101
|
Farokhi M, Mottaghitalab F, Saeb MR, Thomas S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release 2019; 309:203-219. [PMID: 31362077 DOI: 10.1016/j.jconrel.2019.07.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
Abstract
Nanocarriers sensitive to near infrared light (NIR) are useful templates for chemo-photothermal therapy (PTT) and imaging of tumors due to the ability to change the absorbed NIR energy to heat. The conventional photo-absorbing reagents lack the efficient loading and release of drug before reaching the target site leading to insufficient therapeutic outcomes. To overcome these limitations, the surface of nanocarriers can be modified with different polymers with wide functionalities to provide systems with diagnostic, therapeutic, and theranostic capabilities. Among various polymers, polydopamine (PDA) has been more interested due to complex structure with various chemical moieties, and the capacity to be used through different coating mechanism. In this review, we describe the complex structure, chemical properties, and coating mechanisms of PDA. Moreover, the advantage and surface modification of some relevant nanosystems based on carbon materials, gold, iron oxide, manganese, and upconverting nanomaterials by using PDA will be discussed, in detail.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sabu Thomas
- School of Chemical Sciences, M G University, Kottayam 686560, Kerala, India
| |
Collapse
|
102
|
Roles Played by the Na +/Ca 2+ Exchanger and Hypothermia in the Prevention of Ischemia-Induced Carrier-Mediated Efflux of Catecholamines into the Extracellular Space: Implications for Stroke Therapy. Neurochem Res 2019; 45:16-33. [PMID: 31346893 PMCID: PMC6942591 DOI: 10.1007/s11064-019-02842-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.
Collapse
|
103
|
Katasonov AB. [Neurobiological effects of theanine and its possible use in neurology and psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:118-124. [PMID: 30585616 DOI: 10.17116/jnevro2018118111118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Theanine is an analog of glutamate and the major aminoacid in green tea. It has received growing attention in recent years because of its beneficial effects on the central nervous system. Theanine was shown to increase levels of brain-derived neurotrophic factor and to stimulate neurogenesis. Anti-stress and calming effects of theanine are the most apparent and well-studied. A number of studies showed neuroprotective effects of theanine after an ischemic cerebral injury or the exposure to toxic chemicals. It also improved cognitive function including attention, memory and learning. Recent studies demonstrated a promising role of theanine in augmentation therapy for major depressive disorder and schizophrenia. Theoretical grounds for using theanine in treatment of bipolar disorder, anxiety disorder and some neurodegenerative disorders are discussed.
Collapse
|
104
|
Dehghani Z, Khoshneviszadeh M, Khoshneviszadeh M, Ranjbar S. Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers. Bioorg Med Chem 2019; 27:2644-2651. [DOI: 10.1016/j.bmc.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
|
105
|
|
106
|
Tenkorang MAA, Duong P, Cunningham RL. NADPH Oxidase Mediates Membrane Androgen Receptor-Induced Neurodegeneration. Endocrinology 2019; 160:947-963. [PMID: 30811529 PMCID: PMC6435014 DOI: 10.1210/en.2018-01079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/22/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) is a common characteristic of several neurodegenerative disorders, including Parkinson disease (PD). PD is more prevalent in men than in women, indicating the possible involvement of androgens. Androgens can have either neuroprotective or neurodamaging effects, depending on the presence of OS. Specifically, in an OS environment, androgens via a membrane-associated androgen receptor (mAR) exacerbate OS-induced damage. To investigate the role of androgens on OS signaling and neurodegeneration, the effects of testosterone and androgen receptor activation on the major OS signaling cascades, the reduced form of NAD phosphate (NADPH) oxidase (NOX)1 and NOX2 and the Gαq/inositol trisphosphate receptor (InsP3R), were examined. To create an OS environment, an immortalized neuronal cell line was exposed to H2O2 prior to cell-permeable/cell-impermeable androgens. Different inhibitors were used to examine the role of G proteins, mAR, InsP3R, and NOX1/2 on OS generation and cell viability. Both testosterone and DHT/3-O-carboxymethyloxime (DHT)-BSA increased H2O2-induced OS and cell death, indicating the involvement of an mAR. Furthermore, classical AR antagonists did not block testosterone's negative effects in an OS environment. Because there are no known antagonists specific for mARs, an AR protein degrader, ASC-J9, was used to block mAR action. ASC-J9 blocked testosterone's negative effects. To determine OS-related signaling mediated by mAR, this study examined NOX1, NOX2, Gαq. NOX1, NOX2, and the Gαq complex with mAR. Only NOX inhibition blocked testosterone-induced cell loss and OS. No effects of blocking either Gαq or G protein activation were observed on testosterone's negative effects. These results indicate that androgen-induced OS is via the mAR-NOX complex and not the mAR-Gαq complex.
Collapse
Affiliation(s)
- Mavis A A Tenkorang
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Phong Duong
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rebecca L Cunningham
- Department of Physiology and Anatomy, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas
- Correspondence: Rebecca L. Cunningham, PhD, Department of Physiology and Anatomy, University of North Texas Health Science Center, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107. E-mail:
| |
Collapse
|
107
|
Billings JL, Gordon SL, Rawling T, Doble PA, Bush AI, Adlard PA, Finkelstein DI, Hare DJ. l
‐3,4‐dihydroxyphenylalanine (
l
‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. J Neurochem 2019; 150:88-106. [DOI: 10.1111/jnc.14676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L. Billings
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Sarah L. Gordon
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Broadway New South Wales Australia
| | - Philip A. Doble
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
| | - Ashley I. Bush
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Paul A. Adlard
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - David I. Finkelstein
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Dominic J. Hare
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
- Department of Clinical Pathology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
108
|
Zheng ZV, Cheung CY, Lyu H, Chan HY, Li Y, Bian ZX, Wang KKW, Poon WS. Baicalein enhances the effect of low dose Levodopa on the gait deficits and protects dopaminergic neurons in experimental Parkinsonism. J Clin Neurosci 2019; 64:242-251. [PMID: 30905662 DOI: 10.1016/j.jocn.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/28/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease with the clinical characteristics of gait deficits. The classical symptomatic treatment for PD is Levodopa (L-DOPA) which brings a plethora of side effects and dosage problems in a prolonged drug regimen. Baicalein is a flavonoid extracted from Scutellaria baicalensis Georgi with the properties of neuroprotection. In this study, we investigated the ameliorative effect of baicalein with low dose L-DOPA (25 mg/kg) on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced Parkinsonism. The gait variability was assessed by a computer-assisted gait analysis system Catwalk. The results showed that MPTP challenged mice had significant gait deficits on dynamic paw function and posture stability. L-DOPA reversed the MPTP induced gait deficits and the effect was positively dose-dependent. The combined treatment of baicalein and under threshold dose of L-DOPA significantly improved gait functions, compared with exclusive low dose L-DOPA treatment, and the effect was comparable with high dose L-DOPA treatment. The histological assessment demonstrated that the Tyrosine hydroxylase expression increased in all the baicalein stratified groups, which suggest baicalein might have the neuroprotective effect to retain the dopaminergic neurons or enhance the dopaminergic neuron regeneration after MPTP injection. This neuroprotection probably depended on altering the inflammatory response and resisting the apoptosis through the underlying mechanism investigation. Our study provides experimental evidence that the combination of L-DOPA and baicalein might be a potential treatment for Parkinson's disease. The synergistic interaction of baicalein and L-dopa treatment might reduce the side-effect of the normal to high dose L-DOPA used today.
