101
|
Moghadam M, Ayati H, Shobeiri SS, Rajabian M, Rahbarian R, Sankian M. Increasement of Heterologous Expression of Recombinant Vit v 1 in Pichia pastoris KM71 by Nonionic Detergents as a Cost-effective Approach. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
102
|
Constitutive High Expression Level of a Synthetic Deleted Encoding Gene of Talaromyces minioluteus Endodextranase Variant (r–TmDEX49A–ΔSP–ΔN30) in Komagataella phaffii (Pichia pastoris). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the sugar industry, dextran generates difficulties in the manufacturing process. Using crude dextranase (EC 3.2.1.11) to eliminate dextran in sugar is an effective practice. In this study, a synthetic dextranase-encoding gene of the filamentous fungus Talaromyces minioluteus, lacking its putative native signal peptide (1–20 amino acids) and the next 30 amino acids (r–TmDEX49A–ΔSP–ΔN30), was fused to the Saccharomyces cerevisiae prepro α–factor (MFα–2) signal sequence and expressed in Komagataella phaffii under the constitutive GAP promoter. K. phaffii DEX49A–ΔSP–ΔN30, constitutively producing and secreting the truncated dextranase, was obtained. The specific activity of the truncated variant resulted in being nearly the same in relation to the full-length mature enzyme (900–1000 U·mg−1 of protein). At shaker scale (100 mL) in a YPG medium, the enzymatic activity was 273 U·mL−1. The highest production level was achieved in a fed-batch culture (30 h) at 5 L fermenter scale using the FM21–PTM1 culture medium. The enzymatic activity in the culture supernatant reached 1614 U·mL−1, and the productivity was 53,800 U·L−1·h−1 (53.8 mg·L−1·h−1), the highest reported thus far for a DEX49A variant. Dextran decreased r–TmDEX49A–ΔSP–ΔN30 mobility in affinity gel electrophoresis, providing evidence of carbohydrate–protein interactions. K. phaffii DEX49A–ΔSP–ΔN30 shows great potential as a methanol-free, commercial dextranase production system.
Collapse
|
103
|
Auto-induction Screening Protocol for Ranking Clonal Libraries of Pichia pastoris MutS Strains. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
104
|
Wollborn D, Munkler LP, Horstmann R, Germer A, Blank LM, Büchs J. Predicting high recombinant protein producer strains of Pichia pastoris Mut S using the oxygen transfer rate as an indicator of metabolic burden. Sci Rep 2022; 12:11225. [PMID: 35780248 PMCID: PMC9250517 DOI: 10.1038/s41598-022-15086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a widely used host for recombinant protein production. In this study, a clonal library of P. pastoris MutS strains (S indicates slow methanol utilization) was screened for high green fluorescent protein (GFP) production. The expression cassette was under the control of the methanol inducible AOX promoter. The growth behavior was online-monitored in 48-well and 96-well microtiter plates by measuring the oxygen transfer rate (OTR). By comparing the different GFP producing strains, a correlation was established between the slope of the cumulative oxygen transfer during the methanol metabolization phase and the strain’s production performance. The correlation corresponds to metabolic burden during methanol induction. The findings were validated using a pre-selected strain library (7 strains) of high, medium, and low GFP producers. For those strains, the gene copy number was determined via Whole Genome Sequencing. The results were consistent with the described OTR correlation. Additionally, a larger clone library (45 strains) was tested to validate the applicability of the proposed method. The results from this study suggest that the cumulative oxygen transfer can be used as a screening criterion for protein production performance that allows for a simple primary screening process, facilitating the pre-selection of high producing strains.
Collapse
Affiliation(s)
- David Wollborn
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Lara Pauline Munkler
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Rebekka Horstmann
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
105
|
Xu J, Nakanishi T, Kato T, Park E. In vivo enzymatic digestion of HRV 3C protease cleavage sites-containing proteins produced in a silkworm-baculovirus expression system. Biosci Rep 2022; 42:BSR20220739. [PMID: 35642592 PMCID: PMC9202508 DOI: 10.1042/bsr20220739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Baculovirus expression vector system (BEVS) has been recognized as a potent protein expression system in engineering valuable enzymes and vaccines. Various fusion tags facilitate protein purification, leaving the potential risk to influence the target protein's biological activity negatively. It is of great interest to consider removing the additional tags using site-specific proteases, such as human rhinoviruses (HRV) 3C protease. The current study validated the cleavage activity of 3C protease in Escherichia coli and silkworm-BEVS systems by mixing the cell or fat body lysates of 3C protein and 3C site containing target protein in vitro. Further verification has been performed in the fat body lysate from co-expression of both constructs, showing remarkable cleavage efficiency in vivo silkworm larvae. We also achieved the glutathione-S-transferase (GST) tag-cleaved product of the VP15 protein from the White spot syndrome virus after purification, suggesting that we successfully established a coinfection-based recognition-and-reaction BEVS platform for the tag-free protein engineering.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Takafumi Nakanishi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Enoch Y. Park
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
106
|
Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact 2022; 21:118. [PMID: 35717207 PMCID: PMC9206340 DOI: 10.1186/s12934-022-01848-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
Microbial infection and cancer are two leading causes of global mortality. Discovering and developing new therapeutics with better specificity having minimal side-effects and no drug resistance are of an immense need. In this regard, cationic antimicrobial peptides (AMP) with dual antimicrobial and anticancer activities are the ultimate choice. For better efficacy and improved stability, the AMPs available for treatment still required to be modified. There are several strategies in which AMPs can be enhanced through, for instance, nano-carrier application with high selectivity and specificity enables researchers to estimate the rate of drug delivery to a particular tissue. In this review we present the biology and modes of action of AMPs for both anticancer and antimicrobial activities as well as some modification strategies to improve the efficacy and selectivity of these AMPs.
