101
|
Nishizawa-Yokoi A, Mikami M, Toki S. A Universal System of CRISPR/Cas9-Mediated Gene Targeting Using All-in-One Vector in Plants. Front Genome Ed 2020; 2:604289. [PMID: 34713227 PMCID: PMC8525384 DOI: 10.3389/fgeed.2020.604289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination-mediated genome editing, also called gene targeting (GT), is an essential technique that allows precise modification of a target sequence, including introduction of point mutations, knock-in of a reporter gene, and/or swapping of a functional domain. However, due to its low frequency, it has been difficult to establish GT approaches that can be applied widely to a large number of plant species. We have developed a simple and universal clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated DNA double-strand break (DSB)-induced GT system using an all-in-one vector comprising a CRISPR/Cas9 expression construct, selectable marker, and GT donor template. This system enabled introduction of targeted point mutations with non-selectable traits into several target genes in both rice and tobacco. Since it was possible to evaluate the GT frequency on endogenous target genes precisely using this system, we investigated the effect of treatment with Rad51-stimulatory compound 1 (RS-1) on the frequency of DSB-induced GT. GT frequency was slightly, but consistently, improved by RS-1 treatment in both target plants.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Masafumi Mikami
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Seiichi Toki
| |
Collapse
|
102
|
Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A, Moffa L, Vittani L, Moser C, Malnoy M. Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Sci Rep 2020; 10:20155. [PMID: 33214661 PMCID: PMC7678832 DOI: 10.1038/s41598-020-77110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Genome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind. The first is based on the Flp/FRT system and the second on Cas9 and synthetic cleavage target sites (CTS) close to T-DNA borders, which are recognized by the sgRNA. Several grapevine and apple lines, transformed with a panel of CRISPR/SpCas9 binary vectors, were regenerated and characterized for T-DNA copy number and for the rate of targeted editing. As detected by an optimized NGS-based sequencing method, trimming at T-DNA borders occurred in 100% of the lines, impairing in most cases the excision. Another observation was the leakage activity of Cas9 which produced pierced and therefore non-functional CTS. Deletions of genomic DNA and presence of filler DNA were also noticed at the junctions between T-DNA and genomic DNA. This study proved that many factors must be considered for designing efficient binary vectors capable of minimizing the presence of exogenous DNA in CRISPRed fruit trees.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy.
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Loredana Moffa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Lorenzo Vittani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| |
Collapse
|
103
|
Li X, Yang Q, Peng L, Tu H, Lee LY, Gelvin SB, Pan SQ. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proc Natl Acad Sci U S A 2020; 117:26389-26397. [PMID: 33020260 PMCID: PMC7584991 DOI: 10.1073/pnas.2009645117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Agrobacterium tumefaciens is the causal agent of crown gall disease. The bacterium is capable of transferring a segment of single-stranded DNA (ssDNA) into recipient cells during the transformation process, and it has been widely used as a genetic modification tool for plants and nonplant organisms. Transferred DNA (T-DNA) has been proposed to be escorted by two virulence proteins, VirD2 and VirE2, as a nucleoprotein complex (T-complex) that targets the host nucleus. However, it is not clear how such a proposed large DNA-protein complex is delivered through the host nuclear pore in a natural setting. Here, we studied the natural nuclear import of the Agrobacterium-delivered ssDNA-binding protein VirE2 inside plant cells by using a split-GFP approach with a newly constructed T-DNA-free strain. Our results demonstrate that VirE2 is targeted into the host nucleus in a VirD2- and T-DNA-dependent manner. In contrast with VirD2 that binds to plant importin α for nuclear import, VirE2 directly interacts with the host nuclear pore complex component nucleoporin CG1 to facilitate its nuclear uptake and the transformation process. Our data suggest a cooperative nuclear import model in which T-DNA is guided to the host nuclear pore by VirD2 and passes through the pore with the assistance of interactions between VirE2 and host nucleoporin CG1. We hypothesize that this large linear nucleoprotein complex (T-complex) is targeted to the nucleus by a "head" guide from the VirD2-importin interaction and into the nucleus by a lateral assistance from the VirE2-nucleoporin interaction.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Qinghua Yang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Ling Peng
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Haitao Tu
- School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore 117543;
| |
Collapse
|
104
|
Estevan J, Gómez‐Jiménez S, Falavigna VDS, Camuel A, Planel L, Costes E, Andrés F. An efficient protocol for functional studies of apple transcription factors using a glucocorticoid receptor fusion system. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11396. [PMID: 33163295 PMCID: PMC7598887 DOI: 10.1002/aps3.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 05/17/2023]
Abstract
PREMISE We report a protocol for studying the function of apple (Malus ×domestica) transcription factors based on the glucocorticoid receptor (GR) system, which allows the dexamethasone (DEX)-mediated activation of plant transcription factors to monitor the expression levels of their potential target genes. METHODS AND RESULTS Apple leaves are transformed with a vector that allows the expression of the studied transcription factor (i.e., FLOWERING LOCUS C [MdFLC]) fused to GR. Calli derived from the transformed leaves are treated with DEX and cycloheximide, a protein synthesis inhibitor. Compared with other methods, combining the GR system with cycloheximide treatments enables the differentiation between direct and indirect transcription factor target genes. Finally, the expression levels of putative MdFLC target genes are quantified using quantitative reverse transcription PCR. CONCLUSIONS We demonstrate the efficiency of our GR system to study the function of apple transcription factors. This method is accessible to any laboratory familiar with basic molecular cloning procedures and the apple leaf-mediated agro-transformation technique.
Collapse
Affiliation(s)
- Joan Estevan
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | | | - Vítor da Silveira Falavigna
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linne‐Weg 1050829CologneGermany
| | - Alicia Camuel
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Lisa Planel
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Evelyne Costes
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Fernando Andrés
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| |
Collapse
|
105
|
Kiyokawa K, Ohmine Y, Yunoki K, Yamamoto S, Moriguchi K, Suzuki K. Enhanced Agrobacterium-mediated transformation revealed attenuation of exogenous plasmid DNA installation in recipient bacteria by exonuclease VII and SbcCD. Genes Cells 2020; 25:663-674. [PMID: 32799424 DOI: 10.1111/gtc.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
In DNA transfer via type IV secretion system (T4SS), relaxase enzyme releases linear ssDNA in donor cells and recircularizes in recipient cells. Using VirB/D4 T4SS, Agrobacterium cells can transfer an IncQ-type plasmid depending on Mob relaxase and a model T-DNA plasmid depending on VirD2 relaxase. Mobilization to Escherichia coli of the former plasmid is much more efficient than that of the latter, whereas an entirely reverse relationship is observed in transfer to yeast. These data suggest that either plasmid recircularization or conversion of ssDNA to dsDNA in the recipient bacterial cells is a rate-limiting step of the transfer. In this study, we examined involvement of exonuclease genes in the plasmid acceptability. By the VirD2-dependent T-DNA plasmid, E. coli sbcDΔ and sbcCΔ mutant strains produced threefold more exconjugants, and a sbcDΔ xseAΔ mutant strain yielded eightfold more exconjugants than their wild-type strain. In contrast to the enhancing effect on the VirD2-mediated transfer, the mutations exhibited a subtle effect on the Mob-mediated transfer. These results support our working hypothesis that VirD2 can transport its substrate ssDNA efficiently to recipient cells and that recipient nucleases degrade the ssDNA because VirD2 has some defect(s) in the circularization and completion of complementary DNA synthesis.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Yuta Ohmine
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuya Yunoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shinji Yamamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
106
|
Shinoyama H, Ichikawa H, Nishizawa-Yokoi A, Skaptsov M, Toki S. Simultaneous TALEN-mediated knockout of chrysanthemum DMC1 genes confers male and female sterility. Sci Rep 2020; 10:16165. [PMID: 32999297 PMCID: PMC7527520 DOI: 10.1038/s41598-020-72356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Genome editing has become one of the key technologies for plant breeding. However, in polyploid species such as chrysanthemum, knockout of all loci of multiple genes is needed to eliminate functional redundancies. We identified six cDNAs for the CmDMC1 genes involved in meiotic homologous recombination in chrysanthemum. Since all six cDNAs harbored a homologous core region, simultaneous knockout via TALEN-mediated genome editing should be possible. We isolated the CmDMC1 loci corresponding to the six cDNAs and constructed a TALEN-expression vector bearing a CmDMC1 target site containing the homologous core region. After transforming two chrysanthemum cultivars with the TALEN-expression vector, seven lines exhibited disruption of all six CmDMC1 loci at the target site as well as stable male and female sterility at 10–30 °C. This strategy to produce completely sterile plants could be widely applicable to prevent the risk of transgene flow from transgenic plants to their wild relatives.
Collapse
Affiliation(s)
- Harue Shinoyama
- Fukui Agricultural Experiment Station, Fukui, 918-8215, Japan. .,Department of Bioscience, Fukui Prefectural University, Awara, 910-4103, Japan.
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Mikhail Skaptsov
- South Siberian Botanical Garden, Altai State University, Barnaul, Russia, 656049
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
107
|
Liu J, Zhou R, Wang W, Wang H, Qiu Y, Raman R, Mei D, Raman H, Hu Q. A copia-like retrotransposon insertion in the upstream region of the SHATTERPROOF1 gene, BnSHP1.A9, is associated with quantitative variation in pod shattering resistance in oilseed rape. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5402-5413. [PMID: 32525990 PMCID: PMC7501816 DOI: 10.1093/jxb/eraa281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
Seed loss resulting from pod shattering is a major constraint in production of oilseed rape (Brassica napus L.). However, the molecular mechanisms underlying pod shatter resistance are not well understood. Here, we show that the pod shatter resistance at quantitative trait locus qSRI.A9.1 is controlled by one of the B. napus SHATTERPROOF1 homologs, BnSHP1.A9, in a doubled haploid population generated from parents designated R1 and R2 as well as in a diverse panel of oilseed rape. The R1 maternal parental line of the doubled haploid population carried the allele for shattering at qSRI.A9.1, while the R2 parental line carried the allele for shattering resistance. Quantitative RT-PCR showed that BnSHP1.A9 was expressed specifically in flower buds, flowers, and developing siliques in R1, while it was not expressed in any tissue of R2. Transgenic plants constitutively expressing either of the BnSHP1.A9 alleles from the R1 and R2 parental lines showed that both alleles are responsible for pod shattering, via a mechanism that promotes lignification of the enb layer. These findings indicated that the allelic differences in the BnSHP1.A9 gene per se are not the causal factor for quantitative variation in shattering resistance at qSRI.A9.1. Instead, a highly methylated copia-like long terminal repeat retrotransposon insertion (4803 bp) in the promotor region of the R2 allele of BnSHP1.A9 repressed the expression of BnSHP1.A9, and thus contributed to pod shatter resistance. Finally, we showed a copia-like retrotransposon-based marker, BnSHP1.A9R2, can be used for marker-assisted breeding targeting the pod shatter resistance trait in oilseed rape.