Collapse
Affiliation(s)
- Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Camille Yim Cheung
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Chan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Li
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhao Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kevin K W Wang
- McKnight Brain Institute of the University of Florida, FL, USA
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
109
|
Bose B, Tripathy D, Chatterjee A, Tandon P, Kumaria S. Secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro inhibitory activities of Nardostachys jatamansi on key enzymes linked to hyperglycemia, hypertension and cognitive disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:58-69. [PMID: 30668444 DOI: 10.1016/j.phymed.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/06/2018] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nardostachys jatamansi (D. Don) DC., 'Spikenard' or 'Jatamansi', a highly valued, aromatic herb from alpine Himalayas has a long history of use as ethnomedicine and dietary supplements in Ayurveda, Unani and Chinese system of medicine since Vedic ages (1000-800 BC). In Ayurveda and traditional system of medicine, the species is used as stimulant, sedative, brain tonic or mind rejuvenator, antidiabetic, cardio tonic, and in the treatment of various neurological disorders such as insomnia, epilepsy, hysteria, anxiety and depression. It is considered as Sattvic herb in Ayurveda and is now commercially marketed either as single or poly-herbal formulations by many companies in national and international markets. AIM OF THE STUDY The species has become threatened in its natural habitats due to over exploitation and illegal trade of its rhizomes for drug preparation in herbal and pharmaceutical industries. Considering the increasing demand and tremendous medicinal importance of this threatened plant species, a detailed study was undertaken to evaluate its antioxidant potential, secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro enzyme inhibitory activities on key enzymes linked to hyperglycemia, hypertension and cognitive disorders in different plant parts of wild and in vitro-raised plants with respect to different solvent systems for its sustainable utilization. MATERIALS AND METHODS Anti-cholinesterase activity of leaves and rhizome of wild and cultured plant extracts was investigated against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. In vitro anti-hyperglycemic (α-amylase and PTP1B), anti-hypertensive (angiotensin-converting enzyme), anti-tyrosinase and anti-inflammatory potential (5-lipoxygenase and hyaluronidase) of different plant parts of wild and in vitro-raised plants with respect to different solvent systems were also evaluated. In vitro cytotoxic effect of rootstock extracts of wild and in vitro-derived plants were against cancer (HCT-116, MCF-7 and OE33) and two normal (HEK and MEF) cell lines. Secondary metabolite profiling of rhizome segments of wild and in vitro-derived plants was carried out by quantitative gas chromatography-mass spectrometry (GC-MS). RESULTS In vitro-raised plantlets showed comparative higher yield of various secondary metabolites with a significantly high antioxidant activity as compared to the wild plants. Methanolic rootstock extracts of both wild and in vitro-derived plants of N. jatamansi exhibited significant AChE (IC50 36.46 ± 2.1 and 31.18 ± 2.6 µg/ml, respectively) and BuChE (IC50 64.6 ± 3.5 and 60.12 ± 3.6 µg/ml, respectively) inhibitory potential as compared to standard inhibitor galanthamine (IC50 0.94 ± 0.03 and 4.45 ± 0.5 µg/ml). Methanolic rootstock extract of in vitro-derived plants showed significant α-amylase (IC50 90.69 ± 2.1 µg/ml), PTP1B (IC50 24.56 ± 0.8 µg/ml), angiotensin-converting enzyme (IC50 42.5 ± 3.6 µg/ml) and tyrosinase (IC50 168.12 ± 3.6 µg/ml) inhibitory potential as compared to standard acarbose (IC50 52.36 ± 3.1 µg/ml), ursolic acid (IC50 5.24 ± 0.8 µg/ml), captopril (IC50 32.36 ± 2.5 µg/ml) and kojic acid (IC50 = 54.44 ± 2.3 µg/ml). Both the methanolic rootstock and leaf extracts of tissue culture-derived plants exhibited promising anti-5-LOX and anti-hyaluronidase activities against the known inhibitor of 5-LOX and hyaluronidase. Furthermore, methanolic rootstock extracts of both wild and in vitro-derived plants exhibited promising cytotoxic effects to HCT-116, MCF-7 and OE33 cell lines as compared to the normal HEK and MEF after 12 h of treatment. Secondary metabolite profiling of wild and in vitro-derived plants by quantitative GC-MS analysis revealed the presence of different classes of terpenoids and phenolic acids might be responsible for its effective biological activities. CONCLUSION In vitro-derived plants revealed a substantial anti-cholinesterases, anti-hyperglycemic anti-inflammatory, anti-hypertensive and anti-tyrosinase potential with higher yield of various bioactive metabolites and significantly higher antioxidant activity which substantially explain medicinal importance of N. jatamansi in traditional medicine, used for centuries in different Ayurvedic formulations. The present findings suggest that cultured plants could be a promising alternative for the production of bioactive metabolites with comparative biological activities to the wild plants.
Collapse
Affiliation(s)
- Biswajit Bose
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Debabrata Tripathy
- Molecular Genetics Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Anupam Chatterjee
- Molecular Genetics Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Pramod Tandon
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Suman Kumaria
- Plant Biotechnology Laboratory, Department of Botany, North-Eastern Hill University, Shillong 793022, Meghalaya, India.
| |
Collapse
|
110
|
Biosa A, Sanchez-Martinez A, Filograna R, Terriente-Felix A, Alam SM, Beltramini M, Bubacco L, Bisaglia M, Whitworth AJ. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Hum Mol Genet 2019. [PMID: 29529199 PMCID: PMC5905640 DOI: 10.1093/hmg/ddy069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.
Collapse
Affiliation(s)
- Alice Biosa
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Roberta Filograna
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Ana Terriente-Felix
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Sarah M Alam
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mariano Beltramini
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Luigi Bubacco
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
111
|
Mesenchymal Stem Cells-derived Exosomes: A New Possible Therapeutic Strategy for Parkinson's Disease? Cells 2019; 8:cells8020118. [PMID: 30717429 PMCID: PMC6406999 DOI: 10.3390/cells8020118] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by severe motor complications caused by a progressive degeneration of dopaminergic neurons (DAn) and dopamine loss. Current treatment is focused on mitigating the symptoms through administration of levodopa, rather than on preventing DAn damage. Therefore, the use and development of neuroprotective/disease-modifying strategies is an absolute need, which can lead to promising gains on PD translational research. Mesenchymal stem cells (MSCs)–derived exosomes have been proposed as a promising therapeutic tool, since it has been demonstrated that they can act as biological nanoparticles with beneficial effects in different pathological conditions, including PD. Thus, considering their potential protective action in lesioned sites, MSCs-derived exosomes might also be active modulators of the neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Therefore, in this review, we analyze the current understanding of MSCs-derived exosomes as a new possible therapeutic strategy for PD, by providing an overview about the potential role of miRNAs in the cellular and molecular basis of PD.