Collapse
Affiliation(s)
- Atefeh Parchebafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Tamanaee
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
107
|
Lobanov VA, Konecsni KA, Purves RW, Scandrett WB. Performance of indirect enzyme-linked immunosorbent assay using Trichinella spiralis-derived Serpin as antigen for the detection of exposure to Trichinella spp. in swine. Vet Parasitol 2022; 309:109744. [PMID: 35777187 DOI: 10.1016/j.vetpar.2022.109744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Indirect enzyme-linked immunosorbent assay (ELISA) utilizing excretory-secretory (E-S) antigens of Trichinella spiralis is currently the method of choice for testing pigs and wild boars for exposure to Trichinella spp. The E-S proteins are released by first-stage larvae (L1) of this parasitic nematode maintained in vitro. However, the production of these antigens is cumbersome and time-consuming. The process requires animals to be experimentally infected with the parasite as the source of L1. Antigen production using recombinant technology would be more time- and cost-effective. In this study, we produced a Serpin of T. spiralis as a recombinant protein secreted by the yeast Pichia pastoris. The diagnostic performance of indirect ELISA with purified Serpin antigen was compared to that of E-S ELISA. Both Serpin ELISA and E-S ELISA demonstrated 98 % diagnostic specificity in testing 1056 pigs from the Canadian Trichinella-free commercial herd. Twenty of 21 pigs with non-negative test results in E-S ELISA tested negative by the confirmatory Western blot (WB) assay. Therefore, the diagnostic specificity of combined E-S ELISA and WB was 99.9 %. Forty-five sera collected at or after six weeks from 34 pigs experimentally infected with various numbers of T. spiralis L1 produced positive results in both E-S and Serpin ELISA, resulting in 100 % diagnostic sensitivity. However, testing of sera serially collected from four pigs experimentally infected with various low doses of T. spiralis L1 demonstrated a delayed Serpin-specific antibody response compared to seroconversion detected by E-S ELISA in three animals. Moreover, Serpin ELISA demonstrated significantly lower sensitivity for detecting antibodies induced by experimental infections of pigs with T. britovi, T. nativa, Trichinella T6 and T. pseudospiralis, suggesting that it will not provide consistent detection of exposure to sylvatic Trichinella spp. The validation data support the application of Serpin ELISA in seroepidemiological surveys for detecting exposure to T. spiralis in swine.
Collapse
Affiliation(s)
- Vladislav A Lobanov
- Center for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada.
| | - Kelly A Konecsni
- Center for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| | - Randy W Purves
- Center for Veterinary Drug Residues, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| | - W Brad Scandrett
- Center for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
108
|
Ito Y, Ishigami M, Terai G, Nakamura Y, Hashiba N, Nishi T, Nakazawa H, Hasunuma T, Asai K, Umetsu M, Ishii J, Kondo A. A streamlined strain engineering workflow with genome-wide screening detects enhanced protein secretion in Komagataella phaffii. Commun Biol 2022; 5:561. [PMID: 35676418 PMCID: PMC9177720 DOI: 10.1038/s42003-022-03475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
Expression of secreted recombinant proteins burdens the protein secretion machinery, limiting production. Here, we describe an approach to improving protein production by the non-conventional yeast Komagataella phaffii comprised of genome-wide screening for effective gene disruptions, combining them in a single strain, and recovering growth reduction by adaptive evolution. For the screen, we designed a multiwell-formatted, streamlined workflow to high-throughput assay of secretion of a single-chain small antibody, which is cumbersome to detect but serves as a good model of proteins that are difficult to secrete. Using the consolidated screening system, we evaluated >19,000 mutant strains from a mutant library prepared by a modified random gene-disruption method, and identified six factors for which disruption led to increased antibody production. We then combined the disruptions, up to quadruple gene knockouts, which appeared to contribute independently, in a single strain and observed an additive effect. Target protein and promoter were basically interchangeable for the effects of knockout genes screened. We finally used adaptive evolution to recover reduced cell growth by multiple gene knockouts and examine the possibility for further enhancing protein secretion. Our successful, three-part approach holds promise as a method for improving protein production by non-conventional microorganisms.
Collapse
Affiliation(s)
- Yoichiro Ito
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Misa Ishigami
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Bio-Pharma Research Laboratories, Kaneka Corporation, Takasago, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, Kobe, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, Kobe, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.
| |
Collapse
|
109
|
Ito Y, Ishigami M, Hashiba N, Nakamura Y, Terai G, Hasunuma T, Ishii J, Kondo A. Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris. Microb Biotechnol 2022; 15:2364-2378. [PMID: 35656803 PMCID: PMC9437885 DOI: 10.1111/1751-7915.14061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro‐leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single‐amino‐acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis‐sorting of secretory protein into vacuoles among the wild‐type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.
Collapse
Affiliation(s)
- Yoichiro Ito
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Misa Ishigami
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Yasuyuki Nakamura
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan.,Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
110
|
Krayem N, Sidhoum R, Cherif S, Karray A. Efficient heterologous expression in Pichia pastoris, immobilization and functional characterization of a scorpion venom secreted phospholipase A 2. Toxicon 2022; 216:1-10. [PMID: 35660627 DOI: 10.1016/j.toxicon.2022.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Industrial processes have expanded with the ability to clone and express recombinant immobilized enzymes in microorganisms such as Pichia pastoris that have commercially attractive amounts of the appropriate genes. This report describes the overexpression in Pichia pastoris, immobilization, and functional characterization of a secreted phospholipase A2 from scorpion venom Scorpio maurus: rPLA2(-5). After 48 h of culture, the recombinant rPLA2(-5) was secreted into the culture medium and expressed at about 9 mg/L. Comparative analyses of the kinetics and hydrolysis of rPLA2(-5) monolayers at various surface pressures were conducted with the same form produced in Escherichia coli. As a second part of the study, rPLA2(-5) overexpressed in Pichia pastoris was immobilized by adsorption on CaCO3, with about 78 percent of the activity. In comparison to the free enzyme, rPLA2(-5) was studied for stability. Immobilization improved the thermal stability of rPLA2(-5) and even the stability at acidic pH. Moreover, we found that the immobilization improved the stability of rPLA2(-5) towards bile salts, Tween 80, Triton X-100, and SDS, as well as its stability towards many organic solvents. Until now, this is the first study to describe the overexpression and immobilization of a scorpion venom phospholipase A2 that possesses an interesting stability characteristic that makes it useful for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Najeh Krayem
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia.
