores-Pérez Ú, Jarvis P. Molecular chaperone involvement in chloroplast protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:332-40. [PMID: 22521451 DOI: 10.1016/j.bbamcr.2012.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
Chloroplasts are organelles of endosymbiotic origin that perform essential functions in plants. They contain about 3000 different proteins, the vast majority of which are nucleus-encoded, synthesized in precursor form in the cytosol, and transported into the chloroplasts post-translationally. These preproteins are generally imported via envelope complexes termed TOC and TIC (Translocon at the Outer/Inner envelope membrane of Chloroplasts). They must navigate different cellular and organellar compartments (e.g., the cytosol, the outer and inner envelope membranes, the intermembrane space, and the stroma) before arriving at their final destination. It is generally considered that preproteins are imported in a largely unfolded state, and the whole process is energy-dependent. Several chaperones and cochaperones have been found to mediate different stages of chloroplast import, in similar fashion to chaperone involvement in mitochondrial import. Cytosolic factors such as Hsp90, Hsp70 and 14-3-3 may assist preproteins to reach the TOC complex at the chloroplast surface, preventing their aggregation or degradation. Chaperone involvement in the intermembrane space has also been proposed, but remains uncertain. Preprotein translocation is completed at the trans side of the inner membrane by ATP-driven motor complexes. A stromal Hsp100-type chaperone, Hsp93, cooperates with Tic110 and Tic40 in one such motor complex, while stromal Hsp70 is proposed to act in a second, parallel complex. Upon arrival in the stroma, chaperones (e.g., Hsp70, Cpn60, cpSRP43) also contribute to the folding, assembly or onward intraorganellar guidance of the proteins. In this review, we focus on chaperone involvement during preprotein translocation at the chloroplast envelope. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
127
|
Esposito S, Sorbo S, Conte B, Basile A. Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum riparium Hedw. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:443-455. [PMID: 22567723 DOI: 10.1080/15226514.2011.620904] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The effects of heavy metals, both toxic (Pb, Cd) and essential (Cu, Zn) on the ultrastructure and the induction of Heat Shock Protein 70 (HSP70) have been studied in the aquatic moss Leptodictyum riparium Hedw. In vitro cultured L. riparium was treated with different heavy metals, both toxic, as cadmium or lead; and essential microelements such as Copper or Zinc concentrations ranging from 10(-3) to 10(-6) M to investigate both ultrastructural damage and HSP induction. TEM observations showed that sub-lethal concentrations of heavy metals caused only slight changes, largely localized in the chloroplasts. Among all the heavy metals tested, cadmium caused the most severe modifications. Heavy metals caused the decrease of the soluble protein content and the enhancement of proteins reacting versus HSP70 antibodies, suggesting that molecular chaperons might be involved in the resistance to toxic effects of lead, cadmium, copper and zinc. Therefore, the induction of HSP70 in L. riparium would confer a higher resistance to pollutants under stressful conditions lethal for other mosses and higher plant species. These results suggest that the moss L. riparium can tolerate heavy metals stress without incurring severe cellular/subcellular damage. Therefore it can be used as a useful indicator of heavy metals accumulation.
Collapse
Affiliation(s)
- S Esposito
- Dipartimento di Biologia Strutturale e Funzionale - Università di Napoli "Federico II" - Naples, Italy.
| | | | | | | |
Collapse
|
128
|
Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 2012; 51:208-20. [PMID: 22484828 DOI: 10.1016/j.plipres.2012.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/29/2022]
Abstract
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.