Collapse
|
112
|
Asanuma M, Okumura-Torigoe N, Miyazaki I, Murakami S, Kitamura Y, Sendo T. Region-Specific Neuroprotective Features of Astrocytes against Oxidative Stress Induced by 6-Hydroxydopamine. Int J Mol Sci 2019; 20:ijms20030598. [PMID: 30704073 PMCID: PMC6387089 DOI: 10.3390/ijms20030598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
In previous studies, we found regional differences in the induction of antioxidative molecules in astrocytes against oxidative stress, postulating that region-specific features of astrocytes lead region-specific vulnerability of neurons. We examined region-specific astrocytic features against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) as an oxidative stress using co-culture of mesencephalic neurons and mesencephalic or striatal astrocytes in the present study. The 6-OHDA-induced reduction of mesencephalic dopamine neurons was inhibited by co-culturing with astrocytes. The co-culture of midbrain neurons with striatal astrocytes was more resistant to 6-OHDA than that with mesencephalic astrocytes. Furthermore, glia conditioned medium from 6-OHDA-treated striatal astrocytes showed a greater protective effect on the 6-OHDA-induced neurotoxicity and oxidative stress than that from mesencephalic astrocytes. The cDNA microarray analysis showed that the number of altered genes in both mesencephalic and striatal astrocytes was fewer than that changed in either astrocyte. The 6-OHDA treatment, apparently up-regulated expressions of Nrf2 and some anti-oxidative or Nrf2-regulating phase II, III detoxifying molecules related to glutathione synthesis and export in the striatal astrocytes but not mesencephalic astrocytes. There is a profound regional difference of gene expression in astrocytes induced by 6-OHDA. These results suggest that protective features of astrocytes against oxidative stress are more prominent in striatal astrocytes, possibly by secreting humoral factors in striatal astrocytes.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Nao Okumura-Torigoe
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Shinki Murakami
- Department of Medical Neurobiology, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Yoshihisa Kitamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Okayama University Graduate School of Medical, Dental and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
113
|
Han J, Liu K, Chang R, Zhao L, Yan X. Photooxidase-Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Co-Assembly. Angew Chem Int Ed Engl 2019; 58:2000-2004. [DOI: 10.1002/anie.201811478] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/22/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Jingjing Han
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Kai Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| |
Collapse
|
114
|
Han J, Liu K, Chang R, Zhao L, Yan X. Photooxidase-Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Co-Assembly. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jingjing Han
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Kai Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- Centre for Systems Chemistry; Stratingh Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
- Center for Mesoscience; Institute of Process Engineering; Chinese Academy of Sciences; 100190 Beijing China
| |
Collapse
|
115
|
Costa G, Serra M, Pintori N, Casu MA, Zanda MT, Murtas D, De Luca MA, Simola N, Fattore L. The novel psychoactive substance methoxetamine induces persistent behavioral abnormalities and neurotoxicity in rats. Neuropharmacology 2019; 144:219-232. [DOI: 10.1016/j.neuropharm.2018.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 10/28/2022]
|
116
|
El-Sayed ST, Al- Azzouny RA, Ali OS. Purification and functional characterization of a novel tyrosinase (diphenolase) inhibitory peptides prepared from Solunum tuberosum peels protein via enzymatic hydrolysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
117
|
Gupta AK, Pokhriyal R, Khan MI, Kumar DR, Gupta R, Chadda RK, Ramachandran R, Goyal V, Tripathi M, Hariprasad G. Cerebrospinal Fluid Proteomics For Identification Of α2-Macroglobulin As A Potential Biomarker To Monitor Pharmacological Therapeutic Efficacy In Dopamine Dictated Disease States Of Parkinson's Disease And Schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2853-2867. [PMID: 31632033 PMCID: PMC6781638 DOI: 10.2147/ndt.s214217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
AIM Parkinson's disease and schizophrenia are clinical end points of dopaminergic deficit and excess, respectively, in the mid-brain. In accordance, current pharmacological interventions aim to restore normal dopamine levels, the overshooting of which culminates in adverse effects which results in psychotic symptoms in Parkinson's disease and extra-pyramidal symptoms in schizophrenia. Currently, there are no laboratory assays to assist treatment decisions or help foresee these drug side-effect outcomes. Therefore, the aim was to discover a protein biomarker that had a varying linear expression across the clinical dopaminergic spectrum. MATERIALS AND METHODS iTRAQ-based proteomic experiments along with mass spectrometric analysis was used for comparative proteomics using cerebrospinal fluid (CSF). CSF fluid was collected from 36 patients with Parkinson's disease, 15 patients with urological diseases that served as neurological controls, and seven schizophrenic patients with hallucinations. Validation included ELISA and pathway analysis to highlight the varying expression and provide plausible molecular pathways for differentially expressed proteins in the three clinical phenotypes. RESULTS Protein profiles were delineated in CSF from Parkinson's disease patients, neurological control and schizophrenia, respectively. Ten of the proteins that were identified had a linear relationship across the dopaminergic spectrum. α-2-Macroglobulin showed to be having high statistical significance on inter-group comparison on validation studies using ELISA. CONCLUSIONS Non-gel-based proteomic experiments are an ideal platform to discover potential biomarkers that can be used to monitor pharmaco-therapeutic efficacy in dopamine-dictated clinical scenarios. α-2 Macroglobulin is a potential biomarker to monitor pharmacological therapy in Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
118
|
Pollini J, Bragoni V, Gooßen LJ. Synthesis of a tyrosinase inhibitor by consecutive ethenolysis and cross-metathesis of crude cashew nutshell liquid. Beilstein J Org Chem 2018; 14:2737-2744. [PMID: 30498524 PMCID: PMC6244364 DOI: 10.3762/bjoc.14.252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/23/2022] Open
Abstract
A convenient and sustainable three-step synthesis of the tyrosinase inhibitor 2-hydroxy-6-tridecylbenzoic acid was developed that starts directly from the anacardic acid component of natural cashew nutshell liquid (CNSL). Natural CNSL contains 60-70% of anacardic acid as a mixture of several double bond isomers. The anacardic acid component was converted into a uniform starting material by ethenolysis of the entire mixture and subsequent selective precipitation of 6-(ω-nonenyl)salicylic acid from cold pentane. The olefinic side chain of this intermediate was elongated by its cross-metathesis with 1-hexene using a first generation Hoveyda-Grubbs catalyst, which was reused as precatalyst in a subsequent hydrogenation step. Overall, the target compound was obtained in an overall yield of 61% based on the unsaturated anacardic acid content and 34% based on the crude CNSL.
Collapse
Affiliation(s)
- Jacqueline Pollini
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| | - Valentina Bragoni
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, ZEMOS, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
119
|
Cook I, Wang T, Leyh TS. Isoform-specific therapeutic control of sulfonation in humans. Biochem Pharmacol 2018; 159:25-31. [PMID: 30423313 DOI: 10.1016/j.bcp.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
The activities of hundreds, perhaps thousands, of metabolites are regulated by human cytosolic sulfotransferases (SULTs) - a 13-member family of disease relevant enzymes that catalyze transfer of the sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfonate) to the hydroxyls and amines of acceptors. SULTs harbor two independent allosteric sites, one of which, the focus of this work, binds non-steroidal anti-inflammatory drugs (NSAIDs). The structure of the first NSAID-binding site - that of SULT1A1 - was elucidated recently and homology modeling suggest that variants of the site are present in all SULT isoforms. The objective of the current study was to assess whether the NSAID-binding site can be used to regulate sulfuryl transfer in humans in an isoform specific manner. Mefenamic acid (Mef) is a potent (Ki 27 nM) NSAID-inhibitor of SULT1A1 - the predominant SULT isoform in small intestine and liver. Acetaminophen (APAP), a SULT1A1 specific substrate, is extensively sulfonated in humans. Dehydroepiandrosterone (DHEA) is specific for SULT2A1, which we show here is insensitive to Mef inhibition. APAP and DHEA sulfonates are readily quantified in urine and thus the effects of Mef on APAP and DHEA sulfonation could be studied non-invasively. Compounds were given orally in a single therapeutic dose to a healthy, adult male human with a typical APAP-metabolite profile. Mef profoundly decreased APAP sulfonation during first pass metabolism and substantially decreased systemic APAP sulfonation without influencing DHEA sulfonation; thus, it appears the NSAID site can be used to control sulfonation in humans in a SULT-isoform specific manner.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Ting Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461-1926, United States.