| | - Rim Sidhoum
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| | - Slim Cherif
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, route de Soukra 3038, BP 1173, Sfax, Tunisia
| |
Collapse
|
111
|
Wang X, Zhao X, Luo H, Wang Y, Wang Y, Tu T, Qin X, Huang H, Bai Y, Yao B, Su X, Zhang J. Metabolic engineering of Komagataella phaffii for synergetic utilization of glucose and glycerol. Yeast 2022; 39:412-421. [PMID: 35650013 DOI: 10.1002/yea.3793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaomin Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
112
|
Heterologous protein expression enhancement of Komagataella phaffii by ammonium formate induction based on transcriptomic analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
113
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
114
|
Sizer RE, Chahid N, Butterfield SP, Donze D, Bryant NJ, White RJ. TFIIIC-based chromatin insulators through eukaryotic evolution. Gene X 2022; 835:146533. [PMID: 35623477 DOI: 10.1016/j.gene.2022.146533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Eukaryotic chromosomes are divided into domains with distinct structural and functional properties, such as differing levels of chromatin compaction and gene transcription. Domains of relatively compact chromatin and minimal transcription are termed heterochromatic, whereas euchromatin is more open and actively transcribed. Insulators separate these domains and maintain their distinct features. Disruption of insulators can cause diseases such as cancer. Many insulators contain tRNA genes (tDNAs), examples of which have been shown to block the spread of activating or silencing activities. This characteristic of specific tDNAs is conserved through evolution, such that human tDNAs can serve as barriers to the spread of silencing in fission yeast. Here we demonstrate that tDNAs from the methylotrophic fungus Pichia pastoris can function effectively as insulators in distantly-related budding yeast. Key to the function of tDNAs as insulators is TFIIIC, a transcription factor that is also required for their expression. TFIIIC binds additional loci besides tDNAs, some of which have insulator activity. Although the mechanistic basis of TFIIIC-based insulation has been studied extensively in yeast, it is largely uncharacterized in metazoa. Utilising publicly-available genome-wide ChIP-seq data, we consider the extent to which mechanisms conserved from yeast to man may suffice to allow efficient insulation by TFIIIC in the more challenging chromatin environments of metazoa and suggest features that may have been acquired during evolution to cope with new challenges. We demonstrate the widespread presence at human tDNAs of USF1, a transcription factor with well-established barrier activity in vertebrates. We predict that tDNA-based insulators in higher organisms have evolved through incorporation of modules, such as binding sites for factors like USF1 and CTCF that are absent from yeasts, thereby strengthening function and providing opportunities for regulation between cell types.
Collapse
Affiliation(s)
- Rebecca E Sizer
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Nisreen Chahid
- Department of Biology, The University of York, York YO10 5DD, UK
| | | | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nia J Bryant
- Department of Biology, The University of York, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, The University of York, York YO10 5DD, UK.
| |
Collapse
|
115
|
Effects of Temperature and pH on Recombinant Thaumatin II Production by Pichia pastoris. Foods 2022; 11:foods11101438. [PMID: 35627007 PMCID: PMC9141780 DOI: 10.3390/foods11101438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The sweet protein thaumatin is emerging as a promising sugar replacer in the market today, especially in the food and beverage sector. Rising demand for its production necessitates the large-scale extraction of this protein from its natural plant source, which can be limited in terms of raw material availability and production costs. Using a recombinant production technique via a yeast platform, specifically, Pichia pastoris, is more promising to achieve the product economically while maintaining batch-to-batch consistency. However, the bioproduction of recombinant proteins requires the identification of optimal process variables, constituting the maximal yield of the product of interest. These variables have a direct effect on the growth of the host organism and the secretion levels of the recombinant protein. In this study, two important environmental factors, pH, and temperature were assessed by cultivating P. pastoris in shake flasks to understand their influence on growth and the production levels of thaumatin II protein. The results from the pH study indicate that P. pastoris attained a higher viable cell density and secretion of protein at pH 6.0 compared to 5.0 when grown at 30 °C. Furthermore, within the three levels of temperatures investigated when grown at pH 6.0, the protein levels were the highest at 30 °C compared to 20 and 25 °C, whereas 25 °C exhibited the highest viable cell density. Interestingly, the trend observed from the qualitative effects of temperature and pH occurred in all the media that was investigated. These results broaden our understanding of how pH and temperature adjustment during P. pastoris cultivation aid in enhancing the production yields of thaumatin II prior to optimising the fed batch bioreactor operation.
Collapse
|
116
|
Prates JWO, Xisto MF, Rodrigues JVDS, Colombari JPC, Meira JMA, Dias RS, da Silva CC, de Paula ESO. Zika Virus Envelope Protein Domain III Produced in K. phaffii Has the Potential for Diagnostic Applications. Diagnostics (Basel) 2022; 12:diagnostics12051198. [PMID: 35626353 PMCID: PMC9139701 DOI: 10.3390/diagnostics12051198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) represents a global human health threat and it is related to severe diseases such as congenital Zika syndrome (CZS) and Guillain-Barré syndrome (GBS). There is no vaccine available nor specific antiviral treatment, so developing sensitive, specific, and low-cost diagnostic tests is necessary. Thus, the objective of this work was to produce the Zika virus envelope protein domain III (ZIKV-EDIII) in Komagataella phaffii KM71H and evaluate its potential for diagnostic applications. After the K. phaffii had been transformed with the pPICZαA-ZIKV-EDIII vector, an SDS-PAGE and Western Blot were performed to characterize the recombinant protein and an ELISA to evaluate the antigenic potential. The results show that ZIKV-EDIII was produced in the expected size, with a good purity grade and yield of 2.58 mg/L. The receiver operating characteristic (ROC) curve showed 90% sensitivity and 87.5% specificity for IgM, and 93.33% sensitivity and 82.76% specificity for IgG. The ZIKV-EDIII protein was efficiently produced in K. phaffi, and it has the potential for diagnostic applications.
Collapse
Affiliation(s)
- John Willians Oliveira Prates
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - Mariana Fonseca Xisto
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - João Vitor da Silva Rodrigues
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - João Pedro Cruz Colombari
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Júlia Maria Alves Meira
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.P.C.C.); (J.M.A.M.)
| | - Roberto Sousa Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
| | - Cynthia Canedo da Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (J.W.O.P.); (J.V.d.S.R.); (C.C.d.S.)
| | - e Sérgio Oliveira de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (M.F.X.); (R.S.D.)
- Correspondence: ; Tel.: +55-31-36125015
| |
Collapse
|
117
|
Fu HY, Hseu RS. Safety assessment of the fungal immunomodulatory protein from Ganoderma microsporum (GMI) derived from engineered Pichia pastoris: Genetic toxicology, a 13-week oral gavage toxicity study, and an embryo-fetal developmental toxicity study in Sprague-Dawley rats. Toxicol Rep 2022; 9:1240-1254. [DOI: 10.1016/j.toxrep.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
|
118
|
Potential of the Signal Peptide Derived from the PAS_chr3_0030 Gene Product for Secretory Expression of Valuable Enzymes in Pichia pastoris. Appl Environ Microbiol 2022; 88:e0029622. [PMID: 35435711 DOI: 10.1128/aem.00296-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.
Collapse
|
119
|
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022; 12:346. [PMID: 35448535 PMCID: PMC9027633 DOI: 10.3390/metabo12040346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.