Collapse
Affiliation(s)
- Ibolya Horváth
- Institute of Biochemistry, Biol. Res. Centre, Hungarian Acad. Sci., Temesvári krt. 62, H-6734 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Goyal RK, Kumar V, Shukla V, Mattoo R, Liu Y, Chung SH, Giovannoni JJ, Mattoo AK. Features of a unique intronless cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes on chromosome 6 in tomato (Solanum lycopersicum). PLANTA 2012; 235:453-71. [PMID: 21947620 DOI: 10.1007/s00425-011-1518-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/05/2011] [Indexed: 05/03/2023]
Abstract
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Collapse
Affiliation(s)
- Ravinder K Goyal
- US Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agriculture Research Service, Beltsville, MD 20705-2350, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Sanz-Barrio R, Fernández-San Millán A, Carballeda J, Corral-Martínez P, Seguí-Simarro JM, Farran I. Chaperone-like properties of tobacco plastid thioredoxins f and m. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:365-79. [PMID: 21948853 PMCID: PMC3245471 DOI: 10.1093/jxb/err282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/27/2011] [Accepted: 08/12/2011] [Indexed: 05/19/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein.
Collapse
Affiliation(s)
- Ruth Sanz-Barrio
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Alicia Fernández-San Millán
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Jon Carballeda
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| | - Patricia Corral-Martínez
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8E - Escalera I, Camino de Vera s/n, E-46022 Valencia, Spain
| | - José M. Seguí-Simarro
- Instituto para la Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ciudad Politécnica de la Innovación, Edificio 8E - Escalera I, Camino de Vera s/n, E-46022 Valencia, Spain
| | - Inmaculada Farran
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, E-31006 Pamplona, Spain
| |
Collapse
|
131
|
Li DC, Yang F, Lu B, Chen DF, Yang WJ. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones 2012; 17:103-8. [PMID: 21853411 PMCID: PMC3227843 DOI: 10.1007/s12192-011-0289-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/07/2011] [Indexed: 10/30/2022] Open
Abstract
Small heat shock proteins are ubiquitous in all three domains (Archaea, Bacteria and Eukarya) and possess molecular chaperone activity by binding to unfolded polypeptides and preventing aggregation of proteins in vitro. The functions of a small heat shock protein (S.so-HSP20) from the hyperthermophilic archaeon, Sulfolobus solfataricus P2 have not been described. In the present study, we used real-time polymerase chain reaction analysis to measure mRNA expression of S.so-HSP20 in S. solfataricus P2 and found that it was induced by temperatures that were substantially lower (60°C) or higher (80°C) than the optimal temperature for S. solfataricus P2 (75°C). The expression of S.so-HSP20 mRNA was also up-regulated by cold shock (4°C). Escherichia coli cells expressing S.so-HSP20 showed greater thermotolerance in response to temperature shock (50°C, 4°C). By assaying enzyme activities, S.so-HSP20 was found to promote the proper folding of thermo-denatured citrate synthase and insulin B chain. These results suggest that S.so-HSP20 promotes thermotolerance and engages in chaperone-like activity during the stress response.
Collapse
Affiliation(s)
- Dong-Chol Li
- College of Life Sciences, Zhejiang University and Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou, 310058 China
- College of Life Sciences, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea
| | - Fan Yang
- College of Life Sciences, Zhejiang University and Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou, 310058 China
| | - Bo Lu
- College of Life Sciences, Zhejiang University and Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou, 310058 China
| | - Dian-Fu Chen
- College of Life Sciences, Zhejiang University and Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou, 310058 China
| | - Wei-Jun Yang
- College of Life Sciences, Zhejiang University and Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, Hangzhou, 310058 China
| |
Collapse
|
132
|
Goo TW, Kim SW, Kim YB, Kim SR, Park SW, Kang SW, Kwon OY, Yun EY. A powerful ubiquitous activity of Bombyx mori heat shock protein 70 promoter. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0060-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
133
|
Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:104-19. [PMID: 22033015 DOI: 10.1016/j.bbagrm.2011.10.002] [Citation(s) in RCA: 540] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
Abstract
Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Klaus-Dieter Scharf
- Molecular Cellbiology of Plants, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany.