Collapse
Affiliation(s)
- Jia Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
| | - Rijin Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
| | - Wenxiang Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
| | - Hui Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW, Australia
| | - Desheng Mei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
| | - Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW, Australia
| | - Qiong Hu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan Hubei, P.R. China
- Correspondence:
| |
Collapse
|
108
|
Mathew IE, Priyadarshini R, Mahto A, Jaiswal P, Parida SK, Agarwal P. SUPER STARCHY1/ONAC025 participates in rice grain filling. PLANT DIRECT 2020; 4:e00249. [PMID: 32995698 PMCID: PMC7507516 DOI: 10.1002/pld3.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/10/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
NAC transcription factors (TFs) are known for their role in development and stress. This article attempts to functionally validate the role of rice SS1/ ONAC025 (LOC_Os11g31330) during seed development. The gene is seed-specific and its promoter directs reporter expression in the developing endosperm and embryo in rice transgenic plants. Furthermore, rice transgenic plants ectopically expressing SS1/ ONAC025 have a plantlet lethal phenotype with hampered vegetative growth, but increased tillers and an altered shoot apical meristem structure. The vegetative cells of these plantlets are filled with distinct starch granules. RNAseq analysis of two independent plantlets reveals the differential expression of reproductive and photosynthetic genes. A comparison with seed development transcriptome indicates differential regulation of many seed-related genes by SS1/ ONAC025. Genes involved in starch biosynthesis, especially amylopectin and those encoding seed storage proteins, and regulating seed size are also differentially expressed. In conjunction, SS1/ ONAC025 shows highest expression in japonica rice. As a TF, SS1/ ONAC025 is a transcriptional repressor localized to endoplasmic reticulum and nucleus. The article shows that SS1/ ONAC025 is a seed-specific gene promoting grain filling in rice, and negatively affecting vegetative growth.
Collapse
Affiliation(s)
| | | | - Arunima Mahto
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Priya Jaiswal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
109
|
Prudhomme N, Gianetto-Hill C, Pastora R, Cheung WF, Allen-Vercoe E, McLean MD, Cossar D, Geddes-McAlister J. Quantitative proteomic profiling of shake flask versus bioreactor growth reveals distinct responses of Agrobacterium tumefaciens for preparation in molecular pharming. Can J Microbiol 2020; 67:75-84. [PMID: 32846104 DOI: 10.1139/cjm-2020-0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of Agrobacterium tumefaciens cultures with strains encoding proteins intended for therapeutic or industrial purposes is an important activity prior to treatment of plants for transient expression of valuable protein products. The rising demand for biologic products such as these underscores the expansion of molecular pharming and warrants the need to produce transformed plants at an industrial scale. This requires large quantities of A. tumefaciens culture, which is challenging using traditional growth methods (e.g., shake flask). To overcome this limitation, we investigate the use of bioreactors as an alternative to shake flasks to meet production demands. Here, we observe differences in bacterial growth among the tested parameters and define conditions for consistent bacterial culturing between shake flask and bioreactor. Quantitative proteomic profiling of cultures from each growth condition defines unique growth-specific responses in bacterial protein abundance and highlights the functional roles of these proteins, which may influence bacterial processes important for effective agroinfiltration and transformation. Overall, our study establishes and optimizes comparable growth conditions for shake flask versus bioreactors and provides novel insights into fundamental biological processes of A. tumefaciens influenced by such growth conditions.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - C Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - W-F Cheung
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - E Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
110
|
An efficient genetic transformation system for Chinese medicine fungus Tolypocladium ophioglossoides. J Microbiol Methods 2020; 176:106032. [PMID: 32805368 DOI: 10.1016/j.mimet.2020.106032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Tolypocladium ophioglossoides is a rare and valuable fungus extensively used in Chinese medicine for relieving postmenopausal syndrome in women yet its bioactive molecules are unknown. To explore its molecular mechanisms, we have developed a reliable Agrobacterium-mediated transformation system using the selective marker: the chlorimuron ethyl-resistance gene sur. For this purpose, we firstly constructed a T-DNA binary vector system and then improved the transformation efficiency by optimizing conditional parameters including the Agrobacterium tumefaciens concentration, the conidia number of T. ophioglossoides, the co-culture time and the concentration of acetosyringone. Furthermore, we have knocked-out the ku70 gene,which is a key gene in non-homologous end joining (NHEJ) DNA repair pathway,and the effect of the length of the homologous arms (HA) on the genetic transformation efficacy was also examined, which increased by 60% when HA was about 3 kb in length. Our results suggest that the genetic transformation system is efficient and feasible for the truffle-parasite fungus T. ophioglossoides, which can further be used in large-scale experiments for characterization of genes of interest in future work.
Collapse
|
111
|
Ben Saad R, Ben Romdhane W, Zouari N, Ben Hsouna A, Harbaoui M, Brini F, Ghneim-Herrera T. Characterization of a novel LmSAP gene promoter from Lobularia maritima: Tissue specificity and environmental stress responsiveness. PLoS One 2020; 15:e0236943. [PMID: 32735612 PMCID: PMC7394455 DOI: 10.1371/journal.pone.0236943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/03/2022] Open
Abstract
Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding sequence designated as PrLmSAP. In silico analyses of PrLmSAP revealed the presence of consensus CAAT and TATA boxes and cis-regulatory elements required for abiotic stress, phytohormones, pathogen, and wound responses, and also for tissue-specific expression. The PrLmSAP sequence was fused to the β-glucuronidase (gusA) reporter gene and transferred to rice. Histochemical GUS staining showed a pattern of tissue-specific expression in transgenic rice, with staining observed in roots, coleoptiles, leaves, stems and floral organs but not in seeds or in the root elongation zone. Wounding strongly stimulated GUS accumulation in leaves and stems. Interestingly, we observed a high stimulation of the promoter activity when rice seedlings were exposed to NaCl, PEG, ABA, MeJA, GA, cold, and heavy metals (Al3+, Cd2+, Cu2+ and Zn2+). These results suggest that the LmSAP promoter can be a convenient tool for stress-inducible gene expression and is a potential candidate for crop genetic engineering.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | |
Collapse
|
112
|
Ricci A, Sabbadini S, Prieto H, Padilla IM, Dardick C, Li Z, Scorza R, Limera C, Mezzetti B, Perez-Jimenez M, Burgos L, Petri C. Genetic Transformation in Peach ( Prunus persica L.): Challenges and Ways Forward. PLANTS (BASEL, SWITZERLAND) 2020; 9:E971. [PMID: 32752031 PMCID: PMC7465125 DOI: 10.3390/plants9080971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Almost 30 years have passed since the first publication reporting regeneration of transformed peach plants. Nevertheless, the general applicability of genetic transformation of this species has not yet been established. Many strategies have been tested in order to obtain an efficient peach transformation system. Despite the amount of time and the efforts invested, the lack of success has significantly limited the utility of peach as a model genetic system for trees, despite its relatively short generation time; small, high-quality genome; and well-studied genetic resources. Additionally, the absence of efficient genetic transformation protocols precludes the application of many biotechnological tools in peach breeding programs. In this review, we provide an overview of research on regeneration and genetic transformation in this species and summarize novel strategies and procedures aimed at producing transgenic peaches. Promising future approaches to develop a robust peach transformation system are discussed, focusing on the main bottlenecks to success including the low efficiency of A. tumefaciens-mediated transformation, the low level of correspondence between cells competent for transformation and those that have regenerative competence, and the high rate of chimerism in the few shoots that are produced following transformation.
Collapse
Affiliation(s)
- Angela Ricci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Humberto Prieto
- Laboratorio de Biotecnología, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, La Pintana, Santiago 11610, Chile
| | - Isabel Mg Padilla
- Área de Genómica y Biotecnología, Grupo de Morfogénesis y Modificación Genética, IFAPA-Centro de Churriana, Cortijo de la Cruz s/n, 29140 Málaga, Spain
| | - Chris Dardick
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Zhijian Li
- USDA-ARS-Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Ralph Scorza
- Ralph Scorza LLC, Plant Breeding and Biotechnology Consulting Services, P.O. Box 1191, Shepherdstown, WV 25443, USA
| | - Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Margarita Perez-Jimenez
- Mejora Genética de Cítricos, Instituto Murciano de Investigación y Desarrollo Agroalimentario (IMIDA), C/ Mayor s/n, 30150 Murcia, Spain
| | - Lorenzo Burgos
- Departamento de Mejora Vegetal, Grupo de Biotecnología de Frutales, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Espinardo, Murcia, Spain
| | - Cesar Petri
- Departamento de Fruticultura Subtropical y Mediterránea, IHSM-UMA-CSIC, Avenida Dr. Wienberg, s/n. 29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
113
|
Prudhomme N, Pastora R, Muselius B, McLean MD, Cossar D, Geddes-McAlister J. Exposure of Agrobacterium tumefaciens to agroinfiltration medium demonstrates cellular remodelling and may promote enhanced adaptability for molecular pharming. Can J Microbiol 2020; 67:85-97. [PMID: 32721220 DOI: 10.1139/cjm-2020-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agroinfiltration is used to treat plants with modified strains of Agrobacterium tumefaciens for the purpose of transient in planta expression of genes transferred from the bacterium. These genes encode valuable recombinant proteins for therapeutic or industrial applications. Treatment of large quantities of plants for industrial-scale protein production exposes bacteria (harboring genes of interest) to agroinfiltration medium that is devoid of nutrients and carbon sources for prolonged periods of time (possibly upwards of 24 h). Such conditions may negatively influence bacterial viability, infectivity of plant cells, and target protein production. Here, we explored the role of timing in bacterial culture preparation for agroinfiltration using mass spectrometry-based proteomics to define changes in cellular processes. We observed distinct profiles associated with bacterial treatment conditions and exposure timing, including significant changes in proteins involved in pathogenesis, motility, and nutrient acquisition systems as the bacteria adapt to the new environment. These data suggest a progression towards increased cellular remodelling over time. In addition, we described changes in growth- and environment-specific processes over time, underscoring the interconnectivity of pathogenesis and chemotaxis-associated proteins with transport and metabolism. Overall, our results have important implications for the production of transiently expressed target protein products, as prolonged exposure to agroinfiltration medium suggests remodelling of the bacterial proteins towards enhanced infection of plant cells.