Collapse
Affiliation(s)
- Cristina Bustos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Rhonda Veas
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Stephanie Braun-Galleani
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| |
Collapse
|
120
|
Gupta A, Rangarajan PN. Histidine is essential for growth of Komagataella phaffii cultured in YPA medium. FEBS Open Bio 2022; 12:1241-1252. [PMID: 35416413 PMCID: PMC9157411 DOI: 10.1002/2211-5463.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Komagataella phaffii (a.k.a. Pichia pastoris) requires histidine for optimal growth when cultured in a medium containing yeast extract, peptone (YP) and acetate (YPA). We demonstrate that HIS4-deficient, K. phaffii strain GS115 exhibits a growth defect on YP-media containing acetate, but not on other carbon sources. K. phaffii X33, a prototroph, grows better than K. phaffii GS115 (his4), a histidine auxotroph in YPA. Normal growth of GS115 is restored either by the expression of HIS4 or by culturing in YPA containing ≥0.6 mM histidine. In presence of histidine, expression of several genes is altered including those encoding key subunits of mitochondrial ATP synthase, transporters of amino acids and nutrients, as well as biosynthetic enzymes. Thus, histidine should be included as an essential component for optimal growth of K.phaffii histidine auxotrophs cultured in YPA.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
121
|
Spice AJ, Aw R, Polizzi KM. Cell-Free Protein Synthesis Using Pichia pastoris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:75-88. [PMID: 34985738 DOI: 10.1007/978-1-0716-1998-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) is an industrially relevant recombinant protein platform that has been used to produce over 5000 proteins to date. Cell-free protein synthesis can be used as a screening tool before strain development or for the production of proteins that are difficult or toxic to make in vivo. Here we describe the methods for generating an active cell lysate from P. pastoris using high pressure homogenization and an improved reaction mix which results in high yields of reporter proteins such as luciferase, and complex proteins such as human serum albumin and virus-like particles.
Collapse
Affiliation(s)
- Alex J Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
122
|
Kjeldsen A, Kay JE, Baxter S, McColm S, Serrano‐Amatriain C, Parker S, Robb E, Arnold SA, Gilmour C, Raper A, Robertson G, Fleming R, Smith BO, Fotheringham IG, Christie JM, Magneschi L. The fluorescent protein iLOV as a reporter for screening of high‐yield production of antimicrobial peptides in
Pichia pastoris. Microb Biotechnol 2022; 15:2126-2139. [PMID: 35312165 PMCID: PMC9249318 DOI: 10.1111/1751-7915.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022] Open
Abstract
The methylotrophic yeast Pichia pastoris is commonly used for the production of recombinant proteins at scale. The identification of an optimally overexpressing strain following transformation can be time and reagent consuming. Fluorescent reporters like GFP have been used to assist identification of superior producers, but their relatively big size, maturation requirements and narrow temperature range restrict their applications. Here, we introduce the use of iLOV, a flavin‐based fluorescent protein, as a fluorescent marker to identify P. pastoris high‐yielding strains easily and rapidly. The use of this fluorescent protein as a fusion partner is exemplified by the production of the antimicrobial peptide NI01, a difficult target to overexpress in its native form. iLOV fluorescence correlated well with protein expression level and copy number of the chromosomally integrated gene. An easy and simple medium‐throughput plate‐based screen directly following transformation is demonstrated for low complexity screening, while a high‐throughput method using fluorescence‐activated cell sorting (FACS) allowed for comprehensive library screening. Both codon optimization of the iLOV_NI01 fusion cassettes and different integration strategies into the P. pastoris genome were tested to produce and isolate a high‐yielding strain. Checking the genetic stability, process reproducibility and following the purification of the active native peptide are eased by visualization of and efficient cleavage from the iLOV reporter. We show that this system can be used for expression and screening of several different antimicrobial peptides recombinantly produced in P. pastoris.
Collapse
Affiliation(s)
- Annemette Kjeldsen
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Jack E. Kay
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Scott Baxter
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Stephen McColm
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | | | - Scott Parker
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Ellis Robb
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - S. Alison Arnold
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Craig Gilmour
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - Anna Raper
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Graeme Robertson
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Robert Fleming
- The Roslin Institute & Royal (Dick) School of Veterinary Studies University of Edinburgh Easter Bush Midlothian EH25 9RG UK
| | - Brian O. Smith
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Ian G. Fotheringham
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| | - John M. Christie
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Bower Building Glasgow G12 8QQ UK
| | - Leonardo Magneschi
- Ingenza Ltd Roslin Innovation Centre Charnock Bradley Building Roslin EH25 9RG UK
| |
Collapse
|
123
|
Zhang W, Zhou J, Gu Q, Sun R, Yang W, Lu Y, Wang C, Yu X. Heterologous Expression of GH5 Chitosanase in Pichia pastoris and Antioxidant Biological Activity of Its Chitooligosacchride Hydrolysate. J Biotechnol 2022; 348:55-63. [PMID: 35304164 DOI: 10.1016/j.jbiotec.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
Chitosanase was widely used in the production of bioactive chitooligosacchride (CHOS) due to their safety, controllability, environmental protection, and biodegradability. Studies showed that the bioactivity of CHOS is closely related to its degree of polymerization. Therefore, the production of ideal polymerized CHOS becomes our primary goal. In this study, the glycosyl hydrolase (GH) family 5 chitosanase was successfully expressed heterologously in Pichia pastoris. After 96h of high-density fermentation, the chitosanase activity reached 90.62 U·mL-1, the protein content reached 9.76mg·mL-1. When 2% chitosan was hydrolyzed by crude enzyme (20U/mL), the hydrolysis rate reached 91.2% after 8h, producing a mixture of CHOS with 2-4 desirable degrees of polymerization (DP). Then, the antioxidant activity of CHOS mixture was investigated, and the results showed that the antioxidant effect was concentration-dependent and had great application potential in the field of nutrition.