| |
Collapse
|
120
|
Finberg JPM. Inhibitors of MAO-B and COMT: their effects on brain dopamine levels and uses in Parkinson's disease. J Neural Transm (Vienna) 2018; 126:433-448. [PMID: 30386930 DOI: 10.1007/s00702-018-1952-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
MAO-B and COMT are both enzymes involved in dopamine breakdown and metabolism. Inhibitors of these enzymes are used in the treatment of Parkinson's disease. This review article describes the scientific background to the localization and function of the enzymes, the physiological changes resulting from their inhibition, and the basic and clinical pharmacology of the various inhibitors and their role in treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John P M Finberg
- Neuroscience Group, Rappaport Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
121
|
Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Eur J Med Chem 2018; 161:78-92. [PMID: 30347330 DOI: 10.1016/j.ejmech.2018.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
Of the three enzymes that regulate the biosynthesis of melanin, tyrosinase and its related proteins TYRP-1 and TYRP-2, tyrosinase is the most important because of its ability to limit the rate of melanin production in melanocytes. For treating skin pigmentation disorders caused by an excess of melanin, the inhibition of tyrosinase enzyme is by far the most established strategy. Cinnamic acid is a safe natural product with an (E)-β-phenyl-α,β-unsaturated carbonyl motif that we have previously shown to play an important role in high tyrosinase inhibition. Since cinnamic acid is relatively hydrophilic, which hinders its absorption on the skin, fifteen less hydrophilic cinnamic amide derivatives (1-15) were designed as safe and more potent tyrosinase inhibitors and were synthesized through a Horner-Wadsworth-Emmons reaction. The use of conc-HCl and acetic acid for debenzylation of the O-benzyl-protected cinnamic amides 40-54 produced the following three results. 1) Cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group, irrespective of the amine type of the amides, produced complex compounds with high polarity. 2) Cinnamic amides 40-42, 44, 50-52, and 54 with a benzylamino, or diethylamino group produced the desired debenzylated cinnamic amides 1-3, 5, 10-13, and 15. 3) Cinnamic amides 45-47, and 49 with an anilino moiety provided 3,4-dihydroquinolinones 16-19 through intramolecular Michael addition of the anilide group. Notably, the use of BBr3 as an alternative debenzylating agent for debenzylation of cinnamic amides 45-49 with the anilino moiety provided our desired cinnamic amides 6-10 without inducing the intramolecular Michael addition. Debenzylation of cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group was also successfully accomplished using BBr3 to give 4, 9, and 14. Among the nine compounds that inhibited mushroom tyrosinase more potently at 25 μM than kojic acid, four cinnamic amides 4, 5, 9, and 14 showed 3-fold greater tyrosinase inhibitory activity than kojic acid. The docking simulation using tyrosinase indicated that these four cinnamic amides (-6.2 to -7.9 kcal/mol) bind to the active site of tyrosinase with stronger binding affinity than kojic acid (-5.7 kcal/mol). All four cinnamic amides inhibited melanogenesis and tyrosinase activity more potently than kojic acid in α-MSH-stimulated B16F10 melanoma cells in a dose-dependent manner without cytotoxicity. The strong correlation between tyrosinase activity and melanin content suggests that the anti-melanogenic effect of cinnamic amides is due to tyrosinase inhibitory activity. Considering that the cinnamic amides 4, 9, and 14, which exhibited strong inhibition on mushroom tyrosinase and potent anti-melanogenic effect in B16F10 cells, commonly have a 2,4-dihydroxyphenyl substituent, the 2,4-dihydroxyphenyl substituent appears to be essential for high anti-melanogenesis. These results support the potential of these four cinnamic amides as novel and potent tyrosinase inhibitors for use as therapeutic agents with safe skin-lightening efficiency.
Collapse
|
122
|
Gupta AK, Rani K, Swarnkar S, Kumar GK, Khan MI, Pokhriyal R, Kumar DR, Goyal V, Tripathi M, Gupta R, Chadda RK, Vanamail P, Hariprasad G. Evaluation of Serum Apolipoprotein E as a Potential Biomarker for Pharmacological Therapeutic Efficacy Monitoring in Dopamine Dictated Disease Spectrum of Schizophrenia and Parkinson's disease: A Preliminary Study. J Cent Nerv Syst Dis 2018; 10:1179573518803585. [PMID: 30327579 PMCID: PMC6178121 DOI: 10.1177/1179573518803585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/02/2018] [Indexed: 11/15/2022] Open
Abstract
AIM OF THE STUDY Parkinson's disease and schizophrenia are disease end points of dopaminergic deficit and hyperactivity, respectively, in the mid brain. Accordingly, current medications aim to restore normal dopamine levels, overshooting of which results in adverse effects of psychosis and extra-pyramidal symptoms, respectively. There are currently no available laboratory tests to guide treatment decisions or help predict adverse side effects of the drugs. The aim was to therefore explore the possibility of using apolipoprotein E as a biomarker to monitor pharmacological intervention in dopamine dictated states of Parkinson's disease and schizophrenia for optimum therapy. METHODS Naïve and treated, Parkinson's disease and schizophrenic patients were recruited from neurology and psychiatry clinics. Serum of healthy volunteers was collected as controls. Serum concentrations of apolipoprotein E was estimated by enzyme-linked immunosorbent assay (ELISA). Pathway analysis was carried out to delineate the interactions of apolipoprotein E in Parkinson's disease and schizophrenia. RESULTS Apolipoprotein E levels are higher in Parkinson's disease patients as compared with schizophrenic samples (P < .05). Also, post-treatment apolipoprotein E levels in both disease states were at par with levels seen in healthy controls. The interactions of apolipoprotein E validate the results and place the differential expression of the protein in Parkinson's disease and schizophrenia in the right perspective. CONCLUSION Apolipoprotein E concentration across the dopaminergic spectrum suggests that it can be pursued not only as a potential biomarker in schizophrenia and Parkinson's disease, but can also be an effective tool for clinicians to determine efficacy of drug-based therapy.
Collapse
Affiliation(s)
- Ashish Kumar Gupta
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Komal Rani
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Surabhi Swarnkar
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Gaurav Khunger Kumar
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Mohd Imran Khan
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Ruchika Pokhriyal
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Domada Ratna Kumar
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Vinay Goyal
- Department of Neurology, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Rishab Gupta
- Department of Psychiatry, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Rakesh Kumar Chadda
- Department of Psychiatry, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Perumal Vanamail
- Department of Biostatistics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| | - Gururao Hariprasad
- Department of Biophysics, All India
Institute of Medical Sciences, New Delhi, New Delhi, India
| |
Collapse
|
123
|
Khanam S, Naz F, Ali F, Smita Jyoti R, Fatima A, Khan W, Singh BR, Naqvi AH, Siddique YH. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol Mech Methods 2018; 28:699-708. [DOI: 10.1080/15376516.2018.1502386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Saba Khanam
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rahul Smita Jyoti
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Wasi Khan
- Department of Physics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Braj Raj Singh
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, GualPahari, Gurgaon, Haryana, India
| | - A. H. Naqvi
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Department of Zoology, Section of Genetics, Drosophila Transgenic Laboratory, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
124
|
Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, Fu Y, Yang S, Zhang Z, Zhang L, Sun X. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease. J Control Release 2018; 287:156-166. [PMID: 30165139 DOI: 10.1016/j.jconrel.2018.08.035] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD), one of the most common movement and neurodegenerative disorders, is challenging to treat, largely because the blood-brain barrier blocks passage of most drugs. Here we find exosomes from blood showing natural brain targeting ability which involved the transferrin-transferrin receptor interaction. Thus, we develop a biocompatible platform based on blood exosomes for delivering drugs across the blood-brain barrier. Blood exosomes show sizes between 40 and 200 nm and spherical morphology, and dopamine can be efficiently loaded into blood exosomes by a saturated solution incubation method. Further in vitro and in vivo studies demonstrates these exosomes successfully delivered dopamine to brain, including the striatum and substantia nigra. Brain distribution of dopamine increased >15-fold by using the blood exosomes as delivery system. Dopamine-loaded exosomes show much better therapeutic efficacy in a PD mouse model and lower systemic toxicity than free dopamine after intravenous administration. These results suggest that blood exosomes can be used as a promising drug delivery platform for targeted therapy against PD and other diseases of the central nervous system.