Collapse
Affiliation(s)
- N Prudhomme
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - R Pastora
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - B Muselius
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M D McLean
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - D Cossar
- PlantForm Corporation Canada, Toronto, ON M4S 3E2, Canada
| | - J Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
114
|
Okuzaki A, Tsuda M, Konagaya KI, Tabei Y. A novel strategy for promoting homoplasmic plastid transformant production using the barnase-barstar system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:223-232. [PMID: 32821230 PMCID: PMC7434676 DOI: 10.5511/plantbiotechnology.20.0503a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Plastid transformants form biofactories that are able to produce extra proteins in plastids when they are in a homoplasmic state. To date, plastid transformation has been reported in about twenty plant species; however, the production of homoplasmic plastid transformants is not always successful or easy. Heteroplasmic plants that contain wild-type plastids produce fewer target proteins and do not always successfully transfer transgenes to progeny. In order to promote the generation of homoplasmic plants, we developed a novel system using barnase-barster to eliminate wild-type plastids from heteroplasmic cells systematically. In this system, a chemically inducible cytotoxic barnase under a plastid transit signal was introduced into nuclear DNA and barster, which inhibits barnase, was integrated into plastid DNA with the primary selection markers aminoglycoside 3'-adenylyltransferase (aadA) and green fluorescence protein (GFP) gene. As expected, the expression of the plastid barnase was lethal to cells as seen in leaf segments, but barster expression in plastids rescued them. We then investigated the regeneration frequency of homoplasmic shoots from heteroplasmic leaf segments with or without barnase expression. The regeneration frequency of homoplasmic-like shoots expressing barnase-barster system was higher than that of shoots not expressing this. We expect that the application of this novel strategy for transformation of plastids will be supportive to generate homoplasmic plastid transformants in other plant species.
Collapse
Affiliation(s)
- Ayako Okuzaki
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mai Tsuda
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken-ichi Konagaya
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Tabei
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
115
|
Nakajima I, Endo M, Haji T, Moriguchi T, Yamamoto T. Embryogenic callus induction and Agrobacterium-mediated genetic transformation of 'Shine Muscat' grape. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:185-194. [PMID: 32821226 PMCID: PMC7434678 DOI: 10.5511/plantbiotechnology.20.0527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/27/2020] [Indexed: 06/10/2023]
Abstract
We established a method for embryogenic callus induction and highly efficient Agrobacterium-mediated genetic transformation of a table grape cultivar 'Shine Muscat' (Vitis labruscana). Embryogenic calli were induced using flower bud filaments from a dormant cane. Agrobacterium strain LBA4404 harboring the binary plasmid pBin19-sgfp, which contains the sgfp and nptII genes, was used to infect embryogenic calli. Infected calli were selected on 1/2 MS medium containing 5% maltose and 2% agar supplemented with 15 mg l-1 kanamycin. Efficiency of transformation of regenerated plants reached nearly 100% as determined by PCR and Southern blot analyses. The developed method will open a new avenue for genome editing of 'Shine Muscat' and contribute to the advancement of grape breeding.
Collapse
Affiliation(s)
- Ikuko Nakajima
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Masaki Endo
- Institute of Agrobiological Science, National Agriculture and Food Research Organization, Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Haji
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Toshiya Yamamoto
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
116
|
Molinari MDC, Fuganti-Pagliarini R, Marin SRR, Ferreira LC, Barbosa DDA, Marcolino-Gomes J, Oliveira MCND, Mertz-Henning LM, Kanamori N, Takasaki H, Urano K, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL. Overexpression of AtNCED3 gene improved drought tolerance in soybean in greenhouse and field conditions. Genet Mol Biol 2020; 43:e20190292. [PMID: 32511664 PMCID: PMC7278712 DOI: 10.1590/1678-4685-gmb-2019-0292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/06/2020] [Indexed: 01/13/2023] Open
Abstract
Water deficit is an important climatic problem that can impair agriculture yield and economy. Genetically modified soybean plants containing the AtNCED3 gene were obtained aiming drought-tolerance improvement. The NCED3 gene encodes a 9-cis-epoxycarotenoid dioxygenase (NCED, EC 1.13.11.51), an important enzyme in abscisic acid biosynthesis. ABA activates the expression of drought-responsive genes, in water-deficit conditions, targeting defense mechanisms and enabling plants to survive under low water availability. Results from greenhouse experiments showed that the transgene AtNCED3 and the endogenous genes GmAREB1, GmPP2C, GmSnRK2 and GmAAO3 presented higher expression under water deficit (WD) in the event 2Ha11 than in WT-plants. No significant correlation was observed between the plant materials and WD conditions for growth parameters; however, gas exchange measurements decreased in the GM event, which also showed 80% higher intrinsic water use when compared to WT plants. In crop season 2015/16, event 2Ha11 showed higher total number of pods, higher number of pods with seeds and yield than WT plants. ABA concentration was also higher in GM plants under WD. These results obtained in field screenings suggest that AtNCED3 soybean plants might outperform under drought, reducing economic and yield losses, thus being a good candidate line to be incorporated in the soybean-breeding program to develop drought-tolerant cultivars.
Collapse
Affiliation(s)
- Mayla Daiane Correa Molinari
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Daniel de Amorim Barbosa
- Universidade Estadual de Londrina, Departamento Geral de Biologia, Londrina, PR, Brazil.,Embrapa Soja, Londrina, PR, Brazil
| | | | | | | | - Norihito Kanamori
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Hironori Takasaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kaoru Urano
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Gene Discovery Research Group, Tsukuba, Ibaraki, Japan
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Biological Resources and Post-harvest Division, Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- The University of Tokyo, Laboratory of Plant Molecular Physiology, Department of Applied Biological Chemistry, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
117
|
Li R, Vavrik C, Danna CH. Proxies of CRISPR/Cas9 Activity To Aid in the Identification of Mutagenized Arabidopsis Plants. G3 (BETHESDA, MD.) 2020; 10:2033-2042. [PMID: 32291290 PMCID: PMC7263673 DOI: 10.1534/g3.120.401110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas9 has become the preferred gene-editing technology to obtain loss-of-function mutants in plants, and hence a valuable tool to study gene function. This is mainly due to the easy reprogramming of Cas9 specificity using customizable small non-coding RNAs, and to the possibility of editing several independent genes simultaneously. Despite these advances, the identification of CRISPR-edited plants remains time and resource-intensive. Here, based on the premise that one editing event in one locus is a good predictor of editing event/s in other locus/loci, we developed a CRISPR co-editing selection strategy that greatly facilitates the identification of CRISPR-mutagenized Arabidopsis thaliana plants. This strategy is based on targeting the gene/s of interest simultaneously with a proxy of CRISPR-Cas9-directed mutagenesis. The proxy is an endogenous gene whose loss-of-function produces an easy-to-detect visible phenotype that is unrelated to the expected phenotype of the gene/s under study. We tested this strategy via assessing the frequency of co-editing of three functionally unrelated proxy genes. We found that each proxy predicted the occurrence of mutations in each surrogate gene with efficiencies ranging from 68 to 100%. The selection strategy laid out here provides a framework to facilitate the identification of multiplex edited plants, thus aiding in the study of gene function when functional redundancy hinders the effort to define gene-function-phenotype links.
Collapse
Affiliation(s)
- Renyu Li
- Department of Biology, University of Virginia, Charlottesville, Virginia, and
| | - Charles Vavrik
- Department of Biology, University of Virginia, Charlottesville, Virginia, and
- Albemarle High School, Albemarle County, Virginia
| | - Cristian H Danna
- Department of Biology, University of Virginia, Charlottesville, Virginia, and
| |
Collapse
|
118
|
Pareddy D, Chennareddy S, Anthony G, Sardesai N, Mall T, Minnicks T, Karpova O, Clark L, Griffin D, Bishop B, Shumway N, Samuel P, Smith K, Sarria R. Improved soybean transformation for efficient and high throughput transgenic production. Transgenic Res 2020; 29:267-281. [PMID: 32303980 DOI: 10.1007/s11248-020-00198-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Although genetic transformation of soybean dates back to over two decades, the process remains inefficient. Here, we report the development of an organogenesis-based transformation method of soybean that resulted in an average transformation frequency of 18.7%. This improved method resorts to Agrobacterium-mediated transformation of the split-seed explant with an attached partial embryonic axis obtained from an imbibed seed. In addition to the split-seed explant, Agrobacterium strain and preparation were shown to be important for improved transformation. Transformation with Agrobacterium tumefaciens EHA105 generated higher transformation frequencies and number of low copy events compared to the strain EHA101. In this system, phosphinothricin acetyl transferase conferring tolerance to glufosinate was successfully employed for efficiently producing transgenic events. Around 48% of the T1 progeny was demonstrated to be heritable based on molecular analysis and screening with the herbicide Liberty®. This method was shown to be applicable to different genotypes and a few elite lines showed high transformation frequencies. This split-seed system with an attached partial embryonic axis serves not only as an efficient means for high throughput transgenic production for basic research studies but also for the commercial development of transgenic soybean products.