| | | | | | | |
Collapse
|
134
|
Mu C, Wang S, Zhang S, Pan J, Chen N, Li X, Wang Z, Liu H. Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily. PLANT CELL REPORTS 2011; 30:1981-9. [PMID: 21678060 DOI: 10.1007/s00299-011-1106-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/02/2011] [Accepted: 06/03/2011] [Indexed: 05/08/2023]
Abstract
Plant meiotic prophase I is a complicated process involving the late zygotene and pachytene stages, both crucial for completing synapsis and recombination. Using David Lily (Lilium davidii var. Willmottiae) as our research material, we performed suppression subtractive hybridization to construct EST library of anthers at various stages of development by the pollen mother cells. From this library, we identified small heat shock protein LimHSP16.45 was highly expressed during the late zygotene to pachytene stages. Our results also showed that LimHSP16.45 was almost specifically expressed in the anther compared with the root, stem, or leaf, and in situ expression of LimHSP16.45 mRNAs showed strong signals in the pollen mother cells and tapetal cells. LimHSP16.45 could be induced by heat and cold in lily anthers, and its ectopic expression enhanced the viability of E. coli cells under both high and low temperatures. In vitro, it acted as molecular chaperone and could help luciferase refolding after heat shock stress. All of these data suggest that LimHSP16.45, working as molecular chaperone, possibly protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily.
Collapse
Affiliation(s)
- Changjun Mu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Liu MS, Li HC, Chang YM, Wu MT, Chen LFO. Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:288-99. [PMID: 21763540 DOI: 10.1016/j.plantsci.2011.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 05/20/2023]
Abstract
Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days' post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence.
Collapse
Affiliation(s)
- Mao-Sen Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
136
|
Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming. J Proteome Res 2011; 10:3891-903. [DOI: 10.1021/pr101274f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rafika Yacoubi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Claudette Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| | - Maya Belghazi
- Centre d’Analyses Protéomiques de Marseille (CAPM), IFR Jean Roche, Faculté de médecine, Marseille cedex 20, France
| | - Wided Chaibi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Dominique Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| |
Collapse
|
137
|
Sung MS, Hsu YT, Ho KL, Lee TM. Implications of the up-regulation of genes encoding protein degradation enzymes and heat shock protein 90 for intertidal green macroalga Ulva fasciata against hypersalinity-induced protein oxidation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:684-694. [PMID: 20957402 DOI: 10.1007/s10126-010-9330-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
The molecular acclimation of intertidal green macroalga Ulva fasciata Delile to high salinity stress were examined by the construction of a forward cDNA library via the suppressive subtractive hybridization between 30‰ and 90‰ (24 h) and by the time course dynamics of several abundantly expressed genes. Among the genes with known sequences, the expressed sequence tags are abundant in the function of protein synthesis (ribosomal protein) and destination. The cDNAs of ATP-dependent Clp protease (UfClpC), 20S proteasome β-subunit type 1 domain (UfPbf1), ubiquitin-conjugating enzyme E2 I (UfUbc9), and heat shock protein 90A (UfHsp90A) were cloned. UfClpC transcript increased 3 h after 90‰ treatment, followed by a decrease, while UfPbf1 and UfUbc9 transcripts increased after 12 h and decreased at 48 h. The transcripts of UfHsp90A increased 1 h after 90‰ treatment, followed by a drop and to the control level at 48 h. Protease activity increased 3 h after 90‰ treatment and decreased to the control level at 48 h. H₂O₂ contents increased 1 h after 90‰ treatment and then remained unchanged, but protein carbonyl group contents increased after 48 h. The treatments of reactive oxygen species scavengers partially alleviated 90‰ damage (partial growth rescue) and suppressed the increases in H₂O₂ content, protein carbonyl group content, protease activity, and UfClpC, UfPbf1, UfUbc9, and UfHsp90A transcripts by 90‰. The induction of specific chaperones and proteases at the molecular level for protein quality control can be considered as one of the molecular mechanisms of hypersalinity acclimation in U. fasciata.
Collapse
Affiliation(s)
- Ming-Shiuan Sung
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China
| | | | | | | |
Collapse
|
138
|
Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. PLANTA 2011; 233:947-960. [PMID: 21259065 DOI: 10.1007/s00425-010-1341-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/10/2010] [Indexed: 05/30/2023]
Abstract
Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.