Collapse
Affiliation(s)
- Wenshuai Zhang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianli Zhou
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiuya Gu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruobin Sun
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenhua Yang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Lu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Congcong Wang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobin Yu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
124
|
Kashyap A, Saini K, Saini M, Khasa YP, Gupta R. Development of a novel Pichia pastoris expression platform via genomic integration of lipase gene for sustained release of methanol from methyloleate. Prep Biochem Biotechnol 2022; 53:64-75. [PMID: 35238717 DOI: 10.1080/10826068.2022.2039941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel Lip+ Pichia pastoris expression platform was developed by integrating lipase Lip2 from Yarrowia lipolytica under constitutive Glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. Effective expression of reporter protein amylase from Bacillus licheniformis was achieved utilizing methyloleate in Lip+Amy+host. Lipase hydrolyzed methyloleate into methanol that sustained PAOX1 induction, and oleic acid, which was readily utilized as a carbon source. The protein expression achieved in presence of methyloleate was comparable to methanol-induced cells, along with an increase in productive biomass. In Lip+Amy+ host, total amylase production of 220.9 ± 13 U/mg biomass was achieved at 96 h using methyloleate supplemented every 24 h. While 206.0 ± 17 U/mg biomass was obtained at 108 h in an Amy+ host induced with methanol every 12 h. Further, lipase expression neither affected growth nor added additional burden on the cellular machinery and no oleic acid accumulation was observed at any time point due to its emulsification and efficient utilization by lipase positive host. Similar results obtained with the second reporter protein γ-cyclodextrin glycosyltransferase (CGTase) from Evansella caseinilytica validated the platform. An alternate lipase Lip11 from Y. lipolytica was also employed in developing a Lip+ host to validate disparity between lipase background and PAOX1 induction in presence of methyloleate.
Collapse
Affiliation(s)
- Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Kuldeep Saini
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Meenu Saini
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
125
|
Kaewjanthong P, Sooksai S, Sasano H, Hutvagner G, Bajan S, McGowan E, Boonyaratanakornkit V. Cell-penetrating peptides containing the progesterone receptor polyproline domain inhibits EGF signaling and cell proliferation in lung cancer cells. PLoS One 2022; 17:e0264717. [PMID: 35235599 PMCID: PMC8890653 DOI: 10.1371/journal.pone.0264717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/15/2022] [Indexed: 01/10/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.
Collapse
Affiliation(s)
- Panthita Kaewjanthong
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gyorgy Hutvagner
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
| | - Sarah Bajan
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
- Sunshine Coast Health Institute, Birtinya, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
126
|
Zioga E, Tøstesen M, Kjærulf Madsen S, Shetty R, Bang-Berthelsen CH. Bringing plant-based Cli-meat closer to original meat experience: insights in flavor. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
127
|
Dong B, Yu C, Lin Y, Zhou G, Sun C, Wang J, Wu T. Antimicrobial property of Pichia pastoris-derived natto peptide against foodborne bacteria and its preservative potential to maintain pork quality during refrigerated storage. Food Sci Nutr 2022; 10:914-925. [PMID: 35282007 PMCID: PMC8907714 DOI: 10.1002/fsn3.2722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Pork spoilage caused by foodborne bacteria contamination always leads to substantial economic loss in the meat industry. The toxicity and drug resistance of chemical preservatives have raised public concerns about their safety and stability. In this study, natto peptide from Pichia pastoris was prepared using DNA recombinant technology. It showed an excellent antibacterial effect against Gram-positive and -negative bacteria, with minimum inhibitory concentrations (MICs) ranging from 6 to 30 μg/ml. Of note, natto peptide exhibited low cytotoxicity and hemolytic activity. The application of natto peptide on pork during refrigerated storage dramatically decreased the growth of Staphylococcus spp., Escherichia spp., and Pseudomonas spp. The bactericidal properties remained in force when natto peptide was used in pork models contaminated with artificial bacteria. Moreover, the application of natto peptide (90 μg/ml) inhibited the increase in pH variation and drip loss, decreased the generation of total volatile basic nitrogen (TVB-N) and thiobarbituric acid reactive substances (TBARS), and maintained a high sensory quality score during pork storage. These results implied that P. pastoris-derived natto peptide could extend the storage time of pork, and it has the potential to be a promising antiseptic biopreservative to replace chemical preservatives.
Collapse
Affiliation(s)
- Bin Dong
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Cailing Yu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Yanjun Lin
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Guowen Zhou
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Chunlong Sun
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Jun Wang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| | - Tao Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River DeltaCollege of Biological and Environmental EngineeringBinzhou UniversityBinzhouChina
| |
Collapse
|
128
|
Nishi T, Ito Y, Nakamura Y, Yamaji T, Hashiba N, Tamai M, Yasohara Y, Ishii J, Kondo A. One-Step In Vivo Assembly of Multiple DNA Fragments and Genomic Integration in Komagataella phaffii. ACS Synth Biol 2022; 11:644-654. [PMID: 35094517 DOI: 10.1021/acssynbio.1c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The methylotrophic yeast species Komagataella phaffii (synonym: Pichia pastoris) is widely used as a host for recombinant protein production. Although several genetic engineering techniques are being employed on K. phaffii, advanced methods such as in vivo DNA assembly in this yeast species are required for synthetic biology applications. In this study, we established a technique for accomplishing one-step in vivo assembly of multiple DNA fragments and genomic integration in K. phaffii. To concurrently achieve an accurate multiple DNA assembly and a high-efficient integration into the target genomic locus in vivo, a K. phaffii strain, lacking a non-homologous end joining-related protein, DNA ligase IV (Dnl4p), that has been reported to improve gene targeting efficiency by homologous recombination, was used. Using green fluorescent protein along with the lycopene biosynthesis, we showed that our method that included a Dnl4p-defective strain permits direct and easy engineering of K. phaffii strains.