Collapse
Affiliation(s)
- Dayakar Pareddy
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - Siva Chennareddy
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Geny Anthony
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Nagesh Sardesai
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA.
| | - Tejinder Mall
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Tatyana Minnicks
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - Olga Karpova
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Lauren Clark
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - David Griffin
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - Brandon Bishop
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Nolan Shumway
- Dow AgroSciences LLC, Trait Product Development, West Lafayette, IN, USA
| | - Pon Samuel
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - Kelley Smith
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| | - Rodrigo Sarria
- Dow AgroSciences LLC, Trait Product Development, Indianapolis, IN, USA
| |
Collapse
|
119
|
Kilaru S, Schuster M, Cannon S, Steinberg G. Optimised red- and green-fluorescent proteins for live cell imaging in the industrial enzyme-producing fungus Trichoderma reesei. Fungal Genet Biol 2020; 138:103366. [PMID: 32173466 DOI: 10.1016/j.fgb.2020.103366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
The filamentous fungus Trichoderma reesei is a major source of cellulolytic enzymes in biofuel production. Despite its economic relevance, our understanding of its secretory pathways is fragmentary. A major challenge is to visualise the dynamic behaviour of secretory vesicles in living cells. To this end, we establish a location juxtaposing the succinate dehydrogenase locus as a "soft-landing" site for controlled expression of 4 green-fluorescent and 5 red-fluorescent protein-encoding genes (GFPs, RFPs). Quantitative and comparative analysis of their fluorescent signals in living cells demonstrates that codon-optimised monomeric superfolder GFP (TrmsGFP) and codon-optimised mCherry (TrmCherry) combine highest signal intensity with significantly improved signal-to-noise ratios. Finally, we show that integration of plasmid near the sdi1 locus does not affect secretion of cellulase activity in RUT-C30. The molecular and live cell imaging tools generated in this study will help our understanding the secretory pathway in the industrial fungus T. reesei.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom.
| |
Collapse
|
120
|
Wang S, Chen H, Wang Y, Pan C, Tang X, Zhang H, Chen W, Chen Y. Effects of
Agrobacterium tumefaciens
strain types on the
Agrobacterium‐
mediated transformation efficiency of filamentous fungus
Mortierella alpina. Lett Appl Microbiol 2020; 70:388-393. [DOI: 10.1111/lam.13286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S. Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
| | - H. Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
| | - Y. Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
| | - C. Pan
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
| | - X. Tang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
| | - H. Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- National Engineering Research Center for Functional Food Jiangnan University Wuxi Jiangsu P.R. China
- Wuxi Translational Medicine Research Center Jiangsu Translational Medicine Research Institute Wuxi Branch Wuxi Jiangsu P.R. China
| | - W. Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- National Engineering Research Center for Functional Food Jiangnan University Wuxi Jiangsu P.R. China
- Beijing Innovation Centre of Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing P.R. China
| | - Y.Q. Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu P.R. China
- National Engineering Research Center for Functional Food Jiangnan University Wuxi Jiangsu P.R. China
- Wuxi Translational Medicine Research Center Jiangsu Translational Medicine Research Institute Wuxi Branch Wuxi Jiangsu P.R. China
- Department of Cancer Biology Wake Forest School of Medicine Winston‐Salem NC USA
| |
Collapse
|
121
|
Sunitha S, Rock CD. CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res 2020; 29:355-367. [PMID: 32328868 PMCID: PMC7283210 DOI: 10.1007/s11248-020-00196-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Pierce’s disease (PD) of grapevine (Vitis vinifera) is caused by the bacterium Xylella fastidiosa and is vectored by xylem sap-sucking insects, whereas Grapevine Red Blotch Virus (GRBV) causes Red Blotch Disease and is transmitted in the laboratory by alfalfa leafhopper Spissistilus festinus. The significance of anthocyanin accumulations in distinct tissues of grapevine by these pathogens is unknown, but vector feeding preferences and olfactory cues from host anthocyanins may be important for these disease etiologies. Phosphate, sugar, and UV light are known to regulate anthocyanin accumulation via miR828 and Trans-Acting Small-interfering locus4 (TAS4), specifically in grape by production of phased TAS4a/b/c small-interfering RNAs that are differentially expressed and target MYBA5/6/7 transcription factor transcripts for post-transcriptional slicing and antisense-mediated silencing. To generate materials that can critically test these genes’ functions in PD and GRBV disease symptoms, we produced transgenic grape plants targeting TAS4b and MYBA7 using CRISPR/Cas9 technology. We obtained five MYBA7 lines all with bi-allelic editing events and no off-targets detected at genomic loci with homology to the guide sequence. We obtained two independent edited TAS4b lines; one bi-allelic, the other heterozygous while both had fortuitous evidences of bi-allelic TAS4a off-target editing events at the paralogous locus. No visible anthocyanin accumulation phenotypes were observed in regenerated plants, possibly due to the presence of genetically redundant TAS4c and MYBA5/6 loci or absence of inductive environmental stress conditions. The editing events encompass single base insertions and di/trinucleotide deletions of Vvi-TAS4a/b and Vvi-MYBA7 at expected positions 3 nt upstream from the guideRNA proximal adjacent motifs NGG. We also identified evidences of homologous recombinations of TAS4a with TAS4b at the TAS4a off-target in one of the TAS4b lines, resulting in a chimeric locus with a bi-allelic polymorphism, supporting independent recombination events in transgenic plants associated with apparent high Cas9 activities. The lack of obvious visible pigment phenotypes in edited plants precluded pathogen challenge tests of the role of anthocyanins in host PD and GRBV resistance/tolerance mechanisms. Nonetheless, we demonstrate successful genome-editing of non-coding RNA and MYB transcription factor loci which can serve future characterizations of the functions of TAS4a/b/c and MYBA7 in developmental, physiological, and environmental biotic/abiotic stress response pathways important for value-added nutraceutical synthesis and pathogen responses of winegrape.
Collapse
Affiliation(s)
- Sukumaran Sunitha
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409-3131, USA.
| |
Collapse
|
122
|
Chayapakdee P, Sunohara Y, Endo M, Yamaguchi T, Fan L, Uchino A, Matsumoto H, Iwakami S. Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by β-cyanoalanine synthase. PEST MANAGEMENT SCIENCE 2020; 76:1195-1204. [PMID: 31659851 DOI: 10.1002/ps.5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Multiple herbicide resistant Echinochloa phyllopogon exhibits resistance to the auxin herbicide quinclorac. Previous research observed enhanced activity of the cyanide-detoxifying enzyme β-cyanoalanine synthase (β-CAS) and reduced ethylene production in the resistant line, suggesting β-CAS-mediated cyanide detoxification and insensitivity to quinclorac stimulation as the resistance mechanisms. To investigate the molecular mechanisms of quinclorac resistance, we characterized the β-CAS genes alongside plant transformation studies. The association of β-CAS activity and ethylene production to quinclorac resistance was assayed in the F6 progeny of susceptible and resistant lines of E. phyllopogon. RESULTS A single nucleotide polymorphism in a β-CAS1 intron deleted aberrantly spliced mRNAs and enhanced β-CAS activity in the resistant line. The enhanced activity, however, was not associated with quinclorac resistance in F6 lines. The results were supported by lack of quinclorac resistance in Arabidopsis thaliana expressing E. phyllopogon β-CAS1 and no difference in quinclorac sensitivity between β-CAS knockout and wild-type rice. Reduced ethylene production co-segregated with quinclorac resistance in F6 lines which were previously characterized to be resistant to other herbicides by an enhanced metabolism. CONCLUSION β-CAS does not participate in quinclorac sensitivity in E. phyllopogon. Our results suggest that a mechanism(s) leading to reduced ethylene production is behind the resistance. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Yukari Sunohara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takuya Yamaguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, Japan
| | - Hiroshi Matsumoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
123
|
Zhang Y, Zhang Q, Chen QJ. Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1491-1498. [PMID: 32279281 DOI: 10.1007/s11427-020-1685-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Lack of appropriate methods for delivery of genome-editing reagents is a major barrier to CRISPR/Cas-mediated genome editing in plants. Agrobacterium-mediated genetic transformation (AMGT) is the preferred method of CRISPR/Cas reagent delivery, and researchers have recently made great improvements to this process. In this article, we review the development of AMGT and AMGT-based delivery of CRISPR/Cas reagents. We give an overview of the development of AMGT vectors including binary vector, superbinary vector, dual binary vector, and ternary vector systems. We also review the progress in Agrobacterium genomics and Agrobacterium genetic engineering for optimal strains. We focus in particular on the ternary vector system and the resources we developed. In summary, it is our opinion that Agrobacterium-mediated CRISPR/Cas genome editing in plants is entering an era of ternary vector systems, which are often integrated with morphogenic regulators. The new vectors described in this article are available from Addgene and/or MolecularCloud for sharing with academic investigators for noncommercial research.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
124
|
Itoh T, Onuki R, Tsuda M, Oshima M, Endo M, Sakai H, Tanaka T, Ohsawa R, Tabei Y. Foreign DNA detection by high-throughput sequencing to regulate genome-edited agricultural products. Sci Rep 2020; 10:4914. [PMID: 32188926 PMCID: PMC7080720 DOI: 10.1038/s41598-020-61949-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although the advent of several new breeding techniques (NBTs) is revolutionizing agricultural production processes, technical information necessary for their regulation is yet to be provided. Here, we show that high-throughput DNA sequencing is effective for the detection of unintended remaining foreign DNA segments in genome-edited rice. A simple k-mer detection method is presented and validated through a series of computer simulations and real data analyses. The data show that a short foreign DNA segment of 20 nucleotides can be detected and the probability that the segment is overlooked is 10-3 or less if the average sequencing depth is 30 or more, while the number of false hits is less than 1 on average. This method was applied to real sequencing data, and the presence and absence of an external DNA segment were successfully proven. Additionally, our in-depth analyses also identified some weaknesses in current DNA sequencing technologies. Hence, for a rigorous safety assessment, the combination of k-mer detection and another method, such as Southern blot assay, is recommended. The results presented in this study will lay the foundation for the regulation of NBT products, where foreign DNA is utilized during their generation.
Collapse
Affiliation(s)
- Takeshi Itoh
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan.