Collapse
Affiliation(s)
- Mengke Qu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyi Huang
- The State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Luyao Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shengyong Yang
- The State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
125
|
Aaseth J, Dusek P, Roos PM. Prevention of progression in Parkinson's disease. Biometals 2018; 31:737-747. [PMID: 30030679 PMCID: PMC6133181 DOI: 10.1007/s10534-018-0131-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Environmental influences affecting genetically susceptible individuals seem to contribute significantly to the development of Parkinson’s disease (PD). Xenobiotic exposure including transitional metal deposition into vulnerable CNS regions appears to interact with PD genes. Such exposure together with mitochondrial dysfunction evokes a destructive cascade of biochemical events, including oxidative stress and degeneration of the sensitive dopamine (DA) production system in the basal ganglia. Recent research indicates that the substantia nigra degeneration can be decelerated by treatment with iron binding compounds such as deferiprone. Interestingly compounds known to decrease PD risk including caffeine, niacin, nicotine and salbutamol also possess iron binding properties. Adequate function of antioxidative mechanisms in the vulnerable brain cells can be restored by acetylcysteine supplementation to normalize intracellular glutathione activity. Other preventive measures to reduce deterioration of dopaminergic neurons may involve life-style changes such as intake of natural antioxidants and physical exercise. Further research is recommended to identify therapeutic targets of the proposed interventions, in particular protection of the DA biosynthesis by oxygen radical scavengers and iron binding agents.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway.,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Praha 2, Czech Republic.,General University Hospital in Prague, Prague, Czech Republic.,Department of Radiology, First Faculty of Medicine, Charles University, Praha 2, Czech Republic
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden. .,Department of Clinical Physiology, Capio St. Görans Hospital, Stockholm, Sweden.
| |
Collapse
|
126
|
Mahdavi M, Ashtari A, Khoshneviszadeh M, Ranjbar S, Dehghani A, Akbarzadeh T, Larijani B, Khoshneviszadeh M, Saeedi M. Synthesis of New Benzimidazole-1,2,3-triazole Hybrids as Tyrosinase Inhibitors. Chem Biodivers 2018; 15:e1800120. [DOI: 10.1002/cbdv.201800120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/04/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran 1411713137 Iran
| | - Arsalan Ashtari
- School of Chemistry; College of Science; University of Tehran; P.O. Box 14155-6455 Tehran Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; P.O. Box 71345-3388 Shiraz Iran
- Department of Medicinal Chemistry; School of Pharmacy; Shiraz University of Medical Sciences; P.O. Box 1583, 71345 Shiraz Iran
| | - Sara Ranjbar
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; P.O. Box 71345-3388 Shiraz Iran
- Pharmaceutical Sciences Research Center; Shiraz University of Medical Sciences; P.O. Box 1583, 71345 Shiraz Iran
| | - Ameneh Dehghani
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; P.O. Box 71345-3388 Shiraz Iran
- Department of Medicinal Chemistry; School of Pharmacy; Shiraz University of Medical Sciences; P.O. Box 1583, 71345 Shiraz Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry; Faculty of Pharmacy; Tehran University of Medical Sciences; P.O. Box 14155, 6451 Tehran Iran
- Persian Medicine and Pharmacy Research Center; Tehran University of Medical Sciences; P.O. Box 14155, 6451 Tehran Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran 1411713137 Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; P.O. Box 71345-3388 Shiraz Iran
- Department of Medicinal Chemistry; School of Pharmacy; Shiraz University of Medical Sciences; P.O. Box 1583, 71345 Shiraz Iran
| | - Mina Saeedi
- Medicinal Plants Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; P.O. Box 14155, 6451 Tehran Iran
- Persian Medicine and Pharmacy Research Center; Tehran University of Medical Sciences; P.O. Box 14155, 6451 Tehran Iran
| |
Collapse
|
127
|
Begum M ET, Sen D. DOR agonist (SNC-80) exhibits anti-parkinsonian effect via downregulating UPR/oxidative stress signals and inflammatory response in vivo. Neurosci Lett 2018; 678:29-36. [PMID: 29727730 DOI: 10.1016/j.neulet.2018.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease exhibit imperative roles in unfolded protein response stress-induced oxidative stress and inflammation in general. Although, delta opioid receptor (DOR), has been found to represent anti-parkinsonian effect at behavioral level, its underlying mechanism remains elusive till date. In the present study the role of DOR agonist, SNC-80 and the consorted molecular mechanisms, which translates to behavioral recuperation, has been delineated. In order to mimic PD, mice were intra-peritoneally injected with MPTP, following exposure to SNC-80 and L-DOPA to elucidate amelioration of the MPTP-induced behavioral impairments. The results obtained suggest that the severity of the compromised motor functions up-regulated the UPR stress sensors: IRE-1α/Bip/CHOP, oxidative stress along with the pro-inflammatory cytokines: IL1β/IFNγ/TNFα and IL-6. These inimical factors combined, aids the persistence of the disease in MPTP intoxicated mice. Supplementation with SNC-80 significantly improved motor functions via down-regulation of the UPR stress sensors and inflammatory cytokines. Additionally, SNC-80 could upregulate Nrf-2 and Heme oxygenase-1 (HO-1) protein expression indicating their involvement in SNC-80's potential anti-oxidant function. There was also a significant reduction in protein carbonyl content indicating the positive role of SNC-80 in dampening MPTP induced oxidative stress. Concomitantly, L-DOPA also demonstrated an enhanced effect towards improvement of motor functions but did not suppress the UPR and inflammatory responses caused due to MPTP intoxication. Hence, these results suggest that SNC-80 could hold a pivotal role in replenishing motor functions essentially via regulating UPR and inflammation.
Collapse
Affiliation(s)
- Erfath Thanjeem Begum M
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
128
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
129
|
Tipton KF. 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 2018; 125:1519-1551. [PMID: 29637260 DOI: 10.1007/s00702-018-1881-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted.
Collapse
Affiliation(s)
- Keith F Tipton
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
130
|
Wang X, Pang L, Zhang Y, Xu J, Ding D, Yang T, Zhao Q, Wu F, Li F, Meng H, Yu D. Lycium barbarum Polysaccharide Promotes Nigrostriatal Dopamine Function by Modulating PTEN/AKT/mTOR Pathway in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Murine Model of Parkinson's Disease. Neurochem Res 2018; 43:938-947. [PMID: 29594732 DOI: 10.1007/s11064-018-2499-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 11/28/2022]
Abstract
To investigate the effects of Lycium barbarum polysaccharide (LBP) on pathological symptoms and behavioral deficits in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. The therapeutic effects of LBP were monitored with an Open field test, a Rotarod test and a Morris water maze test. We also investigated the mechanisms with qRT-PCR and Western blotting analyses. After a relatively short-term LBP treatment, the total distance and walking time of PD mice significantly increased. The staying duration on the rod of PD mice increased in the Rotarod test. LBP can up-regulate levels of SOD2, CAT and GPX1 and inhibit the abnormal aggregation of α-synuclein induced by MPTP. LBP treatment can also up-regulate the phosphorylation of AKT and mTOR, and may play its protective role by activating the PTEN/AKT/mTOR signaling axis. These results suggest that LBP can effectively alleviate the degeneration in the nigrostriatal system induced by MPTP treatment. It may be a potential candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Lei Pang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yanqing Zhang
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Jiang Xu
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Dongyi Ding
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Tianli Yang
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Qian Zhao
- School of Medicine, Yangzhou University, Yangzhou, China
| | - Fan Wu
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Fei Li
- School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China
| | - Haiwei Meng
- Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, 250012, China.
| | - Duonan Yu
- School of Medicine, Yangzhou University, Yangzhou, China. .,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Noncoding RNA Center, Yangzhou University, Yangzhou, 225001, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
131
|
Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood-Brain Barrier. NANOMATERIALS 2018; 8:nano8030178. [PMID: 29558440 PMCID: PMC5869669 DOI: 10.3390/nano8030178] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The transport of dopamine across the blood brain barrier represents a challenge for the management of Parkinson’s disease. The employment of central nervous system targeted ligands functionalized nanocarriers could be a valid tactic to overcome this obstacle and avoid undesirable side effects. In this work, transferrin functionalized dopamine-loaded liposomes were made by a modified dehydration–rehydration technique from hydrogenated soy phosphatidylcoline, cholesterol and 1,2-stearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(poly(ethylene glycol)-2000)]. The physical features of the prepared liposomes were established with successive determination of their endothelial permeability across an in vitro model of the blood-brain barrier, constituted by human cerebral microvascular endothelial cells (hCMEC/D3). Functionalized dopamine-loaded liposomes with encapsulation efficiency more than 35% were made with sizes in a range around 180 nm, polydispersity indices of 0.2, and positive zeta potential values (+7.5 mV). Their stability and drug release kinetics were also evaluated. The apparent permeability (Pe) values of encapsulated dopamine in functionalized and unfunctionalized liposomes showed that transferrin functionalized nanocarriers could represent appealing non-toxic candidates for brain delivery, thus improving benefits and decreasing complications to patients subjected to L-dopa chronical treatment.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
- Institute for Physical and Chemical Processes (IPCF)-CNR, SS Bari, 4 E. Orabona st, 70125 Bari, Italy.