Collapse
Affiliation(s)
- Teruyuki Nishi
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Yoichiro Ito
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuyuki Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Taiki Yamaji
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Noriko Hashiba
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Masaya Tamai
- Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe 650-0047, Japan
| | - Yoshihiko Yasohara
- Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Takasago 676-8688, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| |
Collapse
|
129
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
130
|
Gao J, Ye C, Cheng J, Jiang L, Yuan X, Lian J. Enhancing Homologous Recombination Efficiency in Pichia pastoris for Multiplex Genome Integration Using Short Homology Arms. ACS Synth Biol 2022; 11:547-553. [PMID: 35061355 DOI: 10.1021/acssynbio.1c00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a growing interest in establishing the methylotrophic yeast Pichia pastoris as microbial cell factories for producing fuels, chemicals, and natural products, particularly with methanol as the feedstock. Although CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based genome editing technology has been established for the integration of multigene biosynthetic pathways, long (500-1000 bp) homology arms are generally required, probably due to low homologous recombination (HR) efficiency in P. pastoris. To achieve efficient genome integration of heterologous genes with short homology arms, we aimed to enhance HR efficiency by introducing the recombination machinery from Saccharomyces cerevisiae. First, we overexpressed HR related genes, including RAD52, RAD59, MRE11, and SAE2, and evaluated their effects on genome integration efficiency. Then, we constructed HR efficiency enhanced P. pastoris, which enabled single-, two-, and three-loci integration of heterologous gene expression cassettes with ∼40 bp homology arms with efficiencies as high as 100%, ∼98%, and ∼81%, respectively. Finally, we demonstrated the construction of β-carotene producing strain and the optimization of betaxanthin producing strain in a single step. The HR efficiency enhanced P. pastoris strains can be used for the construction of robust cell factories, and our machinery engineering strategy can be employed for the modification of other nonconventional yeasts.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jintao Cheng
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghao Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
131
|
Tellechea-Luzardo J, Hobbs L, Velázquez E, Pelechova L, Woods S, de Lorenzo V, Krasnogor N. Versioning biological cells for trustworthy cell engineering. Nat Commun 2022; 13:765. [PMID: 35140226 PMCID: PMC8828774 DOI: 10.1038/s41467-022-28350-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
“Full-stack” biotechnology platforms for cell line (re)programming are on the horizon, thanks mostly to (a) advances in gene synthesis and editing techniques as well as (b) the growing integration of life science research with informatics, the internet of things and automation. These emerging platforms will accelerate the production and consumption of biological products. Hence, traceability, transparency, and—ultimately—trustworthiness is required from cradle to grave for engineered cell lines and their engineering processes. Here we report a cloud-based version control system for biotechnology that (a) keeps track and organizes the digital data produced during cell engineering and (b) molecularly links that data to the associated living samples. Barcoding protocols, based on standard genetic engineering methods, to molecularly link to the cloud-based version control system six species, including gram-negative and gram-positive bacteria as well as eukaryote cells, are shown. We argue that version control for cell engineering marks a significant step toward more open, reproducible, easier to trace and share, and more trustworthy engineering biology. Full traceability and transparency are important to establish trust in engineered cell lines. Here the authors argue that version control for cell engineering marks a significant step toward more open, reproducible, traceable and ultimately more trustworthy engineering biology.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Leanne Hobbs
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Elena Velázquez
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Lenka Pelechova
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK
| | - Simon Woods
- Policy Ethics and Life Sciences (PEALS), Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), 28049, Madrid, Spain
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, Newcastle Upon Tyne, NE4 5TG, UK.
| |
Collapse
|
132
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
133
|
Dalvie NC, Biedermann AM, Rodriguez‐Aponte SA, Naranjo CA, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Johnston RS, Crowell LE, Castelino S, Tracey MK, Whittaker CA, Love JC. Scalable, methanol-free manufacturing of the SARS-CoV-2 receptor-binding domain in engineered Komagataella phaffii. Biotechnol Bioeng 2022; 119:657-662. [PMID: 34780057 PMCID: PMC8653030 DOI: 10.1002/bit.27979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/10/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Prevention of COVID-19 on a global scale will require the continued development of high-volume, low-cost platforms for the manufacturing of vaccines to supply ongoing demand. Vaccine candidates based on recombinant protein subunits remain important because they can be manufactured at low costs in existing large-scale production facilities that use microbial hosts like Komagataella phaffii (Pichia pastoris). Here, we report an improved and scalable manufacturing approach for the SARS-CoV-2 spike protein receptor-binding domain (RBD); this protein is a key antigen for several reported vaccine candidates. We genetically engineered a manufacturing strain of K. phaffii to obviate the requirement for methanol induction of the recombinant gene. Methanol-free production improved the secreted titer of the RBD protein by >5X by alleviating protein folding stress. Removal of methanol from the production process enabled to scale up to a 1200 L pre-existing production facility. This engineered strain is now used to produce an RBD-based vaccine antigen that is currently in clinical trials and could be used to produce other variants of RBD as needed for future vaccines.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Andrew M. Biedermann
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sergio A. Rodriguez‐Aponte
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Christopher A. Naranjo
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | | | | | | | - Ryan S. Johnston
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Laura E. Crowell
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Seraphin Castelino
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Mary K. Tracey
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - J. Christopher Love
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
134
|
Han M, Wang W, Gong X, Zhu G, Liu X, Yu Z, Zhou J, Ma C, Ma X. A modified method of gene disruption in Komagataella phaffii with Cre/loxP system. J Biotechnol 2022; 347:40-48. [DOI: 10.1016/j.jbiotec.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/30/2022]
|
135
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
136
|
Wang J, Wang P, Zhu M, Chen W, Yu S, Zhong B. Overexpression and Biochemical Properties of a GH46 Chitosanase From Marine Streptomyces hygroscopicus R1 Suitable for Chitosan Oligosaccharides Preparation. Front Microbiol 2022; 12:816845. [PMID: 35173697 PMCID: PMC8841797 DOI: 10.3389/fmicb.2021.816845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the various biological activities of chitosan oligosaccharides (COSs), they have great potential value for use in many areas. Chitosanase plays an important role in enzymatic preparation of COSs. Herein, a gene encoding a chitosanase (ShCsn46) from marine Streptomyces hygroscopicus R1 was cloned and the sequences encoding ShCsn46 without signal peptide were optimized based on the codon usage of Pichia pastoris (P. pastoris). In addition, the optimized gene was ligated to pPICZαA and transformed to P. pastoris X33. After screening, a recombinant strain named X33-Sh33 with the highest activity was isolated from 96 recombinant colonies. The maximum activity and total protein concentration of the recombinant strain ShCsn46 were 2250 U/ml and 3.98 g/l, respectively. The optimal pH and temperature of purified ShCsn46 were 5.5 and 55°C, respectively. Meanwhile, ShCsn46 was stable from pH 5.0 to 10.0 and 40 to 55°C, respectively. The purified ShCsn46 was activated by Mn2+ and inhibited by Cu2+, Fe2+, and Al3+. In addition, substrate specificity of the purified ShCsn46 showed highest activity toward colloidal chitosan with 95% degree of deacetylation. Furthermore, the purified ShCsn46 exhibited high efficiency to hydrolyze 4% colloidal chitosan to prepare COSs. COSs with degree of polymerization of 2–6, 2–5, and 2–4 were controllably produced by adjusting the reaction time. This study provides an excellent chitosanase for the controllable preparation of COSs with a desirable degree of polymerization.