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ritsuko Onuki
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Research Institute, National Cancer Center Japan, Chuo-ku, Tokyo, 104-0045, Japan
| | - Mai Tsuda
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masao Oshima
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaki Endo
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroaki Sakai
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tsuyoshi Tanaka
- Bioinformatics Team, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ryo Ohsawa
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Tabei
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
125
|
Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S. An In Vivo Targeted Deletion of the Calmodulin-Binding Domain from Rice Glutamate Decarboxylase 3 (OsGAD3) Increases γ-Aminobutyric Acid Content in Grains. RICE (NEW YORK, N.Y.) 2020; 13:20. [PMID: 32180062 PMCID: PMC7076103 DOI: 10.1186/s12284-020-00380-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/04/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Gamma-aminobutyric acid (GABA) is a non-protein amino acid present in all living things. GABA is mainly synthesized from glutamate by glutamate decarboxylase (GAD). In plants the enzymatic activity of GAD is activated by Ca2+/calmodulin binding (CaMBD) at the C-terminus in response to various stresses, allowing rapid GABA accumulation in cells. GABA plays a central role in not only stress responses but also many aspects of plant growth and development as a signaling molecules. Furthermore, it is known to be a health-promoting functional substance that exerts improvements in life-style related diseases such as hypertension, diabetes, hyperlipidemia, and so on. Previous reports indicated that CaMBD found plant GADs possess an autoinhibitory function because truncation of GAD resulted in extreme GABA accumulation in plant cells. Therefore, we attempted a genetic modification of rice GAD via genome editing technology to increase GABA levels in the edible part of rice. RESULTS In this study, we focused on GAD3, one of five GAD genes present in the rice genome, because GAD3 is the predominantly expressed in seeds, as reported previously. We confirmed that GAD3 has an authentic Ca2+/CaMBD that functions as an autoinhibitory domain. CRISPR/Cas9-mediated genome editing was performed to trim the coding region of CaMBD off from the OsGAD3 gene, then introducing this transgene into rice scutellum-derived calli using an all-in-one vector harboring guide RNAs and CRISPR/Cas9 via Agrobacterium to regenerate rice plants. Out of 24 transformed rice (T1), a genome-edited rice line (#8_8) derived from two independent cleavages and ligations in the N-terminal position encoding OsGAD3-CaMBD and 40 bp downstream of the termination codon, respectively, displayed a AKNQDAAD peptide in the C-terminal region of the putative OsGAD3 in place of its intact CaMBD (bold indicates the trace of the N-terminal dipeptides of the authentic CaMBD). A very similar rice line (#8_1) carrying AKNRSSRRSGR in OsGAD3 was obtained from one base pair deletion in the N-terminal coding region of the CaMBD. Free amino acid analysis of the seeds (T2) indicated that the former line contained seven-fold higher levels of GABA than wild-type, whereas the latter line had similar levels to the wild-type, although in vitro enzyme activities of recombinant GAD proteins based on the GAD3 amino acid sequence elucidated from these two lines in the absence of Ca2+/bovine CaM were both higher than wild-type counterpart. In addition to high level of GABA in #8_8, the average seed weight per grain and protein content were superior to wild-type and #8_1. CONCLUSIONS We have successfully established GABA-fortified rice by using CRISPR/Cas9 genome editing technology. Modified rice contained seven-fold higher GABA content and furthermore displayed significantly higher grain weight and protein content than wild-type brown rice. This is the first report of the production of GABA-enriched rice via a genome editing.
Collapse
Affiliation(s)
- Kazuhito Akama
- Department of Life Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
| | - Nadia Akter
- Department of Life Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hinako Endo
- Department of Life Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Masako Kanesaki
- Department of Life Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, 244-0813, Japan
| |
Collapse
|
126
|
Song GQ, Han X, Wiersma AT, Zong X, Awale HE, Kelly JD. Induction of competent cells for Agrobacterium tumefaciens-mediated stable transformation of common bean (Phaseolus vulgaris L.). PLoS One 2020; 15:e0229909. [PMID: 32134988 PMCID: PMC7058285 DOI: 10.1371/journal.pone.0229909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stable transformation of common bean (Phaseolus vulgaris L.) has been successful, to date, only using biolistic-mediated transformation and shoot regeneration from meristem-containing embryo axes. In this study, using precultured embryo axes, and optimal co-cultivation conditions resulted in a successful transformation of the common bean cultivar Olathe using Agrobacterium tumefaciens strain EHA105. Plant regeneration through somatic embryogenesis was attained through the preculture of embryo axes for 12 weeks using induced competent cells for A. tumefaciens-mediated gene delivery. Using A. tumefaciens at a low optical density (OD) of 0.1 at a wavelength of 600 nm for infection and 4-day co-cultivation, compared to OD600 of 0.5, increased the survival rate of the inoculated explants from 23% to 45%. Selection using 0.5 mg L-1 glufosinate (GS) was effective to identify transformed cells when the bialaphos resistance (bar) gene under the constitutive 35S promoter was used as a selectable marker. After an 18-week selection period, 1.5% -2.5% inoculated explants, in three experiments with a total of 600 explants, produced GS-resistant plants through somatic embryogenesis. The expression of bar was confirmed in first- and second-generation seedlings of the two lines through reverse polymerase chain reaction. Presence of the bar gene was verified through genome sequencing of two selected transgenic lines. The induction of regenerable, competent cells is key for the successful transformation, and the protocols described may be useful for future transformation of additional Phaseolus germplasm.
Collapse
Affiliation(s)
- Guo-qing Song
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
- * E-mail:
| | - Xue Han
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
| | - Andrew T. Wiersma
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaojuan Zong
- Plant Biotechnology Resource & Outreach Center, Department of Horticulture, Michigan State University, East Lansing, Michigan, United Sates of America
| | - Halima E. Awale
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - James D. Kelly
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
127
|
Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:845-858. [PMID: 31495052 PMCID: PMC7004915 DOI: 10.1111/pbi.13253] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 05/20/2023]
Abstract
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty-seven transgenic lines were screened to identify CRISPR/Cas9-induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss-of-function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off-target sites revealed no mutation event. Moreover, our construct contained a heat-shock inducible FLP/FRT recombination system designed specifically to remove the T-DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat-treated and screened by real-time PCR to quantify the exogenous DNA elimination. The T-DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9-FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.
Collapse
Affiliation(s)
- Valerio Pompili
- Department of Genomics and Biology of Fruit CropsResearch and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- Department of Agricultural, Food, Environmental and Animal SciencesUniversità degli Studi di UdineUdineItaly
| | - Lorenza Dalla Costa
- Department of Genomics and Biology of Fruit CropsResearch and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Stefano Piazza
- Department of Genomics and Biology of Fruit CropsResearch and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Massimo Pindo
- Department of Genomics and Biology of Fruit CropsResearch and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Mickael Malnoy
- Department of Genomics and Biology of Fruit CropsResearch and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
128
|
Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang JP, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. PLANT CELL REPORTS 2020; 39:245-257. [PMID: 31728703 DOI: 10.1007/s00299-019-02488-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/06/2019] [Indexed: 05/23/2023]
Abstract
KEY MESSAGE A novel and robust lipofection-mediated transfection approach for the use of DNA-free Cas9/gRNA RNP for gene editing has demonstrated efficacy in plant cells. Precise genome editing has been revolutionized by CRISPR/Cas9 systems. DNA-based delivery of CRISPR/Cas9 is widely used in various plant species. However, protein-based delivery of the in vitro translated Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) complex into plant cells is still in its infancy even though protein delivery has several advantages. These advantages include DNA-free delivery, gene-edited host plants that are not transgenic, ease of use, low cost, relative ease to be adapted to high-throughput systems, and low off-target cleavage rates. Here, we show a novel lipofection-mediated transfection approach for protein delivery of the preassembled Cas9/gRNA RNP into plant cells for genome editing. Two lipofection reagents, Lipofectamine 3000 and RNAiMAX, were adapted for successful delivery into plant cells of Cas9/gRNA RNP. A green fluorescent protein (GFP) reporter was fused in-frame with the C-terminus of the Cas9 protein and the fusion protein was successfully delivered into non-transgenic tobacco cv. 'Bright Yellow-2' (BY2) protoplasts. The optimal efficiencies for Lipofectamine 3000- and RNAiMAX-mediated protein delivery were 66% and 48%, respectively. Furthermore, we developed a biolistic method for protein delivery based on the known proteolistics technique. A transgenic tobacco BY2 line expressing an orange fluorescence protein reporter pporRFP was targeted for knockout. We found that the targeted mutagenesis frequency for our Lipofectamine 3000-mediated protein delivery was 6%. Our results showed that the newly developed lipofection-mediated transfection approach is robust for the use of the DNA-free Cas9/gRNA technology for genome editing in plant cells.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Horticultural Science, North Caroline State University, Raleigh, NC, 27607, USA.
| | - Mary R Rudis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew H Cheplick
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Reginald J Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jian-Ping Yang
- Synthetic Biology Research and Development, Thermo Fisher Scientific, Carlsbad, CA, 92008, USA
| | - Christine A Ondzighi-Assoume
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Garrett A Montgomery
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kellie P Burris
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Caroline State University, Raleigh, NC, 27606, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jonathan D Chesnut
- Synthetic Biology Research and Development, Thermo Fisher Scientific, Carlsbad, CA, 92008, USA
| | - Charles Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
129
|
Steinhauer D, Salat M, Frey R, Mosbach A, Luksch T, Balmer D, Hansen R, Widdison S, Logan G, Dietrich RA, Kema GHJ, Bieri S, Sierotzki H, Torriani SFF, Scalliet G. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog 2019; 15:e1007780. [PMID: 31860693 PMCID: PMC6941823 DOI: 10.1371/journal.ppat.1007780] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 01/03/2020] [Accepted: 11/20/2019] [Indexed: 11/24/2022] Open
Abstract
Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals. Subclass-specific resistance was confirmed at the enzyme level but did not correlate with the genotypes of the succinate dehydrogenase (SDH) encoding genes. Mapping and characterization of the molecular mechanisms responsible for standing SHA-SDHI resistance in natural field isolates identified a gene paralog of SDHC, termed ZtSDHC3, which encodes for an alternative C subunit of succinate dehydrogenase, named alt-SDHC. Using reverse genetics, we showed that alt-SDHC associates with the three other SDH subunits, leading to a fully functional enzyme and that a unique Qp-site residue within the alt-SDHC protein confers SHA-SDHI resistance. Enzymatic assays, computational modelling and docking simulations for the two SQR enzymes (altC-SQR, WT_SQR) enabled us to describe enzyme-inhibitor interactions at an atomistic level and to propose rational explanations for differential potency and resistance across SHA-SDHIs. European Z. tritici populations displayed a presence (20–30%) / absence polymorphism of ZtSDHC3, as well as differences in ZtSDHC3 expression levels and splicing efficiency. These polymorphisms have a strong impact on SHA-SDHI resistance phenotypes. Characterization of the ZtSDHC3 promoter in European Z. tritici populations suggests that transposon insertions are associated with the strongest resistance phenotypes. These results establish that a dispensable paralogous gene determines SHA-SDHIs fungicide resistance in natural populations of Z. tritici. This study paves the way to an increased awareness of the role of fungicidal target paralogs in resistance to fungicides and demonstrates the paramount importance of population genomics in fungicide discovery. Zymoseptoria tritici is the causal agent of Septoria tritici leaf blotch (STB) of wheat, the most devastating disease for cereal production in Europe. Multiple succinate dehydrogenase inhibitor (SDHI) fungicides have been developed and introduced for the control of STB. We report the discovery and detailed characterization of a paralog of the C subunit of the SDH enzyme conferring standing resistance towards the SHA-SDHIs, a particular chemical subclass of the SDHIs. The SDHC paralog is characterized by its presence/absence, expression and alternative splicing polymorphisms, which in turn influence resistance levels. The identified mechanisms exemplify the importance of population genomics for the discovery and rational design of the most adapted solutions.