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 4 E. Orabona st, 70125 Bari, Italy.
| |
Collapse
|
132
|
Zhang J, Li Y, Slania S, Yadav NN, Liu J, Wang R, Zhang J, Pomper MG, van Zijl PC, Yang X, Liu G. Phenols as Diamagnetic T 2 -Exchange Magnetic Resonance Imaging Contrast Agents. Chemistry 2018; 24:1259-1263. [PMID: 29266443 PMCID: PMC5786484 DOI: 10.1002/chem.201705772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 01/03/2023]
Abstract
Although T2 -exchange (T2ex ) NMR phenomena have been known for decades, there has been a resurgence of interest to develop T2ex MRI contrast agents. One indispensable advantage of T2ex MR agents is the possibility of using non-toxic and/or bio-compatible diamagnetic compounds with intermediate exchangeable protons. Herein a library of phenol-based compounds is screened and their T2ex contrast (exchange relaxivity, r2ex ) at 9.4 T determined. The T2ex contrast of phenol protons allows direct detection by MRI at a millimolar concentration level. The effect of chemical modification of the phenol on the T2ex MRI contrast through modulation of exchange rate and chemical shift was also studied and provides a guideline for use of endogenous and exogenous phenols for T2ex MRI contrast. As a proof-of-principle application, phenol T2ex contrast can be used to detect enzyme activity in a tyrosinase-catalyzed catechol oxidation reaction.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephanie Slania
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C van Zijl
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xing Yang
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Nuclear Medicine, Peking University First Hospital Beijing, P. R. China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
133
|
Design and synthesis of novel bis-hydroxychalcones with consideration of their biological activities. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3290-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
134
|
MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson's disease. J Neuroinflammation 2018; 15:13. [PMID: 29329581 PMCID: PMC5767033 DOI: 10.1186/s12974-018-1053-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Background Parkinson’s disease (PD) is the most prevalent neurodegenerative disorder that is characterised by selective loss of midbrain dopaminergic (DA) neurons. Chronic inflammation of the central nervous system is mediated by microglial cells and plays a critical role in the pathological progression of PD. Brain-specific microRNA-124 (miR-124) expression is significantly downregulated in lipopolysaccharide (LPS)-treated BV2 cells and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. However, whether abnormal miR-124 expression could regulate the activation of microglia remains poorly understood. Methods BV2 cells were activated by exposure to LPS, and the expression levels of miR-124, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and the nuclear factor of kappaB (NF-κB) p-p65 were analysed. Over-expression and knockdown studies of miR-124 were performed to observe the effects on MEKK3/NF-κB signalling pathways, and the induction of pro-inflammatory and neurotoxic factors was assessed. In addition, a luciferase reporter assay was conducted to confirm whether MEKK3 is a direct target of miR-124. Meanwhile, production of miR-124, MEKK3, and p-p65; midbrain DA neuronal death; or activation of microglia were analysed when treated with or without miR-124 in the MPTP-induced model of PD. Results We found that the knockdown of MEKK3 could inhibit the activation of microglia by regulating NF-κB expression. Over-expression of miR-124 could effectively attenuate the LPS-induced expression of pro-inflammatory cytokines and promote the secretion of neuroprotective factors. We also first identified a unique role of miR-124 in mediating the microglial inflammatory response by targeting MEKK3/NF-κB signalling pathways. In the microglial culture supernatant (MCS) transfer model, over-expression of the miR-124 or knockdown of MEKK3 in BV2 cells prevented SH-SY5Y from apoptosis and death. Moreover, MEKK3 and p-p65 were abundantly expressed in the midbrain. Furthermore, their expression levels increased and microglial activation was observed in the MPTP-induced model of PD. In addition, exogenous delivery of miR-124 could suppress MEKK3 and p-p65 expression and attenuate the activation of microglia in the substantia nigra pars compacta of MPTP-treated mice. miR-124 also could prevent MPTP-dependent apoptotic midbrain DA cell death in a MPTP-induced PD model. Conclusions Taken together, our data suggest that miR-124 can inhibit neuroinflammation in the development of PD by regulating the MEKK3/NF-κB signalling pathways and implicate miR-124 as a potential therapeutic target for regulating the inflammatory response in PD.
Collapse
|
135
|
Petrillo S, Pelosi L, Piemonte F, Travaglini L, Forcina L, Catteruccia M, Petrini S, Verardo M, D'Amico A, Musarò A, Bertini E. Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway. Hum Mol Genet 2018; 26:2781-2790. [PMID: 28472288 DOI: 10.1093/hmg/ddx173] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD), an X-linked genetic disorder caused by mutations in the dystrophin gene and characterized by progressive, lethal muscle degeneration and chronic inflammation. In this study, we explored the expression and signaling pathway of a master player of the anti-oxidant and anti-inflammatory response, namely NF-E2-related Factor 2, in muscle biopsies of DMD patients. We classified DMD patients in two age groups (Class I, 0-2 years and Class II, 2-9 years), in order to evaluate the antioxidant pathway expression during the disease progression. We observed that altered enzymatic antioxidant responses, increased levels of oxidized glutathione and oxidative damage are differently modulated in the two age classes of patients and well correlate with the severity of pathology. Interestingly, we also observed a modulation of relevant markers of the inflammatory response, such as heme oxygenase 1 and Inteleukin-6 (IL-6), suggesting a link between oxidative stress and chronic inflammatory response. Of note, using a transgenic mouse model, we demonstrated that IL-6 overexpression parallels the antioxidant expression profile and the severity of dystrophic muscle observed in DMD patients. This study advances our understanding of the pathogenic mechanisms underlying DMD and defines the critical role of oxidative stress on muscle wasting with clear implications for disease pathogenesis and therapy in human.
Collapse
Affiliation(s)
- Sara Petrillo
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fiorella Piemonte
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Lorena Travaglini
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Michela Catteruccia
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Stefania Petrini
- Laboratory of Research, Children's Hospital and Research Institute Bambino Gesù, 00146 Rome, Italy
| | - Margherita Verardo
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Adele D'Amico
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Children's Hospital and Research Institute Bambino Gesú, 00146 Rome, Italy
| |
Collapse
|
136
|
Ryskalin L, Busceti CL, Limanaqi F, Biagioni F, Gambardella S, Fornai F. A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies. Curr Protein Pept Sci 2018; 19:598-611. [PMID: 29150919 PMCID: PMC5925871 DOI: 10.2174/1389203718666171117110028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023]
Abstract
Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126Pisa, Italy
| | - Carla L. Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Isernia, Italy
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126Pisa, Italy
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126Pisa, Italy
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
137
|
Beitollahi H, Tajik S, Alizadeh R. Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline. J ELECTROCHEM SCI TE 2017. [DOI: 10.33961/jecst.2017.8.4.307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
138
|
Thiopurine Drugs Repositioned as Tyrosinase Inhibitors. Int J Mol Sci 2017; 19:ijms19010077. [PMID: 29283382 PMCID: PMC5796027 DOI: 10.3390/ijms19010077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
Drug repositioning is the application of the existing drugs to new uses and has the potential to reduce the time and cost required for the typical drug discovery process. In this study, we repositioned thiopurine drugs used for the treatment of acute leukaemia as new tyrosinase inhibitors. Tyrosinase catalyses two successive oxidations in melanin biosynthesis: the conversions of tyrosine to dihydroxyphenylalanine (DOPA) and DOPA to dopaquinone. Continuous efforts are underway to discover small molecule inhibitors of tyrosinase for therapeutic and cosmetic purposes. Structure-based virtual screening predicted inhibitor candidates from the US Food and Drug Administration (FDA)-approved drugs. Enzyme assays confirmed the thiopurine leukaemia drug, thioguanine, as a tyrosinase inhibitor with the inhibitory constant of 52 μM. Two other thiopurine drugs, mercaptopurine and azathioprine, were also evaluated for their tyrosinase inhibition; mercaptopurine caused stronger inhibition than thioguanine did, whereas azathioprine was a poor inhibitor. The inhibitory constant of mercaptopurine (16 μM) was comparable to that of the well-known inhibitor kojic acid (13 μM). The cell-based assay using B16F10 melanoma cells confirmed that the compounds inhibit mammalian tyrosinase. Particularly, 50 μM thioguanine reduced the melanin content by 57%, without apparent cytotoxicity. Cheminformatics showed that the thiopurine drugs shared little chemical similarity with the known tyrosinase inhibitors.