Collapse
Affiliation(s)
- Jianrong Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Jianrong Wang,
| | - Ping Wang
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Mujin Zhu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Wei Chen
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Si Yu
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| | - Bin Zhong
- Shenzhen Raink Ecology & Environment Co., Ltd., Shenzhen, China
| |
Collapse
|
137
|
Gasset A, Garcia-Ortega X, Garrigós-Martínez J, Valero F, Montesinos-Seguí JL. Innovative Bioprocess Strategies Combining Physiological Control and Strain Engineering of Pichia pastoris to Improve Recombinant Protein Production. Front Bioeng Biotechnol 2022; 10:818434. [PMID: 35155391 PMCID: PMC8826567 DOI: 10.3389/fbioe.2022.818434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of strain and bioprocess engineering strategies should be considered to obtain the highest levels of recombinant protein production (RPP) while assuring product quality and process reproducibility of heterologous products. In this work, two complementary approaches were investigated to improve bioprocess efficiency based on the yeast P. pastoris. Firstly, the performance of two Candida rugosa lipase 1 producer clones with different gene dosage under the regulation of the constitutive PGAP were compared in chemostat cultures with different oxygen-limiting conditions. Secondly, hypoxic conditions in carbon-limited fed-batch cultures were applied by means of a physiological control based on the respiratory quotient (RQ). Stirring rate was selected to maintain RQ between 1.4 and 1.6, since it was found to be the most favorable in chemostat. As the major outcome, between 2-fold and 4-fold higher specific production rate (qP) values were observed when comparing multicopy clone (MCC) and single-copy clone (SCC), both in chemostat and fed-batch. Additionally, when applying oxygen limitation, between 1.5-fold and 3-fold higher qP values were obtained compared with normoxic conditions. Thus, notable increases of up to 9-fold in the production rates were reached. Furthermore, transcriptional analysis of certain key genes related to RPP and central carbon metabolism were performed. Results seem to indicate the presence of a limitation in post-transcriptional protein processing steps and a possible transcription attenuation of the target gene in the strains with high gene dosage. The entire approach, including both strain and bioprocess engineering, represents a relevant novelty involving physiological control in Pichia cell factory and is of crucial interest in bioprocess optimization, boosting RPP, allowing bioproducts to be economically competitive in the market, and helping develop the bioeconomy.
Collapse
Affiliation(s)
- Arnau Gasset
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- QuBi Lab, Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- *Correspondence: Francisco Valero,
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
138
|
Gupta J, Kumar A, Surjit M. Production of a Hepatitis E Vaccine Candidate Using the Pichia pastoris Expression System. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:117-141. [PMID: 34918244 DOI: 10.1007/978-1-0716-1892-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). No vaccine is available to combat the HEV except Hecolin, which is available only in China. Virus-like particle (VLP) generated from the capsid protein (ORF2) of HEV is known to be a potent vaccine antigen against HEV. Hecolin consists of 368-606 amino acid (aa) region of the capsid protein of HEV, which forms a VLP. It is expressed and purified from the inclusion bodies of E. coli. Here, we describe a method to express the 112-608aa region of the capsid protein (ORF2) of genotype-1 HEV in Pichia pastoris (P. pastoris) and purify VLPs from the culture medium. 112-608aa ORF2 VLPs are secreted into the culture medium in a methanol inducible manner. The purified VLPs are glycosylated and induce robust immune response in Balb/c mice. Further, 112-608aa ORF2 VLPs are bigger than the 368-606 VLP present in Hecolin, which may help them in inducing a superior immune response. P. pastoris offers a robust and economical heterologous expression system to produce large quantities of glycosylated 112-608aa ORF2 VLP, which appears to be a promising vaccine candidate against the HEV.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
139
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
140
|
Zhang Z, Xiang B, Zhao S, Yang L, Chen Y, Hu Y, Hu S. Construction of a novel filamentous fungal protein expression system based on redesigning of regulatory elements. Appl Microbiol Biotechnol 2022; 106:647-661. [PMID: 35019997 DOI: 10.1007/s00253-022-11761-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Filamentous fungi are extensively used as an important expression host for the production of a variety of essential industrial proteins. They have significant promise as an expression system for protein synthesis due to their inherent superior secretory capabilities. The purpose of this study was to develop a novel expression system by utilizing a Penicillium oxalicum strain that possesses a high capacity for protein secretion. The expression of glycoside hydrolases in P. oxalicum was evaluated in a cleaner extracellular background where the formation of two major amylases was inhibited. Four glycoside hydrolases (CBHI, Amy15B, BGL1, and Cel12A) were expressed under the highly constitutive promoter PubiD. It was found that the proteins exhibited high purity in the culture supernatant after cultivation with starch. Two inducible promoters, Pamy15A and PempA, under the activation of the transcription factor AmyR were used as elements in the construction of versatile vectors. When using the cellobiohydrolase CBHI as the extracellular quantitative reporter, the empA promoter screened from the AmyR-overexpressing strain was shown to be superior to the amy15A promoter based on RNA-sequencing data. Therefore, we designed an expression system consisting of a cleaner background host strain and an adjustable promoter. This system enables rapid and high-throughput evaluation of glycoside hydrolases from filamentous fungi.Key points• A new protein expression system derived from Penicillium oxalicum has been developed.• The expression platform is capable of secreting recombinant proteins with high purity.• The adjustable promoter may allow for further optimization of recombinant protein synthesis.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Boyu Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengfang Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Le Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
141
|
Liu K, Ouyang Y, Lin R, Ge C, Zhou M. Strong negative correlation between codon usage bias and protein structural disorder impedes protein expression after codon optimization. J Biotechnol 2022; 343:15-24. [PMID: 34763006 DOI: 10.1016/j.jbiotec.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022]
Abstract
As a common phenomenon existing in almost all genomes, codon usage bias has been studied for a long time. Codon optimization is a frequently used strategy to accelerate protein synthesis rate. Besides regulating protein translation speed, codon usage bias has also be reported to affect co-translation folding and transcription. P. pastoris is a well-developed expression system, whose efficiency is tightly correlated with commercial value. However, few studies focus on the role of codon usage bias in affecting protein expression in P. pastoris. Besides, many genes in P. pastoris genome show significant negative correlation between codon usage bias and protein structural disorder tendency. It's not known whether this feature is important for their expression. In order to answer these questions, we picked 4P. pastoris gene candidates with strong negative correlation between codon usage bias and protein structural disorder. We then performed full-length codon optimization which completely eliminated the correlation. Protein and RNA assays were then used to compare protein and mRNA levels before and after codon optimization. As a result, codon optimization failed to elevate their protein expression levels, and even resulted in a decrease. As represented by the trypsin sensitivity assays, codon optimization also altered the protein structure of 0616 and 0788. Besides protein, codon optimization also affected mRNA levels. Shown by in vitro and in vivo RNA degradation assays, the mRNA stability of 0616, 0788 and 0135 were also altered by codon optimization. For each gene, the detailed effect may be related with its specific sequence and protein structure. Our results suggest that codon usage bias is an important factor to regulate gene expression level, as well as mRNA and protein stabilities in P. pastoris. "Extreme" codon optimization in genes with strong negative correlation between codon usage bias and protein structural disorder tendency may not be favored. Compromised strategies should be tried if expression is not successful. Besides, codon optimization may affect protein structural conformation more severely in structural disordered proteins.