Collapse
Affiliation(s)
- Kinya Akashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Heat shock proteins in association with heat tolerance in grasses. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:529648. [PMID: 22084689 PMCID: PMC3200123 DOI: 10.1155/2011/529648] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/14/2011] [Indexed: 11/29/2022]
Abstract
The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding.
Collapse
|
140
|
Gupta D, Tuteja N. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:232-6. [PMID: 21427533 PMCID: PMC3121983 DOI: 10.4161/psb.6.2.15490] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 05/19/2023]
Abstract
Molecular chaperones and foldases are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins (non-native or unstable proteins) and play important role in their proper folding. Stress conditions compel altered and heightened chaperone and foldase expression activity in the endoplasmic reticulum (ER), which highlights the role of these proteins, due to which several of the proteins under these classes were identified as heat shock proteins. Different chaperones and foldases are active in different cellular compartment performing specific tasks. The review will discuss the role of the ER chaperones and foldases under stress conditions to maintain proper protein folding dynamics in the plant cells and recent advances in the field. The ER chaperones and foldases, which are described in article, are binding protein (BiP), glucose regulated protein (GRP94), protein-disulfide isomerase (PDI), peptidyl-prolyl isomerases (PPI), immunophilins, calnexin and calreticulin.
Collapse
Affiliation(s)
- Dinesh Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
141
|
Hahn A, Bublak D, Schleiff E, Scharf KD. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. THE PLANT CELL 2011; 23:741-55. [PMID: 21307284 PMCID: PMC3077788 DOI: 10.1105/tpc.110.076018] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 01/07/2011] [Accepted: 01/22/2011] [Indexed: 05/17/2023]
Abstract
Heat stress transcription factors (Hsfs) regulate gene expression in response to environmental stress. The Hsf network in plants is controlled at the transcriptional level by cooperation of distinct Hsf members and by interaction with chaperones. We found two general mechanisms of Hsf regulation by chaperones while analyzing the three major Hsfs, A1, A2, and B1, in tomato (Solanum lycopersicum). First, Hsp70 and Hsp90 regulate Hsf function by direct interactions. Hsp70 represses the activity of HsfA1, including its DNA binding, and the coactivator function of HsfB1 in the complex with HsfA2, while the DNA binding activity of HsfB1 is stimulated by Hsp90. Second, Hsp90 affects the abundance of HsfA2 and HsfB1 by modulating hsfA2 transcript degradation involved in regulation of the timing of HsfA2 synthesis. By contrast, HsfB1 binding to Hsp90 and to DNA are prerequisites for targeting this Hsf for proteasomal degradation, which also depends on a sequence element in its carboxyl-terminal domain. Thus, HsfB1 represents an Hsp90 client protein that, by interacting with the chaperone, is targeted for, rather than protected from, degradation. Based on these findings, we propose a versatile regulatory regime involving Hsp90, Hsp70, and the three Hsfs in the control of heat stress response.
Collapse
|
142
|
Olinares PDB, Kim J, van Wijk KJ. The Clp protease system; a central component of the chloroplast protease network. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:999-1011. [PMID: 21167127 DOI: 10.1016/j.bbabio.2010.12.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
143
|
Paungfoo-Lonhienne C, Schmidt S, Lonhienne TGA. Uptake of non-pathogenic E. coli by Arabidopsis induces down-regulation of heat shock proteins. PLANT SIGNALING & BEHAVIOR 2010; 5:1626-8. [PMID: 21139429 PMCID: PMC3115117 DOI: 10.4161/psb.5.12.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We recently demonstrated that non-pathogenic and non-symbiotic microbes E. coli and yeast are taken up by roots and used as a source of nutrients by the plant. Although this process appears to be beneficial for the plant, the nutritional gain of microbe incorporation has to exceed the energy expense of microbe uptake and digestion, and the question remains whether the presence of microbes triggers pathogen- and other stress-induced responses. Here, we present evidence that digesting microbes is accompanied by strong down-regulation of genes linked to stress response in Arabidopsis. Genome-wide transcription analysis shows that uptake of E. coli by Arabidopsis roots is accompanied by a pronounced down-regulation of heat shock proteins. Plants up-regulate heat shock proteins in response to environmental stresses including temperature, salt, light and disease agents including microbial pathogens. The pronounced down-regulation of heat shock proteins in the presence of E. coli indicates that uptake and subsequent digestion of microbes does not induce stress. Additionally it suggests that resources devoted to stress resistance in control plants may be re-allocated to the process of microbe uptake and digestion. This observation adds evidences to the notion that uptake of microbes is an active, purposeful and intentional behavior of the plant.