Collapse
|
139
|
Zou C, Huang W, Zhao G, Wan X, Hu X, Jin Y, Li J, Liu J. Determination of the Bridging Ligand in the Active Site of Tyrosinase. Molecules 2017; 22:molecules22111836. [PMID: 29143758 PMCID: PMC6150207 DOI: 10.3390/molecules22111836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023] Open
Abstract
Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.
Collapse
Affiliation(s)
- Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Wei Huang
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Gaokun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Xiao Wan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaodong Hu
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Yan Jin
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, 33 Yuantong Street, Kunming 650021, China.
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
140
|
Kurnik-Łucka M, Panula P, Bugajski A, Gil K. Salsolinol: an Unintelligible and Double-Faced Molecule-Lessons Learned from In Vivo and In Vitro Experiments. Neurotox Res 2017; 33:485-514. [PMID: 29063289 PMCID: PMC5766726 DOI: 10.1007/s12640-017-9818-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is a tetrahydroisoquinoline derivative whose presence in humans was first detected in the urine of Parkinsonian patients on l-DOPA (l-dihydroxyphenylalanine) medication. Thus far, multiple hypotheses regarding its physiological/pathophysiological roles have been proposed, especially related to Parkinson’s disease or alcohol addiction. The aim of this review was to outline studies related to salsolinol, with special focus on in vivo and in vitro experimental models. To begin with, the chemical structure of salsolinol together with its biochemical implications and the role in neurotransmission are discussed. Numerous experimental studies are summarized in tables and the most relevant ones are stressed. Finally, the ability of salsolinol to cross the blood–brain barrier and its possible double-faced neurobiological potential are reviewed.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland.
| | - Pertti Panula
- Department of Anatomy and Neuroscience Centre, University of Helsinki, Helsinki, Finland
| | - Andrzej Bugajski
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 30-121, Krakow, Poland
| |
Collapse
|
141
|
Choi JH, Cho HY, Choi JW. Microdevice Platform for In Vitro Nervous System and Its Disease Model. Bioengineering (Basel) 2017; 4:E77. [PMID: 28952555 PMCID: PMC5615323 DOI: 10.3390/bioengineering4030077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/09/2023] Open
Abstract
The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea.
| |
Collapse
|
142
|
Cassano T, Lopalco A, de Candia M, Laquintana V, Lopedota A, Cutrignelli A, Perrone M, Iacobazzi RM, Bedse G, Franco M, Denora N, Altomare CD. Oxazepam-Dopamine Conjugates Increase Dopamine Delivery into Striatum of Intact Rats. Mol Pharm 2017; 14:3178-3187. [PMID: 28780872 DOI: 10.1021/acs.molpharmaceut.7b00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurotransmitter dopamine (DA) was covalently linked to oxazepam (OXA), a well-known positive allosteric modulator of γ-aminobutyric acid type-A (GABAA) receptor, through a carbamate linkage (4) or a succinic spacer (6). These conjugates were synthesized with the aim of improving the delivery of DA into the brain and enhancing GABAergic transmission, which may be useful for the long-term treatment of Parkinson disease (PD). Structure-based permeability properties, in vitro stability, and blood-brain barrier (BBB) permeability studies led to identify the OXA-DA carbamate conjugate 4a as the compound better combining sufficient stability and ability to cross BBB. Finally, in vivo microdialysis experiments in freely moving rats demonstrated that 4a (20 mg/kg, i.p.) significantly increases extracellular DA levels into striatum, with a peak (more than 15-fold increase over the baseline) at about 80 min after a single administration. The stability and delivery data proved that 4a may be a promising candidate for further pharmacological studies in animal models of PD.
Collapse
Affiliation(s)
- Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia 71100, Italy
| | - Antonio Lopalco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Angela Lopedota
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Rosa M Iacobazzi
- Istituto tumori IRCCS "Giovanni Paolo II" , Flacco, St. 65, 70124 Bari, Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome , 00185 Rome, Italy.,Department of Psychiatry, Vanderbilt University Medical Center , Nashville, Tennessee 37232, United States
| | - Massimo Franco
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro , Bari 70125, Italy
| |
Collapse
|
143
|
Abstract
Alzheimer's disease and Parkinson's disease are the two most common, progressive central neurodegenerative diseases affecting the population over the age of 60 years. Apart from treatments that temporarily improve symptoms, there is no medicine currently available to inhibit or reverse the progression of Alzheimer's disease and Parkinson's disease. In traditional Chinese medicine, the root of Scutellaria baicalensis Georgi is a classic compatible component in the decoction of herbal medicine used for treating central nervous system diseases. Modern pharmacokinetic studies have confirmed that baicalein (5,6,7-trihydroxyflavone) is a major bioactive flavone constituent root of S. baicalensis Georgi. Studies showed that baicalein possesses a range of key pharmacological properties, such as reducing oxidative stress, anti-inflammatory properties, inhibiting aggregation of disease-specific amyloid proteins, inhibiting excitotoxicity, stimulating neurogenesis and differentiation action, and anti-apoptosis effects. Based on these properties, baicalein shows therapeutic potential for Alzheimer's disease and Parkinson's disease. In this review, we summarize the pharmacological protective actions of baicalein that make it suitable for the treatment of Alzheimer's disease and Parkinson's disease, and discuss the potential mechanisms underlying the effects.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China.
| | - Jinying Zhao
- Department of Human Anatomy, Medical College, Shaoyang University, Xueyuan Road Qiliping Campus, Shaoyang, 422000, Hunan, People's Republic of China
| | - Christian Hölscher
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
144
|
Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:686-695. [PMID: 28743100 DOI: 10.1016/j.jphotobiol.2017.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Malaxis acuminata D. Don., a small, terrestrial orchid, is endemic to tropical Himalayas at an altitude of 1200-2000m asl. The dried pseudobulbs are important ingredients of century old ayurvedic drug 'Ashtavarga' and a polyherbal immune-booster nutraceutical 'Chyavanprash', known to restore vigour, vitality and youthfulness. Considering tremendous medicinal importance of this threatened orchid species, a detailed study was undertaken for the first time to address its antioxidant potential, secondary metabolite contents and biological activities against skin-aging related enzymes (anti-collagenase, anti-elastase, anti-tyrosinase and xanthine oxidase) and anti-inflammatory activity (5-lipoxygenase and hyaluronidase) in different plant parts of wild and in vitro-derived plants of M. acuminata. Methanolic leaf and stem extracts were further evaluated for in vitro photoprotective activity against UV-B and UV-A radiations. Furthermore, secondary metabolite profiling of various plant parts was carried out by Gas Chromatography Mass Spectrometry (GC-MS). A significantly higher antioxidant potential (DPPH, metal chelating and ABTS•+) with a comparative higher yield of secondary metabolites was observed in in vitro-derived plantlets as compared to the wild plants. Among various solvent systems used, methanolic leaf and stem extracts showed promising inhibitory activity against major skin aging-related enzymes and anti-inflammatory potential. Methanolic leaf and stem extracts of both wild and in vitro-derived plants showed promising photoprotective activity against UV-B and UV-A radiations in vitro with comparatively higher sun protection factor (SPF). Furthermore, GC-MS analysis of methanolic extracts of leaves and stems of wild as well as in vitro-derived plantlets revealed presence of many bioactive metabolites such as, dietary fatty acids, α-hydroxy acids, phenolic acids, sterols, amino acids, sugars and glycosides which substantially explain the use of M. acuminata as one of the potential rejuvenator and anti-aging ingredient in many Ayurvedic formulations.