Collapse
Affiliation(s)
| | - Marie Salat
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Regula Frey
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - Rasmus Hansen
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Stephanie Widdison
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Grace Logan
- Syngenta Jealott’s Hill Int. Research Centre, Bracknell Berkshire, United Kingdom
| | - Robert A. Dietrich
- Syngenta Biotechnology Inc., Research Triangle Park, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
130
|
Ondzighi-Assoume CA, Willis JD, Ouma WK, Allen SM, King Z, Parrott WA, Liu W, Burris JN, Lenaghan SC, Stewart CN. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2019; 12:290. [PMID: 31890018 PMCID: PMC6913013 DOI: 10.1186/s13068-019-1632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/07/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a North American prairie grassland species, is a potential lignocellulosic biofuel feedstock owing to its wide adaptability and biomass production. Production and genetic manipulation of switchgrass should be useful to improve its biomass composition and production for bioenergy applications. The goal of this project was to develop a high-throughput stable switchgrass transformation method using Agrobacterium tumefaciens with subsequent plant regeneration. RESULTS Regenerable embryogenic cell suspension cultures were established from friable type II callus-derived inflorescences using two genotypes selected from the synthetic switchgrass variety 'Performer' tissue culture lines 32 and 605. The cell suspension cultures were composed of a heterogeneous fine mixture culture of single cells and aggregates. Agrobacterium tumefaciens strain GV3101 was optimum to transfer into cells the pANIC-10A vector with a hygromycin-selectable marker gene and a pporRFP orange fluorescent protein marker gene at an 85% transformation efficiency. Liquid cultures gave rise to embryogenic callus and then shoots, of which up to 94% formed roots. The resulting transgenic plants were phenotypically indistinguishable from the non-transgenic parent lines. CONCLUSION The new cell suspension-based protocol enables high-throughput Agrobacterium-mediated transformation and regeneration of switchgrass in which plants are recovered within 6-7 months from culture establishment.
Collapse
Affiliation(s)
- Christine A. Ondzighi-Assoume
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209 USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Wilson K. Ouma
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209 USA
| | - Sara M. Allen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Zachary King
- Institute of Plant Breeding, Genetics& Genomics, University of Georgia, Athens, GA 30602-7272 USA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics& Genomics, University of Georgia, Athens, GA 30602-7272 USA
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607 USA
| | - Jason N. Burris
- Department of Food Science, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Scott C. Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| |
Collapse
|
131
|
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int J Mol Sci 2019; 20:E5575. [PMID: 31717281 PMCID: PMC6888081 DOI: 10.3390/ijms20225575] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.
Collapse
Affiliation(s)
- Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA;
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Linshuang Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Hui Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
132
|
Liao Q, Liu Y, Zhang J, Li L, Gao M. A low-frequency magnetic Field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
133
|
Charrier A, Vergne E, Joffrion C, Richer A, Dousset N, Chevreau E. An artificial miRNA as a new tool to silence and explore gene functions in apple. Transgenic Res 2019; 28:611-626. [PMID: 31538273 DOI: 10.1007/s11248-019-00170-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022]
Abstract
Artificial miRNA (amiRNA) is a powerful technology to silence genes of interest. It has a high efficiency and specificity that can be used to explore gene function through targeted gene regulation or to create new traits. To develop this gene regulation tool in apple, we designed two amiRNA constructs based on an apple endogenous miRNA backbone previously characterized (Md-miR156h), and we checked their efficiency on an easily scorable marker gene: the phytoene desaturase gene (MdPDS in apple). Two pairs of miRNA:miRNA* regions were designed (named h and w). The monocistronic Md-miR156h with these MdPDS targets was placed under the control of the CaMV 35S promoter to generate the two plasmids: pAmiRNA156h-PDSh and pAmiRNA156h-PDSw. Two Agrobacterium-mediated transformation experiments were performed on the cultivar 'Gala'. A total of 11 independent transgenic clones were obtained in the first experiment and 5 in the second. Most transgenic lines had a typical albino and dwarf phenotype. However, six clones had a wild type green phenotype. Molecular analyses indicated clear relationships between the degree of albino phenotype, the level of MdPDS gene expression and the amount of mature amiRNAs. This study demonstrated for the first time in apple the functionality of an artificial miRNA based on an endogenous miRNA backbone. It provides important opportunities for apple genetic functional studies as well as apple genetic improvement projects.
Collapse
Affiliation(s)
- Aurélie Charrier
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Emilie Vergne
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Clément Joffrion
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Andréa Richer
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Nicolas Dousset
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Elisabeth Chevreau
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 Rue Georges Morel, 49071, Beaucouzé Cedex, France.
| |
Collapse
|
134
|
Mangel N, Fudge JB, Li K, Wu T, Tohge T, Fernie AR, Szurek B, Fitzpatrick TB, Gruissem W, Vanderschuren H. Enhancement of vitamin B 6 levels in rice expressing Arabidopsis vitamin B 6 biosynthesis de novo genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1047-1065. [PMID: 31063672 PMCID: PMC6852651 DOI: 10.1111/tpj.14379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Jared B. Fudge
- Department of Botany and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Kuan‐Te Li
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Ting‐Ying Wu
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Takayuki Tohge
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
- Present address:
Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaNara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
| | - Boris Szurek
- IRDCiradUniversity of MontpellierIPMEMontpellier34394France
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung City40227Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Plant Genetics LabTERRA Research and Teaching CentreGembloux Agro BioTechUniversity of LiègeGembloux5030Belgium
| |
Collapse
|
135
|
Zhang L, Yuan L, Staehelin C, Li Y, Ruan J, Liang Z, Xie Z, Wang W, Xie J, Huang S. The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals. THE NEW PHYTOLOGIST 2019; 223:1530-1546. [PMID: 31059122 DOI: 10.1111/nph.15888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/27/2019] [Indexed: 05/28/2023]
Abstract
How plants can distinguish pathogenic and symbiotic fungi remains largely unknown. Here, we characterized the role of MaLYK1, a lysin motif receptor kinase of banana. Live cell imaging techniques were used in localization studies. RNA interference (RNAi)-silenced transgenic banana plants were generated to analyze the biological role of MaLYK1. The MaLYK1 ectodomain, chitin beads, chitooligosaccharides (COs) and mycorrhizal lipochitooligosaccharides (Myc-LCOs) were used in pulldown assays. Ligand-induced MaLYK1 complex formation was tested in immunoprecipitation experiments. Chimeric receptors were expressed in Lotus japonicus to characterize the function of the MaLYK1 kinase domain. MaLYK1 was localized to the plasma membrane. MaLYK1 expression was induced by Foc4 (Fusarium oxysporum f. sp. cubense race 4) and diverse microbe-associated molecular patterns. MaLYK1-silenced banana lines showed reduced chitin-triggered defense responses, increased Foc4-induced disease symptoms and reduced mycorrhization. The MaLYK1 ectodomain was pulled down by chitin beads and LCOs or COs impaired this process. Ligand treatments induced MaLYK1 complex formation in planta. The kinase domain of MaLYK1 could functionally replace that of the chitin elicitor receptor kinase 1 (AtCERK1) in Arabidopsis thaliana and of a rhizobial LCO (Nod factor) receptor (LjNFR1) in L. japonicus. MaLYK1 represents a central molecular switch that controls defense- and symbiosis-related signaling.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Liangbin Yuan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiuxiao Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shangzhi Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
136
|
Yin J, Liu H, Xiang W, Jin T, Guo D, Wang L, Zhi H. Discovery of the Agrobacterium growth inhibition sequence in virus and its application to recombinant clone screening. AMB Express 2019; 9:116. [PMID: 31342207 PMCID: PMC6656845 DOI: 10.1186/s13568-019-0840-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
Infectious clone vectors used widely in genetic research. While constructing soybean mosaic virus (SMV) clone vectors, we found that transformed Agrobacterium grew significantly different depending on the viral strains used. In particular, the clone vectors constructed with SMV SC15 significantly suppressed the growth of Agrobacterium. Recombinant and truncated virus vector experiments showed that the polymorphism of a P1 protein coding sequence of SC15 leads to the growth inhibition of Agrobacterium. But the lack of other protein encoding sequences, except for the sequence encoding coat protein, should reduce the ability of SC15 to suppress Agrobacterium growth. A vector (pCB301-attL-SC15P) compatible with the Gateway cloning system was constructed using this Agrobacterium inhibitory sequence. The results from the LR recombination reaction with pCB301-attL-SC15P and Agrobacterium transformation showed the valuable application potential of the Agrobacterium inhibitory sequence to serve as a negative screening factor for effective recombinant clone screening in Agrobacterium.
Collapse
|
137
|
Zong X, Zhang Y, Walworth A, Tomaszewski EM, Callow P, Zhong GY, Song GQ. Constitutive Expression of an Apple FLC3-like Gene Promotes Flowering in Transgenic Blueberry under Nonchilling Conditions. Int J Mol Sci 2019; 20:ijms20112775. [PMID: 31174253 PMCID: PMC6600427 DOI: 10.3390/ijms20112775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
MADS-box transcription factors FLOWERING LOCUS C (FLC) and APETALA1 (AP1)/CAULIFLOWER (CAL) have an opposite effect in vernalization-regulated flowering in Arabidopsis. In woody plants, a functional FLC-like gene has not been verified through reverse genetics. To reveal chilling-regulated flowering mechanisms in woody fruit crops, we conducted phylogenetic analysis of the annotated FLC-like proteins of apple and found that these proteins are grouped more closely to Arabidopsis AP1 than the FLC group. An FLC3-like MADS-box gene from columnar apple trees (Malus domestica) (MdFLC3-like) was cloned for functional analysis through a constitutive transgenic expression. The MdFLC3-like shows 88% identity to pear's FLC-like genes and 82% identity to blueberry's CAL1 gene (VcCAL1). When constitutively expressed in a highbush blueberry (Vaccinium corymbosum L.) cultivar 'Legacy', the MdFLC3-like induced expressions of orthologues of three MADS-box genes, including APETALA1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, and CAL1. As a consequence, in contrast to the anticipated late flowering associated with an overexpressed FLC-like, the MdFLC3-like promoted flowering of transgenic blueberry plants under nonchilling conditions where nontransgenic 'Legacy' plants could not flower. Thus, the constitutively expressed MdFLC3-like in transgenic blueberries functioned likely as a blueberry's VcCAL1. The results are anticipated to facilitate future studies for revealing chilling-mediated flowering mechanisms in woody plants.