Collapse
|
144
|
Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD. Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 2010; 285:35633-44. [PMID: 20829359 PMCID: PMC2975188 DOI: 10.1074/jbc.m110.116285] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 09/08/2010] [Indexed: 11/06/2022] Open
Abstract
The N-terminal proline-rich domain of γ-zein (Zera) plays an important role in protein body (PB) formation not only in the original host (maize seeds) but in a broad spectrum of eukaryotic cells. However, the elements within the Zera sequence that are involved in the biogenesis of PBs have not been clearly identified. Here, we focused on amino acid sequence motifs that could be involved in Zera oligomerization, leading to PB-like structures in Nicotiana benthamiana leaves. By using fusions of Zera with fluorescent proteins, we found that the lack of the repeat region (PPPVHL)(8) of Zera resulted in the secretion of the fusion protein but that this repeat by itself did not form PBs. Although the repeat region containing eight units was the most efficient for Zera self-assembly, shorter repeats of 4-6 units still formed small multimers. Based on site-directed mutagenesis of Zera cysteine residues and analysis of multimer formation, we conclude that the two N-terminal Cys residues of Zera (Cys(7) and Cys(9)) are critical for oligomerization. Immunoelectron microscopy and confocal studies on PB development over time revealed that early, small, Zera-derived oligomers were sequestered in buds along the rough ER and that the mature size of the PBs could be attained by both cross-linking of preformed multimers and the incorporation of new chains of Zera fusions synthesized by active membrane-bound ribosomes. Based on these results and on the behavior of the Zera structure determined by molecular dynamics simulation studies, we propose a model of Zera-induced PB biogenesis.
Collapse
Affiliation(s)
- Immaculada Llop-Tous
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergio Madurga
- the Departament de Química Física and IQTCUB, Universidad de Barcelona, Martí Franquès 1, 08028 Barcelona, Spain
| | - Ernest Giralt
- the Institut de Recerca Biomèdica, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain, and
| | | | - Margarita Torrent
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M. Dolors Ludevid
- From the Centre de Recerca en Agrigenòmica, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
145
|
Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. THE PLANT CELL 2010; 22:2930-42. [PMID: 20876830 PMCID: PMC2965551 DOI: 10.1105/tpc.110.078154] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/12/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China 200433
- Address correspondence to or
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to or
| |
Collapse
|
146
|
Sekhar K, Priyanka B, Reddy VD, Rao KV. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over-expression in Arabidopsis confers multiple abiotic stress tolerance. PLANT, CELL & ENVIRONMENT 2010; 33:1324-38. [PMID: 20374537 DOI: 10.1111/j.1365-3040.2010.02151.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A full-length cDNA clone of pigeonpea (Cajanus cajan L.) encoding cyclophilin (CcCYP) has been isolated from the cDNA library of plants subjected to drought stress. Amino acid sequence of CcCYP disclosed similarity with that of single-domain cytosolic cyclophilins of various organisms. Expression profile of CcCYP in pigeonpea plants is strongly induced by different abiotic stresses, indicating its stress-responsive nature. Compared to the control plants, the transgenic Arabidopsis lines expressing CcCYP exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity and extreme temperatures as evidenced by increased plant survival, biomass, chlorophyll content and profuse root growth. The CcCYP transgenics, compared to the controls, revealed enhanced peptidyl-propyl cis-trans isomerase (PPIase) activity under stressed conditions, owing to transcriptional activation of stress-related genes besides intrinsic chaperonic activity of the cyclophilin. The transgenic plants subjected to salt stress exhibited higher Na(+) ion accumulation in roots as compared to shoots, while a reverse trend was observed in the salt-stressed control plants, implicating the involvement of CcCYP in the maintenance of ion homeostasis. Expression pattern of CcCYP:GFP fusion protein confirmed the localization of CcCYP predominantly in the nucleus as revealed by intense green fluorescence. The overall results amply demonstrate the implicit role of CcCYP in conferring multiple abiotic stress tolerance at whole-plant level.