Collapse
Affiliation(s)
- Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaqi Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chenyu Ge
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
142
|
High level production of stable human serum albumin in Pichia pastoris and characterization of the recombinant product. Bioprocess Biosyst Eng 2022; 45:409-424. [PMID: 34999948 DOI: 10.1007/s00449-021-02670-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 12/19/2022]
Abstract
Human serum albumin (HSA) is an important therapeutic used in clinical settings for restoration of blood volume and treatment of chemotherapy induced neutropenia. Currently sourced from human serum, it carries the risk of contamination with viruses. The production of stable extracellular recombinant (r)HSA was achieved at nearly 1 g/L at shake-flask level in Pichia pastoris (syn. Komagataella phaffii) containing a three-copy containing HSA expression cassette, prepared in vitro. The HSA specific transcripts were increased by 1.82- to 2.46-fold in the three-copy containing clones indicating increased transcript levels to result in enhanced production of extracellular rHSA. The purified rHSA displayed secondary structure, zeta potential, size distribution and biological efficacy that matched with that of the commercial HSA. Cultivation strategy was developed at bioreactor level for the single HSA expression cassette containing recombinant which led to productivity of 300 mg/L/d of rHSA with minimum proteolytic cleavage.
Collapse
|
143
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
144
|
Lorrine OE, Raja Abd. Rahman RNZ, Tan JS, Raja Khairuddin RF, Salleh AB, Oslan SN. Determination of Putative Vacuolar Proteases, PEP4 and PRB1 in a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO Using Bioinformatics Tools. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2022. [DOI: 10.47836/pjst.30.1.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.
Collapse
|
145
|
Moatamedi N, Emamzadeh R, Sadeghi HMM, Akbari V. Bioprocess optimization of interferon β-1-a in Pichia pastoris and its improved inhibitory effect against hepatocellular carcinoma cells. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
146
|
|
147
|
Zhao Y, Li H, Donelan W, Li S, Tang D. Expression of Recombinant Rat Secretable FNDC5 in Pichia Pastoris and Detection of Its Biological Activity. Front Endocrinol (Lausanne) 2022; 13:852015. [PMID: 35321332 PMCID: PMC8936140 DOI: 10.3389/fendo.2022.852015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
FNDC5 is the precursor of the myokine irisin proposed to exhibit favorable metabolic activity, including anti-obesity and anti-diabetes effects. The diversity of FNDC5 transcripts has been reported by several studies, but the role and existence of these transcripts are not well defined. In our previous study, a novel secretable FNDC5 (sFNDC5) isoform lacking the transmembrane region was found in rat INS-1 cells and multiple rat tissues. In the current study, we established a high-yield system for the expression and purification of sFNDC5 in Pichia pastoris, and functional investigations were undertaken using 3T3-L1 cells. We discovered that this new isoform has similar and even stronger biological functions than irisin, which may be due to its more complete structure without cleavage. Hence, we believe that sFNDC5, as the first identified readily secretable derivative, can better induce lipolysis and can potentially prevent obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yi Zhao
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Li
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - William Donelan
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Shiwu Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Dongqi Tang
- Center for Gene and Immunotherapy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Dongqi Tang,
| |
Collapse
|
148
|
Transcriptome Analysis Unveils the Effects of Proline on Gene Expression in the Yeast Komagataella phaffii. Microorganisms 2021; 10:microorganisms10010067. [PMID: 35056516 PMCID: PMC8778476 DOI: 10.3390/microorganisms10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Komagataella phaffii yeast is one of the most important biocompounds producing microorganisms in modern biotechnology. Optimization of media recipes and cultivation strategies is key to successful synthesis of recombinant proteins. The complex effects of proline on gene expression in the yeast K. phaffii was analyzed on the transcriptome level in this work. Our analysis revealed drastic changes in gene expression when K. phaffii was grown in proline-containing media in comparison to ammonium sulphate-containing media. Around 18.9% of all protein-encoding genes were differentially expressed in the experimental conditions. Proline is catabolized by K. phaffii even in the presence of other nitrogen, carbon and energy sources. This results in the repression of genes involved in the utilization of other element sources, namely methanol. We also found that the repression of AOX1 gene promoter with proline can be partially reversed by the deletion of the KpPUT4.2 gene.
Collapse
|
149
|
Tan WY, Khoo BY, Chew AL. Optimization of Physical Parameters for the Enhanced Expression of Recombinant Chemokine Receptors D6 and DARC in Pichia pastoris. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
150
|
Wang D, Li W, Zhang X, Liang S, Lin Y. Green Process: Improved Semi-Continuous Fermentation of Pichia pastoris Based on the Principle of Vitality Cell Separation. Front Bioeng Biotechnol 2021; 9:777774. [PMID: 34917600 PMCID: PMC8669635 DOI: 10.3389/fbioe.2021.777774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The large-scale fermentation of Pichia pastoris for recombinant protein production would be time consuming and produce a large amount of waste yeast. Here we introduce a novel semi-continuous fermentation process for P. pastoris GS115 that can separate vitality cells from broth and recycle the cells to produce high-secretory recombinant pectate lyase. It is based on differences in cell sedimentation coefficients with the formation of salt bridges between metal ions and various cell states. Compared to batch-fed cultivation and general semi-continuous culture, the novel process has significant advantages, such as consuming fewer resources, taking less time, and producing less waste yeast. Sedimentation with the addition of Fe3+ metal ions consumed 14.8 ± 0.0% glycerol, 97.8 ± 1.3% methanol, 55.0 ± 0.9 inorganic salts, 81.5 ± 0.0% time cost, and 77.0 ± 0.1% waste yeast versus batch-fed cultivation to produce an equal amount of protein; in addition, the cost of solid-liquid separation was lower for cells in the collected fermentation broth. The process is economically and environmentally efficient for producing recombinant proteins.
Collapse
Affiliation(s)
- Denggang Wang
- South China University of Technology, Guangzhou, China
| | - Wenjie Li
- South China University of Technology, Guangzhou, China
| | - Xinying Zhang
- South China University of Technology, Guangzhou, China
| | - Shuli Liang
- South China University of Technology, Guangzhou, China
| | - Ying Lin
- South China University of Technology, Guangzhou, China
| |
Collapse
|