Collapse
|
145
|
Živković JČ, Barreira JCM, Šavikin KP, Alimpić AZ, Stojković DS, Dias MI, Santos-Buelga C, Duletić-Laušević SN, Ferreira ICFR. Chemical Profiling and Assessment of Antineurodegenerative and Antioxidant Properties of Veronica teucrium L. and Veronica jacquinii Baumg. Chem Biodivers 2017; 14. [PMID: 28488389 DOI: 10.1002/cbdv.201700167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023]
Abstract
Neuroprotective potential of V. teucrium and V. jacquinii methanol extracts was analyzed. Chemical analysis of investigated extracts showed the presence of phenolic acid derivatives, flavonoids and one secoiridoid. The detected flavonoids derived from flavones (luteolin and isoscutellarein in V. jacquinii; apigenin, isoscutellarein and luteolin in V. teucrium) and flavonol (quercetin in V. jacquinii). Acteoside was the dominant compound in V. jacquinii, while plantamajoside and isoscutellarein 7-O-(6‴-O-acetyl)-β-allosyl (1‴→2‴)-β-glucoside were the major phenolics in V. teucrium. Additionally, the antineurodegenerative activity was tested at concentrations of 25, 50, and 100 μg/ml using acetylcholinesterase (AChE) and tyrosinase (TYR) assays. The inhibition of both enzymes was achieved with the investigated extracts, ranging from 22.78 to 35.40% for AChE and from 9.57 to 16.38% for TYR. There was no statistical difference between the activities of the analyzed extracts. Our data indicate that V. teucrium and V. jacquinii may have beneficial effects against Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Jelena Č Živković
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, RS-11000, Belgrade, Serbia
| | - João C M Barreira
- CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Apartado 1172, PT-5301-855, Bragança
- REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no. 228, PT-4050-313, Porto
| | - Katarina P Šavikin
- Institute for Medicinal Plants Research "Dr. Josif Pančić", Tadeuša Košćuška 1, RS-11000, Belgrade, Serbia
| | - Ana Z Alimpić
- Institute of Botany and Botanical Garden "Jevremovac", Faculty of Biology, University of Belgrade, Takovska 43, RS-11000, Belgrade
| | - Dejan S Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, RS-11000, Belgrade
| | - Maria Inês Dias
- CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Apartado 1172, PT-5301-855, Bragança
- REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no. 228, PT-4050-313, Porto
| | - Celestino Santos-Buelga
- GIP-USAL, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, ES-37007, Salamanca
| | - Sonja N Duletić-Laušević
- Institute of Botany and Botanical Garden "Jevremovac", Faculty of Biology, University of Belgrade, Takovska 43, RS-11000, Belgrade
| | - Isabel C F R Ferreira
- CIMO/Escola Superior Agrária, Instituto Politécnico de Bragança, Apartado 1172, PT-5301-855, Bragança
- REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, no. 228, PT-4050-313, Porto
| |
Collapse
|
146
|
Abbas Q, Ashraf Z, Hassan M, Nadeem H, Latif M, Afzal S, Seo SY. Development of highly potent melanogenesis inhibitor by in vitro, in vivo and computational studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2029-2046. [PMID: 28740364 PMCID: PMC5503496 DOI: 10.2147/dddt.s137550] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present work describes the synthesis of few hydroxylated amide derivatives as melanogenesis inhibitors. In vitro, in vivo and computational studies proved that compound 6d is a highly potent melanogenesis inhibitor compared to standard kojic acid. The title amides 4a–e and 6a–e were synthesized following simple reaction routes with excellent yields. Most of the synthesized compounds exhibited good mushroom tyrosinase inhibitory activity, but compound 6d showed excellent activity (IC50 0.15 µM) compared to standard kojic acid (IC50 16.69 µM). Lineweaver–Burk plots were used for the determination of kinetic mechanism, and it was found that compounds 4c and 6d showed non-competitive inhibition while 6a and 6b showed mixed-type inhibition. The kinetic mechanism further revealed that compound 6d formed irreversible complex with the target enzyme tyrosinase. The Ki values determined for compounds 4c, 6a, 6b and 6d are 0.188, 0.84, 2.20 and 0.217 µM respectively. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound 6d exhibited 91.9% inhibi-tory activity at a concentration of 50 µg/mL. In vivo cytotoxicity evaluation of compound 6d in zebrafish embryos showed that it is non-toxic to zebrafish. Melanin depigmentation assay performed in zebrafish indicated that compound 6d possessed greater potential in decreasing melanin contents compared to kojic acid at the same concentration. Computational studies also supported the wet lab findings as compound 6d showed a highest binding affinity with the target protein (PDBID: 2Y9X) with a binding energy value of −7.90 kcal/mol. Molecular dynamic simulation studies also proved that amide 6d formed the most stable complex with tyrosinase. Based upon our in vitro, in vivo and computational studies, we propose that compound 6d is a promising candidate for the development of safe cosmetic agent.
Collapse
Affiliation(s)
- Qamar Abbas
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Latif
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Samina Afzal
- Faculty of Pharmacy, Bahauddin Zakria University, Multan, Pakistan
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea
| |
Collapse
|
147
|
Carvacrol derivatives as mushroom tyrosinase inhibitors; synthesis, kinetics mechanism and molecular docking studies. PLoS One 2017; 12:e0178069. [PMID: 28542395 PMCID: PMC5441849 DOI: 10.1371/journal.pone.0178069] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver—Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
Collapse
|
148
|
Vidoni C, Secomandi E, Castiglioni A, Melone MAB, Isidoro C. Resveratrol protects neuronal-like cells expressing mutant Huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem Int 2017; 117:174-187. [PMID: 28532681 DOI: 10.1016/j.neuint.2017.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Mariarosa A B Melone
- 2° Division of Neurology, Department of Medical Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli", Via Sergio Pansini, 5- 80131, Naples, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
149
|
Pino JMV, da Luz MHM, Antunes HKM, Giampá SQDC, Martins VR, Lee KS. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner. Front Mol Neurosci 2017; 10:145. [PMID: 28567002 PMCID: PMC5434142 DOI: 10.3389/fnmol.2017.00145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/28/2017] [Indexed: 01/03/2023] Open
Abstract
Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC) and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR) or with normal diet (CTL) for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA) was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological disorders. Our findings show that nutritional iron deficiency produces these molecular alterations in a region-specific manner and provide new insight into the variety of molecular pathways that can lead to distinct neurological symptoms upon iron deficiency. Thus, adequate iron supplementation is essential for brain health and prevention of neurological diseases.
Collapse
Affiliation(s)
- Jessica M V Pino
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| | - Marcio H M da Luz
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| | - Hanna K M Antunes
- Departamento de Psicobiologia, Universidade Federal de São PauloSão Paulo, Brazil.,Departamento de Biociências, Universidade Federal de São PauloSão Paulo, Brazil
| | | | | | - Kil S Lee
- Departamento de Bioquímica, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
150
|
Teodorak BP, Scaini G, Carvalho-Silva M, Gomes LM, Teixeira LJ, Rebelo J, De Prá SDT, Zeni N, Schuck PF, Ferreira GC, Streck EL. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine. Metab Brain Dis 2017; 32:557-564. [PMID: 27924409 DOI: 10.1007/s11011-016-9936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.
Collapse
Affiliation(s)
- Brena P Teodorak
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Letícia J Teixeira
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Samira D T De Prá
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Neila Zeni
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|