Collapse
Affiliation(s)
- Xiaojuan Zong
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian 271000, China.
| | - Yugang Zhang
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Elise M Tomaszewski
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Pete Callow
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456, USA.
| | - Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
138
|
The Genetic Transformation of Sweet Orange (Citrus sinensis L. Osbeck) for Enhanced Resistance to Citrus Canker. Methods Mol Biol 2019. [PMID: 30415337 DOI: 10.1007/978-1-4939-8778-8_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Developing disease resistance is one of the most important components of any plant breeding program. Citrus traditional breeding methods (bud sport selection, crossbreeding, and other breeding channels) are a laborious task and often hampered by long juvenility, a high degree of heterozygosity, polyembryony, self-incompatibility, and abortion of reproductive organs. An interesting alternative to the classical breeding approach is the use of genetic transformation, which provides the means for adding a single agronomic trait to a plant without otherwise altering its phenotype. Agrobacterium tumefaciens-mediated transformation has been carried out with numerous hybrids and citrus species. This technique allowed us to introduce the Bs2 gene in Citrus, as well as to increase citrus canker resistance in transgenic Bs2 gene-expressing lines.
Collapse
|
139
|
Oshima M, Taniguchi Y, Akasaka M, Abe K, Ichikawa H, Tabei Y, Tanaka J. Development of a visible marker trait based on leaf sheath-specific anthocyanin pigmentation applicable to various genotypes in rice. BREEDING SCIENCE 2019; 69:244-254. [PMID: 31481833 PMCID: PMC6711742 DOI: 10.1270/jsbbs.18151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
To overcome a limitation to the breeding of autogamous crops, recurrent selection using transgenic male sterility (RSUTMS) has been proposed. In this system, negatively or positively selectable marker traits are required along with dominant transgenic male sterility. Anthocyanin pigmentation is an excellent marker trait. Two regulatory genes for MYB and bHLH and a structural gene for DFR are required for anthocyanin pigmentation in rice. Therefore, to apply anthocyanin pigmentation as a marker trait in various rice genotypes, coordinated expression of the three genes is required. In this study, we developed a leaf sheath-specific promoter and introduced three genes-DFR and C1/Myb, driven by the 35S promoter, and OsB2/bHLH, driven by the leaf sheath-specific promoter-into the rice genome. Leaf sheath-specific pigmentation was confirmed in all seven genotypes tested, which included japonica and indica cultivars. Analysis of genome sequence data from 25 cultivars showed that the strategy of conferring leaf sheath-specific anthocyanin pigmentation by introduction of these three genes would be effective for a wide range of genotypes and will be applicable to RSUTMS.
Collapse
Affiliation(s)
- Masao Oshima
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yojiro Taniguchi
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Maiko Akasaka
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
| | - Kiyomi Abe
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yutaka Tabei
- Institute of Agrobiological Sciences, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Junichi Tanaka
- Institute of Crop Science, NARO,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Graduate School of Life and Environmental Science, University of Tsukuba,
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
140
|
Ghislain M, Byarugaba AA, Magembe E, Njoroge A, Rivera C, Román ML, Tovar JC, Gamboa S, Forbes GA, Kreuze JF, Barekye A, Kiggundu A. Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1119-1129. [PMID: 30467980 PMCID: PMC6523587 DOI: 10.1111/pbi.13042] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 05/09/2023]
Abstract
Considered responsible for one million deaths in Ireland and widespread famine in the European continent during the 1840s, late blight, caused by Phytophthora infestans, remains the most devastating disease of potato (Solanum tuberosum L.) with about 15%-30% annual yield loss in sub-Saharan Africa, affecting mainly smallholder farmers. We show here that the transfer of three resistance (R) genes from wild relatives [RB, Rpi-blb2 from Solanum bulbocastanum and Rpi-vnt1.1 from S. venturii] into potato provided complete resistance in the field over several seasons. We observed that the stacking of the three R genes produced a high frequency of transgenic events with resistance to late blight. In the field, 13 resistant transgenic events with the 3R-gene stack from the potato varieties 'Desiree' and 'Victoria' grew normally without showing pathogen damage and without any fungicide spray, whereas their non-transgenic equivalent varieties were rapidly killed. Characteristics of the local pathogen population suggest that the resistance to late blight may be long-lasting because it has low diversity, and essentially consists of the single lineage, 2_A1, which expresses the cognate avirulence effector genes. Yields of two transgenic events from 'Desiree' and 'Victoria' grown without fungicide to reflect small-scale farm holders were estimated to be 29 and 45 t/ha respectively. This represents a three to four-fold increase over the national average. Thus, these late blight resistant potato varieties, which are the farmers' preferred varieties, could be rapidly adopted and bring significant income to smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | | | | | - María Lupe Román
- International Potato CenterLimaPeru
- Present address:
Universidad Nacional Agraria La MolinaLima12Peru
| | - José Carlos Tovar
- International Potato CenterLimaPeru
- Present address:
Donald Danforth Plant Science Center975 North Warson RoadSt. LouisMissouri63132USA
| | | | | | | | - Alex Barekye
- Kachwekano Zonal Agricultural Research and Development InstituteKabaleUganda
| | - Andrew Kiggundu
- National Agriculture Research Laboratories (NARL)KampalaUganda
| |
Collapse
|
141
|
Ayadi M, Brini F, Masmoudi K. Overexpression of a Wheat Aquaporin Gene, TdPIP2;1, Enhances Salt and Drought Tolerance in Transgenic Durum Wheat cv. Maali. Int J Mol Sci 2019; 20:E2389. [PMID: 31091755 PMCID: PMC6566926 DOI: 10.3390/ijms20102389] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, we generated transgenic durum wheat cv. Maali overexpressing the wheat plasma membrane aquaporin TdPIP2;1 gene under the control of PrTdPIP2;1 promoter or under the constitutive PrCaMV35S promoter. Histochemical analysis of the fusion PrTdPIP2;1::TdPIP2;1::GusA in wheat plants showed that the β-glucuronidase (GUS) activity was detected in the leaves, stems and roots of stably transformed wheat T3 plants. Our results showed that transgenic wheat lines overexpressing the TdPIP2;1 gene exhibited improved germination rates and biomass production and retained low Na+ and high K+ concentrations in their shoots under high salt and osmotic stress conditions. In a long-term study under greenhouse conditions on salt or drought stress, transgenic TdPIP2;1 lines produced filled grains, whereas wild-type (WT) plants either died at the vegetative stage under salt stress or showed drastically reduced grain filling under drought stress. Performing real time RT-PCR experiments on wheat plants transformed with the fusion PrTdPIP2;1::GusA, we showed an increase in the accumulation of GusA transcripts in the roots of plants challenged with salt and drought stress. Study of the antioxidant defence system in transgenic wheat TdPIP2;1 lines showed that these lines induced the antioxidative enzymes Catalase (CAT) and Superoxide dismutase (SOD) activities more efficiently than the WT plants, which is associated with lower malondialdehyde and hydrogen peroxide contents. Taken together, these results indicate the high potential of the TdPIP2;1 gene for reducing water evaporation from leaves (water loss) in response to water deficit through the lowering of transpiration per unit leaf area (stomatal conductance) and engineering effective drought and salt tolerance in transgenic TdPIP2;1 lines.
Collapse
Affiliation(s)
- Malika Ayadi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
142
|
Elakhdar A, Ushijima T, Fukuda M, Yamashiro N, Kawagoe Y, Kumamaru T. Eukaryotic peptide chain release factor 1 participates in translation termination of specific cysteine-poor prolamines in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:223-231. [PMID: 30824055 DOI: 10.1016/j.plantsci.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Prolamines are alcohol-soluble proteins classified as either cysteine-poor (CysP) or cysteine-rich (CysR) based on whether they can be alcohol-extracted without or with reducing agents, respectively. In rice esp1 mutants, various CysP prolamines exhibit both reduced and normal amounts of isoelectric focusing bands, indicating that the mutation affects only certain prolamine classes. To examine the genetic regulation of CysP prolamine synthesis and accumulation, we constructed a high-resolution genetic linkage map of ESP1. The ESP1 gene was mapped to within a 20 kb region on rice chromosome 7. Sequencing analysis of annotated genes in this region revealed a single-nucleotide polymorphism within eukaryotic peptide chain release factor (eRF1), which participates in stop-codon recognition and nascent-polypeptide release from ribosomes during translation. A subsequent complementation test revealed that ESP1 encodes eRF1. We also identified UAA as the stop codon of CysP prolamines with reduced concentration in esp1 mutants. Recognition assays and microarray analysis confirmed that ESP1/eRF1 recognizes UAA/UAG, but not UGA. Our results provide convincing evidence that ESP1/eRF1 participates in the translation termination of CysP prolamines during seed development.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan; Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Tomokazu Ushijima
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Masako Fukuda
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Noriko Yamashiro
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan.
| |
Collapse
|
143
|
Kámán‐Tóth E, Dankó T, Gullner G, Bozsó Z, Palkovics L, Pogány M. Contribution of cell wall peroxidase- and NADPH oxidase-derived reactive oxygen species to Alternaria brassicicola-induced oxidative burst in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2019; 20:485-499. [PMID: 30426643 PMCID: PMC6637864 DOI: 10.1111/mpp.12769] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell wall peroxidases and plasma membrane-localized NADPH oxidases are considered to be the main sources of the apoplastic oxidative burst in plants attacked by microbial pathogens. In spite of this established doctrine, approaches attempting a comparative, side-by-side analysis of the functions of extracellular reactive oxygen species (ROS) generated by the two enzymatic sources are scarce. Previously, we have reported the role of Arabidopsis NADPH oxidase RBOHD (respiratory burst oxidase homologue D) in plants challenged with the necrotrophic fungus Alternaria brassicicola. Here, we present results on the activity of apoplastic class III peroxidases PRX33 (At3g49110) and PRX34 (At3g49120) investigated in the same Arabidopsis-Alternaria pathosystem. ROS generated by Arabidopsis peroxidases PRX33 and PRX34 increase the necrotic symptoms and colonization success of A. brassicicola. In addition, the knockdown of PRX33 and PRX34 transcript levels leads to a reduced number of host cells showing an extracellular burst of ROS after inoculation with A. brassicicola. Our results also reveal an age-dependent transcript distribution of ROS-producing peroxidase and NADPH oxidase enzymes, and some potential new components of the RBOHD, PRX33 and PRX34 signalling networks.