Collapse
Affiliation(s)
- Kambakam Sekhar
- Centre for Plant Molecular Biology, Osmania University, Hyderabad 500007, AP, India
| | | | | | | |
Collapse
|
147
|
Zárate X, Henderson DC, Phillips KC, Lake AD, Galbraith DW. Development of high-yield autofluorescent protein microarrays using hybrid cell-free expression with combined Escherichia coli S30 and wheat germ extracts. Proteome Sci 2010; 8:32. [PMID: 20546627 PMCID: PMC2906421 DOI: 10.1186/1477-5956-8-32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 06/15/2010] [Indexed: 01/08/2023] Open
Abstract
Background Protein-based microarray platforms offer considerable promise as high-throughput technologies in proteomics. Particular advantages are provided by self-assembling protein microarrays and much interest centers around analysis of eukaryotic proteins and their molecular interactions. Efficient cell-free protein synthesis is paramount for the production of self-assembling protein microarrays, requiring optimal transcription, translation, and protein folding. The Escherichia coli S30 extract demonstrates high translation rates but lacks the protein-folding efficiency of its eukaryotic counterparts derived from rabbit reticulocyte and wheat germ extract. In comparison to E. coli, eukaryotic extracts, on the other hand, exhibit slower translation rates and poor overall protein yields. A cell-free expression system that synthesizes folded eukaryotic proteins in considerable yields would optimize in vitro translation for protein microarray assembly. Results Self-assembling autofluorescent protein microarrays were produced by in situ transcription and translation of chimeric proteins containing a C-terminal Green Fluorescent Protein tag. Proteins were immobilized as array elements using an anti-GFP monoclonal antibody. The amounts of correctly-folded chimeric proteins were quantified by measuring the fluorescence intensity from each array element. During cell-free expression, very little or no fluorescence was observed from GFP-tagged multidomain eukaryotic plant proteins when in vitro translation was performed with E. coli S30 extract. Improvement was seen using wheat germ extract, but fluorescence intensities were still low because of poor protein yields. A hybrid in vitro translation system, combining S30 and wheat germ extracts, produced high levels of correctly-folded proteins for most of the constructs that were tested. Conclusion The results are consistent with the hypothesis that the wheat germ extract enhances the protein folding capabilities of the in vitro system by providing eukaryotic ribosomes and chaperones and, at the same time, the E. coli S30 extract, which includes an ATP regeneration system, translates the polypeptides at high rates. This hybrid cell-free expression system allows the facile production of high-yield protein arrays suitable for downstream assays.
Collapse
Affiliation(s)
- Xristo Zárate
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
148
|
Mueller A, Kadri A, Jeske H, Wege C. In vitro assembly of Tobacco mosaic virus coat protein variants derived from fission yeast expression clones or plants. J Virol Methods 2010; 166:77-85. [DOI: 10.1016/j.jviromet.2010.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/22/2010] [Indexed: 12/25/2022]
|
149
|
Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. THE PLANT CELL 2010; 22:1313-32. [PMID: 20418496 PMCID: PMC2879748 DOI: 10.1105/tpc.109.069609] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 05/17/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yunxia Qin
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Changgen Xie
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feiyi Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dafa Liu
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Anja T. Fuglsang
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Michael G. Palmgren
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xing Wang Deng
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| |
Collapse
|
150
|
Sub-littoral and supra-littoral amphipods respond differently to acute thermal stress. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:413-8. [DOI: 10.1016/j.cbpb.2010.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/22/2009] [Accepted: 01/11/2010] [Indexed: 11/22/2022]
|