Collapse
Affiliation(s)
- Evelin Kámán‐Tóth
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - Zoltán Bozsó
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| | - László Palkovics
- Szent István UniversityFaculty of Horticultural ScienceH‐1118Budapest, Villányi út 29‐43, Hungary
| | - Miklós Pogány
- Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesH‐1022Budapest, Herman Ottó út 15, Hungary
| |
Collapse
|
144
|
Nakamura N, Tanaka C, Takeuchi-Kaneko Y. Transmission of antibiotic-resistance markers by hyphal fusion suggests partial presence of parasexuality in the root endophytic fungus Glutinomyces brunneus. Mycol Prog 2019. [DOI: 10.1007/s11557-018-1455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
145
|
Wen L, Chen Y, Schnabel E, Crook A, Frugoli J. Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula. PLANT METHODS 2019; 15:20. [PMID: 30858871 PMCID: PMC6394069 DOI: 10.1186/s13007-019-0404-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tissue culture transformation of plants has an element of art to it, with protocols passed on between labs but often not directly compared. As Medicago truncatula has become popular as a model system for legumes, rapid transformation is critical, and many protocols exist, with varying results. RESULTS The M. truncatula ecotypes, R108 and A17, were utilized to compare the effect of a modification to a previously used protocol based on shoot explants on the percentage of transformed plants produced from calli. This percentage was then compared to that of two additional transformation protocols based on root explants in the R108 ecotype. Variations in embryonic tissue sources, media components, time for transformation, and vectors were analyzed. CONCLUSIONS While no A17 transgenic plants were obtained, transgenic plantlets from the R108 ecotype were produced in as little as 4 months with a comparison of the two widely studied ecotypes under a single set of conditions. While the protocols tested gave similar results in percentage of transformed plants produced, considerations of labor and time to transgenics that vary between the root explant protocols tested were discovered. These considerations may influence which protocol to choose for introducing a single transgene versus creating lines with multiple mutations utilizing a CRISPR/Cas9 construct.
Collapse
Affiliation(s)
- Li Wen
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- Department of Food and Biological Engineering, Changsha University of Science and Technology, Changsha, People’s Republic of China
| | - Yuanling Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
| | - Ashley Crook
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
| |
Collapse
|
146
|
Yamazaki S, Ochiai K, Matoh T. Rice plants have three homologs of glutathione synthetase genes, one of which, OsGS2, codes for hydroxymethyl-glutathione synthetase. PLANT DIRECT 2019; 3:e00119. [PMID: 31245762 PMCID: PMC6508825 DOI: 10.1002/pld3.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/20/2019] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
Glutathione is a ubiquitous thiol tripeptide in land plants, and glutathione-like tripeptides can also be found in some plant species. Rice (Oryza sativa) plants synthesize hydroxymethyl-glutathione, in which the terminal glycine residue of glutathione is replaced by a serine residue; however, the biosynthetic pathway of hydroxymethyl-glutathione has not been identified. We isolated three rice glutathione synthetase homologs, designated OsGS1, OsGS2, and OsGS3, and found that knockdown of OsGS2 via RNA interference markedly decreased hydroxymethyl-glutathione concentration in rice plants. The in vitro enzyme assay, using purified recombinant protein, demonstrated that OsGS2 catalyzed the synthesis of hydroxymethyl-glutathione from γ-glutamylcysteine (γEC) and L-serine in an ATP-dependent manner. OsGS2 could also utilize glycine as a cosubstrate with γEC, but the enzyme-substrate affinity for L-serine was tenfold higher than that for glycine. These results indicate that OsGS2 codes for hydroxymethyl-glutathione synthetase.
Collapse
Affiliation(s)
| | - Kumiko Ochiai
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Toru Matoh
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| |
Collapse
|
147
|
Wilson FM, Harrison K, Armitage AD, Simkin AJ, Harrison RJ. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in diploid and octoploid strawberry. PLANT METHODS 2019; 15:45. [PMID: 31068975 PMCID: PMC6495592 DOI: 10.1186/s13007-019-0428-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Gene editing using CRISPR/Cas9 is a simple and powerful tool for elucidating genetic controls and for crop improvement and its use has been reported in a growing number of important food crops, including recently Fragaria. In order to inform application of the technology in Fragaria, we targeted the visible endogenous marker gene PDS (phytoene desaturase) in diploid Fragaria vesca ssp. vesca 'Hawaii 4' and octoploid F. × ananassa 'Calypso'. RESULTS Agrobacterium-mediated transformation of leaf and petiole explants was used for efficient stable integration of constructs expressing plant codon-optimised Cas9 and single guide sequences under control of the Arabidopsis U6-26 consensus promoter and terminator or Fragaria vesca U6III regulatory sequences. More than 80% ('Hawaii 4') and 50% ('Calypso') putative transgenic shoot lines (multiple shoots derived from a single callus) exhibited mutant phenotypes. Of mutant shoot lines selected for molecular analysis, approximately 75% ('Hawaii 4') and 55% ('Calypso') included albino regenerants with bi-allelic target sequence variants. Our results indicate the PDS gene is functionally diploid in 'Calypso'. CONCLUSION We demonstrate that CRISPR/Cas9 may be used to generate biallelic mutants at high frequency within the genomes of diploid and octoploid strawberry. The methodology, observations and comprehensive data set presented will facilitate routine application of this technology in Fragaria to single and multiple gene copy targets where mutant phenotypes cannot be identified visually.
Collapse
Affiliation(s)
| | - Kate Harrison
- NIAB EMR, New Road, East Malling, Kent ME19 6BJ UK
- Present Address: Driscolls, New Road, East Malling, Kent ME19 6BJ UK
| | | | | | | |
Collapse
|
148
|
Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, Atkinson N, Harwood WA. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat ( Triticum aestivum L.). PLANT METHODS 2019; 15:121. [PMID: 31673278 PMCID: PMC6815027 DOI: 10.1186/s13007-019-0503-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Despite wheat being a worldwide staple, it is still considered the most difficult to transform out of the main cereal crops. Therefore, for the wheat research community, a freely available and effective wheat transformation system is still greatly needed. RESULTS We have developed and optimised a reproducible Agrobacterium-mediated transformation system for the spring wheat cv 'Fielder' that yields transformation efficiencies of up to 25%. We report on some of the important factors that influence transformation efficiencies. In particular, these include donor plant health, stage of the donor material, pre-treatment by centrifugation, vector type and selection cassette. Transgene copy number data for independent plants regenerated from the same original immature embryo suggests that multiple transgenic events arise from single immature embryos, therefore, actual efficiencies might be even higher than those reported. CONCLUSION We reported here a high-throughput, highly efficient and repeatable transformation system for wheat and this system has been used successfully to introduce genes of interest, for RNAi, over-expression and for CRISPR-Cas9 based genome editing.
Collapse
Affiliation(s)
- Sadiye Hayta
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Mark A. Smedley
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Selcen U. Demir
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Robert Blundell
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Alison Hinchliffe
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Nicola Atkinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| | - Wendy A. Harwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, Norfolk NR4 7UH UK
| |
Collapse
|
149
|
Abstract
Precise genome engineering can be efficiently made using the revolutionary tool named CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein) systems. Adapted from the bacterial immune system, CRISPR/Cas systems can generate highly specific double-strand breaks (DSBs) at the target site, and desired sequence modifications can be introduced during the DSB repair process, such as nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) pathways. CRISPR/Cas9 is the most widely used genome editing tool for targeted mutagenesis, precise sequence modification, transcriptional reprogramming, epigenome editing, disease treatment, and many more. The ease of use and high specificity make CRISPR/Cas9 a great tool not only for basic researches but also for crop trait improvements, such as higher grain yield, better tolerance to abiotic stresses, enhanced disease resistance, and better nutritional contents. In this protocol, we present a step-by-step guide to the CRISPR/Cas9-mediated targeted mutagenesis in maize Hi II genotype. Detailed procedures will guide through the essential steps including gRNA design, CRISPR/Cas9 vector construction, Agrobacterium-mediated maize immature embryo transformation, and molecular analysis of the transgenic plants to identify desired mutant lines.
Collapse
|
150
|
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. FRONTIERS IN PLANT SCIENCE 2019; 10:40. [PMID: 30787936 PMCID: PMC6373458 DOI: 10.3389/fpls.2019.00040] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
Targeted genome engineering has emerged as an alternative to classical plant breeding and transgenic methods to improve crop plants. Among other methods (zinc finger nucleases or TAL effector nucleases) the CRISPR-Cas system proved to be the most effective, convenient and least expensive method. In this study, we optimized the conditions of application of this system on apple and explored its feasibility on pear. As a proof of concept, we chose to knock-out the Phytoene Desaturase (PDS) and Terminal Flower 1 (TFL1) genes. To improve the edition efficiency, two different single guide RNAs (gRNAs) were associated to the Cas9 nuclease for each target gene. These gRNAs were placed under the control of the U3 and U6 apple promoters. Characteristic albino phenotype was obtained for 85% of the apple transgenic lines targeted in MdPDS gene. Early flowering was observed in 93% of the apple transgenic lines targeted in MdTFL1.1 gene and 9% of the pear transgenic lines targeted in PcTFL1.1. Sequencing of the target zones in apple and pear CRISPR-PDS and CRISPR-TFL1.1 transgenic lines showed that the two gRNAs induced mutations but at variable frequencies. In most cases, Cas9 nuclease cut the DNA in the twenty targeted base pairs near the protospacer adjacent motif and insertions were more frequent than deletions or substitutions. The most frequent edition profile of PDS as well as TFL1.1 genes was chimeric biallelic. Analysis of a sample of potential off-target sequences of the CRISPR-TFL1.1 construct indicated the absence of edition in cases of three mismatches. In addition, transient transformation with the CRISPR-PDS construct produced two T-DNA free edited apple lines. Our overall results indicate that, despite the frequent occurrence of chimerism, the CRISPR-Cas 9 system is a powerful and precise method to induce targeted mutagenesis in the first generation of apple and pear transgenic lines.
Collapse
|